
Semi-Automated Safety Analysis for Field Programmable Gate Arrays

Philippa Conmy, Iain Bate
Software Systems Engineering Initiative,

Department of Computer Science, University of York,
York, U.K.

{philippa, iain.bate}@cs.york.ac.uk

Abstract

Complex Programmable Logic Devices (PLDs)

such as Field Programmable Gate Arrays (FPGAs)
are becoming increasingly popular for use in High-
Integrity Safety Related and Safety Critical Systems.
FPGAs offer a number of potential benefits over
traditional microprocessor based software systems,
such as predictable timing performance, the ability to
perform highly parallel calculations, predictable
emulation of obsolete components, and (in the case of
SRAM based FPGAs) the ability to reconfigure to
avoid hardware failures. However these abilities do
not come for free and often designers are forced to
make pessimistic safety and reliability assumptions
leading to conservative overall system designs. In this
paper a modular, and hence more scalable approach,
to performing FPGA safety analysis is presented.

1. Introduction

Safety critical and safety related systems typically
undergo some sort of certification process prior to their
deployment. The certification details are dictated by
domain specific standards and guidance, however there
are a number of common practices and procedures
within these. One common item is a safety case which
demonstrates how potentially hazardous failures within
the system are prevented or mitigated. FPGAs contain
thousands of logic gates and are extremely complex
once configured. Hence it is extremely difficult to
determine the effect that a single low-level failure can
have at the system level. As this information it cannot
be provided a conservative design approach (e.g.
Triple Modular Redundancy (TMR) [6, 14]) has to be
taken. This satisfies safety requirements (as the system
is robustly protected against failures) but it prevents
FPGA benefits, such as the ability to run multiple

programs on the same device thus providing power and
weight savings, from being fully exploited

This paper contributes the following. First we
demonstrate how to apply a semi-automated failure
analysis technique to an HDL design synthesized for
an FPGA, providing a simple example. We then show
how this can help a safety analyst to identify the safety
effects of hardware failures within the FPGA, to justify
or alter the design and hence provide evidence for a
safety case.

The paper is laid out as follows. The next section
discusses FPGAs, certification issues and safety
analysis in more detail. Section 3 looks at related work.
Section 4 describes the generic process we are
proposing. Section 5 provides a worked example to
demonstrate how it can be applied and Section 6
contains further work and conclusions.

2. Certification of FPGAs

2.1. Field Programmable Gate Arrays

An FPGA is programmable logic device which has
thousands of connected logic cells. The basic structure
of these cells is identical but they can be configured to
perform different operations. For example, each cell
typically contains a Look-Up-Table which can be
configured to perform different binary comparisons on
input signals such as AND or XOR. These cells are
connected together via a series of interconnects to
perform higher level processing tasks. Due to its
design an FPGA can perform many tasks in parallel
e.g. to perform digital signal processing.

FPGAs can have have different hardware
implementations, especially for the interconnects.
FPGAs with SRAM interconnects can be reconfigured
as many times as the user requires. Antifuse
interconnects can only be configured once, however
they are smaller and offer more routing flexibility. In

addition some FPGAs include extra hardware devices
such as static memory, multipliers and even traditional
sequential microprocessors. This assists with tasks that
the FPGA is not well suited for, for example dealing
with floating point numbers, but can add further
complexity to the certification process as each different
device will need to be assessed. The ability to
configure or reconfigure an FPGA is not explored
within this paper but will be for our further work.
Figure 1 shows a typical FPGA design.

FPGAs are configured by synthesizing code written
in a Hardware Description Language (HDL) such as
HDL or Verilog. The first stage of synthesis converts
the code into a netlist which describes the hardware
parts and connections which will be used to implement
the code. This then undergoes a place and route
operation that describes which logic cells will actually
be used on the FPGA and how they are connected. The
routing will be calculated based on criteria such as
acceptable timing performance.

