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Abstract 

 
Complex Programmable Logic Devices (PLDs) 

such as Field Programmable Gate Arrays (FPGAs) 
are becoming increasingly popular for use in High-
Integrity Safety Related and Safety Critical Systems. 
FPGAs offer a number of potential benefits over 
traditional microprocessor based software systems, 
such as predictable timing performance, the ability to 
perform highly parallel calculations, predictable 
emulation of obsolete components, and (in the case of 
SRAM based FPGAs) the ability to reconfigure to 
avoid hardware failures. However these abilities do 
not come for free and often designers are forced to 
make pessimistic safety and reliability assumptions 
leading to conservative overall system designs. In this 
paper a modular, and hence more scalable approach, 
to performing FPGA safety analysis is presented. 
 
1. Introduction 
 

Safety critical and safety related systems typically 
undergo some sort of certification process prior to their 
deployment. The certification details are dictated by 
domain specific standards and guidance, however there 
are a number of common practices and procedures 
within these. One common item is a safety case which 
demonstrates how potentially hazardous failures within 
the system are prevented or mitigated. FPGAs contain 
thousands of logic gates and are extremely complex 
once configured. Hence it is extremely difficult to 
determine the effect that a single low-level failure can 
have at the system level. As this information it cannot 
be provided a conservative design approach (e.g. 
Triple Modular Redundancy (TMR) [6, 14]) has to be 
taken. This satisfies safety requirements (as the system 
is robustly protected against failures) but it prevents 
FPGA benefits, such as the ability to run multiple 

programs on the same device thus providing power and 
weight savings, from being fully exploited 

This paper contributes the following. First we 
demonstrate how to apply a semi-automated failure 
analysis technique to an HDL design synthesized for 
an FPGA, providing a simple example. We then show 
how this can help a safety analyst to identify the safety 
effects of hardware failures within the FPGA, to justify 
or alter the design and hence provide evidence for a 
safety case. 

The paper is laid out as follows. The next section 
discusses FPGAs, certification issues and safety 
analysis in more detail. Section 3 looks at related work. 
Section 4 describes the generic process we are 
proposing. Section 5 provides a worked example to 
demonstrate how it can be applied and Section 6 
contains further work and conclusions. 
 
2. Certification of FPGAs 
 
2.1. Field Programmable Gate Arrays 
 

An FPGA is programmable logic device which has 
thousands of connected logic cells. The basic structure 
of these cells is identical but they can be configured to 
perform different operations. For example, each cell 
typically contains a Look-Up-Table which can be 
configured to perform different binary comparisons on 
input signals such as AND or XOR. These cells are 
connected together via a series of interconnects to 
perform higher level processing tasks. Due to its 
design an FPGA can perform many tasks in parallel 
e.g. to perform digital signal processing.  

FPGAs can have have different hardware 
implementations, especially for the interconnects. 
FPGAs with SRAM interconnects can be reconfigured 
as many times as the user requires. Antifuse 
interconnects can only be configured once, however 
they are smaller and offer more routing flexibility. In 



addition some FPGAs include extra hardware devices 
such as static memory, multipliers and even traditional 
sequential microprocessors. This assists with tasks that 
the FPGA is not well suited for, for example dealing 
with floating point numbers, but can add further 
complexity to the certification process as each different 
device will need to be assessed. The ability to 
configure or reconfigure an FPGA is not explored 
within this paper but will be for our further work. 
Figure 1 shows a typical FPGA design.  

FPGAs are configured by synthesizing code written 
in a Hardware Description Language (HDL) such as 
HDL or Verilog. The first stage of synthesis converts 
the code into a netlist which describes the hardware 
parts and connections which will be used to implement 
the code. This then undergoes a place and route 
operation that describes which logic cells will actually 
be used on the FPGA and how they are connected. The 
routing will be calculated based on criteria such as 
acceptable timing performance. 
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Figure 1 Simplified representation of FPGA 

 
FPGAs are susceptible to a number of different 

hardware failures, but those which are most often cited 
are grouped as Single Event Effects (SEEs). An SEE 
causes a bit flip in the device i.e. from 0 to 1 or vice 
versa. The most commonly discussed is a Single Event 
Upset (SEU) which in which a bit flip may be stuck 
until the device or the cell is reset. Other SEEs are 
transient (resets itself without interventation) or 
permanent. Several SEEs may be found in a group 
together, e.g. caused by a radiation burst, rather than a 
just single failure on its own.  

