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Abstract 
Field Programmable Gate Arrays (FPGAs) are becoming 
increasingly popular for use within high integrity and safety 
critical systems. One commonly used coding language for 
their configuration is the VHSIC Hardware Description 
Language (VHDL). Whilst VHDL is used for hardware 
description, it is developed in a similar way to traditional 
software, and many safety critical software certification 
standards require the use of coding subsets and style guidance 
in order to ensure known language vulnerabilities are 
avoided. At present there is no recognized, public domain 
guidance for VHDL. This paper draws together many 
different sources to provide a starting discussion for a VHDL 
subset. 

1 Introduction 
Field Programmable Gate Arrays (FPGAs) are becoming 
increasingly popular for use within high integrity and safety 
critical systems. FPGAs contain hundreds of thousands of 
programmable logic cells, which can be configured for a wide 
variety of tasks, and offer many benefits over traditional 
micro-processors, such as efficient parallel processing and 
very predictable performance. FPGAs also have advantages 
over conventional hardware implementations: lower 
component count, lower real-estate requirements and simpler 
assembly. They are configured by using a Hardware 
Description Language (HDL), such as the VHSIC (Very High 
Speed Integrated Circuit) Hardware Description Language  
(VHDL) [10], to describe the required logic; this is converted 
into a configuration file which is loaded onto the device. The 
HDL goes through a two stage synthesis process, converting 
it first to a low level gate description, then assessing where 
these gates should be placed on the target device i.e. the 
layout. 

VHDL is structured and developed in a very similar way to 
standard software languages. For safety critical software 
development, most recognised standards require the use of 
coding guidelines to constrain how the language is used. This 
consists of a series of rules which should be adhered to, 
assisting certification by avoiding known vulnerabilities and 
pitfalls [12]. Rules can also be followed to assist analysis, 
maintenance and the avoidance of poorly defined language 

features. Simpler syntactic rules can be enforced by tool 
support, but other more complex stylistic rules may require 
manual assessment. 

Whilst many companies have in house VHDL development 
standards and subsets, and some articles can be found on 
common VHDL errors (e.g.[13]), there is currently no widely 
agreed or publicly available VHDL subset or style guidance 
for safety critical use, as there is for other languages e.g. Ada 
[3] or C [15]. The recently released update to IEC 61508 [9] 
has some general guidance on producing HDL, but this lacks 
detailed analysis advice or specific rules. Obviously as the 
use of FPGAs becomes more widespread in the safety domain 
this issue is becoming more of a concern. 

This paper brings together sources of information about safe 
and correct use of VHDL programming in general, with 
specific issues associated with FPGAs, to discuss the main 
areas of concern. This paper doesn’t provide a complete 
solution, but is intended as a starting point from which further 
guidance can be developed, ideally as a recognised subset. 
Note that we have assumed the VHDL will be being 
inspected as part of a safety critical design, i.e. the emphasis 
is on safety, not security or other types of dependability. This 
may impact on the structure of the VHDL as will be 
discussed. 

We have used some of the relevant areas of concern cited in 
[12] as criteria for examining VHDL. In addition we have 
considered some of the more specialist features of VHDL 
which make it difficult to analyse, such as highly parallel 
computation. In each case we discuss how the feature of 
interest should and could be enforced. 

This paper is laid out as follows. Section 2 provides 
background information and discusses related work, including 
the draft ISO standard on language vulnerabilities. Section 3 
applies the guidance from the ISO draft to VHDL. Section 4 
considers additional VHDL areas which are not covered by 
the ISO draft. Finally, conclusions are presented. 

2 Coding Standards and VHDL 
This section provides background information on VHDL, 
certification guidance and other related work. It also discusses 
practical concerns when producing a complete subset.  



