
Priority Assignment for Global Fixed Priority Pre-emptive Scheduling in 
Multiprocessor Real-Time Systems. 

 
Robert I. Davis and Alan Burns 

Real-Time Systems Research Group, Department of Computer Science, 
University of York, YO10 5DD, York (UK) 

rob.davis@cs.york.ac.uk, alan.burns@cs.york.ac.uk 
 
 

Abstract 
This report addresses the problem of priority 

assignment in multiprocessor real-time systems using 
global fixed task-priority pre-emptive scheduling. 

In this report, we prove that Audsley’s Optimal 
Priority Assignment (OPA) algorithm, originally devised 
for uniprocessor scheduling, is applicable to the 
multiprocessor case, provided that three conditions hold 
with respect to the schedulability tests used. 

Our empirical investigations show that the 
combination of optimal priority assignment policy and a 
simple compatible schedulability test is highly effective, 
in terms of the number of tasksets deemed to be 
schedulable.  

We also examine the performance of heuristic 
priority assignment policies such as Deadline 
Monotonic, and an extension of the TkC priority 
assignment policy called DkC that can be used with any 
schedulability test. Here we find that Deadline 
Monotonic priority assignment has relatively poor 
performance in the multiprocessor case, while DkC is 
highly effective with performance that is close to 
optimal. 

1. Introduction 
Today, real-time embedded systems are found in 

many diverse application areas including; automotive 
electronics, avionics, space systems, 
telecommunications, and consumer electronics. In all of 
these areas, there is rapid technological progress. 
Companies building embedded real-time systems are 
driven by the profit motive. To succeed, they aim to 
meet the needs and desires of their customers by 
providing systems that are more capable, more flexible, 
and more effective than their competition, and by 
bringing these systems to market earlier. This desire for 
technological progress has resulted in a rapid increase in 
both software complexity and processing demands. 

To address demands for increasing processor 
performance, silicon vendors no longer concentrate on 
increasing processor clock speeds, as this approach has 
lead to problems with high power consumption and the 
need for excessive heat dissipation. Instead, there is now 
an increasing trend towards using multiprocessor 

platforms for high-end real-time applications. 
Approaches to multiprocessor real-time scheduling, 

can be categorised into two broad classes: partitioned 
and global. Partitioned approaches allocate each task to 
a single processor, dividing the multiprocessor 
scheduling problem into one of task allocation (bin-
packing) followed by uniprocessor scheduling. In 
contrast, global approaches allow tasks to migrate from 
one processor to another at run-time. 

Global scheduling has the advantage that there are 
typically fewer context switches as the scheduler will 
only pre-empt a task when there are no processors idle. 
There is also no need to run task allocation algorithms 
when the set of tasks changes. 

Multiprocessor scheduling algorithms can be 
categorised into three classes based on when priorities 
can change: fixed task-priority (all invocations, or jobs, 
of a task have the same priority), fixed-job priority and 
dynamic-priority. 

In this report, we focus on priority assignment 
policies for global fixed task-priority pre-emptive 
scheduling, (which for brevity we refer to as global FP 
scheduling). 
1.1. Related work 

In the context of uniprocessor fixed priority 
scheduling, there are three fundamental results regarding 
priority assignment. 

In 1972, Serlin [2] and Liu and Layland [3] showed 
that Rate Monotonic priority ordering (RMPO) is 
optimal for independent synchronous tasks (that share a 
common release time), that have implicit deadlines 
(equal to their periods). 

In 1982, Leung and Whitehead [4] showed that 
Deadline Monotonic priority ordering (DMPO) is 
optimal for independent synchronous tasks with 
constrained deadlines (less than or equal to their 
periods). 

In 1991, Audsley [1] devised an optimal priority 
assignment (OPA) algorithm that solved the problem of 
priority assignment for asynchronous tasksets, and tasks 
with arbitrary deadlines (which may be greater than 
their periods). 

In the context of multiprocessor global FP 

mailto:rob.davis@cs.york.ac.uk
mailto:alan.burns@cs.york.ac.uk


scheduling, work on priority assignment has focussed on 
circumventing the so called “Dhall effect” [19]. 

In 1978, Dhall and Liu [19] showed that under global 
FP scheduling with RMPO, a set of tasks with implicit 
deadlines, and total utilisation just greater than 1 can be 
unschedulable on m processors. For this problem to 
occur requires at least one task with a high utilisation. 

In 2000, Andersson and Jonsson [18], designed the 
TkC priority assignment policy to circumvent the Dhall 
effect. TkC assigns priorities based on a task’s period 
( iT ) minus k times its worst-case execution time ( i ), 
where k is a real value computed on the basis of the 
number of processors. Via an empirical investigation, 
Andersson and Jonsson showed that TkC is an effective 
priority assignment policy for implicit deadline tasksets. 

C

In 2001, Anderson et al. [24] gave a utilisation bound 
for global FP scheduling using the RM-US{ς } priority 
assignment policy. RM-US{ς } gives the highest 
priority to tasks with utilisation greater than a threshold 
ς . Subsequently, Andersson and Jonsson [25] showed 
that the maximum utilisation bound for global FP 
scheduling, where priorities are defined as a scale 
invariant function of task worst-case execution times 
and periods, is: m41m .0)12( ≈− . 

In 2005, Bertogna [11] extended the work of 
Andersson et al. [24] to constrained deadline tasksets, 
forming the DM-DS{ς } priority assignment policy. 
DM-DS{ς } gives the highest priority to at most m-1 
tasks with densities greater than the threshold ς , and 
otherwise uses DMPO. Bertogna [11] provided a 
density-based schedulability test for DM-DS{ς }. 

In 2008, Andersson [26] proposed a form of Slack 
Monotonic priority assignment called SM-US{ς }, 
which using a threshold of )53/(2 + , has a utilisation 
bound of mm 382.0)53/(2 ≈+ . 

More sophisticated schedulability tests for global FP 
scheduling have been developed using analysis of 
response times and processor load. 

In 1998, Lundberg [5] gave a simple response time 
upper bound applicable to sporadic tasksets with 
constrained-deadline. 

In 2001, Baker [6] developed a fundamental 
schedulability test strategy, based on considering the 
minimum amount of interference in a given interval that 
is necessary to cause a deadline to be missed, and then 
taking the contra-positive of this to form a sufficient 
schedulability test. This basic strategy underpins an 
extensive thread of subsequent research into 
schedulability tests for global EDF [7], [8], [9], [10], and 
global FP scheduling [12], [13], [21], [22], [23]. 

Baker’s work was subsequently built upon by 
Bertogna et al [11] in 2005, who developed sufficient 
schedulability tests for: any work conserving algorithm, 
global EDF, and global FP, based on bounding the 
maximum workload in a given interval. This approach 

was extended to form an iterative schedulability test 
using the computed slack for each task to limit the 
amount of carry-in interference and hence to calculate a 
new value for the slack [13]. Bertogna and Cirinei [14] 
adapted this approach to iteratively compute an upper 
bound on the response time of each task, using the upper 
bound response times of other tasks to limit the amount 
of interference considered. 

Global multiprocessor scheduling is intrinsically a 
much more difficult problem than uniprocessor 
scheduling due to the simple fact that a task can only use 
one processor at a time, even when several are free [31]. 
This restriction manifests itself as the critical instant 
effect [27], where simultaneous release of tasks does not 
lead to worst-case response times. As a result, no exact 
tests are known for global FP scheduling of sporadic 
tasksets. Exact tests are only known for the strictly 
periodic case [28], [29], [30]. 
1.2. Intuition and motivation 

The research described in this report is motivated by 
the need to close the large gap that currently exists 
between the best known approaches to multiprocessor 
real-time scheduling for sporadic tasksets with 
constrained deadlines and what may be possible as 
indicated by feasibility / infeasibility tests. We 
hypothesise that a key factor in closing this gap is 
priority assignment. 

