

VHDL GUIDANCE FOR SAFE AND CERTIFIABLE FPGA
DESIGN

P.M. Conmy*, C. Pygott†, I Bate**

*SSEI, Department of Computer Science, University of York, Heslington, U.K. philippa@cs.york.ac.uk
†Columbus Computing Ltd, Malvern, U.K. clive@columbus-softwareandsafety.com

** RTS Group, Department of Computer Science, University of York, Heslington, U.K.

Keywords: VHDL, Safety, FPGA, Coding Standards.

Abstract
Field Programmable Gate Arrays (FPGAs) are becoming
increasingly popular for use within high integrity and safety
critical systems. One commonly used coding language for
their configuration is the VHSIC Hardware Description
Language (VHDL). Whilst VHDL is used for hardware
description, it is developed in a similar way to traditional
software, and many safety critical software certification
standards require the use of coding subsets and style guidance
in order to ensure known language vulnerabilities are
avoided. At present there is no recognized, public domain
guidance for VHDL. This paper draws together many
different sources to provide a starting discussion for a VHDL
subset.

1 Introduction
Field Programmable Gate Arrays (FPGAs) are becoming
increasingly popular for use within high integrity and safety
critical systems. FPGAs contain hundreds of thousands of
programmable logic cells, which can be configured for a wide
variety of tasks, and offer many benefits over traditional
micro-processors, such as efficient parallel processing and
very predictable performance. FPGAs also have advantages
over conventional hardware implementations: lower
component count, lower real-estate requirements and simpler
assembly. They are configured by using a Hardware
Description Language (HDL), such as the VHSIC (Very High
Speed Integrated Circuit) Hardware Description Language
(VHDL) [10], to describe the required logic; this is converted
into a configuration file which is loaded onto the device. The
HDL goes through a two stage synthesis process, converting
it first to a low level gate description, then assessing where
these gates should be placed on the target device i.e. the
layout.

VHDL is structured and developed in a very similar way to
standard software languages. For safety critical software
development, most recognised standards require the use of
coding guidelines to constrain how the language is used. This
consists of a series of rules which should be adhered to,
assisting certification by avoiding known vulnerabilities and
pitfalls [12]. Rules can also be followed to assist analysis,
maintenance and the avoidance of poorly defined language

features. Simpler syntactic rules can be enforced by tool
support, but other more complex stylistic rules may require
manual assessment.

Whilst many companies have in house VHDL development
standards and subsets, and some articles can be found on
common VHDL errors (e.g.[13]), there is currently no widely
agreed or publicly available VHDL subset or style guidance
for safety critical use, as there is for other languages e.g. Ada
[3] or C [15]. The recently released update to IEC 61508 [9]
has some general guidance on producing HDL, but this lacks
detailed analysis advice or specific rules. Obviously as the
use of FPGAs becomes more widespread in the safety domain
this issue is becoming more of a concern.

This paper brings together sources of information about safe
and correct use of VHDL programming in general, with
specific issues associated with FPGAs, to discuss the main
areas of concern. This paper doesn’t provide a complete
solution, but is intended as a starting point from which further
guidance can be developed, ideally as a recognised subset.
Note that we have assumed the VHDL will be being
inspected as part of a safety critical design, i.e. the emphasis
is on safety, not security or other types of dependability. This
may impact on the structure of the VHDL as will be
discussed.

We have used some of the relevant areas of concern cited in
[12] as criteria for examining VHDL. In addition we have
considered some of the more specialist features of VHDL
which make it difficult to analyse, such as highly parallel
computation. In each case we discuss how the feature of
interest should and could be enforced.

This paper is laid out as follows. Section 2 provides
background information and discusses related work, including
the draft ISO standard on language vulnerabilities. Section 3
applies the guidance from the ISO draft to VHDL. Section 4
considers additional VHDL areas which are not covered by
the ISO draft. Finally, conclusions are presented.

2 Coding Standards and VHDL
This section provides background information on VHDL,
certification guidance and other related work. It also discusses
practical concerns when producing a complete subset.

2.1 Introduction to VHDL

VHDL [10] was originally developed as a tool for
documenting the behaviour of electronic circuits in a strict
way. Its development was initiated by the US Department of
Defense who were finding hardware was not adequately
documented and it was difficult to replace or reproduce
components. However, the language then started to be used as
a design tool, with simulation and synthesis tools being
developed. The first IEEE VHDL language standard was
published in 1987, with the most recent revision published in
2009.