 
 

 
 

2.1 Introduction to VHDL 

VHDL [10] was originally developed as a tool for 
documenting the behaviour of electronic circuits in a strict 
way. Its development was initiated by the US Department of 
Defense who were finding hardware was not adequately 
documented and it was difficult to replace or reproduce 
components. However, the language then started to be used as 
a design tool, with simulation and synthesis tools being 
developed. The first IEEE VHDL language standard was 
published in 1987, with the most recent revision published in 
2009.  

It is a strongly typed language which can elegantly represent 
parallel processing. It is a modular language, similar in visual 
style to Ada. It differs from traditional software programming 
languages due to the inclusion of time/clock processing and 
the facilities for describing low-level circuits. It can be 
simulated, rather than executed, and these simulations may 
give different results to actual implementations if VHDL is 
poorly constructed [14]. This means that simulation cannot, in 
general, be considered equivalent to software testing.  

2.2 Certification Guidance 

Two documents which offer advice and guidance on the use 
of HDL in the safety critical domain are DO-254 "Design 
Assurance Guidance for Airborne Electronic Hardware" [17] 
and IEC 61508 "Functional Safety of Electrical /Electronic/ 
programmable electronic safety-related systems" [9]. 

DO-254 is from the civil avionics domain, and has extensive 
guidance on high level hardware design activities such as 
planning and requirements capture. It also suggests the types 
of results needed from detailed hardware analysis, but doesn't 
specify techniques. In addition, there is useful information on 
environmental concerns, e.g. heat affecting hardware 
performance. It offers little detail on the detailed design or 
configuration of hardware using an HDL. It notes that the 
similarity in appearance between HDL and traditional 
software "can mislead one to attempt to use software 
verification methods on the design representation of HDL". 
However, it offers very little in specific guidance for writing 
and assessing HDL, other than general requirements for 
traceability, V&V activities, and assessment and 
qualifications of synthesis tools. 

IEC 61508 is a generic standard, used in the process industry 
and more widely. It has recently been updated to include 
detailed guidance on HDL design and analysis for both 
FPGAs and Application Specific Integrated Circuits (ASICs). 
Part 2 now has a detailed design lifecycle for these, similar in 
structure to a software lifecycle. This is complemented by 
detailed background information in part 7, which has some 
specific suggestions for construction and style of HDL 
(including VHDL), albeit in the context of ASIC design 
rather than FPGAs.  Suggestions specifically related to HDL 
level design include: 

• Use of structured and modular design - this eases 
analysis and maintenance 

• Restricted use of asynchronous constructs 

• Design for testability 
• Observation of coding guidelines including: 

- Restrictive use of ambiguous constructs 
- Transparent and easy to use code 
- Use of comments and annotations 
- Defensive code and range checking 
- Limits on module sizes and number of ports to 

increase readability 
- Avoidance of multi-dimensional arrays, goto type 

commands, combining signed and unsigned data 
types 

- Avoidance of redundant logic and feedback loops 
- Avoidance of latches, asynchronous reset 
- Use of std_logic and std_logic_vector data 

types for module ports 
• Use of tools to check coding guidelines 

 
Whilst this is a useful checklist it lacks details for VHDL, for 
example in terms of which constructs could be considered 
ambiguous and what common errors can occur in day to day 
use.  

One UK defence standard, 00-54 “Requirements for Safety 
Related Electronic Hardware in Defence Equipment” [19], 
which was used for a number of years but has now been 
superseded (to allow the use of civil standards) also 
recommended the use of HDL subsets.  

2.3 ISO Draft on Language Vulnerabilities 

The development of ISO guidance on programming language 
vulnerabilities [12] was originally brought about due to 
concerns in the security domain. It has been broadened to 
include safety, mission and business critical usage. In each 
case a system may be susceptible to unanticipated behaviour 
or even attacks, due to use of poorly defined or poorly 
constructed code. 

Two main areas are covered: general programming language 
vulnerabilities, and more specific application vulnerabilities 
which relate to software functionality. The majority of the 
latter are known security exploits, such as buffer overruns and 
are not discussed further here. 