One of the difficulties in analyzing an FPGA is 
determining the effect (if any) that an SEE has at the 

system level. In some instances an SEE may never 
cause a failure, for example if an SEE causes an 
incorrect input into a multi-input Look Up Table 
(LUT) the output may still be correct depending on the 
internal truth tables and other input values. E.g. if two 
values undergo an AND then the same output will be 
achieved for 00, 10, and 01. More detailed discussion 
of SEE effects can be found in [5, 2]. 

On the other hand the failure may be very 
significant if a value is flipped which is then used by 
multiple other cells, effectively becoming a common 
mode failure for multiple cells, and hence for multiple 
functions. However, it may be that even though 
outputs from the FPGA are affected there is actually 
no safety concern. Also, an SEE which affects multiple 
cells may be of little concern as it is easier to detect. 
However an SEE which causes an output value to be 
subtly incorrect but credible may be of more interest. 
This reflects the inherent complexity of an FPGA 
which is not just due to the number of internal cells but 
also to the number of permutations of interactions 
between them. 

In our experience the inability to determine the 
effect of an SEE has led to pessimistic assumptions 
about the reliability of an FPGA to be made and hence 
conservative (and expensive) design decisions such as 
multiple lanes or monitors are made ([6, 11]). 
Alternatively an FPGA may simply not be chosen for 
use within systems of a high criticality. Our desire is to 
help determine the safety effect of an SEU and to 
improve the design in areas of significance, potentially 
improving both the ability to certify an FPGA based 
system and also to support less conservative designs. 

One feature of our work which differs from others 
is that we can also consider other hardware failures of 
concern, in particular errors in the clock which can 
lead to synchronization, propagation, and timing 
issues. 

 
2.2. Certification Standards and Guidance 
 

Certification is used within this paper as a general 
term for the process of demonstrating that a high-
integrity system performs as intended and/or required 
to an authority of some kind. For the safety critical 
systems being discussed here safety analysis will form 
a large part (or in some cases all) of the certification 
process. Safety analysis is the term used to describe 
any method which shows how a failure within a system 
could lead to a hazardous event (i.e. one which could 
lead to an accident e.g. engine fire). After analysis it 
should be possible to show how potentially hazardous 
failures have been managed. There are various 
techniques for this, some or all of which are prescribed 



by standards or guidance within a domain. For brevity 
this paper only discusses U.K. Defense standard 00-56 
issue 4 [9], IEC 61508 [4] and Eurocae/RTCA 
guidance DO178B [13] and DO254 [12], as these 
provide a good cross-section of the different 
approaches taken to certification and help identify 
issues of concern to analysts and designers of systems 
containing FPGAs. 

One major issue for FPGA developers is that there 
is some confusion over whether an FPGA should be 
classified as software or hardware. On one hand it is 
highly programmable or reprogrammable, but on the 
other hand the code is run directly in hardware. The 
pragmatic approach is to assume that development of 
the HDL code will be performed using processes 
similar to that for software (e.g. a V lifecycle), as well 
as examining the hardware using established 
techniques for electronics. We have performed our 
review based on this dual approach. 

 
2.2.1. U.K. Defence Standard 00-56 Issue 4 
 

This standard is used to manage safety in military 
equipment. The standard is based on the As Low As 
Reasonably Practicable (ALARP) principal that the 
effort/cost taken to reduce a given failure should be 
proportionate with its potential severity and likelihood. 
The standard requires the production of a safety case to 
demonstrate that hazards have been identified and risks 
associated with those hazards appropriately managed. 
It does not prescribe how this is to be achieved. In 
practice safety analysis would be used to support the 
safety case and to identify hazards. As a result there is 
an opportunity to explore new methods of providing 
safety evidence, such as those proposed in this paper 
for FPGAs. This is contingent on those methods being 
shown to provide useful and reliable information. 

 

2.2.2. IEC 61508 
 

This is a generic standard used for the development 
of electronics and programmable electronics. To meet 
the standard the developer must first assign a Safety 
Integrity Level (SIL) to the system based on the risks 
associated with it malfunctioning. This assignment is 
assisted by various safety analyses. Then the rigour of 
processes applied during development is dictated by 
the assigned SIL and need to demonstrate that risks are 
managed (e.g. in a high SIL a formal proof of code 
might be required but not for lower SIL).  

