
Hierarchical Fixed Priority Pre-emptive Scheduling

R.I.Davis and A.Burns
Real-Time Systems Research Group, Department of Computer Science,

University of York, YO10 5DD, York (UK)
rob.davis@cs.york.ac.uk, alan.burns@cs.york.ac.uk

Abstract
This paper focuses on the hierarchical scheduling

of systems where a number of separate applications
reside on a single processor. It addresses the
particular case where fixed priority pre-emptive
scheduling is used at both global and local levels, with
a server associated with each application. Using
response time analysis, an exact schedulability test is
derived for application tasks. This test improves on
previously published work. The analysis is extended to
the case of harmonic tasks that can be bound to the
release of their server. These tasks exhibit improved
schedulability indicating that it is advantageous to
choose server periods that enable some tasks to be
bound to the release of their server. The use of
Periodic, Sporadic and Deferrable Servers is
considered with the conclusion that the simple Periodic
Server dominates both Sporadic and Deferrable
Servers when the metric is application task
schedulability.

1. Introduction

In automotive electronics, the advent of advanced

high performance embedded microprocessors such as
Freescale Semiconductor’s (Motorola’s) MPC5200
(PowerPC 603), Infineon’s TC1765 (TriCore) and
NEC’s V850E/RS1 have made possible functionality
such as adaptive cruise control, lane departure warning
systems, integrated telematics and satellite navigation
applications as well as advances in engine
management, transmission control and body
electronics. Where low-cost 8 and 16-bit
microprocessors were previously used as the basis for
separate Electronic Control Units (ECUs) each
supporting a single hard real-time application, there is
now a trend towards integrating functionality into a
smaller number of more powerful microprocessors.
The motivation for such integration comes mainly from
cost reduction but also offers the opportunity of
functionality enhancement. This trend in automotive

electronics is mirrored by a similar trend in avionics.
Integrating a number of real-time applications onto

a single microprocessor raises issues of resource
allocation and partitioning. Disparate applications
require access to processor and other resources in a
manner that ensures they are able to complete the
necessary computations within specified time
constraints, whilst ensuring that they do not impinge
upon the real-time behaviour of other applications.

When composing a system comprising a number of
applications, it is typically a requirement to provide
temporal isolation between the various applications.
This enables the properties of previous system designs,
where each application resided on a separate processor,
to be retained. In particular if one application fails to
meet its time constraints then there should be no knock
on effects on other unrelated applications. There is
currently considerable interest in hierarchical
scheduling as a way of providing temporal isolation
between applications executing on a single processor.

In a hierarchical system, a global scheduler is used
to determine which application should be allocated the
processor at any given time and a local scheduler is
used to determine which of the chosen application’s
tasks should actually execute. A number of different
scheduling schemes have been proposed for both
global and local scheduling. These include cyclic or
time slicing frameworks, dynamic priority based
scheduling and fixed priority scheduling. In this paper
we focus on the use of fixed priority pre-emptive
scheduling (FPPS) for both global and local
scheduling.

Fixed priority pre-emptive scheduling offers
advantages of flexibility over cyclic approaches whilst
being sufficiently simple to implement; that it is
possible to construct highly efficient embedded real-
time operating systems that use this scheduling policy.

The basic framework for a system utilising
hierarchical fixed priority pre-emptive scheduling is as
follows. The system comprises a number of
applications each of which is composed of a set of

tasks. A separate server is allocated to each
application. Each server has an execution capacity and
a replenishment period, enabling the overall processor
capacity to be divided up between the different
applications. Each server has a unique priority that is
used by the global scheduler to determine which of the
servers with capacity remaining and tasks ready to
execute should be allocated the processor. Further,
each task has a unique priority within its application.
The local scheduler, within each server, uses task
priorities to determine which of an application’s tasks
should execute when the server is active. The basic
model assumes that tasks and applications are
independent, however the model can be extended to
allow local resource sharing between tasks in the same
application and global resource sharing between tasks
in different applications.

1.1. Related work

Kuo and Li [1] first introduced analysis of

hierarchical fixed priority pre-emptive scheduling,
building upon the work of Deng and Liu [2]. The
analysis provided by Kuo and Li considered the use of
Sporadic Servers [3] to execute applications. Using the
techniques of Liu and Layland [4] they provided a
simple utilisation based schedulability test. However
for this utilisation based test to be applicable, severe
restrictions were placed on the server parameters. In
particular, each server period had to be the greatest
common divisor (GCD) or a divisor of the GCD of all
the tasks in the application.