I/O Block

I/O Block

μprocessor

I/O
 B

lo
ck

I/O
 B

lo
ck

Interconnects

Logic Cell

Additional
Device

Figure 1 Simplified representation of FPGA

FPGAs are susceptible to a number of different

hardware failures, but those which are most often cited
are grouped as Single Event Effects (SEEs). An SEE
causes a bit flip in the device i.e. from 0 to 1 or vice
versa. The most commonly discussed is a Single Event
Upset (SEU) which in which a bit flip may be stuck
until the device or the cell is reset. Other SEEs are
transient (resets itself without interventation) or
permanent. Several SEEs may be found in a group
together, e.g. caused by a radiation burst, rather than a
just single failure on its own.

One of the difficulties in analyzing an FPGA is
determining the effect (if any) that an SEE has at the

system level. In some instances an SEE may never
cause a failure, for example if an SEE causes an
incorrect input into a multi-input Look Up Table
(LUT) the output may still be correct depending on the
internal truth tables and other input values. E.g. if two
values undergo an AND then the same output will be
achieved for 00, 10, and 01. More detailed discussion
of SEE effects can be found in [5, 2].

On the other hand the failure may be very
significant if a value is flipped which is then used by
multiple other cells, effectively becoming a common
mode failure for multiple cells, and hence for multiple
functions. However, it may be that even though
outputs from the FPGA are affected there is actually
no safety concern. Also, an SEE which affects multiple
cells may be of little concern as it is easier to detect.
However an SEE which causes an output value to be
subtly incorrect but credible may be of more interest.
This reflects the inherent complexity of an FPGA
which is not just due to the number of internal cells but
also to the number of permutations of interactions
between them.

In our experience the inability to determine the
effect of an SEE has led to pessimistic assumptions
about the reliability of an FPGA to be made and hence
conservative (and expensive) design decisions such as
multiple lanes or monitors are made ([6, 11]).
Alternatively an FPGA may simply not be chosen for
use within systems of a high criticality. Our desire is to
help determine the safety effect of an SEU and to
improve the design in areas of significance, potentially
improving both the ability to certify an FPGA based
system and also to support less conservative designs.

One feature of our work which differs from others
is that we can also consider other hardware failures of
concern, in particular errors in the clock which can
lead to synchronization, propagation, and timing
issues.

2.2. Certification Standards and Guidance

Certification is used within this paper as a general
term for the process of demonstrating that a high-
integrity system performs as intended and/or required
to an authority of some kind. For the safety critical
systems being discussed here safety analysis will form
a large part (or in some cases all) of the certification
process. Safety analysis is the term used to describe
any method which shows how a failure within a system
could lead to a hazardous event (i.e. one which could
lead to an accident e.g. engine fire). After analysis it
should be possible to show how potentially hazardous
failures have been managed. There are various
techniques for this, some or all of which are prescribed

by standards or guidance within a domain. For brevity
this paper only discusses U.K. Defense standard 00-56
issue 4 [9], IEC 61508 [4] and Eurocae/RTCA
guidance DO178B [13] and DO254 [12], as these
provide a good cross-section of the different
approaches taken to certification and help identify
issues of concern to analysts and designers of systems
containing FPGAs.

One major issue for FPGA developers is that there
is some confusion over whether an FPGA should be
classified as software or hardware. On one hand it is
highly programmable or reprogrammable, but on the
other hand the code is run directly in hardware. The
pragmatic approach is to assume that development of
the HDL code will be performed using processes
similar to that for software (e.g. a V lifecycle), as well
as examining the hardware using established
techniques for electronics. We have performed our
review based on this dual approach.

2.2.1. U.K. Defence Standard 00-56 Issue 4

This standard is used to manage safety in military
equipment. The standard is based on the As Low As
Reasonably Practicable (ALARP) principal that the
effort/cost taken to reduce a given failure should be
proportionate with its potential severity and likelihood.
The standard requires the production of a safety case to
demonstrate that hazards have been identified and risks
associated with those hazards appropriately managed.
It does not prescribe how this is to be achieved. In
practice safety analysis would be used to support the
safety case and to identify hazards. As a result there is
an opportunity to explore new methods of providing
safety evidence, such as those proposed in this paper
for FPGAs. This is contingent on those methods being
shown to provide useful and reliable information.