Software and hardware are treated separately in the 
standard. It is likely that some of the recommended 
software practice would need to be adapted for 

application to an FPGA e.g. how to ensure code is 
fully tested and to assess the synthesis tools and their 
output.  

Hardware guidance requires (amongst other things) 
an estimation of the failure of safety functions due to 
random hardware failures. This is of significance when 
certifying an FPGA since it is very hard to identify the 
effect of an SEU so, even if an estimate of the rate of 
occurrence is known, it cannot be linked easily to a 
specific safety function at a system level. This can lead 
to a very pessimistic failure rate being assumed when 
an FPGA is used, as suggested by Isaac in [5].  

2.2.3. DO178B/DO254 
 

DO 254 provides Design Assurance Guidance for 
Airborne Electronic Hardware and lists PLDs as one 
type of target device. It specifically does not define 
firmware and suggests the use of DO178B (Software 
Guidance for Airborne Systems) to certify functions 
implemented by software. Based on our knowledge of 
industrial practice, and again taking a pragmatic 
approach, we are assuming both documents would be 
used when certifying a system containing an FPGA.  

Both documents require an initial safety assessment 
which identifies the potential severity of failures within 
functions. The functions are defined by the developer 
and may be supported by a system, sub-system or 
group of systems. In this instance a Development 
Assurance Level (DAL) is assigned to the supporting 
item(s). Similarly to IEC 61508, the DAL then defines 
the types of processes and rigour that the analyst 
should follow in order to achieve certification and 
ensure their system is safe. The methods described in 
both documents are also similar. Again, we would 
argue here that it is important to be able to understand 
how a failure in an FPGA could affect one or more 
functions at a system level otherwise a pessimistic 
view must be taken, leading to a lack of trust in the 
FPGAs output and it requiring a monitor, and/or the 
use of replicated FPGA devices. They may also not be 
avoided for use for more critical systems.  

 
3. Related Work 
 

The previous section established that determining 
the safety effect of failures within an FPGA would be 
extremely helpful to support the certification process. 
This section first examines typical techniques used to 
determine the effect or significance of SEEs. Then we 
look at failure analysis techniques and demonstrate 
why we have opted to examine FPTC as a potential 
way forward. 

 



3.1. SEE detection 
 

In [14] the authors describe a method for 
determining the effect of SEU in a TMR system, i.e. 
one in which three identical lanes are used for 
redundancy in calculations and a monitor determines 
whether there is (intolerable) disagreement in their 
output. In their case all three lanes are on the same 
FPGA. They use a tool to determine if an SEU at a 
given location can affect more than one lane and if it 
can they determine it to be significant. The advantage 
of their approach is that it can highlight the extent of 
the effect of an SEU. However, it is limited to a certain 
type of design solution and at present they do not 
determine whether there is an actual safety effect, 
rather it is assumed that any effect is undesirable. As 
discussed in the previous section, one of the drivers for 
our work is to support the safety analysis of FPGAs. 
This would include all design approaches. 

A common method for detecting the effect of SEUs 
is to use fault injection to simulate an SEU. One 
example of this can be found in [2] where the authors 
use two FPGAs, one loaded with a correct 
configuration file and one with an configuration file 
with a simulated SEU inserted. A third FPGA is used 
to compare the output of the two FPGAs and note 
when they differ. If they do it is assumed there the 
SEU is significant. Again this technique suffers from 
an inability to determine whether the SEU is 
significant in terms of safety effect although it could 
perhaps be adapted to do so. We have not chosen to 
use this type of method as our proposed approach 
looks at a broader class of failures than simply SEEs. 
An advantage of the fault injection approach is that test 
case generation can be fully automated. 

A third method to detect permanent SEEs is 
described in [1] by Emmert et al. who use ‘Roving 
STARs’ (Self-Test AReas) within reconfigurable 
FPGAs. They reconfigure the FPGA cells around any 
permanent SEEs detected and by moving the STARs 
around during operation they can cover the entire 
FPGA. The disadvantages of such an approach (apart 
from the fact that only permanent SEEs are detected) is 
that it requires the FPGA to be reconfigured around the 
test areas during operation which can affect system 
timings and cause output to be interrupted. In addition 
the effect of an SEU occurring in a non-test area would 
be different for each configuration and so safety 
analysis would need to consider all potential 
configurations. The issue of certification of a system 
using reconfiguration is not addressed in this paper, 
but is part of our ongoing research. A discussion of 
one possible approach can be found in [11]. It is of 
note that a system which can reconfigure around faults 

is potentially more reliable and hence can offer safety 
benefits compared to a static one. 
 