Saewong et al [5] provided response time analysis
for hierarchical systems using Deferrable Servers [6] or
Sporadic Servers [3] to schedule a set of hard real-time
applications. This analysis assumes that in the worst-
case a server’s capacity is made available at the end of
its period. Whilst this is a safe assumption it is also
pessimistic, for example, the highest priority server
will typically have a response time that is much shorter
than its period and so will always be able to make
capacity available earlier than considered in [5]. The
schedulability analysis given in [5] is sufficient but not
necessary: there are some systems that it would deem
unschedulable that are in fact schedulable.

Lipari and Bini [7] provide an alternative response
time analysis formulation using an availability function
to represent the time made available by a server from
an arbitrary time origin. This formulation again makes
the assumption that in the worst-case; server capacity
is made available at the very end of the server’s period.
Lipari and Bini also investigate the problem of server
parameter selection and consider choice of
replenishment period and capacity for a single server in
isolation, using a geometric approach based on an
approximation of the server availability function.

In [8], Almeida builds upon the work of Lipari and
Bini. The analysis given in [8] recognises that the
server availability function depends on the “maximum
jitter that periods of server availability may suffer”. A
parameter (delta) is introduced into the analysis to
represent the initial latency in server capacity
becoming available. We note that setting this
parameter to reflect the server’s computed worst-case
response time and hence its maximum jitter would
result in more accurate analysis as demonstrated in
section 3 of this paper.

1.2. Organisation

Section 2 describes the terminology, notation and

system model used in the rest of the paper.
Section 3 presents schedulability analysis tests that

compute the exact worst-case response time of tasks
scheduled under a set of Servers. This analysis is
extended to accurately model bound tasks, the releases
of which are synchronised with their server’s period.
The analysis can also be extended to account for access
to global shared resources.

In section 4, we evaluate the exact analysis
presented in the previous section by comparing its
effectiveness to that of previously published
schedulability tests. Our evaluation investigates the
effects of server context switch overheads and server
algorithm selection on system schedulability.

Section 5 summarises the major contributions of
the paper and suggests directions for future research.

2. Hierarchical scheduling model

2.1. Terminology and system model

We are interested in the problem of scheduling

multiple real-time applications on a single processor.
Each application comprises a number of real-time
tasks. Associated with each application is a server. The
application tasks execute within the associated server,
which affords them temporal isolation.

Scheduling takes place at two levels: global and
local. The global scheduling policy determines which
server has access to the processor at any given time,
whilst the local scheduling policy determines which
application task that server should execute. In this
paper we analyse systems where the fixed priority pre-
emptive scheduling policy is used for both global and
local scheduling.

Application tasks may arrive and become ready to
execute either periodically at fixed intervals of time, or
sporadically after some minimum inter-arrival time has
elapsed. Each application task iτ , has a unique priority
i within its application and is characterised by its

relative deadline Di, worst-case execution time Ci, and
minimum inter-arrival time Ti, otherwise referred to as
its period. In addition, we will assume that each
application contains one or more soft real-time tasks.
These soft tasks are assumed to execute at lower
priorities than the hard real-time tasks. The soft real-
time tasks may however consume server capacity and
hence affect the worst-case scenario for hard real-time
task execution.

Each server has a unique priority s, within the set of
servers and is characterised by its capacity CS,
replenishment period TS, and jitter JS. A server’s
capacity is the maximum amount of execution time
that may be consumed by the server in a single
invocation. The replenishment period is the minimum
time before the server’s capacity is available again.
The server’s jitter is the difference between the
minimum and maximum time that can elapse between
replenishment of the server’s capacity and that capacity
starting to be consumed given no higher priority
interference.

Application tasks are referred to as bound or
unbound [11]. Bound tasks have a period that is an
exact multiple of their server’s period and arrival times
that coincide with replenishment of the server’s
capacity. Thus bound tasks are only ever released at
the same time as their server. All other tasks are
referred to as unbound.

A task’s worst-case response time Ri, is the longest
possible time from the task arriving to it completing
execution. Similarly, a server’s worst-case response
time RS, is the longest possible time from the server
being replenished to its capacity being exhausted,
given that there are tasks ready to use all of the server’s
capacity. A task is said to be schedulable if its worst-
case response time does not exceed its deadline. A
server is schedulable if its response time does not
exceed its period.

The critical instant [4] for a task is defined as the
pattern of execution of other tasks and servers that
leads to the task’s worst-case response time.

The analysis presented in this paper assumes that
all applications and tasks are independent. We have
lifted this restriction and extended the analysis to take
account of blocking effects due to tasks accessing
resources that are either shared locally within a single
application or globally between tasks in different
applications. Space restrictions prevent us from
describing our work in this area here. Full details are
however available in a technical report [13].