2.2.2. IEC 61508

This is a generic standard used for the development
of electronics and programmable electronics. To meet
the standard the developer must first assign a Safety
Integrity Level (SIL) to the system based on the risks
associated with it malfunctioning. This assignment is
assisted by various safety analyses. Then the rigour of
processes applied during development is dictated by
the assigned SIL and need to demonstrate that risks are
managed (e.g. in a high SIL a formal proof of code
might be required but not for lower SIL).

Software and hardware are treated separately in the
standard. It is likely that some of the recommended
software practice would need to be adapted for

application to an FPGA e.g. how to ensure code is
fully tested and to assess the synthesis tools and their
output.

Hardware guidance requires (amongst other things)
an estimation of the failure of safety functions due to
random hardware failures. This is of significance when
certifying an FPGA since it is very hard to identify the
effect of an SEU so, even if an estimate of the rate of
occurrence is known, it cannot be linked easily to a
specific safety function at a system level. This can lead
to a very pessimistic failure rate being assumed when
an FPGA is used, as suggested by Isaac in [5].

2.2.3. DO178B/DO254

DO 254 provides Design Assurance Guidance for
Airborne Electronic Hardware and lists PLDs as one
type of target device. It specifically does not define
firmware and suggests the use of DO178B (Software
Guidance for Airborne Systems) to certify functions
implemented by software. Based on our knowledge of
industrial practice, and again taking a pragmatic
approach, we are assuming both documents would be
used when certifying a system containing an FPGA.

Both documents require an initial safety assessment
which identifies the potential severity of failures within
functions. The functions are defined by the developer
and may be supported by a system, sub-system or
group of systems. In this instance a Development
Assurance Level (DAL) is assigned to the supporting
item(s). Similarly to IEC 61508, the DAL then defines
the types of processes and rigour that the analyst
should follow in order to achieve certification and
ensure their system is safe. The methods described in
both documents are also similar. Again, we would
argue here that it is important to be able to understand
how a failure in an FPGA could affect one or more
functions at a system level otherwise a pessimistic
view must be taken, leading to a lack of trust in the
FPGAs output and it requiring a monitor, and/or the
use of replicated FPGA devices. They may also not be
avoided for use for more critical systems.

3. Related Work

The previous section established that determining
the safety effect of failures within an FPGA would be
extremely helpful to support the certification process.
This section first examines typical techniques used to
determine the effect or significance of SEEs. Then we
look at failure analysis techniques and demonstrate
why we have opted to examine FPTC as a potential
way forward.

3.1. SEE detection

In [14] the authors describe a method for
determining the effect of SEU in a TMR system, i.e.
one in which three identical lanes are used for
redundancy in calculations and a monitor determines
whether there is (intolerable) disagreement in their
output. In their case all three lanes are on the same
FPGA. They use a tool to determine if an SEU at a
given location can affect more than one lane and if it
can they determine it to be significant. The advantage
of their approach is that it can highlight the extent of
the effect of an SEU. However, it is limited to a certain
type of design solution and at present they do not
determine whether there is an actual safety effect,
rather it is assumed that any effect is undesirable. As
discussed in the previous section, one of the drivers for
our work is to support the safety analysis of FPGAs.
This would include all design approaches.

A common method for detecting the effect of SEUs
is to use fault injection to simulate an SEU. One
example of this can be found in [2] where the authors
use two FPGAs, one loaded with a correct
configuration file and one with an configuration file
with a simulated SEU inserted. A third FPGA is used
to compare the output of the two FPGAs and note
when they differ. If they do it is assumed there the
SEU is significant. Again this technique suffers from
an inability to determine whether the SEU is
significant in terms of safety effect although it could
perhaps be adapted to do so. We have not chosen to
use this type of method as our proposed approach
looks at a broader class of failures than simply SEEs.
An advantage of the fault injection approach is that test
case generation can be fully automated.

A third method to detect permanent SEEs is
described in [1] by Emmert et al. who use ‘Roving
STARs’ (Self-Test AReas) within reconfigurable
FPGAs. They reconfigure the FPGA cells around any
permanent SEEs detected and by moving the STARs
around during operation they can cover the entire
FPGA. The disadvantages of such an approach (apart
from the fact that only permanent SEEs are detected) is
that it requires the FPGA to be reconfigured around the
test areas during operation which can affect system
timings and cause output to be interrupted. In addition
the effect of an SEU occurring in a non-test area would
be different for each configuration and so safety
analysis would need to consider all potential
configurations. The issue of certification of a system
using reconfiguration is not addressed in this paper,
but is part of our ongoing research. A discussion of
one possible approach can be found in [11]. It is of
note that a system which can reconfigure around faults

is potentially more reliable and hence can offer safety
benefits compared to a static one.