3.2. Failure and Safety Analysis 
 

There are numerous different safety analysis 
techniques which can be applied at different times 
during a systems development lifecycle. A good over 
view of these can be found in [8]. At early stages of 
development these help provide insight into whether a 
design needs to be adapted to deal with identified 
failures and at later stages of development the results 
of the analysis can be used as evidence to demonstrate 
failures are adequately managed. Techniques can be 
top down i.e. starting with a hazardous system level 
event and working down to individual components to 
see how they could contribute to its occurrence. A 
typical top-down technique is Fault Tree Analysis 
which shows how component failures combine (and 
their probabilities) to cause a single event, Other 
techniques are bottom up, i.e. they show how 
individual component failures can contribute to one or 
more hazards system events. A typical technique 
would be Failure Modes and Effects Analysis (FMEA) 
which looks at individual failures and considers their 
effects. FMEA can be supported using different 
guidewords which suggest different failure types, e.g. 
backwards/too much for chemical processing or 
timing/omission/value for computer component 
analysis. 

We believe that a bottom up technique would best 
support our desire to determine the overall effect that a 
single SEE can have, i.e. how it could fan out to 
multiple system level events. However, FMEA based 
techniques are generally manually applied and an 
FPGA can have thousands of different connections to 
consider and routes to consider. Hence it is impractical 
to use manual analysis.  

Failure Propagation and Transformation Calculus 
(FPTC) [15] is a bottom up safety analysis approach in 
which individual components can be analysed 
independently to identify their failure characteristics, 
and then a tool can be used to calculate the actual 
failures which could be propagated through a network 
of these components. An analyst can then look at the 
concatenated results in order to determine overall 
safety effects. We believe this technique has the 
potential to assist in the assessment of the effect of 
failures in FPGAs. FPGAs are constructed of the same 
types of hardware components, replicated many times. 
Hence we can analyse the failures of each component 
type individually and reuse the results. Then we 
construct a network to represent how they are 
connected together on the FPGA (based on the 



synthesis outputs) and assess how an individual SEE 
or clock failure would propagate through the system 
outputs. However, some automation to help generate 
FPTC networks and also to guide the analyst may be 
required for a device as complex as an FPGA. FPTC 
has also mainly been applied at a higher level for 
analysis in previous case studies (e.g. software process 
level [15]) so it’s efficacy for such a low-level analysis 
needs to be assessed. 

 
4. Application of FPTC to FPGA Netlists 
 

Based on the previous two sections our aims in this 
work are to: 

• Provide evidence about the effects of low-level 
failures on system level events and improve 
design. 

• Enhance confidence in an FPGAs ability to 
perform in more critical systems, thus 
supporting more efficient designs 

This section describes our proposed process and 
adaptations to FPTC in order to achieve these aims. 
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Figure 2 Summary of FPGA analysis process 
 
4.1. Overall Analysis process 
 

A summary of the FPTC process is shown in Figure 2. 
It comprises of three parts: Generic reusable FPGA 
component analysis (A.1), generation of FPGA 
hardware design (B.1-B.2) and system specific safety 
analysis (C.1-C.3). We now describe these in turn. 
 
4.2. Part A: FPTC Component Analysis 
 

This section describes the FPGA component 
analysis process (A.1) used to generate a reusable 
library of FPTC annotations. An FPGA is made of 
numerous different logic cells. These cells typically 
contain LUTs, flip-flop circuits, multiplexors, inputs, 
outputs, and clock signals [2]. As we are using the 
Xilinx ISE we are basing our analysis on their lists of 
generic design elements as described on their website 
[16].  
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Figure 3 Flip-Flop Component 

 
Figure 3 shows a flip-flop device of the type 

typically found in an FPGA. This device copies the 
value of d0 to its output q on the low to high clock 
(clk) transition. In order to produce an FPTC failure 
annotation we need to consider the possible failures 
which could be provided on input (see Table 1) and 
also consider any errors which could be introduced by 
the device. From this we produce a set of output 
failures. These are summarised in Table 2. 