2.2. Servers

In this paper we consider the Deferrable Server

(DS) [6] the Sporadic Server (SS) [3] and the Periodic
or Polling Server (PS) [12].

The Periodic Server is invoked with a fixed period.
If there are application tasks ready to use the server’s
capacity, then they are executed until the tasks either
complete or the server’s capacity is exhausted. If there
are no tasks ready to use the server then its capacity is
assumed to be idled away, as if there was a background
task that is always ready to execute. Once the server’s
capacity is exhausted, the server suspends execution
until its capacity is replenished at the start of its next
period. If a task arrives before the server’s capacity has
been exhausted then it will be serviced. Execution of
the server may be delayed and or pre-empted by the
execution of other servers of a higher priority.

The Deferrable Server is also invoked with a fixed
period. It differs from the Periodic Server in that if no
tasks are ready to use the server then it may suspend its
execution, preserving its capacity. The Deferrable
Server’s capacity may be preserved throughout its
period. If an application task becomes ready late in the
server’s period it can be executed until either the
server’s capacity is exhausted or the end of the server’s
period is reached. At the end of the server’s period any
remaining server capacity is discarded and the server’s
capacity is then replenished. Again execution of the
server may be delayed and or pre-empted by the
execution of other servers of a higher priority.
Schedulability analysis of the Deferrable Server needs
to take account of the well-known phenomenon of
back-to-back hits. By preserving its capacity until near
the end of its period a high priority Deferrable Server
can cause back-to-back interference of 2CS on lower
priority servers. Effectively a Deferrable Server has a
jitter equal to SS CT − [9].

The Sporadic Server differs from both the Periodic
Server and the Deferrable Server in that its capacity is
only replenished after it has been used. In [3], Sprunt
proved that in the worst-case the interference due to a
Sporadic Server is equivalent to that of a simple
Periodic Server. The implementation complexity and
overheads of the Sporadic Server are however
significantly greater than those of either the Periodic or
Deferrable Server due to the requirement to keep track
of a number of different replenishment times and
capacities.

2.3. Busy periods and loads

The analysis presented in section 3 makes use of

the concepts of busy periods and loads. For a particular
application, a priority level i busy period is defined as
an interval of time during which there is outstanding
task execution at priority level i or above. Busy periods
may be represented as a function of the outstanding
execution time at and above a given priority level, thus

)(Lwi is used to represent a priority level i busy period

(or ‘window’, hence w) equivalent to the longest time
that the application’s server can take to execute a given
load L.

The load on a server is itself a function of the time
interval considered. We use)(wLi to represent the
total task executions of priority level i and above,
released within a time window of length w.

3. Schedulability analysis

In this section we present exact schedulability

analysis for applications comprising bound and
unbound hard real-time tasks executing under a set of
servers in a hierarchical system scheduled at both
global and local levels according to the fixed priority
pre-emptive scheduling policy.

3.1. Exact analysis

We derive the exact worst-case response time for a

task iτ , executing under a server S, using the principles
of Response Time Analysis [10] as follows:
1. Determine the critical instant: the pattern of server

and task execution that leads to the worst-case
response time of the task.

2. Derive a formula for)(wLi , the load at priority
level i and above, released in a window of length
w starting at the critical instant.

3. Derive a formula for)(Lwi , the length of the
priority level i busy period starting at the critical
instant and finishing when the server has
completed execution of the load L.

4. Combine the formulae for)(wLi and)(Lwi into
a recurrence relation that can be solved to find the
worst-case response time of task iτ .
The critical instant for a task scheduled under a

server occurs when:
1. The server’s capacity has been exhausted by lower

priority tasks as early in its period as possible.
2. The task of interest (if its is unbound) and all

higher priority unbound tasks in the application
arrive just after the server’s capacity has been
exhausted.

3. The task of interest (if its is bound) and all higher
priority bound tasks in the application arrive at the
start of the server’s next period.

4. The server’s capacity is replenished at the start of
its next period, however further execution of the
server is then delayed for as long as possible due
to interference from higher priority servers.

Figure 1 illustrates the worst-case response times
for a task depending on whether it is bound or
unbound.

Figure 1 Critical instant

We can determine the worst-case response time of

a task iτ by computing the length of the priority level i
busy period starting at the first release of the server
that could execute the task (see Figure 1). This busy
period can be viewed as being made up of three
components:
1. The execution of task iτ and tasks of higher

priority released during the busy period.
2. The gaps in any complete periods of the server.
3. Interference from higher priority servers in the

final server period that completes the execution of
task iτ .