3.2. Failure and Safety Analysis

There are numerous different safety analysis
techniques which can be applied at different times
during a systems development lifecycle. A good over
view of these can be found in [8]. At early stages of
development these help provide insight into whether a
design needs to be adapted to deal with identified
failures and at later stages of development the results
of the analysis can be used as evidence to demonstrate
failures are adequately managed. Techniques can be
top down i.e. starting with a hazardous system level
event and working down to individual components to
see how they could contribute to its occurrence. A
typical top-down technique is Fault Tree Analysis
which shows how component failures combine (and
their probabilities) to cause a single event, Other
techniques are bottom up, i.e. they show how
individual component failures can contribute to one or
more hazards system events. A typical technique
would be Failure Modes and Effects Analysis (FMEA)
which looks at individual failures and considers their
effects. FMEA can be supported using different
guidewords which suggest different failure types, e.g.
backwards/too much for chemical processing or
timing/omission/value for computer component
analysis.

We believe that a bottom up technique would best
support our desire to determine the overall effect that a
single SEE can have, i.e. how it could fan out to
multiple system level events. However, FMEA based
techniques are generally manually applied and an
FPGA can have thousands of different connections to
consider and routes to consider. Hence it is impractical
to use manual analysis.

Failure Propagation and Transformation Calculus
(FPTC) [15] is a bottom up safety analysis approach in
which individual components can be analysed
independently to identify their failure characteristics,
and then a tool can be used to calculate the actual
failures which could be propagated through a network
of these components. An analyst can then look at the
concatenated results in order to determine overall
safety effects. We believe this technique has the
potential to assist in the assessment of the effect of
failures in FPGAs. FPGAs are constructed of the same
types of hardware components, replicated many times.
Hence we can analyse the failures of each component
type individually and reuse the results. Then we
construct a network to represent how they are
connected together on the FPGA (based on the

synthesis outputs) and assess how an individual SEE
or clock failure would propagate through the system
outputs. However, some automation to help generate
FPTC networks and also to guide the analyst may be
required for a device as complex as an FPGA. FPTC
has also mainly been applied at a higher level for
analysis in previous case studies (e.g. software process
level [15]) so it’s efficacy for such a low-level analysis
needs to be assessed.

4. Application of FPTC to FPGA Netlists

Based on the previous two sections our aims in this
work are to:

• Provide evidence about the effects of low-level
failures on system level events and improve
design.

• Enhance confidence in an FPGAs ability to
perform in more critical systems, thus
supporting more efficient designs

This section describes our proposed process and
adaptations to FPTC in order to achieve these aims.

B.1 Produce
System

Specification/
Design

B.2 Produce
VHDL and
synthesize

Netlist

C.1 Generate
Overall FPTC

network

C.3 Use FPTC
Tool to assess

design for
weaknesses

Design
Ok?

Approve Design
Stop

YES

Start

A.1 Analyse
FPGA

components to
produce FPTC

library

List of FPGA
hardware

components

Requirements

Start

FPTC
Annotation

Library

Netlist

C.2 Generate
System Specific

FPTC
Annotations

NO

Figure 2 Summary of FPGA analysis process

4.1. Overall Analysis process

A summary of the FPTC process is shown in Figure 2.
It comprises of three parts: Generic reusable FPGA
component analysis (A.1), generation of FPGA
hardware design (B.1-B.2) and system specific safety
analysis (C.1-C.3). We now describe these in turn.