The intuition behind our work is the idea that for 
fixed priority scheduling, finding an appropriate priority 
ordering is as important as using an effective 
schedulability test. 

In the simulation chapter of his thesis, Bertogna [8] 
showed that for sporadic tasksets with constrained 
deadlines, the response time test [14] for global FP 
scheduling – using DMPO, outperforms all other known 
tests for: global FP, global EDF and also similar tests for 
EDZL [15] (EDF until zero laxity), which is a minimally 
dynamic global scheduling algorithm that dominates 
global EDF. 

While DMPO is known to be an optimal priority 
assignment policy for the equivalent uniprocessor case 
[4], this optimality does not extend to multiprocessors. 

In this report, we prove that Audsley’s Optimal 
Priority Assignment (OPA) algorithm [1], originally 
devised for uniprocessor scheduling, is applicable to the 
multiprocessor case provided that the schedulability test 
used meets four simple conditions. These conditions 
allow us to classify schedulability tests for global FP 
scheduling into two categories: OPA-compatible and 
OPA-incompatible.  

We show via an empirical investigation that optimal 
priority assignment combined with a simple OPA-
compatible schedulability test can be significantly more 
effective in terms of the number of tasksets deemed 



schedulable, than using a state-of-the-art, OPA-
incompatible schedulability test with DMPO. 

Further, we build on the work of Andersson and 
Jonsson [18], developing heuristic priority assignment 
policies: D-CMPO and DkC that are applicable to any 
schedulability test. Our empirical studies show that DkC 
significantly outperforms DMPO, giving close to 
optimal results. 
1.3. Organisation 

The remainder of the report is organised as follows: 
Section 2 describes the terminology, notation and system 
model used. Section 3 recapitulates existing sufficient 
tests for global FP scheduling. Section 4 discusses both 
optimal and heuristic approaches to priority assignment. 
Section 5 outlines a method of taskset generation based 
on techniques developed for the uniprocessor case. 
Section 6 presents an empirical investigation into the 
effectiveness of priority assignment policies and 
sufficient schedulability tests. Finally, Section 7 
concludes with a summary and suggestions for future 
research. 

2. System model, terminology and notation 
In this report, we are interested in global FP 

scheduling of an application on a homogeneous 
multiprocessor system comprising m identical 
processors. The application (taskset) is assumed to 
comprise a static set of n tasks ( nττ ..1 ), where each task 

iτ  is assigned a unique priority i, from 1 to n (where n is 
the lowest priority). 

Application tasks may arrive either periodically at 
fixed intervals of time, or sporadically after some 
minimum inter-arrival time has elapsed. Each task iτ , is 
characterised by: its relative deadline i , worst-case 
execution time i , and minimum inter-arrival time or 
period i . The utilisation i , of each task is given by 

ii . A task’s worst-case response time i , is defined 
as the longest time from the task arriving to it 
completing execution. 

D
C

T U
TC / R

TD
It is assumed that all tasks have constrained 

deadlines, less than or equal to their periods ( ii ≤ ). 
The tasks are assumed to be independent and so cannot 
be blocked from executing by another task other than 
due to contention for the processors. It is assumed that 
once a task starts to execute it will not suspend itself. 

Each task gives rise to a potentially infinite sequence 
of invocations (or jobs). The arrival times of the jobs of 
different tasks are assumed to be independent. Intra-task 
parallelism is not permitted; hence, at any given time, 
each job may execute on at most one processor. As a 
result of pre-emption and subsequent resumption, a job 
may migrate from one processor to another. 

The cost of pre-emption, migration, and the run-time 
operation of the scheduler is assumed to be either 

negligible, or subsumed into the worst-case execution 
time of each task. 
2.1. Schedulability and optimality 

In systems using global FP scheduling, it is useful to 
separate the two concepts of priority assignment and 
schedulability testing. The priority assignment problem 
is one of determining the relative priority ordering of a 
set of tasks. Given a taskset with some priority ordering, 
then the schedulability testing problem involves 
determining if the taskset is schedulable with that 
priority ordering. Clearly the two concepts are closely 
related. For a given taskset, there may be many priority 
orderings that are unschedulable, and just a few that are 
schedulable. 

A schedulability test S can be classified as follows. 
Test S is said to be sufficient if all of the tasksets / 
priority ordering combinations that it deems schedulable 
are in fact schedulable. Similarly, test S is said to be 
necessary if all of the tasksets / priority ordering 
combinations that it deems unschedulable are in fact 
unschedulable. Finally, test S is referred to as exact if it 
is both sufficient and necessary. 

The concept of an optimal priority assignment policy 
can be defined with respect to a schedulability test S:  
Definition 1: Optimal priority assignment policy: For a 
given system model, a priority assignment policy P is 
referred to as optimal with respect to a schedulability 
test S, if there are no tasksets, compliant with the system 
model that are deemed schedulable by test S using 
another priority assignment policy, that are not also 
deemed schedulable by test S using policy P. 

3. Recapitulation of schedulability tests 
In this section, we outline two sufficient 

schedulability tests for global fixed priority scheduling 
developed by Bertogna et al [13], and Bertogna and 
Cirinei [14]. Both of these tests are based on the 
fundamental strategy derived by Baker [6], the outline of 
which is as follows: 
o Consider an interval referred to as the problem 

window, at the end of which a deadline is missed, 
for example the interval of length kD  from the 
arrival to the deadline of some job of task kτ . 

o Establish a condition necessary for the job to miss 
its deadline, for example, all m processors executing 
other tasks for more than kk CD −  during the 
interval. 

o Derive an upper bound UBI  on the maximum 
interference in the interval due to other tasks. 

o Form a necessary unschedulability test; i.e. an 
inequality between UBI  and the amount of 
execution necessary for a deadline miss. Then 
negate this inequality to form a sufficient 
schedulability test. 



In [13], Bertogna et al. derived a sufficient 
schedulability test using the above approach, by 
considering the maximum amount of interference that 
could occur in the problem window due to each higher 
priority task. This maximum interference occurs when 
the first invocation of the higher priority task in the 
problem window starts executing at the start of the 
problem window, and completes at its deadline, with all 
subsequent invocations executing as early as possible – 
see Figure 1. 

 
Figure 1 

Bertogna et al. [13] showed that  is an upper 
bound on the workload of task 

)(LW D
i

iτ  in an interval of 
length L. 

))(,min()()( iiiiiii
D

i TLNCDLCCLNLW −−++=  (1) 
Where  is the maximum number of jobs of 

task i

)(LNi
τ  that contribute all of their execution time in the 

interval. 

⎥
⎦

⎥
⎢
⎣

⎢ −+
=

i

ii
i T

CDL
LN )(       (2) 

If task kτ  is schedulable, then an upper bound on the 
interference due to a higher priority task iτ  in an 
interval of length  is given by: kD

)1),(min()( +−= kkk
D

ik
D
i CDDWDI   (3) 

Note, the ‘+1’ term in Equation (3) is a result of the 
approach to time representation1 used in [13]. 

A sufficient schedulability test for each task kτ  is 
then given by the following inequality: 

⎥
⎥
⎦

⎥

⎢
⎢
⎣

⎢
+≥ ∑

∈∀ )(
)(1

khpi
k

D
ikk DI

m
CD      (4) 

where hp(k) refers to the set of tasks with priorities 
higher than k. 

Note we have re-written Equation (4) in a different 
form from that presented in [13] for ease of comparison 
with the schedulability test given in [14].  
 Bertogna and Cirinei [14] extended the method 
described above to iteratively compute an upper bound 
response time  for each task, using the upper bound 
response times of higher priority tasks to limit the 
amount of interference considered. This extended 
approach applies essentially the same logic as 

UB
kR

[13], 
                                                 

)(LR
i

1 Time is represented by non-negative integer values, with each time 
value t viewed as representing the whole of the interval [t, t+1). This 
enables mathematical induction on clock ticks and avoids confusion 
with respect to end points of execution. 

while recognising that the latest time that a task can 
execute is when it completes with its worst-case 
response time, rather than at its deadline. 