Figure 2 illustrates the busy period in more detail.

Figure 2 Busy Period

The task load at priority level i and higher, to be

executed in the busy period w, is given by:

j
ihpj j

i
ii C

T
JwCwL ∑

∈∀ 









 +
+=

)(
)((1)

Where hp(i) is the sets of tasks that have priorities
higher than task iτ and iJ is the release jitter of the task
relative to the release of the server. This is zero for a
bound task and)(SS CT − for an unbound task.

The total length of gaps in complete server periods,
not including the final server period, is given by:

)(1)(
SS

S

i CT
C

wL −









−








 (2)

The interference due to higher priority servers
executing during the final server period that completes
execution of task iτ can be modeled in a number of
ways.
1. The analysis given by Saewong et al in [5]

assumes that each server’s worst-case response
time is equal to its period and effectively models
this interference as)(SS CT − . This is a safe but
pessimistic assumption. For the set of servers to be
schedulable most if not all of the servers will have
a response time that is shorter than their period. In
particular, the highest priority server will typically
have a response time equal to its capacity. (In
considering this point it is important to distinguish
between the response time of a Deferrable Server
and the latest time it may execute due to the
server’s ability to suspend its execution if there are
no tasks ready to execute).

2. The interference can be modeled as)(SS CR − .
This removes much of the pessimism but does not
provide exact analysis. The analysis given by
Almeida in [8] can be made to match this model if
an appropriate “initial latency” is used. Note this
is not explicitly stated in [8].

3. The exact worst-case interference in the final
server period is dependent on the amount of task
execution that the server needs to complete before
the end of the busy period. This may be much less
that the server’s capacity and so the maximum
interference may be considerable less than

)(SS CR − . The exact interference can be
calculated using information about server
priorities, capacities and replenishment periods.

Figure 3 illustrates the interference in the final
server period.

Figure 3 Interference in final server period

The extent to which the busy period w extends into

the final server period is given by:

S
S

i T
C

wLw 









−








− 1)((3)

Utilising the analysis of servers presented by
Bernat and Burns [9] the interference due to higher
priority servers in the above interval is given by:

X

servers
ShpX X

XS
S

i

C
T

JT
C

wLw

wI ∑
∈∀




















+










−








−

=
)(

1)(

)((4)

Where hp(S) is the set of servers with higher
priority than server S and XJ is the release jitter of the
higher priority server X. (For a Deferrable Server,

XXX CTJ −= , for a Periodic or Sporadic Server,
0=XJ).

Hence the full extent of the busy period is given by:

X

servers
ShpX X

XS
S

i

SS
S

i
i

C
T

JT
C

wLw

CT
C

wLwLw

∑
∈∀




















+










−








−

+−





−








+=

)(

1)(

)(1)()(

 (5)

Note that the length of the busy period w appears
on both sides of equation (5). This type of equation can
be solved via a recurrence relation provided that the
RHS is a monotonically non-decreasing function of w.
It is not immediately obvious that this is the case here.
However assuming that the servers are themselves
schedulable, we observe that the interference in the
server’s final period, given by the summation term, is
constrained to be between 0 and)(SS CT − . The
summation term itself is a monotonically non-
decreasing function of)(wLi except at values of

Si nCwL =)(. At exactly these values the 2nd term
increases by)(SS CT − , thus the 2nd and 3rd terms taken
together form a monotonically non-decreasing function
of the task load)(wLi . The task load is itself a
monotonically non-decreasing function of w, hence the
RHS of the equation is a monotonically non-decreasing
function of w and solution via a recurrence relation is
possible although not entirely straightforward.

To solve equation (5) we need to modify the
summation term to ensure correct convergence as
intermediate values of w and)(wLi are calculated.
This is as a direct consequence of the fact that the 3rd
term alone is not a monotonically non-decreasing
function of w. The modification simply ensures that the
extent to which the busy period extends into the final
server period is not considered to be an interval of
negative length.

X

servers
ShpX X

XS
S

n
iin

i

SS
S

n
iin

ii
n
i

C
T

JT
C
wLw

CT
C
wLwLw

∑
∈∀






















+




















−








−

+−









−








+=

)(

1)(,0max

)(1)()(

 (6)

Recurrence starts with a value of

)(10
SS

S

i
ii CT

C
CCw −










−








+= and ends either when

nn ww =+1 in which case i
n Jw + gives the task’s

worst-case response time or when ii
n JDw −>+1 in

which case the task is not schedulable. (Where iJ is the
task’s release jitter relative to the server. This is zero
for a bound task and)(SS CT − for an unbound task).