4.2. Part A: FPTC Component Analysis

This section describes the FPGA component
analysis process (A.1) used to generate a reusable
library of FPTC annotations. An FPGA is made of
numerous different logic cells. These cells typically
contain LUTs, flip-flop circuits, multiplexors, inputs,
outputs, and clock signals [2]. As we are using the
Xilinx ISE we are basing our analysis on their lists of
generic design elements as described on their website
[16].

flip_flopd0

clk

d

clk

q

Figure 3 Flip-Flop Component

Figure 3 shows a flip-flop device of the type

typically found in an FPGA. This device copies the
value of d0 to its output q on the low to high clock
(clk) transition. In order to produce an FPTC failure
annotation we need to consider the possible failures
which could be provided on input (see Table 1) and
also consider any errors which could be introduced by
the device. From this we produce a set of output
failures. These are summarised in Table 2.

The results are expressed in the FPTC notation as
shown in Figure 4 (see [15] for full syntax and
semantics). The left hand side of an FPTC annotation
indicates the values which are received on input, and
the right hand side indicates the corresponding outputs.
Here the ordering is that the d0 is received on the first
input and the clk signal on the second. Each separate
input and output set is contained in curled braces. The
notation doesn’t require a particular ordering of the
inputs (as demonstrated in [15]), but the analyst must
ensure they are consistent when the items are
connected, i.e. a clk component must be connected to
the clk input in order for the results to be generated
correctly. The asterisk “*” symbol is used to indicate
that no fault is received on input, and the underscore
“_” is used to indicate that any value can be received
on a given input. If multiple input failures lead to a
single output type of failure (as is true in this case)
then these can be concatenated together.

Table 1 Flip-Flop input failures
Input/Output Failures Comments
clk Early/late The clock may be running

correctly or may be early or
late

d0 Value The value of d0 may be
correct or may be false high/
false low or undetermined.
We express this as a single
failure of “value” for now.

Table 2 Flip Flop output failures
Input Failure Output Failure Comment

clk Early stale_value If the clock triggers the
flip-flop to copy the value
of d0 early then d0 may
not contain the most
recent value, hence
stale_value is produced

clk Late stale_value If the clock triggers a late
copy of d0 to q then it is
possible the value of q has
been read already hence
the output failure is again
stale_value

d0 Value Value If the value of d0 is
incorrect then the flip-flip
will simply pass this on

None Value It is possible that the flip-
flop may have been
affected by an SEE hence
it could be the source of a
value failure.

({*}, {fault early, fault late})->({fault stale_value})

()->({fault value})

({fault value},{*})->({fault value})

Figure 4 FPTC annotations for flip-flop component

FPTC components are linked together to form a
network using the Eclipse based analysis tool
described in [10]. The tool can be used to either
generate the entire set of potential failures throughout
the network or to analyse the path of an individual
injected fault anywhere in the network. Essentially the
tool attempts to match inputs to a component with the
left hand side patterns as provided in the annotations.
Every time there is a match the right hand side is then
provided as input to next component it is connected to.
An example of this is shown in Figure 5. In this

example a clock is the source of a late fault (shown on
the output arrow) and another input (Input1) has no
fault. These two inputs match with the first annotation
on FLIP_FLOP but not the second and hence its
output is stale_value only.

FLIP_FLOP
({fault late}, {*})->({fault stale_value})

({*},{fault value})->({fault value})

Input1
()->({*})

late

*

stale_value

Clock
()->({fault late})

Figure 5 FPTC matching example

Note that the fault tokens are entirely generated by

the analyst and not dictated by the notation or the tool.
Whilst this gives great flexibility it is up to the analyst
to ensure that token names are consistently spelt.

Using the method laid out in this section we have
analysed a number of common FPGA hardware
components. These results are used in the next analysis
stage described in section 4.4.

4.3. Part B: FPGA Design

This section describes the processes corresponding

to B.1 and B.2 in Figure 2. The aim of our work is to
investigate the potential safety effects of hardware
failures within an FPGA. Therefore we need a
hardware representation of our intended design. To
this end we are currently producing VHDL
descriptions of potential designs based on system
requirements and then synthesizing these via Xilinx
ISE Project Designer. As we are refining the technique
and at proof of concept stage we are at present
examining netlist files, rather than configuration files
with place and route information. Our further work
will investigate the place and route aspects in more
detail. Note that we are not at present investigating any

fundamental weaknesses of or comparing any
particular FPGA chips, rather we are exploring the
analysis theory. One other issue which has been raised
is that of the synthesis routines and whether different
options for optimization of the compiler will affect the
potential safety of the output. Again we will look at
this during further work.