Below, we give the schedulability test for this 
method. Note we have simplified the equations given by 
Bertogna and Cirinei [14] to remove the slack terms and 
use upper bound response times directly. This is possible 
for global FP scheduling as the response times computed 
are unaffected by lower priority tasks2. 

Taking upper bound response times into account, an 
upper bound Wi  on the workload of task τ  in an 
interval of length L is given by: 

))(,min()()( iii
UB
iiii

R
i TLNCRLCCLNLW −−++=

)(LNi

 (5) 
Where  is again given by Equation (2). 
If task kτ  is schedulable, then an upper bound on the 

interference due to a higher priority task iτ  in an 
interval of length  is given by: UB

kR
)1),(min()( +−= k

UB
k

UB
k

R
i

UB
ki CRRWRI   (6) 

An upper bound on the response time of each task 
kτ  can then be found via the following fixed point 

iteration (Theorem 7 in [14]). 

⎥
⎥
⎦

⎥

⎢
⎢
⎣

⎢
+← ∑

∈∀ )(
)(1

khpi

UB
kik

UB
k RI

m
CR

UB CR =
UB
kR k

UB
k DR >

    (7) 

 Iteration starts with kk , and continues until 
the value of  converges or until , in 
which case task k  is unschedulable.  τ

For convenience, in the rest of this report, we will 
refer to the sufficient schedulability test based on 
deadline analysis, given by Equation (4), as the “DA 
test”, and that based on response time analysis, given by 
Equation (7), as the “RTA test”. 

4. Priority assignment 
In 2000, Andersson and Jonsson [17] made the 

following observation: “For fixed priority pre-emptive 
global multiprocessor scheduling, there exist task sets 
for which the response time of a task depends not only 
on iT  and i of its higher-priority tasks, but also on the 
relative priority ordering of the those tasks”. 

C

                                                

Andersson and Jonsson concluded that even if an 
exact schedulability test were known, then it would not 
be possible to use Audsley’s OPA algorithm [1] to 
determine the optimal priority ordering. While this is 
undoubtedly true, we believe that it has also lead to a 
common misconception that the OPA algorithm cannot 
be applied to schedulability tests for global FP 
scheduling. 

In this section, we explore the problem of optimal 
priority assignment for global FP scheduling. First we 
provide an overview of Audsley’s OPA algorithm, [1] 

 
2 Bertogna and Cirinei also investigated global EDF scheduling and 
the slack terms are necessary in that case. 



derived for uniprocessor systems. 
4.1. Optimal priority assignment 

The pseudo code for the OPA algorithm, using some 
schedulability test S is given below. 

For n tasks, the algorithm performs at most n(n+1)/2 
schedulability tests and is guaranteed to find a priority 
assignment that is schedulable according to 
schedulability test S, if one exists. This is a significant 
improvement compared to inspecting all n! possible 
orderings. Note that the OPA algorithm does not specify 
the order in which tasks should be tried at each priority 
level. 
Optimal Priority Assignment Algorithm 
for each priority level k, lowest first 
{ 

for each unassigned task τ 
{ 
  if τ is schedulable at priority k  

  according to schedulability test S 
  { 
   assign τ to priority k 
   break (continue outer loop) 
  } 
} 
 return unschedulable 

} 
return schedulable 

Let S be some schedulability test for global FP 
scheduling which complies with the following three 
conditions: 
Condition 1: The schedulability of a task kτ  may, 
according to test S, be dependent on the set of higher 
priority tasks, but not on the relative priority ordering of 
those tasks. 
Condition 2: The schedulability of a task kτ  may, 
according to test S, be dependent on the set of lower 
priority tasks, but not on the relative priority ordering of 
those tasks. 
Condition 3: When the priorities of any two tasks of 
adjacent priority are swapped, the task being assigned 
the higher priority cannot become unschedulable 
according to test S, if it was previously schedulable at 
the lower priority. (As a corollary, the task being 
assigned the lower priority cannot become schedulable 
according to test S, if it was previously unschedulable at 
the higher priority). 
We now prove the following theorem about the 
applicability of the OPA algorithm to global FP 
scheduling. 
Theorem 1: The Optimal Priority Assignment (OPA) 
algorithm is an optimal priority assignment policy (see 
Definition 1) for any global FP schedulability test S 
compliant with Conditions 1-3. 
Proof: We assume for contradiction that there exists a 
taskset X that is schedulable according to test S with 
priority ordering Q , and further that the OPA algorithm 

is unable to generate a schedulable priority ordering for 
taskset X. 

In the proof, we will show that when applied to 
taskset X, each iteration k of the OPA algorithm, from 
priority level n down to 1, is able to find a task that is 
schedulable according to test S. Thus the OPA algorithm 
is able to find a priority ordering P for taskset X that is 
schedulable according to test S. This contradicts the 
assumption and hence proves the theorem. 

For the purposes of the proof, we refer to priority 
ordering  as . Over the n iterations, we will 
transform n  into 1−nQ .. 0Q , where 0  is equivalent to 
P, the priority ordering generated by the OPA algorithm. 
The transformation will be such that after each iteration 
k, (from n to 1), the transformed priority ordering 1−k  
remains schedulable according to test S, and the tasks at 
priority levels k and below are the same in Q  and P. 

Q nQ
Q Q

Q

kQ

Q ),( Qk ),( Pklp
),( kQkhep ),( Pkhep

),( Pkhep

)(kP

1

1−k
We now introduce a concise notation to aid in the 

discussion of tasks and groups of tasks within a priority 
ordering: 
o )(iQk  is the task at priority level i in priority 

ordering Q . k
o ),( kQihep  is the set of tasks with priority higher 

than or equal to k in priority ordering Q . k
o ),( kQihp  is the set of tasks with priority strictly 

higher than k in priority ordering Q . k
o ),( kQilep  is the set of tasks with priority lower than 

or equal to k in priority ordering Q . k
o ),( kQilp  is the set of tasks with priority strictly 

lower than k in priority ordering Q . k
In the proof which follows, we use k to represent 

both the iteration of the OPA algorithm (the priority 
level examined) and the index for the transformed 
priority ordering. 

Proof by iterating over values of k from n to 1: At 
the start of each iteration k, all tasks in priority ordering 

 are known to be schedulable according to test S. 
As the tasks with lower priority than k are the same 

in both k  and P ( klp = ), then 
 = , and so, given Condition 1, on 

iteration k, the OPA algorithm is guaranteed to find a 
task in the set of unassigned tasks (i.e. ) that is 
schedulable at priority k according to test S. This task is 
designated . 

There are two cases to consider: 
1. )(kP  is the task at priority k in kQ  (i.e. )(kQk ), in 

which case no transformation is necessary to form 
priority ordering 1−kQ  ( kk QQ =−1 ) and hence −kQ  
is trivially a schedulable priority ordering. 

2. )(kP  is the task at some higher priority level i in 
kQ  (i.e. )(iQk ). In this case, we transform kQ  into 

1−kQ  by moving task )(iQk  down in priority from 
priority level i to priority level k and the tasks in 

kQ  at priority levels i+1 to k up one priority level 
(see Figure 2 below). 



 
Figure 2 

Comparing the tasks in priority order 1−k  with 
their counterparts in kQ . There are effectively four 
groups of tasks to consider: 

Q

1. ),( 1−kQi : These tasks are assigned the same 
priorities in both kQ  and 1−kQ , given Condition 2, 
all of these tasks remain schedulable. 

hp

2. ),( : These tasks retain the 
same partial order but are shifted up one priority 
level in 1−kQ . This shift in priority can be affected 
by repeatedly swapping the priorities of task  
and the task immediately below it in the priority 
order, until task )(kP  reaches priority k. Hence, 
given Condition 3, all the tasks increasing in 
priority (i.e. those in the set 

),( ) remain schedulable. 