At the time of writing this paper, 53 separate language 
vulnerabilities are listed in the draft, each with suggested 
solutions. Many of these are relevant to VHDL including 
syntactic measures, such as use of consistent naming 
conventions, maintenance problems due to macros, and 
ensuring variables are initialized. Other vulnerabilities are not 
applicable, for example memory management problems are 
simply not relevant when programming logic gates for an 
FPGA. All these areas are explored in more detail in section 
3. 

It should be noted that the draft of [12] doesn’t currently 
address object orientation or concurrency in much detail. 
Obviously the latter is of great importance when using 
VHDL. Missing areas are addressed in section 4 



 
 

 
 

2.4 Other VHDL Specific Guidance 

In [11] Isaac uses experience from developing programmable 
electronics within NASA in order to recommend the 
following when using VHDL:  

• State machines should have no un-terminated states 
otherwise there can be inadvertent jumps in the code 
following a Single Event Upset (SEU).  

• State machines should represent states with numbers 
greater than unity. No single bit flip should cause the 
state machine to go into an unwanted state.  

• The VHDL code should be written to ensure the 
device powers up to a known state, with values for 
every pin defined. 

No specific work looking at VHDL subsets is available, but 
there are a number of webpages and reports which document 
common VHDL traps and errors in the non-critical domain. 
For example, [13] has a list of common VHDL errors, 
produced to help students learning the language. Whilst these 
are basic, they should still be noted within a subset designed 
to capture a full range of issues. Items include understanding 
that variables are updated in time for the next statement using 
them, whereas signals are not updated until the end of a 
process block, so only the last signal assignment will be acted 
upon. This could have undetermined side effects if a signal or 
variable is used for calculation. A further useful observation 
is that event triggers can be very fast and must be carefully 
handled during parallel processing to ensure they execute in 
the order expected. 

In [5] an extensive list of suggestions is presented to improve 
the HDL design process and hence have hardware which 
behaves as desired and expected. Many of these suggestions, 
such as robust requirements and specification management 
and traceability, are standard in the safety critical domain. It 
also contains suggestions on design, for example to improve 
efficiency. Interestingly, some of the suggestions are at odds 
with IEC 61508. For example, it specifically suggests using 
asynchronous processing of input data, unlike IEC 61508. 
Another example, is the advice to minimize complex 
hierarchy and modularity of design. This is to improve the 
maintainability of the VHDL, and ensure complex port 
mappings are not required. However, IEC 61508 encourages 
limiting the module size which may conflict with this. 
Limiting module size help improve the design’s testability, as 
would synchronous processing. Modularization may be 
required to separate functionality to avoid common mode 
failures in the final FPGA layout. From this it can be deduced 
that VHDL guidance must be carefully considered, weighing 
up efficiency and optimisation with safety and the ability to 
statically analyse the code. When safety is a priority, then it 
should take precedence over ideal design structures.  

2.5 Ensuring Subset Completeness 

A final VHDL subset must cover all pertinent issues, however 
these are very wide ranging. The ISO draft divides issues up 
into two levels, language and application level, which leaves 

a large number of issues under the one heading of language, 
but allows the freedom to explore multiple areas. IEC 61508 
presents a list of issues with no particular ordering but with 
some emphasis on the need to support analysis. Between the 
two sets of guidance there are many orthogonal and 
overlapping areas of concern including data representation 
and manipulation, function, style, low-level detail, high level 
design, integrity level requirements etc. Hence, it is difficult 
to construct a map or template which would ensure all issues 
can be rigourously captured. The following three paragraphs 
discuss possible overlaps and categories using three areas of 
concern.  

Code Construction: This refers to the mechanics of how the 
code is put together. Some construction rules are restrictive 
e.g. certain constructs are not allowed, or their use is limited. 
Some construction rules are pro-active and preventative, for 
example adding range checking to look for value faults and 
respond accordingly. Low level construction concerns include 
Isaac’s suggestions for how states should be represented 
(section 2.4). Some construction rules may be influenced by 
the underlying hardware.  