The different areas of concern in terms of safety
effect are:

• Identification of systematic design flaws i.e.
flaws in the program logic

• Analysis of the effect of random hardware
failures upon the design

Note that in the first case we are concerned with
problems introduced during the design process,
whereas in the second case we are reacting to issues
which may not be apparent until the hardware
implementation is considered. In both cases our intent
is to ideally improve the design so that a safety
weakness is no longer included, but if that is not
possible we wish to alter the program design to
mitigate against unacceptable failures. Also, it is our
intention that results of the analysis (once changes are
made) can be used as evidence to support a system
safety case.

4.4. Part C: FPTC Analysis of FPGA design

This section describes the processes corresponding
to C.1-C.3 in Figure 2.

Once we have generated a netlist using the ISE tool
we convert it manually to a network of FPTC
components instances within our Eclipse tool. Each
instance (barring outputs) is annotated with the pre-
produced FPTC annotations. These may need to be
adapted to ensure that the correct input channel lines
up with the correct output types from the connected
components. In addition, if the output from a
component is used more than once then it is repeated.
This corresponds to C.1 in our process.

C.2 in our process involves the production of
system specific failure annotations on the output pins.
The purpose of this is to link failures to specific system
level events which may or may not be hazardous. This
allows us to trace the generic internal hardware failures
to one or more system level events, thus supporting our
aim of identifying how internal failures cause system
level hazards.

Part of our future work is to perform as much of
process C1 as possible automatically. For this we will
use netlists in the Electronic Data Interchange Format
(EDIF) [3], the library of FPTC results, and output
FPTC network files in the XML format used for the

tool. We will still need to examine output pins
manually as these have the system specific data.
However, automation is essential if this technique is to
be scalable to anything beyond simple examples and in
order to be of practical use to developers of (complex)
safety critical systems.

Once we have the FPTC network in the tool it can
be used to generate the full set of potential failure
patterns throughout the hardware network (item C.3).
Alternatively a fault can be injected on any of the
components and the paths it propagates along can be
assessed. Again, it would be preferable to aid this
process automatically where possible as the hardware
network is likely to be large and complex. There are
several possibilities for this. One is to tag output pin
failures one (or more) at a time and get the tool to
highlight possible paths which could lead to those
tagged failures. Alternatively the tool could highlight
components whose outputs affect multiple other
components in the network. Ultimately though, a
human analyst will still need to assess whether these
paths represent an acceptable level of risk or whether
the design needs to be altered (e.g. to prevent a single
component or cell being used so much that an SEU or
clock error would cause a catastrophic output failure).

5. Example Incinerator System

5.1. Example Description

This section presents a simple example in order to
demonstrate our ideas and the value of the approach.
The example used is a monitor/control within an
incinerator system (based on that described [7], but
with an extra monitor added to mitigate against a
potential overheat as described below). This
incineration burns medical/toxic waste. One hazard
associated with this system is that toxic waste escapes
without being incinerated. Therefore a cut off valve
has been installed which prevents the addition of waste
when no flame is present. This is engaged when two
out of three conceptually different sensors indicate the
lack of flame or too low a temperature. The sensors
detect light, heat and ionized particles respectively.
The advantage of this approach is that it is highly
unlikely that a common fault will cause more than one
of these sensors to fail at once. However, if there is
disagreement amongst the sensors (e.g. two say that it
is safe to operate and one doesn’t) then a warning light
is displayed to a human operator.

A second hazard associated with the system is the
possibility of overheating, another warning light has
been installed which lights if the temperature is over a

certain value. The operator observes this and can
switch off the entire system if they feel this is
necessary.

5.2. Converting the example to FPTC

The functionality to control the warning lights and
shut-off valve has been written as a VHDL program
and converted into a netlist for input into the FPTC
tool (processes B1-B2). The resultant hardware
network has four input pins, one clock signal reused by
multiple different items, four flip flops of the type
described in section 3.1, six slightly different flip flops
which also contain reset pins, and seven different
LUTs, and six outputs (sensor problem warning light,
shut-off valve, overheat warning light, and three copies
of values for another system). A block diagram version
of the hardware representation is shown in Figure 6 to
illustrate the network.