),( 11 −− ∩ kk QilepQkhp

),( 11 −− ∩ kk QilepQkhp

)(kP

3. Task )() : As the tasks of lower priority 
than k are the same in both kQ  and P, the OPA 
algorithm selected task )(kP  from the set of tasks 

),( kQk  on the basis of its schedulability at 
priority k with the set of tasks kQk

(1 kPkQk =−

hep
hep k −),(  = 

),( 1−kQk  at higher priorities. Given Condition 1, 
task )()  is schedulable at priority k, 
irrespective of the priority order of the tasks in 

),( 1kQk . 

hp

hp

(1 kPkQk =−

−
4. ),( 1−kQk : These tasks are assigned the same 

priorities in both kQ  and 1−kQ . As 
),( kk Qk , and given Condition 1, 

they all remain schedulable according to test S. 

lp

),( 1Qkhep − hep=

The above analysis shows that every task in  
remains schedulable according to test S. 

1−kQ

A total of n iterations of the above process (for 
values of k from n down to 1) correspond to iteration of 
the OPA algorithm over all n priority levels. On each 
iteration the OPA algorithm is able to identify a task that 
is schedulable according to test S and therefore generate 
a priority ordering P that is schedulable according to test 
S □ 

Conditions 1-3 enable us to classify global FP 
schedulability tests as either OPA-compatible or OPA-
incompatible: 

As shown by Andersson and Jonsson [17], there 
exist tasksets for which the exact response time and 

hence schedulability of a task depends not only on the 
set of higher-priority tasks, but also on the relative 
priority ordering of those tasks. This non-compliance 
with Condition 1 means that any exact test is OPA-
incompatible (as noted in [17]). 

The dependency of schedulability on the relative 
priority ordering of higher priority tasks also applies to 
the RTA test [14] given by Equation (7). Here, the 
workload i  (Equation (5)) depends on the 
response times of higher priority tasks, so this test is 
non-compliant with Condition 1 and therefore OPA-
incompatible. By contrast, both the simple response time 
test of Lundberg 

)(LW R

[5], and the DA test [13] given by 
Equation (4), comply with Conditions 1-3 and are 
therefore OPA-compatible. 

The OPA algorithm solves the problem of priority 
assignment for all OPA-compatible global FP 
schedulability tests. For OPA-incompatible 
schedulability tests, optimal priority assignment remains 
an open problem, as checking all n! priority orderings is 
infeasible for tasksets with non-trivial cardinality. 
4.2. Heuristic priority assignment 

In this section, we investigate heuristic priority 
assignment policies for OPA-incompatible 
schedulability tests. 

In his thesis [8], Bertogna evaluates the effectiveness 
of a number of different schedulability tests. Bertogna’s 
experiments show that using DMPO the RTA test 
outperforms all other known schedulability tests for 
constrained deadline sporadic tasksets, including those 
for EDF and EDZL. Despite this, and the optimality of 
DMPO in the equivalent uniprocessor case, we are 
sceptical about the effectiveness of DMPO in the 
multiprocessor case.  

The intuition for an alternative heuristic priority 
assignment policy can be obtained by re-arranging 
Equation (4): 

⎥
⎥
⎦

⎥

⎢
⎢
⎣

⎢
≥− ∑

∈∀ )(
)(1

khpi
k

D
ikk DI

m
CD

CD −

kCT

     (8) 

For large m, the term on the right hand side grows 
relatively slowly with each additional higher priority 
task. This suggests that ii  monotonic priority 
ordering (D-CMPO) might be a useful heuristic. 

Andersson and Jonsson [18] investigated a similar 
priority ordering, called TkC, for implicit deadline 
tasksets. TkC assigns priorities based on the value of 

ii − , where k is a real value computed on the basis 
of the number of processors, as follows: 

m
mmmk

2
1651 2 +−+−

=

which orders tasks according to the value of ii kCD

     (9) 

Extending this approach to tasksets with constrained 
deadlines, we form the DkC priority assignment policy 

, −



where k is again computed according to Equatio
The performance of the three heuristic prior

n (9). 
ity 

ass

priority assignment 
alg

ignment policies: DMPO, D-CMPO, and DkC is 
examined empirically in Section 6. 

We also developed heuristic 
orithms based on the RM-US{ς } [34] and SM-

US{ς } [26] priority assignment policies. These 
algorithms although more complex, were found to be no 
more effective than the DkC policy. (Appendix B gives 
details of these policies and their performance). 

5. Taskset generation 

 

Empirical investigations into the effectiveness of 
pri

f 
car

 a 

 U is not 

o n-1) 

 pow(rand(), 1/(n-1)); 

  }

ority assignment policies and schedulability tests 
require a means of generating tasksets. A taskset 
generation algorithm should be unbiased, and ideally, it 
should allow tasksets to be generated that comply with a 
specified parameter setting. That way the dependency of 
priority assignment policy / schedulability test 
effectiveness on each taskset parameter can be examined 
by varying that parameter, while holding all other 
parameters constant, avoiding any confounding effects. 

A (naïve) unbiased method of generating tasksets o
dinality n and target utilisation (Ut) is as follows.  

1. Select n task utilisation values iU  at random from
uniform distribution over the range [0,1]. 

2. Discard the taskset if the total utilisation
within some small percentage of the target 
utilisation (Ut) required, and generate a new taskset 
by returning to step 1. 

UUnifast(n,Ut) 
{ 

SumU = Ut;   
  for (i = 1 t
  { 

 nextSumU = SumU * 
  U[i] = SumU – nextSumU; 
  sumU = nextSumU; 
 

} 

The naive approach is not viable in practice; however, 

fast has not 
pre

tilisa
 task

 how the 
UU

at it is 
sca

ired target utilisation Ut 

ith 1>U , then 

e an unbiased 
dis

the UUnifast algorithm of Bini and Buttazzo [20] 
(pseudo code given above), replicates the same unbiased 
distribution of task utilisations. Note, pow(x, y) raises x 
to the power y, and rand() returns a random number in 
the range [0,1] from a uniform distribution. 

To the best of our knowledge, UUni
viously been used in the context of multiprocessors, 

as the basic algorithm cannot generate tasksets with total 
utilisation 1>U  without the possibility that some tasks 
will have u tion 1>iU . Instead, researchers have 
used an approach to set generation, based on 
generating an initial taskset of cardinality m+1 at 
random and then repeatedly adding tasks to it to 
generate further tasksets until the total utilisation 
exceeds the available processing resource [8], [13], [14], 
[15]. This approach has the disadvantage that it 

effectively combines two variables, utilisation and 
taskset cardinality, and does not necessarily result in an 
unbiased distribution of task utilisation values. 

In the remainder of this section, we show
nifast algorithm can be adapted to generate the 

tasksets needed to study multiprocessor systems. 
Inspection of the UUnifast algorithm shows th
le invariant. We can therefore use it to generate 

tasksets with U > 1 as follows: 
1. Run UUnifast with the requ

(which may be > 1). UUnifast will generate an 
unbiased distribution of n task utilisation values in 
the range [0, Ut] which sum to Ut. 