The results are expressed in the FPTC notation as 
shown in Figure 4 (see [15] for full syntax and 
semantics). The left hand side of an FPTC annotation 
indicates the values which are received on input, and 
the right hand side indicates the corresponding outputs. 
Here the ordering is that the d0 is received on the first 
input and the clk signal on the second. Each separate 
input and output set is contained in curled braces. The 
notation doesn’t require a particular ordering of the 
inputs (as demonstrated in [15]), but the analyst must 
ensure they are consistent when the items are 
connected, i.e. a clk component must be connected to 
the clk input in order for the results to be generated 
correctly. The asterisk “*” symbol is used to indicate 
that no fault is received on input, and the underscore 
“_” is used to indicate that any value can be received 
on a given input. If multiple input failures lead to a 
single output type of failure (as is true in this case) 
then these can be concatenated together. 



 
Table 1 Flip-Flop input failures 
Input/Output Failures Comments 
clk Early/late The clock may be running 

correctly or may be early or 
late 

d0 Value The value of d0 may be 
correct or may be false high/ 
false low or undetermined. 
We express this as a single 
failure of “value” for now. 

 
Table 2 Flip Flop output failures 
Input Failure Output Failure Comment 

clk Early stale_value If the clock triggers the 
flip-flop to copy the value 
of d0 early then d0 may 
not contain the most 
recent value, hence 
stale_value is produced 

clk Late stale_value If the clock triggers a late 
copy of d0 to q then it is 
possible the value of q has 
been read already hence 
the output failure is again 
stale_value 

d0 Value Value If the value of d0 is 
incorrect then the flip-flip 
will simply pass this on 

None Value It is possible that the flip-
flop may have been 
affected by an SEE hence 
it could be the source of a 
value failure. 

 
({*}, {fault early, fault late})->({fault stale_value})

()->({fault value})

({fault value},{*})->({fault value})
 

Figure 4 FPTC annotations for flip-flop component 
 

FPTC components are linked together to form a 
network using the Eclipse based analysis tool 
described in [10]. The tool can be used to either 
generate the entire set of potential failures throughout 
the network or to analyse the path of an individual 
injected fault anywhere in the network. Essentially the 
tool attempts to match inputs to a component with the 
left hand side patterns as provided in the annotations. 
Every time there is a match the right hand side is then 
provided as input to next component it is connected to. 
An example of this is shown in Figure 5. In this 

example a clock is the source of a late fault (shown on 
the output arrow) and another input (Input1) has no 
fault. These two inputs match with the first annotation 
on FLIP_FLOP but not the second and hence its 
output is stale_value only.  

 

FLIP_FLOP
({fault late}, {*})->({fault stale_value})

({*},{fault value})->({fault value})

Input1
()->({*})

late

*

stale_value

Clock
()->({fault late})

 
Figure 5 FPTC matching example 

 
Note that the fault tokens are entirely generated by 

the analyst and not dictated by the notation or the tool. 
Whilst this gives great flexibility it is up to the analyst 
to ensure that token names are consistently spelt.  

Using the method laid out in this section we have 
analysed a number of common FPGA hardware 
components. These results are used in the next analysis 
stage described in section 4.4. 
 
4.3. Part B: FPGA Design 

 
This section describes the processes corresponding 

to B.1 and B.2 in Figure 2. The aim of our work is to 
investigate the potential safety effects of hardware 
failures within an FPGA. Therefore we need a 
hardware representation of our intended design. To 
this end we are currently producing VHDL 
descriptions of potential designs based on system 
requirements and then synthesizing these via Xilinx 
ISE Project Designer. As we are refining the technique 
and at proof of concept stage we are at present 
examining netlist files, rather than configuration files 
with place and route information. Our further work 
will investigate the place and route aspects in more 
detail. Note that we are not at present investigating any 



fundamental weaknesses of or comparing any 
particular FPGA chips, rather we are exploring the 
analysis theory. One other issue which has been raised 
is that of the synthesis routines and whether different 
options for optimization of the compiler will affect the 
potential safety of the output. Again we will look at 
this during further work. 