3.2. Example

Consider a system comprising two Deferrable

Servers with parameters given in the table below.

Server CS TS JS RS
HP 2 5 3 2
LP 8 20 12 16

The two highest priority tasks in the application
serviced by the lower priority server (LP) are
characterised as follows.

Task Ci Ti Di
1 10 50 50
2 8 100 100

The table below compares the response times of
these tasks using, (1) the exact analysis introduced in
this paper, (2) approximate analysis modelling
interference in the final server period as)(SS CR −
and (3) the analysis given by Saewong et al in [5]
treating interference in the final server period as

)(SS CT − . For the purposes of this comparison, the
tasks are considered as unbound.

Response Times Ri Task Ci Ti Di
(1) Exact (2) (3)

1 10 50 50 38 42 46
2 8 100 100 82 84 88

This example clearly illustrates the improvements
in task schedulability that can be obtained by using
exact schedulability analysis.

If the tasks can be bound to the release of their
server, then the worst-case response times can be

reduced by)(SS CT − to 26 and 70 respectively. This
illustrates the benefit of binding tasks to the release of
their server.

4. Evaluation

This section investigates the relationship between

server replenishment period and the minimum server
utilisation needed to achieve a schedulable system. In
particular we examined the effect on the minimum
required server utilisation due to different:
1. levels of server context switch overheads.
2. schedulability analysis techniques: Exact and

‘sufficient but not necessary’.
3. server algorithms: Periodic, Deferrable and

Sporadic servers.
4. tasks: bound and unbound to the server’s period.

During the course of our investigation, we
examined numerous synthetic applications. In this
paper, two simple but representative examples are used
for illustration purposes. Each of the examples
comprises just two servers, one with a high priority,
labelled HP and one with a lower priority, labelled LP.

We use a single higher priority server to represent
additional load on the system. This means that the
server of interest cannot simply use 100% of the
processing time. Although only one higher priority
server is used in our examples, the results are similar
when multiple higher priority servers are present and
constrain the available processor time within the
replenishment period of the server of interest.

Example System #1. In our first example system, the
higher priority server (HP) has a fixed capacity of 4
and a period of 10 time units (40% utilisation). The
lower priority server (LP) is responsible for executing
the tasks listed in Table 1 below.

Table 1

Priority Exec. Time Period Deadline
1 5 50 50
2 7 125 125
3 6 300 300

Example System #1. In our second example system,
the higher priority server (HP) has a fixed capacity of
10 and a period of 32 time units (31.25% utilisation).

Table 2

Priority Exec. Time Period Deadline
1 8 160 100
2 12 240 200
3 16 320 300
4 24 480 400

The lower priority server (LP) is responsible for

executing the tasks listed in Table 2 above.
Our experimental investigation used a computer

program to iterate over a range of possible periods for
the lower priority server. For each server period, a
binary search was used to determine the minimum
server capacity commensurate with a schedulable
system. For each server capacity examined, server
schedulability was determined using existing analysis
[9] whilst task schedulability was determined using the
analysis derived in section 3.1. The results were plotted
as graphs of minimum server utilisation against server
period.

The graphs illustrate the importance of using exact
analysis, choosing the most appropriate server
algorithm, binding tasks to the server’s period
whenever possible and keeping server context switch
overheads to a minimum.

4.1. Effect of overheads

There are two reasons why it is important to

consider the effects of overheads when examining the
choice of server periods and capacities. Firstly, the
server implementation in any real system is likely to
incur significant overheads. Secondly, from a
theoretical standpoint, ignoring overheads leads to the
conclusion that the optimal selection of server
parameters involves selecting infinitesimally small
values for the servers’ periods and capacities.

The effects of server context switch overheads can
be modelled by considering the server’s capacity to be
consumed first by context switch overheads and then
by task execution. This is a safe if potentially slightly
pessimistic approach to modelling overheads.

15.00%

20.00%

25.00%

30.00%

35.00%

40.00%

45.00%

50.00%

55.00%

4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80
Server Period

U
til

is
at

io
n

Overheads = 4

Overheads = 3

Overheads = 2

Overheads = 1

Overheads = 0

Task Utilisation

Figure 4 Overheads

Figure 4 illustrates the effect of server context
switch overheads on example system #1, assuming that

both HP and LP servers use the Deferrable Server
algorithm. Figure 4 plots the minimum utilisation of
the LP server necessary to achieve a schedulable
system against the server’s period for a range of server
context switch overheads (0 to 4 time units). The total
utilisation of the application tasks is 17.6% represented
by the horizontal line immediately below the jagged
lines depicting server utilisation.