2. If the taskset generated has a task w i
discard the taskset and repeat step 1. 

The valid tasksets that remain hav
tribution of task utilisations in the range [0, 

min(Ut,1)] which sum to Ut. This is exactly what is 
required to study the effectiveness of multiprocessor 
schedulability tests. Unfortunately, there is a drawback 
to this approach, as the target utilisation requested 
increases towards n/2, then the number of valid tasksets 
(with all 1≤iU ) becomes a vanishingly small 
proportion o e generated. While this is clearly a 
limitation in theory, in practice, we contend that the vast 
majority of commercial real-time systems using 
multiprocessors will have significantly more tasks than 
processors. In any case, we can simply set a pragmatic 
limit on the proportion of tasksets we are prepared to 
discard (say 1,000 times the number of useful tasksets 
generated) and investigate as much of the problem space 
as possible within this limit. 

f thos

0

5

10

15

20

25

0 10 20 30 40 50

Number of tasks

To
ta

l u
til

is
at

io
n

Max target
utilisation

 
Figure 3 

Figure 3 shows the taskset utilisation that 
UU

maximum 
nifast is able to generate plotted against taskset 

cardinality. For example, UUnifast can be used to 
generate tasksets with a target utilisation of up to 8, 
(suitable for investigation of 8 processor systems) 
provided that the taskset cardinality exceeds 14. Lower 
utilisation levels of 7.5 and 6.7 are possible with 12 and 
10 tasks respectively. (Note that the behaviour of the 
UUnifast algorithm is independent of the number of 



processors). 
As we will see in the next section, the scope of this

tas

results of an empirical 
inv

this section are for 
con

on 
n our experiments were 

ran
 using the UUnifast 

 generated according to a l

ution time d on the 

a 

) 

                                                

 
kset generation method is sufficient to examine the 

effectiveness of schedulability tests for a wide range of 
interesting parameter values. 

6. Empirical investigation 
In this section, we present the 
estigation, examining the effectiveness of different 

priority assignment policies when used in conjunction 
with two sufficient schedulability tests: the “DA test” 
(Equation (4), which is OPA-compatible, and the “RTA 
test” (Equation (7)), which is OPA-incompatible. The 
priority assignment policies studied are DMPO, D-
CMPO, DkC and Audsley’s optimal priority assignment 
(OPA) algorithm (DA test only). 

The results presented in 
strained-deadline tasksets, Appendix A presents the 

results of essentially the same experiments applied to 
implicit-deadline tasksets. 
6.1. Parameter generati

The task parameters used i
domly generated as follows: 

o Task utilisations were generated
algorithm, discarding any tasksets with a task with 

1>iU . (The maximum number of taskset 
generation attempts was 1000 times the number of 
tasksets required). 

o Task periods were og-
uniform distribution3 with a factor of 310  
difference between the minimum and maximum 
possible task period. This represents a spread of task 
periods of 1ms to 1000ms, as found in most hard 
real-time applications. The log-uniform distribution 
was used as it generates an equal number of tasks in 
each time band (e.g. 1-10ms, 10-100ms, 100-
1000ms), thus providing reasonable correspondence 
with real systems. 

o Task exec s were set base
utilisation and period selected: iii TUC = . 

o Task deadlines were assigned according to 
uniform random distribution, in the range ],[ ii TC . 

In each experiment, the taskset utilisation (x-axis value
was varied from 0.025 to 0.975 times the number of 
processors in steps of 0.025. For each utilisation value, 
1000 valid tasksets were generated and the 
schedulability of those tasksets determined using various 
combinations of priority assignment policy and 
schedulability test. The graphs plot the percentage of 
tasksets generated that were deemed schedulable in each 
case. 

 

xperiment 1 (Priority assignment) 
mpact of 

each

3 The log-uniform distribution of a variable X is such that ln (X) has a 
uniform distribution. 

6.2. E
In this experiment we investigated the i
 of the priority assignment policies on the 

percentage of tasksets deemed schedulable by the two 
schedulability tests. Figures 4 to 7 show this data for 2, 
4, 8, and 16 processors respectively. (Note that we 
varied the number of tasks across these experiments to 
keep the number of tasks per processor constant at 5). 

0%

20%

40%

60%

80%

100%

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0
Utilisation

Pe
rc

en
ta

ge
 o

f t
as

ks
et

s 
sc

he
du

la
bl

e

120%
DA (OPA)
RTA (DKC)
DA (DKC)
 RTA (DCMPO)
DA (DCMPO)
RTA (DMPO)
DA (DMPO)

 
Figure 4: (2 processors, 10 tasks) 

0%

20%

40%

60%

80%

100%

120%

0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9 2.1 2.3 2.5 2.7 2.9 3.1 3.3 3.5 3.7 3.9
Utilisation

Pe
rc

en
ta

ge
 o

f t
as

ks
et

s 
sc

he
du

la
bl

e

DA (OPA)
RTA (DKC)
DA (DKC)
 RTA (DCMPO)
DA (DCMPO)
RTA (DMPO)
DA (DMPO)

 
Figure 5: (4 processors, 20 tasks) 

0%

20%

40%

60%

80%

100%

120%

0.2 0.6 1.0 1.4 1.8 2.2 2.6 3.0 3.4 3.8 4.2 4.6 5.0 5.4 5.8 6.2 6.6 7.0 7.4 7.8
Utilisation

Pe
rc

en
ta

ge
 o

f t
as

ks
et

s 
sc

he
du

la
bl

e

DA (OPA)
RTA (DKC)
DA (DKC)
 RTA (DCMPO)
DA (DCMPO)
RTA (DMPO)
DA (DMPO)

 
Figure 6: (8 processors, 40 tasks) 



0%

20%

40%

60%

80%

100%

120%

0.4 1.2 2.0 2.8 3.6 4.4 5.2 6.0 6.8 7.6 8.4 9.2 10
.0

10
.8

11
.6

12
.4

13
.2

14
.0

14
.8

15
.6

Utilisation

Pe
rc

en
ta

ge
 o

f t
as

ks
et

s 
sc

he
du

la
bl

e
DA (OPA)
RTA (DKC)
DA (DKC)
 RTA (DCMPO)
DA (DCMPO)
RTA (DMPO)
DA (DMPO)

 
Figure 7: (16 processors, 80 tasks) 

Fro riorit  
assi

m the graphs, we can see that the p y
gnment policy used has a significant impact on 

overall performance, and that the more processors there 
are, the larger this impact becomes. There are 4 solid 
lines on each graph depicting the performance of the DA 
test for DMPO (lowest performance), D-CMPO, DkC, 
and OPA (highest performance / optimal with respect to 
this schedulability test). 

In the 16 processor case (Figure 7), using DMPO, 
approx. 50% of the tasksets are unschedulable according 
to the DA test at a utilisation level of 4.4 (= 0.28m); 
however, using the OPA algorithm, approx. 50% of the 
tasksets are schedulable according to the same test at a 
utilisation level of 9.4 (= 0.59m) Hence, in this case, 
optimal priority assignment effectively enables 114% 
better utilisation of the processing resource than DMPO. 

D-CMPO is more effective than DMPO, and the 
DkC priority assignment policy is notably almost as 
effective as optimal priority assignment. Note, the 
performance of DkC and D-CMPO are identical in the 2 
processor case (Figure 4) as k =1 (Equation (9)). 
Comparison between the four figures shows that the 
difference between OPA and DMPO becomes more 
significant as the number of processors increases. 

It is clear from the graphs that the difference in 
performance between the DA test (solid lines) and the 
RTA test (dashed lines) is less significant than the 
difference between the best and the worst priority 
assignment policies. 

The data shown in Figures 4 to 7 is for systems with 
5 times as many tasks as processors. We repeated these 
experiments for smaller (2) and larger (20) numbers of 
tasks per processor. In each case, although the data 
points changed, the relationships between the 
effectiveness of the different methods and the 
conclusions that can be drawn from them remained 
essentially the same. Experiment 2 below examines the 
dependency on the number of tasks. 

6.3. Experiment 2 (Number of tasks) 
In this experiment we investigated the effect of 

varying the number of tasks. Figure 8 shows the 
percentage of tasksets that were schedulable on an 8 
processor system, for taskset cardinalities of 9, 10, 12, 
16, 24, and 40, using the DA test with optimal priority 
assignment (solid lines). Data for the RTA test with DkC 
priority assignment was almost identical (not shown on 
the graph). Figure 9 shows similar data for tasksets of 
cardinality 40, 80, 120, 160, and 200. 