It is a strongly typed language which can elegantly represent
parallel processing. It is a modular language, similar in visual
style to Ada. It differs from traditional software programming
languages due to the inclusion of time/clock processing and
the facilities for describing low-level circuits. It can be
simulated, rather than executed, and these simulations may
give different results to actual implementations if VHDL is
poorly constructed [14]. This means that simulation cannot, in
general, be considered equivalent to software testing.

2.2 Certification Guidance

Two documents which offer advice and guidance on the use
of HDL in the safety critical domain are DO-254 "Design
Assurance Guidance for Airborne Electronic Hardware" [17]
and IEC 61508 "Functional Safety of Electrical /Electronic/
programmable electronic safety-related systems" [9].

DO-254 is from the civil avionics domain, and has extensive
guidance on high level hardware design activities such as
planning and requirements capture. It also suggests the types
of results needed from detailed hardware analysis, but doesn't
specify techniques. In addition, there is useful information on
environmental concerns, e.g. heat affecting hardware
performance. It offers little detail on the detailed design or
configuration of hardware using an HDL. It notes that the
similarity in appearance between HDL and traditional
software "can mislead one to attempt to use software
verification methods on the design representation of HDL".
However, it offers very little in specific guidance for writing
and assessing HDL, other than general requirements for
traceability, V&V activities, and assessment and
qualifications of synthesis tools.

IEC 61508 is a generic standard, used in the process industry
and more widely. It has recently been updated to include
detailed guidance on HDL design and analysis for both
FPGAs and Application Specific Integrated Circuits (ASICs).
Part 2 now has a detailed design lifecycle for these, similar in
structure to a software lifecycle. This is complemented by
detailed background information in part 7, which has some
specific suggestions for construction and style of HDL
(including VHDL), albeit in the context of ASIC design
rather than FPGAs. Suggestions specifically related to HDL
level design include:

• Use of structured and modular design - this eases
analysis and maintenance

• Restricted use of asynchronous constructs

• Design for testability
• Observation of coding guidelines including:

- Restrictive use of ambiguous constructs
- Transparent and easy to use code
- Use of comments and annotations
- Defensive code and range checking
- Limits on module sizes and number of ports to

increase readability
- Avoidance of multi-dimensional arrays, goto type

commands, combining signed and unsigned data
types

- Avoidance of redundant logic and feedback loops
- Avoidance of latches, asynchronous reset
- Use of std_logic and std_logic_vector data

types for module ports
• Use of tools to check coding guidelines

Whilst this is a useful checklist it lacks details for VHDL, for
example in terms of which constructs could be considered
ambiguous and what common errors can occur in day to day
use.

One UK defence standard, 00-54 “Requirements for Safety
Related Electronic Hardware in Defence Equipment” [19],
which was used for a number of years but has now been
superseded (to allow the use of civil standards) also
recommended the use of HDL subsets.

2.3 ISO Draft on Language Vulnerabilities

The development of ISO guidance on programming language
vulnerabilities [12] was originally brought about due to
concerns in the security domain. It has been broadened to
include safety, mission and business critical usage. In each
case a system may be susceptible to unanticipated behaviour
or even attacks, due to use of poorly defined or poorly
constructed code.

Two main areas are covered: general programming language
vulnerabilities, and more specific application vulnerabilities
which relate to software functionality. The majority of the
latter are known security exploits, such as buffer overruns and
are not discussed further here.

At the time of writing this paper, 53 separate language
vulnerabilities are listed in the draft, each with suggested
solutions. Many of these are relevant to VHDL including
syntactic measures, such as use of consistent naming
conventions, maintenance problems due to macros, and
ensuring variables are initialized. Other vulnerabilities are not
applicable, for example memory management problems are
simply not relevant when programming logic gates for an
FPGA. All these areas are explored in more detail in section
3.

It should be noted that the draft of [12] doesn’t currently
address object orientation or concurrency in much detail.
Obviously the latter is of great importance when using
VHDL. Missing areas are addressed in section 4

2.4 Other VHDL Specific Guidance

In [11] Isaac uses experience from developing programmable
electronics within NASA in order to recommend the
following when using VHDL:

• State machines should have no un-terminated states
otherwise there can be inadvertent jumps in the code
following a Single Event Upset (SEU).

• State machines should represent states with numbers
greater than unity. No single bit flip should cause the
state machine to go into an unwanted state.

• The VHDL code should be written to ensure the
device powers up to a known state, with values for
every pin defined.