From the graph, it is clear that overheads markedly
increase the required server utilisation at short server
periods. Hence, whilst the optimum server period is 10,
15 or 30 without taking overheads into account, it is 42
or 44 when the effects of overheads are included.

As server utilisation is simply SS TC / , server
utilisation decreases with increasing period, until an
increase in server capacity is required at which point
server utilisation increases sharply, giving the
characteristic saw-tooth shape.

It is interesting to note that the system remains
schedulable for server replenishment periods that
exceed the deadline of the highest priority task. This is
somewhat counter-intuitive, however it is nevertheless
correct. The server’s relatively large capacity and short
response time mean that it can schedule a task that has
a shorter period than that of the server itself.

Once the server’s period exceeds that of the highest
priority task, each increase in server period requires a
corresponding increase in server capacity to keep the
interval from task release to the start of the task being
serviced constant and hence the task schedulable. As
the server period increases so its capacity is forced to
increase causing the server utilisation to tend towards
100%.

At the far right hand side of the graph, as LP server
utilisation begins to approach 60%, the LP server
becomes unschedulable. (Recall that the HP server
utilisation is 40%).

Similar graphs to Figure 4 have been produced for
systems of more than two servers. The minimum
feasible server period is limited by server
schedulability: the server must be able to provide at
least some capacity within its period. This is not
possible for server periods that are less than the
response time of the server with the next higher
priority. The maximum feasible server period is also
typically limited by server schedulability: for large
replenishment periods, the server’s capacity increases
to the point where the server is again unschedulable.

4.2. Comparison of analysis methods

Figure 5 illustrates the minimum utilisation of the

low priority server that was deemed necessary to
schedule the task set from Table 1 using (1) the exact
analysis presented in this paper and (2) the analysis of
Saewong et al [5] which models interference in the

final server period as)(SS CT − . In both cases, the
server context switch overheads were assumed to be 2
time units, hence the line on the graph for exact
analysis is the same as the ‘overheads = 2’ line in
Figure 4.

15.00%

20.00%

25.00%

30.00%

35.00%

40.00%

45.00%

50.00%

55.00%

4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80

Server Period

U
til

is
at

io
n

(T-C)
Exact

Figure 5 Comparison of analysis methods

Figure 5 provides a clear example of the difference

that more precise analysis can make to the feasibility of
a system. Using the exact analysis presented in this
paper means that a server can be used which
effectively requires 3.44% less processor utilisation,
equivalent to 19.5% of the actual task load. Further the
ability to use a longer server period reduces the time
wasted due to server context switch overheads from
7.41% down to 4.76%.

4.3. Choice of server algorithm

The critical instant described in section 3.1 and the

exact schedulability analysis given in this paper is
applicable to Periodic, Sporadic and Deferrable
Servers.

For all three server algorithms, the critical instant
occurs when the server’s capacity is exhausted as early
as possible in its period, then there is a delay of

)(SS CT − before the server’s capacity is replenished
with subsequent capacity replenishments taking place
after a period of ST .

The only differences in analysis are as follows:
• When calculating interference from higher priority

servers, Periodic Servers and Sporadic Servers
have a jitter of zero whilst Deferrable Servers are
treated as having a jitter equal to)(SS CT − [9].

• Tasks cannot be bound to a Sporadic Server due to
its non-periodic behaviour in anything other than
the worst-case scenario.

Inspection of the exact analysis (equation (6))

shows that Periodic Servers dominate Deferrable
Servers. That is there are no systems comprising a set
of hard real-time application task sets that can be
scheduled using a set of Deferrable Servers that cannot
also be scheduled using an equivalent set of Periodic
Servers with the same periods and capacities. There are
however many sets of applications that can be
scheduled using Periodic Servers that cannot be
scheduled using Deferrable Servers. This is because
the Deferrable Server has a drawback compared to a
Periodic or Sporadic Server when used to service hard
real-time tasks; the effect of back-to-back hits referred
to earlier. Using a set of Deferrable Servers results in
the lower priority servers receiving back-to-back
interference from those of higher priority, increasing
their response times and hence degrading the systems
ability to schedule hard real-time applications.

Figure 6 Response times due to Deferrable
Servers

Figure 6 illustrates the longer worst-case response

times of a system of Deferrable Servers due to back-to-
back hits.

15.00%

20.00%

25.00%

30.00%

35.00%

40.00%

45.00%

50.00%

55.00%

4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80

Server Period

U
til

is
at

io
n

Deferrable Server
Periodic Server

Figure 7 Comparison of server algorithms

Figure 7 compares the utilisation of server LP,
required to schedule the task set from example system
#1, when both HP and LP servers are (1) Deferrable
and (2) Periodic.