0%

20%

40%

60%

80%

100%

120%

0.2 0.6 1.0 1.4 1.8 2.2 2.6 3.0 3.4 3.8 4.2 4.6 5.0 5.4 5.8 6.2 6.6 7.0 7.4 7.8

Utilisation

Pe
rc

en
ta

ge
 o

f t
as

ks
et

s 
sc

he
du

la
bl

e

DA (OPA) 9
DA (OPA) 10
DA (OPA) 12
DA (OPA) 16

DA (OPA) 24
DA (OPA) 40

 
Figure 8: (taskset cardinality from 9 to 40) 

0%

20%

40%

60%

80%

100%

120%

0.2 0.6 1.0 1.4 1.8 2.2 2.6 3.0 3.4 3.8 4.2 4.6 5.0 5.4 5.8 6.2 6.6 7.0 7.4 7.8

Utilisation

Pe
rc

en
ta

ge
 o

f t
as

ks
et

s 
sc

he
du

la
bl

e

DA (OPA) 200

DA (OPA) 160

DA (OPA) 120

DA (OPA) 80

DA (OPA) 40

 
Figure 9: (taskset cardinality from 40 to 200) 
There are some data points missing from the right 

hand side of the Figure 8. This is because the UUnifast 
algorithm was unable to generate tasksets with 
cardinality 9 and utilisation greater than 6.6 (or 
cardinality 10 and utilisation greater than 6.8); however, 
despite this the trend is still clearly visible: In Figure 8, 
the percentage of schedulable tasksets decreases as the 
number of tasks is increased from 9 towards 40, with all 
other parameters held constant. It would appear from 
this data that tasksets with a larger number of tasks are 



more difficult to schedule; however, Figure 9 shows 
what happens as we continue to increase the number of 
tasks from 40 to 200 (25 times the number of 
processors). Now as the number of tasks increases, the 
tasksets appear to become easier to schedule. 

This behaviour can be explained as a combination of 
two effects: With a small number of tasks, tasksets are 
relatively easy to schedule as the impact of each high 
utilisation, high interference task is limited to effectively 
occupying one processor (see Equations (3) and (5)). In 
the extreme, any valid taskset with m tasks or less is 
trivially schedulable on an m processor system. As 
taskset cardinality increases from m to 2m we therefore 
expect fewer tasksets to be schedulable at any given 
utilisation. 

At the other extreme, with increasing taskset 
cardinality ( ), the average density kk  of 
each task k

mn >> DC /
τ  becomes small. This means that the 

amount of pessimism in the schedulability tests, due to 
the assumption that when kτ  executes, all other 
processors are idle, is reduced. Hence, as n increases 
beyond 10m, so the number of schedulable tasksets 
increases. 

The fact that on an m processor system, any valid set 
of m tasks is schedulable, illustrates the incomparability 
of global FP scheduling on m processors of speed 1, 
with respect to fixed priority pre-emptive scheduling on 
a uniprocessor of speed m. (The m-speed uniprocessor 
can trivially schedule a single task of utilisation greater 
than one, whereas the m processors cannot. Similarly, 
the m processors can schedule any set of m tasks with 
co-prime periods and individual task utilisations equal to 
1, whereas the m-speed uniprocessor cannot). 

7. Summary and conclusions 
The motivation for our work was the desire to 

improve upon the current state-of-the-art in terms of 
practical techniques that enable the efficient use of 
processing capacity in hard real-time systems based on 
multiprocessors. 

In this report we addressed the problem of priority 
assignment for global FP scheduling of constrained-
deadline sporadic tasksets. We were drawn to this area 
of research by the recent work of Bertogna et al. [13] 
which showed that the best schedulability tests available 
for global FP scheduling using Deadline Monotonic 
Priority Ordering (DMPO) outperform the best tests 
known for both global EDF and EDZL. 

The intuition behind our work was the idea that in 
fixed priority scheduling, finding an appropriate priority 
assignment is as important as using an effective 
schedulability test. While DMPO is an optimal priority 
assignment policy for uniprocessors, this result is known 
not to transfer to the multiprocessor case. Indeed, we 
found that DMPO cannot even be considered a good 

heuristic for multiprocessors. 
The key contributions of this report are as follows: 

o The observation that although Audsley’s Optimal 
Priority Assignment algorithm [1] cannot be applied 
to an exact schedulability test for global fixed 
priority scheduling (should such a test be derived), 
this does not preclude its use in conjunction with 
sufficient schedulability tests. 

o Proof that Audsley’s OPA algorithm is the optimal 
priority assignment policy with respect to any 
global FP schedulability test that complies with 
three simple conditions. 

o Classification of schedulability tests for global FP 
scheduling as either OPA-compatible or OPA-
incompatible based on these conditions. The 
deadline-based sufficient test (“DA test”) of 
Bertogna et al. [13], and the response time test of 
Lundberg [5] are OPA-compatible, while any exact 
test (that might be derived), and the response time 
test (“RTA test”) of Bertogna and Cirinei [14] are 
OPA-incompatible. 

o Extension of the TkC [18] priority assignment 
policy to constrained deadline tasksets forming a 
DkC priority assignment policy. This heuristic 
policy can be used in conjunction with any 
schedulability test. 

o Adaptation of the UUnifast task parameter 
generation algorithm to the multiprocessor case. 
This enables the generation of tasksets with specific 
parameter settings, facilitating an empirical study of 
the dependency of schedulability test effectiveness 
without the problem of confounding variables. 

o An empirical study showing that using Audsley’s 
OPA algorithm, rather than DMPO, the DA test can 
schedule significantly more tasksets. Our study also 
showed that the DkC priority assignment policy is 
almost as effective as optimal priority assignment 
when applied in conjunction with the DA test, and 
similarly highly effective when applied in 
conjunction with the RTA test. 

Our studies showed that the improvements that an 
appropriate choice of priority assignment brings are very 
large when viewed in terms of the proportion of 
processing capacity that can be usefully deployed. For 
example, in the 16 processor case, the utilisation level at 
which 50% of the tasksets were schedulable increased 
from 0.28m or 0.29m (for the DA test or RTA test with 
DMPO) to 0.58m or 0.59m (for the RTA test with DkC 
priority assignment, or the DA test with optimal priority 
assignment). This represents an effective increase in the 
usable processing resource of 100% or more. This level 
of improvement is of great value to engineers designing 
and implementing hard real-time systems based on 
multiprocessor platforms, as it enables more effective 
use to be made of processing resources while still 



ensuring that deadlines are met. 
We conclude that priority assignment is an 

important factor in determining the schedulability of 
tasksets under global fixed priority pre-emptive 
scheduling. 

In future, we intend to explore the use of the optimal 
priority assignment algorithm, and heuristic priority 
assignment policies, such as DkC, in conjunction with 
other schedulability tests for global FP scheduling. 
7.1. Acknowledgements 

The authors would like to thank Enrico Bini and Paul 
Emberson for their contributions to the discussions 
about the applicability of the UUnifast algorithm to the 
multiprocessor case, and also Yang Chang for his 
insightful review of an early draft. 

This work was funded in part by the EU Jeopard and 
EU eMuCo projects. 