No specific work looking at VHDL subsets is available, but
there are a number of webpages and reports which document
common VHDL traps and errors in the non-critical domain.
For example, [13] has a list of common VHDL errors,
produced to help students learning the language. Whilst these
are basic, they should still be noted within a subset designed
to capture a full range of issues. Items include understanding
that variables are updated in time for the next statement using
them, whereas signals are not updated until the end of a
process block, so only the last signal assignment will be acted
upon. This could have undetermined side effects if a signal or
variable is used for calculation. A further useful observation
is that event triggers can be very fast and must be carefully
handled during parallel processing to ensure they execute in
the order expected.

In [5] an extensive list of suggestions is presented to improve
the HDL design process and hence have hardware which
behaves as desired and expected. Many of these suggestions,
such as robust requirements and specification management
and traceability, are standard in the safety critical domain. It
also contains suggestions on design, for example to improve
efficiency. Interestingly, some of the suggestions are at odds
with IEC 61508. For example, it specifically suggests using
asynchronous processing of input data, unlike IEC 61508.
Another example, is the advice to minimize complex
hierarchy and modularity of design. This is to improve the
maintainability of the VHDL, and ensure complex port
mappings are not required. However, IEC 61508 encourages
limiting the module size which may conflict with this.
Limiting module size help improve the design’s testability, as
would synchronous processing. Modularization may be
required to separate functionality to avoid common mode
failures in the final FPGA layout. From this it can be deduced
that VHDL guidance must be carefully considered, weighing
up efficiency and optimisation with safety and the ability to
statically analyse the code. When safety is a priority, then it
should take precedence over ideal design structures.

2.5 Ensuring Subset Completeness

A final VHDL subset must cover all pertinent issues, however
these are very wide ranging. The ISO draft divides issues up
into two levels, language and application level, which leaves

a large number of issues under the one heading of language,
but allows the freedom to explore multiple areas. IEC 61508
presents a list of issues with no particular ordering but with
some emphasis on the need to support analysis. Between the
two sets of guidance there are many orthogonal and
overlapping areas of concern including data representation
and manipulation, function, style, low-level detail, high level
design, integrity level requirements etc. Hence, it is difficult
to construct a map or template which would ensure all issues
can be rigourously captured. The following three paragraphs
discuss possible overlaps and categories using three areas of
concern.

Code Construction: This refers to the mechanics of how the
code is put together. Some construction rules are restrictive
e.g. certain constructs are not allowed, or their use is limited.
Some construction rules are pro-active and preventative, for
example adding range checking to look for value faults and
respond accordingly. Low level construction concerns include
Isaac’s suggestions for how states should be represented
(section 2.4). Some construction rules may be influenced by
the underlying hardware.

Presentation: This refers to stylistic improvements to code.
At the higher level it refers to design methods for
maintainability and readability, and at a lower level refers to
the need for comments, consistent naming and layout. It
overlaps, and potentially conflicts, with construction in terms
of designing to ease analysis.

Language Use: This is at the lowest level of concern,
considering analysis mainly on a line by line basis. It includes
ambiguities, common syntax errors, keywords, and
arithmetic. Some of these areas may overlap with code
construction, for example restrictions on keywords alter the
overall design approach.

Due to the lack of a comprehensive list of concerns, this
paper follows the broad outlines of the ISO draft as the most
complete and generic source of information, with extra
concerns gleaned from other sources discussed in a separate
section. However, the completeness achieved by this
approach needs further assessment.

3 Using the ISO guidance
This section looks at how the suggestions in the ISO language
vulnerabilities draft are applicable to VHDL, collecting
related issues using their layout. In each case some discussion
of enforcement or checks is made.

3.1 Problems with the language specification

Many of the early issues discussed in the draft relate to
problems with a languages specification. This includes the
problem of ambiguities raised in IEC 61508. For example,
behaviour many not always be fully defined in terms of
operator precedence, and different compilers may produce
different results. The ISO draft also discusses deprecated
language features, as these may not be fully supported.

Another area is obscure language features that are not well
understood.

According to the online VHDL Frequently Asked Questions
(FAQ) [16] there can be issues of ambiguity introduced when
the same function names, with the same parameters, are used
within separate subprograms. A similar issue may occur
during type conversion and resolution e.g. if different
enumerated arrays have the same names included. Obviously
these problems can be easily avoided by ensuring unique
names are always used. In addition VHDL allows full name
qualification by the developer which could be enforced in a
subset.