The different areas of concern in terms of safety 
effect are: 

• Identification of systematic design flaws i.e. 
flaws in the program logic 

• Analysis of the effect of random hardware 
failures upon the design  

Note that in the first case we are concerned with 
problems introduced during the design process, 
whereas in the second case we are reacting to issues 
which may not be apparent until the hardware 
implementation is considered. In both cases our intent 
is to ideally improve the design so that a safety 
weakness is no longer included, but if that is not 
possible we wish to alter the program design to 
mitigate against unacceptable failures. Also, it is our 
intention that results of the analysis (once changes are 
made) can be used as evidence to support a system 
safety case. 
 
4.4. Part C: FPTC Analysis of FPGA design 
 

This section describes the processes corresponding 
to C.1-C.3 in Figure 2.  

Once we have generated a netlist using the ISE tool 
we convert it manually to a network of FPTC 
components instances within our Eclipse tool. Each 
instance (barring outputs) is annotated with the pre-
produced FPTC annotations. These may need to be 
adapted to ensure that the correct input channel lines 
up with the correct output types from the connected 
components. In addition, if the output from a 
component is used more than once then it is repeated. 
This corresponds to C.1 in our process. 

C.2 in our process involves the production of 
system specific failure annotations on the output pins. 
The purpose of this is to link failures to specific system 
level events which may or may not be hazardous. This 
allows us to trace the generic internal hardware failures 
to one or more system level events, thus supporting our 
aim of identifying how internal failures cause system 
level hazards.  

Part of our future work is to perform as much of 
process C1 as possible automatically. For this we will 
use netlists in the Electronic Data Interchange Format 
(EDIF) [3], the library of FPTC results, and output 
FPTC network files in the XML format used for the 

tool. We will still need to examine output pins 
manually as these have the system specific data. 
However, automation is essential if this technique is to 
be scalable to anything beyond simple examples and in 
order to be of practical use to developers of (complex) 
safety critical systems.  

Once we have the FPTC network in the tool it can 
be used to generate the full set of potential failure 
patterns throughout the hardware network (item C.3). 
Alternatively a fault can be injected on any of the 
components and the paths it propagates along can be 
assessed. Again, it would be preferable to aid this 
process automatically where possible as the hardware 
network is likely to be large and complex. There are 
several possibilities for this. One is to tag output pin 
failures one (or more) at a time and get the tool to 
highlight possible paths which could lead to those 
tagged failures. Alternatively the tool could highlight 
components whose outputs affect multiple other 
components in the network. Ultimately though, a 
human analyst will still need to assess whether these 
paths represent an acceptable level of risk or whether 
the design needs to be altered (e.g. to prevent a single 
component or cell being used so much that an SEU or 
clock error would cause a catastrophic output failure). 
 
5. Example Incinerator System 
 
5.1. Example Description 
 

This section presents a simple example in order to 
demonstrate our ideas and the value of the approach. 
The example used is a monitor/control within an 
incinerator system (based on that described [7], but 
with an extra monitor added to mitigate against a 
potential overheat as described below). This 
incineration burns medical/toxic waste. One hazard 
associated with this system is that toxic waste escapes 
without being incinerated. Therefore a cut off valve 
has been installed which prevents the addition of waste 
when no flame is present. This is engaged when two 
out of three conceptually different sensors indicate the 
lack of flame or too low a temperature. The sensors 
detect light, heat and ionized particles respectively. 
The advantage of this approach is that it is highly 
unlikely that a common fault will cause more than one 
of these sensors to fail at once. However, if there is 
disagreement amongst the sensors (e.g. two say that it 
is safe to operate and one doesn’t) then a warning light 
is displayed to a human operator.  

A second hazard associated with the system is the 
possibility of overheating, another warning light has 
been installed which lights if the temperature is over a 



certain value. The operator observes this and can 
switch off the entire system if they feel this is 
necessary. 

 
5.2. Converting the example to FPTC 
 

The functionality to control the warning lights and 
shut-off valve has been written as a VHDL program 
and converted into a netlist for input into the FPTC 
tool (processes B1-B2). The resultant hardware 
network has four input pins, one clock signal reused by 
multiple different items, four flip flops of the type 
described in section 3.1, six slightly different flip flops 
which also contain reset pins, and seven different 
LUTs, and six outputs (sensor problem warning light, 
shut-off valve, overheat warning light, and three copies 
of values for another system). A block diagram version 
of the hardware representation is shown in Figure 6 to 
illustrate the network.  