Appendix A: Implicit-deadline tasksets 
In this appendix, we present the results of 

Experiments 1 and 2 (Sections 6.2 and 6.3), repeated for 
implicit-deadline tasksets. 
A.1 Experiment 1 (Priority assignment) 

In this experiment, we examined the effectiveness of 
different priority assignment policies when used in 
conjunction with two sufficient schedulability tests: the 
“DA test” (Equation (4), which is OPA-compatible, and 
the “RTA test” (Equation (7)), which is OPA-
incompatible. The priority assignment policies studied 
were: 

o DMPO (which reduces to Rate Monotonic 
priority ordering [2], [3] in the case of implicit-
deadline tasksets), 

o D-CMPO, 
o DkC (which reduces to TkC [17] in the case of 

implicit-deadline tasksets), and 
o Audsley’s optimal priority assignment (OPA) 

algorithm [1] (DA test only).  
We used exactly the same parameter settings 

described in Section 6.1, save for task deadlines which 
were set equal to their periods. (By comparison, when 
studying constrained-deadline tasksets, task deadlines 
were chosen according to a uniform random distribution, 
in the range [ ). ],TC

                                                

ii
Figures 10 to 13 illustrate the impact of each of the 

priority assignment policies on the percentage of 
tasksets deemed schedulable by the two schedulability 
tests for 2, 4, 8, and 16 processors respectively. 

In the two processors case (Figure 10) all of the 
priority assignment policies have similar performance4, 
and it is the effectiveness of the schedulability tests 
which dominates the results obtained. As the number of 

 
4 DkC and D-CMPO are in fact identical as k=1 for two processors. 

processors is increased, from 2 up to 16 (in Figure 13) 
the difference in performance between the two 
schedulability tests diminishes and the difference 
between priority assignment policies dominates the 
results. For 16 processors, there is a large difference 
between the utilisation level at which. 50% of the 
tasksets are deemed schedulable according to the DA 
test using DMPO (approx. 9.0 = 0.56m), versus using 
the optimal priority assignment algorithm (approx. 11.4 
= 0.71m). This difference corresponds to an effective 
increase in usable processing capacity of around 27%. 

It is interesting to compare the graphs for implicit-
deadline tasksets (Figures 10 to 13) with their 
counterparts for constrained-deadline tasksets (Figures 4 
to 7). We conclude from this comparison, that the 
selection of an appropriate priority ordering is more 
significant in the general case where task deadlines are 
permitted to be less than or equal to their periods. 

0%

20%

40%

60%

80%

100%

120%

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0
Utilisation

Pe
rc

en
ta

ge
 o

f t
as

ks
et

s 
sc

he
du

la
bl

e
DA (OPA)
RTA (DKC)
DA (DKC)
 RTA (DCMPO)
DA (DCMPO)
RTA (DMPO)
DA (DMPO)

 
Figure 10: (2 processors, 10 tasks) 

0%

20%

40%

60%

80%

100%

120%

0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9 2.1 2.3 2.5 2.7 2.9 3.1 3.3 3.5 3.7 3.9
Utilisation

Pe
rc

en
ta

ge
 o

f t
as

ks
et

s 
sc

he
du

la
bl

e

DA (OPA)
RTA (DKC)
DA (DKC)
 RTA (DCMPO)
DA (DCMPO)
RTA (DMPO)
DA (DMPO)

 
Figure 11: (4 processors, 20 tasks) 



0%

20%

40%

60%

80%

100%

120%

0.2 0.6 1.0 1.4 1.8 2.2 2.6 3.0 3.4 3.8 4.2 4.6 5.0 5.4 5.8 6.2 6.6 7.0 7.4 7.8
Utilisation

Pe
rc

en
ta

ge
 o

f t
as

ks
et

s 
sc

he
du

la
bl

e

DA (OPA)
RTA (DKC)
DA (DKC)
 RTA (DCMPO)
DA (DCMPO)
RTA (DMPO)
DA (DMPO)

 0%

20%

40%

60%

80%

100%

120%

0.2 0.6 1.0 1.4 1.8 2.2 2.6 3.0 3.4 3.8 4.2 4.6 5.0 5.4 5.8 6.2 6.6 7.0 7.4 7.8

Utilisation

Pe
rc

en
ta

ge
 o

f t
as

ks
et

s 
sc

he
du

la
bl

e

DA (OPA) 9
DA (OPA) 10
DA (OPA) 12
DA (OPA) 16

DA (OPA) 24
DA (OPA) 40

Figure 12: (8 processors, 40 tasks) 

0%

20%

40%

60%

80%

100%

120%

0.4 1.2 2.0 2.8 3.6 4.4 5.2 6.0 6.8 7.6 8.4 9.2 10
.0

10
.8

11
.6

12
.4

13
.2

14
.0

14
.8

15
.6

Utilisation

Pe
rc

en
ta

ge
 o

f t
as

ks
et

s 
sc

he
du

la
bl

e

DA (OPA)
RTA (DKC)
DA (DKC)
 RTA (DCMPO)
DA (DCMPO)
RTA (DMPO)
DA (DMPO)

 
Figure 13: (16 processors, 80 tasks) 

A.2 Experiment 2 (Number of tasks) 
In this experiment we investigated the effect of 

varying the number of tasks. Figure 14 shows the 
percentage of tasksets that were schedulable on an 8 
processor system, for taskset cardinalities of 9, 10, 12, 
16, 24, and 40, using the DA test with optimal priority 
assignment (solid lines). Figure 15 shows similar data 
for tasksets of cardinality 40, 80, 120, 160, and 200. 
This data is for implicit-deadline tasksets and is directly 
comparable with that shown in Figure 8 and Figure 9 for 
constrained-deadline tasksets. 

There are some data points missing from the right 
hand side of the Figure 14. Again, this is because the 
UUnifast algorithm was unable to generate tasksets with 
cardinality 9 and utilisation greater than 6.6 (or 
cardinality 10 and utilisation greater than 6.8). 

Figure 14 is similar to Figure 8 in that the percentage 
of schedulable tasksets decreases as the number of tasks 
is increased from 9 to 24. Further, Figure 15 is similar to 
Figure 9 in that the percentage of schedulable tasksets 
increases again as the number of tasks is increased from 
40 to 200. The explanation for this behaviour is given in 
Section 6.3. 

 
Figure 14: (taskset cardinality from 9 to 40) 

0%

20%

40%

60%

80%

100%

120%

0.2 0.6 1.0 1.4 1.8 2.2 2.6 3.0 3.4 3.8 4.2 4.6 5.0 5.4 5.8 6.2 6.6 7.0 7.4 7.8

Utilisation

Pe
rc

en
ta

ge
 o

f t
as

ks
et

s 
sc

he
du

la
bl

e
DA (OPA) 200

DA (OPA) 160

DA (OPA) 120

DA (OPA) 80

DA (OPA) 40

 
Figure 15: (taskset cardinality from 40 to 200) 

Appendix B: Other heuristic priority 
assignment policies 

In this section, we examine the performance of two 
heuristic priority assignment algorithms, derived from 
RM-US{ς } [34] and SM-US{ς } [26]. 
B.1 Implicit-deadline tasksets 

The RM-US{ς } priority assignment policy, was 
derived by Andersson et al. [34] with the aim of 
addressing the “Dhall effect” [19] for implicit-deadline 
tasksets using global FP scheduling. RM-US{ς } 
assigns the highest priority5 to tasks with utilisation 
greater than some threshold ς . The remaining tasks are 
then assigned priorities in Rate Monotonic priority 
order. 
                                                 
5 Note that RM-US considers fewer than m tasks assigned priorities 
based on their utilisation, and as the first m priority levels in an m 
processor system are essentially equivalent, makes no distinction 
between their priorities. 



In 2002, Lundberg [35] showed that that setting the 
threshold used in RM-US{ς } to 0.375 results in the 
following utilisation bound which is the maximum 
possible bound for this class of algorithm: 

mU 375.0≤      (B.1) 
The SM-US{ς } priority assignment policy was 

derived by Andersson and Jonsson [26] with the aim of 
improving upon the above bound for RM-US{ς }. SM-
US{ς } again assigns the highest priority to tasks with 
utilisation greater than some threshold ς ; the remaining 
tasks are then assigned priorities in Slack Monotonic 
priority order, (where the slack of task kτ  is defined 
as kk ). Andersson and Jonsson CD − [26] showed that 
using a threshold of )53/(2 +  results in the following 
utilisation bound for SM-US{ς }: 

)53/(2 +≤U       (B.2) 
Figure 16 illustrates the impact of the RM-US{ς } 

and SM-US{ς } priority assignment policies, on the 
percentage of implicit-deadline tasksets deemed 
schedulable by the DA schedulability test. This data is 
for tasksets generated according to the parameters 
described in Section 6.1, with the exception that all task 
deadlines were equal to their periods. The thresholds 
used were 0.375 for RM-US{ς } and )53/(2 +  for 
SM-US{ς }. 