Sometimes the final FPGA behaviour may depend on the
target hardware. Altera notes a VHDL problem with
undefined read/write behaviour in a dual clock device in [1].
This is a specific example of general problems which might
occur due to asynchronous processing. This type of ambiguity
needs to be addressed at a high level of design and cannot
easily be enforced via language subsetting.

3.2 Generic issues

There are some issues which are generic to most languages.
For example, the use of consistent variable naming
conventions can help maintenance and readability of all
coding languages. This doesn’t directly affect the
dependability or functionality but could indirectly if the code
is difficult to alter. Consistent naming cannot be enforced
statically if names depend on function and content, however a
clear policy and independent manual review during static
analysis can be used to provide assurance.

Pre-processing directives and templates are found in many
programming languages now. A change in one of these can
have unexpected side effects wherever they are used within
the code, or if unintended code is included in the final
product. The generic construct in VHDL has recently been
greatly widened in functionality so that it can be used for both
pre-processing directives and template code [2]. There are
two options for a subset. The first is to avoid the use of
generics altogether which can be simply enforced by a search
for relevant keywords. This approach was taken for the
SPARK Ada subset [3]. The second is to allow limited use of
generics, with explicit documentation of all expected
behaviour. Then every place they are used must be tested and
analysed. This is more complex, and more expensive, so the
benefits must outweigh the cost.

Namespaces can be emulated in VHDL using libraries. The
concern raised in the ISO draft is that identical names within
the namespaces can be compiled in, leaving uncertainty as to
which items are being used. As discussed in section 3.1, using
unique and/or fully qualified names at all times would prevent
this issue.

3.3 Issues very pertinent to VHDL

Some of the issues raised in the draft are of extra relevance to
VHDL, when compared with traditional programming
languages, due to the low level nature of the language. The

problem of floating point numbers is raised. These cannot be
exactly represented, and are particularly difficult to
manipulate on an FPGA. Therefore, inaccuracies result during
calculations. One potential solution is to avoid a
VHDL/FPGA design solution altogether when manipulating
floating point numbers. Alternatively, detailed analysis and
modelling to determine whether the level of inaccuracy and
approximation is acceptable would be needed.

Another issue of particular relevance is low-level bit
representations and binary mathematics. The problem raised
by the draft is not so much with the language but with
programmers being unfamiliar with this type of data
manipulation and hence introducing value errors. It is
arguable that a VHDL designer should always be competent
in this area, however analysis and testing should be used for
additional assurance.

Variable initialisation is important to ensure that correct
values are used during startup routines. VHDL allows default
values to be set for signals, but this may not necessarily be the
initial value depending on how it is driven [8]. An initial
value can be set by using the “reset” signal to initialise all
other signals within processes, or the designer might assume
an undetermined value for the first iteration. As noted in
section 2.4 signals will not be immediately updated following
an assignment, so care must be taken that the signal is not
used until it’s ready. A further complication is that signals are
not guaranteed to hold their value (due to possible changes in
the state of the physical hardware implementing the circuit).
Note that a simulation will assume a preserved value, and this
is one area where a simulation may give misleading results.

Therefore signals should ideally be assigned, or re-assigned
on every iteration of a process. Static analysis can be used to
help ensure this guidance is followed, checking all signals
named in declarations. An example is shown in Figure 1,
where signala will always be assigned a value on a clock
tick.

Following on from this, use of latches is restricted by IEC
61508. These are produced in code via if statements not

if signalx = ‘1’ then
 signaly <= signalz;
end if;

Figure 2 Example of a latch

if rising_edge(clk) then
 if reset = ‘1’ then
 signala <= ‘0’;
 else
 if [some comparison] then
 signala <=’0’;
 else
 signala <=’1’;
 end if;
 end if;
end if;

Figure 1 VHDL example showing initialization and
continuous value assignment

completely specified, i.e. all possible input conditions are not
covered. And example is shown in Figure 2. The difficulty
with latches is that they can cause race conditions with old
and new data being compared. They are a particular problem
on a FPGAs which often don’t have physical latches built in,
so will represent them by combinatorial logic, leading to path
delays and difficulty in performing timing analysis.

One way to ensure latches are not inferred is to always have a
default assignment block, prior to any comparison statements.
Note that this is an alternative method for ensuring signals are
always assigned a value. Synthesis tools typically produce
warnings when they are inferring latches, so the developer
should look for these.