The components were then input into the FPTC 
tool, and the pre-produced failure annotations added 
for each component type (process C.1). These were 
adapted in a couple of instances purely to ensure the 
correct alignment of inputs to outputs. Note that it will 
be possible to do this adaptation as part of an 
automated process.  

The three output pins of concern were annotated 
with specific failures (process C.2). It was determined 
that the Overheat_light receiving either a stale or 
incorrect value had the possibility of not showing the 
light when the system was overheating, or of falsely 
reporting an overheat when there wasn’t one. Whilst 
this may not at first seem to be hazardous, there is the 
possibility that if the overheat light repeatedly shows 
an incorrect value then the operator will cease to trust 
it and may ignore a genuine warning. The Valve_cntrl 
has the possibility of not closing when the flame is not 
present if it has the wrong or stale input value. It may 
also close when no fault has occurred which is not 
hazardous but if it happens repeatedly the system may 
not be reliable enough to be useful. Warning_light may 
also incorrectly show a sensor error when there is none 
due to a stale or incorrect value problem. Again there 
may be an issue with an operator ignoring a genuine 
problem if the warning light is repeatedly wrong.  

 

5.3. Results 
 

This section describes some of the findings of the 
FPTC analysis in order to demonstrate its usefulness. 
This corresponds to process section C.3. We describe 
one failure finding in detail to demonstrate the 

technique and then summarise some other interesting 
findings. 

The first (and perhaps unsurprising) result is that a 
clock failure can cause problems on all three outputs. 
Whilst the effect is obvious the set of causes that lead 
to this behaviour are not, and can be due to a complex 
chain of events. For example, Figure 7 shows a small 
section of the FPTC network with a late clock failure. 
The late clock signal failure passed into FDR_1 causes 
a stale value to be input into LUT3 and LUT4_2. 
Suppose that due to the internal logic in LUT4_2 no 
error is actually produced (see section 2.1). This 
doesn’t mean that the error has had no effect. Firstly 
note that its output will not actually be picked up on 
this cycle by FD_4 in any case. Second, note that 
FD_4 is also affected by the CLK error, and produces a 
stale value to be picked up by the warning light output. 
However, suppose LUT3 does produce an incorrect 
value. This will also be ignored this cycle by FD_1 as 
it is affected by the late error but may affect the next 
cycle if there is another late failure.  

To summarise some other results, the analysis also 
shows that by some other chains of events (caused by 
an SEE) it is possible for confusing output to be given 
to the operator, for example indicating that the 
incinerator is about to overheat whilst also initiating 
the shutoff valve due to a lack of flame. In this 
situation we assume that the operator would infer that 
the system had malfunctioned and so no alteration is 
felt to be necessary to the design as they would 
intervene. This is an example of why understanding 
the effect of an SEE can be useful for the safety case. 

One other issue uncovered with the design is that 
the operator may get a warning light that one sensor is 
malfunctioning and not get an overheat warning light. 
However, if this is due to the heat sensor itself 
malfunctioning then the system could in fact be 
overheating. Therefore we suggest altering the design 
to indicate whether it is the heat sensor which is 
malfunctioning so that the operator can take 
appropriate action. Note that if the design is altered 
then a new FPTC network should be produced and 
analysis should be performed again (steps C.1-C.3). As 
this can be labourious we intend to introduce some 
analysis aids of the type discussed in section 4.4 as 
part of the future work. 

 
6. Conclusions 
 

This paper has described how a semi-automated 
safety analysis process known as FPTC can be adapted 
for use in determining the system level effects of low-
level hardware faults. 



In order to develop this technique we need to 
automate conversion of hardware description files into 
FPTC networks so that more complex examples can be 
examined. In addition, we will be adapting the FPTC 
analysis tool to add the ability to highlight failure 
pathways through the system of significance so that 
multiple output effects can be assessed. Another area 
of interest is to assess if there are reusable techniques 
to avoid certain failure paths. Finally, we will adapt the 
technique so that configuration files with place and 
route information can also be examined.  

With these changes in place the technique could be 
used to assess complex safety critical FPGA designs, 
potentially supporting the certification of FPGAs in 
less conservative system architectures and, further, 
leading to weight and cost savings. 
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Figure 6 Block diagram representation of incinerator example 
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Figure 7 FPTC clock late example 