The components were then input into the FPTC
tool, and the pre-produced failure annotations added
for each component type (process C.1). These were
adapted in a couple of instances purely to ensure the
correct alignment of inputs to outputs. Note that it will
be possible to do this adaptation as part of an
automated process.

The three output pins of concern were annotated
with specific failures (process C.2). It was determined
that the Overheat_light receiving either a stale or
incorrect value had the possibility of not showing the
light when the system was overheating, or of falsely
reporting an overheat when there wasn’t one. Whilst
this may not at first seem to be hazardous, there is the
possibility that if the overheat light repeatedly shows
an incorrect value then the operator will cease to trust
it and may ignore a genuine warning. The Valve_cntrl
has the possibility of not closing when the flame is not
present if it has the wrong or stale input value. It may
also close when no fault has occurred which is not
hazardous but if it happens repeatedly the system may
not be reliable enough to be useful. Warning_light may
also incorrectly show a sensor error when there is none
due to a stale or incorrect value problem. Again there
may be an issue with an operator ignoring a genuine
problem if the warning light is repeatedly wrong.

5.3. Results

This section describes some of the findings of the
FPTC analysis in order to demonstrate its usefulness.
This corresponds to process section C.3. We describe
one failure finding in detail to demonstrate the

technique and then summarise some other interesting
findings.

The first (and perhaps unsurprising) result is that a
clock failure can cause problems on all three outputs.
Whilst the effect is obvious the set of causes that lead
to this behaviour are not, and can be due to a complex
chain of events. For example, Figure 7 shows a small
section of the FPTC network with a late clock failure.
The late clock signal failure passed into FDR_1 causes
a stale value to be input into LUT3 and LUT4_2.
Suppose that due to the internal logic in LUT4_2 no
error is actually produced (see section 2.1). This
doesn’t mean that the error has had no effect. Firstly
note that its output will not actually be picked up on
this cycle by FD_4 in any case. Second, note that
FD_4 is also affected by the CLK error, and produces a
stale value to be picked up by the warning light output.
However, suppose LUT3 does produce an incorrect
value. This will also be ignored this cycle by FD_1 as
it is affected by the late error but may affect the next
cycle if there is another late failure.

To summarise some other results, the analysis also
shows that by some other chains of events (caused by
an SEE) it is possible for confusing output to be given
to the operator, for example indicating that the
incinerator is about to overheat whilst also initiating
the shutoff valve due to a lack of flame. In this
situation we assume that the operator would infer that
the system had malfunctioned and so no alteration is
felt to be necessary to the design as they would
intervene. This is an example of why understanding
the effect of an SEE can be useful for the safety case.

One other issue uncovered with the design is that
the operator may get a warning light that one sensor is
malfunctioning and not get an overheat warning light.
However, if this is due to the heat sensor itself
malfunctioning then the system could in fact be
overheating. Therefore we suggest altering the design
to indicate whether it is the heat sensor which is
malfunctioning so that the operator can take
appropriate action. Note that if the design is altered
then a new FPTC network should be produced and
analysis should be performed again (steps C.1-C.3). As
this can be labourious we intend to introduce some
analysis aids of the type discussed in section 4.4 as
part of the future work.

6. Conclusions

This paper has described how a semi-automated
safety analysis process known as FPTC can be adapted
for use in determining the system level effects of low-
level hardware faults.

In order to develop this technique we need to
automate conversion of hardware description files into
FPTC networks so that more complex examples can be
examined. In addition, we will be adapting the FPTC
analysis tool to add the ability to highlight failure
pathways through the system of significance so that
multiple output effects can be assessed. Another area
of interest is to assess if there are reusable techniques
to avoid certain failure paths. Finally, we will adapt the
technique so that configuration files with place and
route information can also be examined.

With these changes in place the technique could be
used to assess complex safety critical FPGA designs,
potentially supporting the certification of FPGAs in
less conservative system architectures and, further,
leading to weight and cost savings.