Presentation: This refers to stylistic improvements to code. 
At the higher level it refers to design methods for 
maintainability and readability, and at a lower level refers to 
the need for comments, consistent naming and layout. It 
overlaps, and potentially conflicts, with construction in terms 
of designing to ease analysis. 

Language Use: This is at the lowest level of concern, 
considering analysis mainly on a line by line basis. It includes 
ambiguities, common syntax errors, keywords, and 
arithmetic. Some of these areas may overlap with code 
construction, for example restrictions on keywords alter the 
overall design approach. 

Due to the lack of a comprehensive list of concerns, this 
paper follows the broad outlines of the ISO draft as the most 
complete and generic source of information, with extra 
concerns gleaned from other sources discussed in a separate 
section. However, the completeness achieved by this 
approach needs further assessment. 

3 Using the ISO guidance 
This section looks at how the suggestions in the ISO language 
vulnerabilities draft are applicable to VHDL, collecting 
related issues using their layout. In each case some discussion 
of enforcement or checks is made.  

3.1 Problems with the language specification 

Many of the early issues discussed in the draft relate to 
problems with a languages specification. This includes the 
problem of ambiguities raised in IEC 61508. For example, 
behaviour many not always be fully defined in terms of 
operator precedence, and different compilers may produce 
different results. The ISO draft also discusses deprecated 
language features, as these may not be fully supported. 



 
 

 
 

Another area is obscure language features that are not well 
understood.  

According to the online VHDL Frequently Asked Questions 
(FAQ) [16] there can be issues of ambiguity introduced when 
the same function names, with the same parameters, are used 
within separate subprograms. A similar issue may occur 
during type conversion and resolution e.g. if different 
enumerated arrays have the same names included. Obviously 
these problems can be easily avoided by ensuring unique 
names are always used. In addition VHDL allows full name 
qualification by the developer which could be enforced in a 
subset. 

Sometimes the final FPGA behaviour may depend on the 
target hardware. Altera notes a VHDL problem with 
undefined read/write behaviour in a dual clock device in [1]. 
This is a specific example of general problems which might 
occur due to asynchronous processing. This type of ambiguity 
needs to be addressed at a high level of design and cannot 
easily be enforced via language subsetting. 

3.2 Generic issues 

There are some issues which are generic to most languages. 
For example, the use of consistent variable naming 
conventions can help maintenance and readability of all 
coding languages. This doesn’t directly affect the 
dependability or functionality but could indirectly if the code 
is difficult to alter. Consistent naming cannot be enforced 
statically if names depend on function and content, however a 
clear policy and independent manual review during static 
analysis can be used to provide assurance.  

Pre-processing directives and templates are found in many 
programming languages now. A change in one of these can 
have unexpected side effects wherever they are used within 
the code, or if unintended code is included in the final 
product. The generic construct in VHDL has recently been 
greatly widened in functionality so that it can be used for both 
pre-processing directives and template code [2]. There are 
two options for a subset. The first is to avoid the use of 
generics altogether which can be simply enforced by a search 
for relevant keywords. This approach was taken for the 
SPARK Ada subset [3]. The second is to allow limited use of 
generics, with explicit documentation of all expected 
behaviour. Then every place they are used must be tested and 
analysed. This is more complex, and more expensive, so the 
benefits must outweigh the cost.  

Namespaces can be emulated in VHDL using libraries. The 
concern raised in the ISO draft is that identical names within 
the namespaces can be compiled in, leaving uncertainty as to 
which items are being used. As discussed in section 3.1, using 
unique and/or fully qualified names at all times would prevent 
this issue.  

3.3 Issues very pertinent to VHDL 

Some of the issues raised in the draft are of extra relevance to 
VHDL, when compared with traditional programming 
languages, due to the low level nature of the language. The 

problem of floating point numbers is raised. These cannot be 
exactly represented, and are particularly difficult to 
manipulate on an FPGA. Therefore, inaccuracies result during 
calculations. One potential solution is to avoid a 
VHDL/FPGA design solution altogether when manipulating 
floating point numbers. Alternatively, detailed analysis and 
modelling to determine whether the level of inaccuracy and 
approximation is acceptable would be needed.  