As expected, the Periodic Server approach
dominates the Deferrable Server algorithm. For short
server periods (of 8-12 time units) and long server
periods (of 68-77 time units), using Periodic Servers
results in a schedulable system whereas using
Deferrable Servers does not. This is a direct
consequence of the back-to-back hit phenomenon. The
minimum required server utilisation is 23.91% for the
Periodic Server approach (period = 46, capacity = 11)
compared to 26.19% for the Deferrable Server
approach (period = 42, capacity = 11).

The same critical instant and exact schedulability
analysis applies to systems comprising Sporadic
Servers as it does to systems of Periodic Servers, with
one key difference: tasks cannot be bound to Sporadic
Servers and must therefore always be treated as
unbound.

This means that Periodic Servers dominate
Sporadic Servers. That is there are no systems
comprising a set of hard real-time application task sets
that can be scheduled using a set of Sporadic Servers
that cannot also be scheduled using an equivalent set of
Periodic Servers with the same periods and capacities.

Further, the Sporadic Server is far more complex to
implement than the Periodic Server and so in practice
the performance of a system based on Sporadic Servers
would be inferior to that of a Periodic Server based
system due to increased overheads.

We note that our analysis of Periodic Servers
assumes that the Periodic Servers can service tasks that
arrive after the start of the server’s period. Effectively
server capacity of at least)(tCS − is assumed to
remain at time SCt ≤ from the start of the server
period. This is a sensible model for many hierarchical
systems, as each of the applications running on the
system will typically contain an idle task that executes
at a background priority level when all the
application’s other tasks are inactive. This idle task is
often used to implement built-in-tests of the application
and its memory areas and some types of watchdog
functionality.

An alternative behaviour for a Periodic Server is for
the server’s capacity to be discarded at the start of its
period if no tasks are ready to use it. We refer to these
servers as Discarding Periodic Servers. Discarding
capacity in this way reduces the server’s ability to
guarantee hard real-time applications. With this server
behaviour, a critical instant occurs when at the start of
the server’s period its capacity is discarded and then
the task of interest is released along with all other tasks
of higher priority in the application. Effectively the
jitter on unbound tasks is increased to ST when a
Discarding Periodic Server is used.

Both Deferrable and Sporadic Server algorithms
were designed to provide responsive scheduling for

soft aperiodic tasks in single application systems,
whilst in the worst-case appearing to be similar to a
periodic hard real-time task in terms of their effects on
system schedulability. It is perhaps therefore not
surprising that these mechanisms are no better than the
much simpler Periodic Server approach when it comes
to dividing up processor capacity between a number of
hard real-time applications. It is a very different
problem from the one for which they were designed.

Although we can recommend the use of Periodic
Servers when the sole criteria is guaranteeing the
deadlines of hard real-time application tasks, this does
not mean that there is no place for Deferrable or
Sporadic Servers in hierarchical systems. When quality
of service (QoS) is also an issue, it may be appropriate
to use a different approach.

4.4. Binding tasks to the server

Binding tasks to their server can improve system

schedulability, effectively reducing the server
utilisation required to schedule the task set. To
illustrate the effect of making tasks ‘bound’ rather than
‘unbound’ we use example system #2. This system has
task periods and deadlines chosen to emphasize the
effect of having tasks bound to the release of the
server. The task periods were chosen such they would
be harmonics of a number of different server periods.

15.00%

20.00%

25.00%

30.00%

35.00%

40.00%

45.00%

50.00%

55.00%

4 20 36 52 68 84 100 116 132 148 164 180 196

Server Period

U
til

is
at

io
n

Periodic Server (unbound tasks)

Periodic Server (bound tasks)

Figure 8 Bound and unbound tasks

Figure 8 shows the different server utilisations

required to schedule the task set for a range of server
periods. The two lines on the graph are both for
Periodic Servers, however the dashed line illustrates
the effect of binding tasks to the server whenever a
task’s period is an exact multiple of that of the server.
This results in improvements in task response times
and hence a system which is schedulable for lower
server capacities. This is apparent from the graph for

server periods of 16, 20, 32, 40, 60, 80, 96 and 160.
Treating all tasks as unbound results in a minimum

server utilisation of 28.57% (server period 77).
Permitting tasks to be bound to the server reduces this
minimum utilisation to 25.63% (server period 160).

We note from the shape of the graph that the
problem of selecting the optimal server period does not
lend itself to being easily solved via generic search
techniques. The optimal server period, 160 in this case,
is a single excellent solution surrounded by
neighbouring solutions that are poor.