Finally, self modifying code is raised as potential concern.
Some FPGAs are dynamically reconfigurable during run-
time, which is potentially helpful in keeping full functionality
after a partial hardware failure on the board [6]. VHDL which
manages this process could be interpreted to be self-
modifying, as it will be difficult to predict its layout at any
given time. At present, dynamic reconfiguration is unlikely to
be acceptable within a safety critical design, due to issues
such as uncertainties of the final layout, and loss of
functionality during reconfiguration. Therefore, this should be
avoided altogether.

3.4 Irrelevant features

There are a large number of memory related issues raised
within the ISO draft. It should be noted that the use of
pointers and dynamic memory allocation is typically either
avoided or restricted for safety critical software development.
Their use can lead to many problems such as accessing
invalid memory addresses, or difficulty anticipating size of
memory allocations. However, although VHDL has these
features they would not be used when configuring a fixed
memory device such as an FPGA. Therefore their use should
be prevented in a subset.

Finally, some language features are simply missing from
VHDL, for example exception handling, therefore no
guidance is required.

4 Additional VHDL concerns
This section discusses some issues missing from the ISO draft
which are also of relevance to VHDL.

4.1 Specific Code Level Issues

VHDL allows hints to be passed to the synthesis tool. For
example, suggestions for final layout can be made to separate
certain areas or to meet timing deadlines. Alternatively, some
tools have keywords to prevent optimization of some circuits
and signals. These can be extremely important for safety
critical design, e.g. to prevent a common mode failure. As
keywords may be vendor specific, maintenance of the code
may be required when changing to a different vendor.

Guidance on appropriate use of keywords should be provided
with particular awareness of why they might be needed. The

developer should take consideration of any comments made
on synthesis about optimization, for example. A code parsing
tool can flag each use of keywords so that they can be
statically analysed and tested.

4.2 Design Level Issues

The issue of concurrency (touched upon in 3.1, and discussed
at some length in IEC 61508) is extremely pertinent for
VHDL and FPGA design. Signals may be updated in parallel,
and feedback loops can be created. Race conditions may
occur which mean variables are not updated as expected.
Concurrency is a huge area of concern, and there are tools
available to help assess it. In particular the use of formal
specifications, analyses and proofs applied at the design and
netlist levels can be used. Due to space restrictions the
various methods are not explored in detail here, but they
include Esterel [7] and the Communicating Sequential
Processes (CSP) language [18]. One issue of note is that the
application of formal methods can be time consuming and
expensive, therefore their use may only be required for very
high integrity VHDL applications (as suggested in IEC
61508, part 2).

Section 3.1. touched on the issue of behaviour depending on
the underlying hardware. Another hardware related issue is
the effect that poorly designed VHDL can have on the final
performance of the FPGA. For example, power consumption
can be significantly impacted [4]. Timing can also be affected
by inefficient or poorly thought out code. This may be a
safety issue, for example if power requirements or timing
deadlines are not met. Synthesis tools will accurately assess
time performance so related issues can be identified during
design, however power problems will be harder to predict.

4.3 Defensive code

One additional issue from IEC 61508 (see section 2.2) is that
of defensive code. Defensive code is written to pick up faults
or anomalies and respond in a pre-determined way. This
means checking that values are within expected ranges, and
picking up on incorrect control flow. This is another area
made more complex by concurrent execution. For example, it
is possible that a signal may have the wrong value when
checked, but the correct value by the time it is required after
one or more clock cycles.

4.4 Future issues

Object Orientation (OO) is not mentioned in any depth within
the ISO draft, however VHDL does not currently have well
developed OO features, such as classes, although these are
being developed [2]. Once integrated into the language these
should be considered.

5 Conclusions
The purpose of this paper was to provide a starting discussion
on subset and style guidance for VHDL, particularly when
configuring FPGAs for critical applications. The ultimate
objective is to encourage the development of a recognised

language subset, comparable with SPARK Ada or MISRA C.
A number of different sources have been examined,
particularly the application of the ISO Draft guidance on
generic language vulnerabilities. From this a number of
significant issues were identified, including variable and
signal initialisation and bit representations.

In addition we have considered additional VHDL specific
areas not covered by the ISO draft, such as concurrency and
close coupling to the underlying hardware.

Whilst this paper has attempted to put together a
comprehensive list of concerns, by looking at multiple
resources, the areas discussed are wide ranging and
occasionally conflicting. Further work is needed to assess the
completeness, correctness and coverage of the listed areas,
ideally using expertise from safety critical VHDL
practitioners, and lessons learned from the creation of other
subsets such as SPARK.