Another issue of particular relevance is low-level bit 
representations and binary mathematics. The problem raised 
by the draft is not so much with the language but with 
programmers being unfamiliar with this type of data 
manipulation and hence introducing value errors. It is 
arguable that a VHDL designer should always be competent 
in this area, however analysis and testing should be used for 
additional assurance. 

Variable initialisation is important to ensure that correct 
values are used during startup routines. VHDL allows default 
values to be set for signals, but this may not necessarily be the 
initial value depending on how it is driven [8]. An initial 
value can be set by using the “reset” signal to initialise all 
other signals within processes, or the designer might assume 
an undetermined value for the first iteration. As noted in 
section 2.4 signals will not be immediately updated following 
an assignment, so care must be taken that the signal is not 
used until it’s ready. A further complication is that signals are 
not guaranteed to hold their value (due to possible changes in 
the state of the physical hardware implementing the circuit). 
Note that a simulation will assume a preserved value, and this 
is one area where a simulation may give misleading results.  

Therefore signals should ideally be assigned, or re-assigned 
on every iteration of a process. Static analysis can be used to 
help ensure this guidance is followed, checking all signals 
named in declarations. An example is shown in Figure 1, 
where signala will always be assigned a value on a clock 
tick.  

Following on from this, use of latches is restricted by IEC 
61508. These are produced in code via if statements not 

if signalx = ‘1’ then 
 signaly <= signalz; 
end if; 

Figure 2 Example of a latch 

if rising_edge(clk) then 
 if reset = ‘1’ then 
  signala <= ‘0’; 
 else 
  if [some comparison] then 
   signala <=’0’; 
  else 
   signala <=’1’; 
  end if; 
 end if; 
end if; 

Figure 1 VHDL example showing initialization and 
continuous value assignment 



 
 

 
 

completely specified, i.e. all possible input conditions are not 
covered. And example is shown in Figure 2. The difficulty 
with latches is that they can cause race conditions with old 
and new data being compared. They are a particular problem 
on a FPGAs which often don’t have physical latches built in, 
so will represent them by combinatorial logic, leading to path 
delays and difficulty in performing timing analysis.  

One way to ensure latches are not inferred is to always have a 
default assignment block, prior to any comparison statements. 
Note that this is an alternative method for ensuring signals are 
always assigned a value. Synthesis tools typically produce 
warnings when they are inferring latches, so the developer 
should look for these.  

Finally, self modifying code is raised as potential concern. 
Some FPGAs are dynamically reconfigurable during run-
time, which is potentially helpful in keeping full functionality 
after a partial hardware failure on the board [6]. VHDL which 
manages this process could be interpreted to be self-
modifying, as it will be difficult to predict its layout at any 
given time. At present, dynamic reconfiguration is unlikely to 
be acceptable within a safety critical design, due to issues 
such as uncertainties of the final layout, and loss of 
functionality during reconfiguration. Therefore, this should be 
avoided altogether.  

3.4 Irrelevant features 

There are a large number of memory related issues raised 
within the ISO draft. It should be noted that the use of 
pointers and dynamic memory allocation is typically either 
avoided or restricted for safety critical software development. 
Their use can lead to many problems such as accessing 
invalid memory addresses, or difficulty anticipating size of 
memory allocations. However, although VHDL has these 
features they would not be used when configuring a fixed 
memory device such as an FPGA. Therefore their use should 
be prevented in a subset.  

Finally, some language features are simply missing from 
VHDL, for example exception handling, therefore no 
guidance is required. 

4 Additional VHDL concerns 
This section discusses some issues missing from the ISO draft 
which are also of relevance to VHDL.  