5. Summary and conclusions

In this paper we addressed the problem of

scheduling a number of applications on a single
processor using a set of servers. The motivation for this
work comes from the automotive, avionics and other
industries where the advent of high performance
microprocessors is now making it both possible and
cost effective to implement multiple applications on a
single platform.

Our research has focussed on systems that are
scheduled using fixed priority pre-emptive scheduling
at both local and global scheduling levels.

5.1. Contribution

The major contributions of this work are:

• Exact response time analysis for hard real-time
tasks scheduled under Periodic, Sporadic and
Deferrable Servers. This analysis provides a
reduction in the calculated worst-case response
times of tasks compared to previously published
work. A similar improvement is also apparent in
the server capacity and replenishment periods
deemed necessary to schedule a given task set.

• Extension of the analysis to tasks that are bound to
the release of their server. We showed that
permitting tasks to be bound to a server with the
appropriate replenishment period always enhances
task schedulability and can reduce the server
capacity required.

• Comparison of Periodic, Sporadic and Deferrable
Servers in terms of their ability to guarantee the
deadlines of hard real-time tasks. The Periodic
Server was shown to completely dominate the
other server algorithms on this metric.

5.2. Future work

Today it is possible using the analysis techniques

described in this paper to determine the optimal set of
server parameters via an exhaustive search of possible
periods and priorities for simple systems comprising 3

or 4 applications. Further work is required to provide
an effective algorithm capable of choosing an optimal
or close to optimal set of server parameters given
systems comprising perhaps ten or more applications.

Another interesting area of future research involves
incorporating Quality of Service (QoS) requirements
into hierarchical fixed priority pre-emptive systems.
Finally extension of this work to multiprocessor
platforms requires careful consideration.

6. Acknowledgements

This work was partially funded by the EU

Information Society Technologies (IST) Program,
Flexible Integrated Real-Time Systems Technology
(FIRST) Project, IST-2001-34140 and the UK EPSRC
funded DIRC project.

7. References

[1] T-W. Kuo, C-H. Li. “A Fixed Priority Driven Open
Environment for Real-Time Applications”. In proceedings of the
IEEE Real-Time Systems Symposium. Madrid, Spain, December
1998.
[2] Z. Deng, J.W-S. Liu. “Scheduling Real-Time Applications in
an Open Environment”. In proceedings of the IEEE Real-Time
Systems Symposium. December 1997.
[3] B. Sprunt. “Aperiodic Task Scheduling for Real-Time
Systems”. Ph.D. Dissertation, Dept. of Electrical and Computer
Engineering, Carnegie Mellon University, 1990.
[4] C.L.Liu, J.W.Layland, “Scheduling Algorithms for
Multiprogramming in a Hard Real-Time Environment” JACM,
Vol. 20, No. 1 January 1973, pp. 46-61.
[5] S. Saewong, R. Rajkumar, J. Lehoczky, M. Klein. “Analysis
of Hierarchical Fixed priority Scheduling”. Proceedings of the
ECRTS, pp. 173-181, 2002.
[6] J.K. Strosnider, J.P. Lehoczky, L. Sha. “The Deferrable
Server Algorithm for Enhanced Aperiodic Responsiveness in
Hard Real-Time Environments”. IEEE Transactions on
Computers, 44(1) January 1995.
[7] G. Lipari, E. Bini. “Resource Partitioning among Real-Time
Applications”. Proceedings of the ECRTS, Portugal, July 2003.
[8] L. Almeida. “Response Time Analysis and Server Design for
Hierarchical Scheduling”. Proceedings Real-Time Systems
Symposium Work-in-Progress 2003.
[9] G. Bernat, A. Burns. “New Results on Fixed Priority
Aperiodic Servers”. Proceedings of the IEEE Real-Time Systems
Symposium. Phoenix, Arizona, December 1999.
[10] N.C. Audsley, A. Burns, M. Richardson, A.J.Wellings.
“Applying new Scheduling Theory to Static Priority Pre-emptive
Scheduling”. Software Engineering Journal, 8(5) pp. 284-292,
1993.
[11] EU Information Society Technologies (IST) Program,
Flexible Integrated Real-Time Systems Technology (FIRST)
Project, IST-2001-34140.
[12] L. Sha, J.P.Lehoczky, R. Rajkumar. “Solutions for some
Parctical Problems in Prioritised Preemptive Scheduling”
Proceedings IEEE Real-Time Systems Symposium. pp.181-191
1986.
[13] R.I.Davis, A. Burns “Hierarchical Fixed Priority Pre-
emptive Scheduling” Technical Report YCS-385 Department of
Computer Science, University of York, April 2005.