Following on from this paper a more formal list of rules will
be developed, along with detailed methods for their
enforcement. Also some areas, such as analysis of
concurrency and acceptable levels of asynchronous
behaviour, require deeper research and development. The
guidance will also needed to be updated as new language
features arrive, such as OO.

Acknowledgements
Philippa Conmy is a research associate with the Software
Systems Engineering Initiative (SSEI), which is funded by the
U.K. Ministry of Defence. She would like to thank them for
their support and funding. She has worked in the area of
software safety for over 10 years, looking at FPGAs,
Integrated Modular Systems and Operating Systems.

Clive Pygott is an independent computing safety consultant.
Previously he worked for a UK Ministry of Defence research
organisation for some 30 years. He was co-author of two
standards on the use of digital electronics in safety-critical
systems and the designer of a micro-processor for safety
specific applications.

Iain Bate is a Lecturer in real-time systems. His research
includes scheduling and timing analysis, design and analysis
of safety critical systems, and engineering of complex
systems of systems including sensornets.

References
[1] Altera, “Altera QuartusII Handbook Version 9.1

Volume 1: Design and Synthesis”, Downloaded
from http://www.altera.com/literature/lit-index.html
June 2010.

[2] P. J Ashenden and J. Lewis, “VHDL 2008: Just the
New Stuff (Systems on Silicon), Morgan Kaufman,
ISBN-13 978-0123742490, 2007.

[3] J. Barnes, “High Integrity Software: The SPARK
Approach to Safety and Security”, Addison Wesley,
ISBN-13: 978-0321136169, March 2003.

[4] D. Chen, J. Cong, Y. Fan, “Low-Power High-Level
Synthesis for FPGA Architectures”, Proceedings of
the 2003 International Symposium on Low power
electronics and design, pp. 134-139, 2003.

[5] Design Abstraction Ltd., “Common HDL Design
Errors”, Downloaded from
http://pldworld.info/_hdl/2/_ref/-
designabstraction.co.uk/Articles/CommonHDLError
s.PDF, Accessed June 2010.

[6] J. M. Emmert, C. E. Stroud, B. Skaggs, and M.
Abramovici, "Dynamic Fault Tolerance in FPGAs
via Partial Reconfiguration," IEEE Symposium on
Field-Programmable Custom Computing Machines.
pp. 165-174, 2000.

[7] J. Hammarberg, and S. Nadjm-Tehrani,
“Development of Safety-Critical Reconfigurable
Hardware with Esterel,” Electronic Notes in
Theoretical Computer Science, vol. 80, pp. 219-234,
2003.

[8] R. E. Harr, A. G. Stanculescu, “Applications of
VHDL to circuit design”, Springer, ISBN-13 978-
0792391531, 1991.

[9] IEC, “Functional Safety of
electrical/electronic/programmable electronic safety-
related systems (IEC 61508)”, 2010.

[10] IEEE, “1076-2008 IEEE Standard VHDL Language
Reference Manual”, IEEE, Jan 2009.

[11] T. A. Isaac, "Firmware in Safety Critical
Subsystems," International System Safety
Conference. pp. 469-478, 2004.

[12] ISO, "Information Technology — Programming
Languages — Guidance to Avoiding Vulnerabilities
in Programming Languages through Language
Selection and Use – DRAFT, Available at -
http://aitc.aitcnet.org/isai/, 2009.

[13] R.Manion, “Common Mistakes in VHDL”,
http://www.cs.ucr.edu/cs122a/cs122a_05fal/ddr/vhdl
.html, Accessed April 2010.

[14] D Mills, C.E. Cummings, “RTL Coding Styles That
Yield Simulation and Synthesis Mismatches”,
Proceedings of SNUG 99, 1999.

[15] Motor Industry Software Reliability Association,
“Guidelines for the Use of the C Language in
Critical Systems”, MIRA, ISBN 0 9524156 2 3
(paperback, October 2004.

[16] E. Naroska (ed.), “VHDL Frequently Asked
Questions”,
http://www.vhdl.org/comp.lang.vhdl/FAQ1.html
Accessed June 2010

[17] RTCA/EUROCAE, DO-254 "Design Assurance
Guidance for Airborne Electronic Hardware",
RTCA, 2000.

[18] J Willis, Z. Li, T. Lin, “Use of embedded scheduling
to compile VHDL for effective parallel simulation,
Proceedings of the conference on European design
automation, pp 400-405, 1995.

[19] U.K. Ministry of Defence, “Requirements for Safety
Related Electronic Hardware in Defence Equipment,
00-54 Part 2: Guidance”, March 1999.