4.1 Specific Code Level Issues 

VHDL allows hints to be passed to the synthesis tool. For 
example, suggestions for final layout can be made to separate 
certain areas or to meet timing deadlines. Alternatively, some 
tools have keywords to prevent optimization of some circuits 
and signals. These can be extremely important for safety 
critical design, e.g. to prevent a common mode failure. As 
keywords may be vendor specific, maintenance of the code 
may be required when changing to a different vendor. 

Guidance on appropriate use of keywords should be provided 
with particular awareness of why they might be needed. The 

developer should take consideration of any comments made 
on synthesis about optimization, for example. A code parsing 
tool can flag each use of keywords so that they can be 
statically analysed and tested. 

4.2 Design Level Issues 

The issue of concurrency (touched upon in 3.1, and discussed 
at some length in IEC 61508) is extremely pertinent for 
VHDL and FPGA design. Signals may be updated in parallel, 
and feedback loops can be created. Race conditions may 
occur which mean variables are not updated as expected. 
Concurrency is a huge area of concern, and there are tools 
available to help assess it. In particular the use of formal 
specifications, analyses and proofs applied at the design and 
netlist levels can be used. Due to space restrictions the 
various methods are not explored in detail here, but they 
include Esterel [7] and the Communicating Sequential 
Processes (CSP) language [18]. One issue of note is that the 
application of formal methods can be time consuming and 
expensive, therefore their use may only be required for very 
high integrity VHDL applications (as suggested in IEC 
61508, part 2).  

Section 3.1. touched on the issue of behaviour depending on 
the underlying hardware. Another hardware related issue is 
the effect that poorly designed VHDL can have on the final 
performance of the FPGA. For example, power consumption 
can be significantly impacted [4]. Timing can also be affected 
by inefficient or poorly thought out code. This may be a 
safety issue, for example if power requirements or timing 
deadlines are not met. Synthesis tools will accurately assess 
time performance so related issues can be identified during 
design, however power problems will be harder to predict.  

4.3 Defensive code 

One additional issue from IEC 61508 (see section 2.2) is that 
of defensive code. Defensive code is written to pick up faults 
or anomalies and respond in a pre-determined way. This 
means checking that values are within expected ranges, and 
picking up on incorrect control flow. This is another area 
made more complex by concurrent execution. For example, it 
is possible that a signal may have the wrong value when 
checked, but the correct value by the time it is required after 
one or more clock cycles.  

4.4 Future issues 

Object Orientation (OO) is not mentioned in any depth within 
the ISO draft, however VHDL does not currently have well 
developed OO features, such as classes, although these are 
being developed [2]. Once integrated into the language these 
should be considered. 

5 Conclusions 
The purpose of this paper was to provide a starting discussion 
on subset and style guidance for VHDL, particularly when 
configuring FPGAs for critical applications. The ultimate 
objective is to encourage the development of a recognised 



 
 

 
 

language subset, comparable with SPARK Ada or MISRA C. 
A number of different sources have been examined, 
particularly the application of the ISO Draft guidance on 
generic language vulnerabilities. From this a number of 
significant issues were identified, including variable and 
signal initialisation and bit representations.  

In addition we have considered additional VHDL specific 
areas not covered by the ISO draft, such as concurrency and 
close coupling to the underlying hardware.   

Whilst this paper has attempted to put together a 
comprehensive list of concerns, by looking at multiple 
resources, the areas discussed are wide ranging and 
occasionally conflicting. Further work is needed to assess the 
completeness, correctness and coverage of the listed areas, 
ideally using expertise from safety critical VHDL 
practitioners, and lessons learned from the creation of other 
subsets such as SPARK.  

Following on from this paper a more formal list of rules will 
be developed, along with detailed methods for their 
enforcement. Also some areas, such as analysis of 
concurrency and acceptable levels of asynchronous 
behaviour, require deeper research and development. The 
guidance will also needed to be updated as new language 
features arrive, such as OO.  
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