7. Acknowledgments

The authors would like to thank the U.K. Ministry
of Defence for their support and funding.

8. References

[1] Emmert, J. M., C. E. Stroud, B. Skaggs and

M. Abramovici, "Dynamic Fault Tolerance in
FPGAs via Partial Reconfiguration", IEEE
Symposium on Field-Programmable Custom
Computing Machines, 2000.

[2] Graham, P., M. Caffrey, J. Zimmerman and
D. E. Johnson, "Consequences and Categories
of SRAM FPGA Configuration SEUs",
Military and Aerospace Programmable Logic
Devices International Conference, 2003.

[3] IEC, "Electronic Design Interchange Format
(EDIF) (IEC 61690-2)", 2000.

[4] IEC, "Functional safety of
electrical/electronic/programmable electronic
safety-related systems (IEC 61508)", 2000.

[5] Isaac, T. A., "Firmware in Safety Critical
Subsystems", International System Safety
Conference, Providence, Rhode Island, USA,
2004.

[6] Kanstensmidt, F. L., L. Sterpone, L. Carro
and M. S. Reorda, "On the Optimal Design of
Triple Modular Redundancy Logic for
SRAM-based FPGAs", IEEE Design,
Automation and Test in Europe DATE, 2005,
pp. 1290 – 1295.

[7] Kuphaldt, T. R., "Lessons In Electric Circuits,
Volume IV - Digital: Converting Truth Tables
into Boolean Algebra", 2007.

[8] Leveson, N. G., "Safeware", Addison-
Wesley, 1995.

[9] Ministry of Defence, "Safety Management
Requirements for Defence Systems, Part 1
Requirements (00-56)", in Ministry of
Defence, ed., U.K. Ministry of Defence,
2007.

[10] Paige, R. F., L. M. Rose, X. Ge, D. S.
Kolovos and P. J. Brooke, "Automated Safety
Analysis for Domain-Specific Languages",
Workshop on Non-Functional System
Properties in Domain Specific Modeling
Languages, 2008.

[11] Rousseau, B., P. Manet, D. Galerin, D.
Merkenbreack, J. D. Legat, F. Dedeken and
Y. Gabriel, "Enabling certification for
dynamic partial reconfiguration using a
minimal flow", Design, Automation and Test
in Europe, Nice, France, 2007, pp. 983-988.

[12] RTCA/EUROCAE, "Design Assurance
Guidance for Airborne Electronic Hardware,
DO-254/ED-80", RTCA/EUROCAE, 2000.

[13] RTCA/EUROCAE, "Software Considerations
in Airborne Systems and Equipment
Certification, DO-178B/ED-12B",
RTCA/EUROCAE, 1992.

[14] Sterpone, L. and M. Violante, "A New
Analytical Approach to Estimate the Effects
of SEUs in TMR Architectures Implemented
Through SRAM-Based FPGAs", IEEE
Transactions on Nuclear Science, 52 (2005),
pp. 2217-2223.

[15] Wallace, M., "Modular Architectural
Representation and Analysis of Fault
Propagation and Transformation",
Proceedings of the Second International
Workshop on Formal Foundations of
Embedded Software and Component-based
Software Architectures, Elsevier, 2005, pp.
53-71.

[16] Xilinx, "Design Elements:
http://toolbox.xilinx.com/docsan/xilinx5/data/
docs/lib/lib0050_34.html", 2008.

HeatSensor1

IonSensor

LightSensor

HeatSensor2

Clk

LUT6_1

FDR_1

LUT4_1

LUT3

LUT6_2

FDR_2

LUT2_7

FDR_6

MUX

FD_1

LUT4_2

FDR_3

FD_2

FDR_4

FDR_5

FD_3

FD_4

LUT6_3

Valve_cntrl

Overheat _light

Warn_light

o2

o1

o3

Figure 6 Block diagram representation of incinerator example

LUT3

FDR_1

FD_1

LUT4_2

FD_3

FD_4

Valve_cntrl

Warn_light

late

inc
orr

ec
t

va
lue

stale
value

no
error

stale
value

stale

value

sta
le

va
lue

stalevalue

late

late

late

Clk

Figure 7 FPTC clock late example