0%

20%

40%

60%

80%

100%

120%

0.4 1.2 2.0 2.8 3.6 4.4 5.2 6.0 6.8 7.6 8.4 9.2 10
.0

10
.8

11
.6

12
.4

13
.2

14
.0

14
.8

15
.6

Utilisation

Pe
rc

en
ta

ge
 o

f t
as

ks
et

s 
sc

he
du

la
bl

e

DA (OPT) 

DA (DKC)

DA (SMUS)

DA (RMUS)

DA (DCMPO)

DA (DMPO)

 
Figure 16: (16 processors, 80 tasks) 

From Figure 16, we observe that the performance of 
the RM-US{0.375} and SM-US{ )53/(2 + } priority 
assignment policies is very similar to that of DkC (i.e. 
TkC) for implicit-deadline tasksets. This similarity in 
performance was also observed in the cases of 2, 4, and 
8 processors. 
B.2 Constrained-deadline tasksets 

Bertogna et al. [11] extended the RM-US{ς } 
priority assignment policy to constrained-deadline 
tasksets, forming the DM-DS{ς } policy. DM-DS{ς } 
assigns the highest priorities to at most m-1 tasks with 
densities ( kkk DC /=δ ) greater than some threshold ς . 
Bertogna et al. showed that using a threshold of 1/3 

results in the following density bound for global FP 
scheduling of constrained-deadline tasksets using DM-
DS{1/3} priority assignment: 

≤∑
∀

m

k
kδ 3

1+       (B.3) 

The SM-US{ς } priority assignment policy can also 
be extended to the constrained deadline case, by simply 
assigning the highest priority to those tasks with density 
(rather than utilisation) greater than some threshold ς . 
We refer to this policy as SM-DS{ς } 

Figure 17 below shows the results of essentially the 
same experiment as Figure 16; however, this time using 
constrained-deadline tasksets, with task deadlines 
chosen according to a uniform random distribution, in 
the range [ ii . Here, we see that the performance of 
the DM-DS{1/3} and SM-DS{

],TC
)53/(2 + } priority 

assignment policies is significantly worse than that of 
DkC. Further, we found that the relative performance of 
DM-DS{1/3} and SM-DS{ )53/(2 + } was variable, 
depending on the number of processors. In the case of 
two processors, the performance of both DM-DS{1/3} 
and SM-DS{ )53/(2 + } was worse than that of 
DMPO. 

0%

20%

40%

60%

80%

100%

120%

0.4 1.2 2.0 2.8 3.6 4.4 5.2 6.0 6.8 7.6 8.4 9.2 10
.0

10
.8

11
.6

12
.4

13
.2

14
.0

14
.8

15
.6

Utilisation

Pe
rc

en
ta

ge
 o

f t
as

ks
et

s 
sc

he
du

la
bl

e

DA (OPT) 

DA (DKC)

DA (SMDS)

DA (DMDS)

DA (DCMPO)

DA (DMPO)

 
Figure 17: (16 processors, 80 tasks) 

A possible explanation for the variable and relatively 
poor performance of DM-DS{1/3} and SM-
DS{ )53/( +2 } is the choice of threshold. While 
Bertogna et al. [11] and Andersson and Jonsson [26] 
were able to derive appropriate thresholds for DM-
DS{ς } and SM-US{ς } in order to derive maximum 
density or utilisation bounds, it is not obvious what the 
thresholds should be for constrained-deadline tasksets 
which exceed these bounds.  

We now describe variants of the DM-DS{ς } and 
SM-US{ς } priority assignment policies, which address 
the problem of selecting an appropriate threshold. Here, 
we employ an idea used by Goosens et al. [33] and 
Baker [32] in global EDF scheduling. We refer to these 
algorithms as DM-DS(h) and SM-DS(h).  

The DM-DS(h) and SM-DS(h) priority assignment 



algorithms both assign the highest h priorities based on 
task density, highest density first. The remaining tasks 
are then assigned priorities in either Deadline Monotonic 
(DM-DS(h)) or Slack Monotonic (SM-DS(h)) priority 
order. Instead of using a threshold, the DM-DS(h) and 
SM-DS(h) algorithms, simply try all values of h, from 
zero, (which is equivalent to DMPO or Slack Monotonic 
priority order), to n-1, (which is equivalent to ordering 
all of the tasks based on decreasing density). Thus for a 
taskset of cardinality n, applying either the DM-DS(h) or 
the SM-DS(h) priority assignment algorithm implies 
checking taskset schedulability for n different priority 
orderings, (corresponding to h = 0 to n-1), stopping only 
when a schedulable priority ordering is found, or when 
all n priority orderings are found to be unschedulable. 

The DM-DS(h) and SM-DS(h) priority assignment 
algorithms circumvent the problem of finding an 
appropriate threshold, by effectively examining all of the 
priority orderings that could possibly be generated by 
any arbitrary threshold value. 
 Figure 18 illustrates the impact of the DM-DS(h) 
and SM-DS(h) priority assignment algorithms on the 
percentage of tasksets deemed schedulable by the DA 
schedulability test. This data is again for constrained-
deadline tasksets and so is directly comparable with that 
presented in Figure 17.  

0%

20%

40%

60%

80%

100%

120%

0.4 1.2 2.0 2.8 3.6 4.4 5.2 6.0 6.8 7.6 8.4 9.2 10
.0

10
.8

11
.6

12
.4

13
.2

14
.0

14
.8

15
.6

Utilisation

Pe
rc

en
ta

ge
 o

f t
as

ks
et

s 
sc

he
du

la
bl

e

DA (OPT) 

DA (DKC)

DA (SMDS)

DA (DMDS)

DA (DCMPO)

DA (DMPO)

 
Figure 18: (16 processors, 80 tasks) 

From Figure 18, it is clear that the performance of 
the SM-DS(h) priority assignment algorithm is very 
similar to that of DkC, with DM-DS(h) providing 
somewhat inferior performance. The results shown in 
Figure 18 are for a 16 processor system, with 80 tasks. 
We also repeated this experiment for smaller (2) and 
larger (20) numbers of tasks per processor, and 2, 4, and 
8 processors. In each case, although the data points 
changed, the relationships between the different priority 
assignment methods remained essentially the same. 

While the SM-DS(h) priority assignment algorithm 
gives very similar performance to that of DkC, SM-
DS(h) is more complex, requiring a schedulability test to 

be performed for n different priority orderings rather 
than just one. For this reason we recommend using DkC 
priority assignment in conjunction with OPA-
incompatible schedulability tests for global FP 
scheduling. For OPA-compatible schedulability tests, 
then Audsley’s optimal priority assignment algorithm 
should be used. 

References 
[1] N.C. Audsley, "Optimal priority assignment and feasibility of 
static priority tasks with arbitrary start times", Technical Report 
YCS 164, Dept. Computer Science, University of York, UK, 
December 1991. 
[2] O. Serlin, “Scheduling of time critical processes”. In 
proceedings AFIPS Spring Computing Conference, pp 925-932, 
1972. 
[3] C. L. Liu and J. W. Layland. "Scheduling algorithms for 
multiprogramming in a hard-real-time environment", Journal of 
the ACM, 20(1): 46-61, January 1973. 
[4] J. Y.-T. Leung and J. Whitehead, "On the complexity of 
fixed-priority scheduling of periodic real-time tasks," Performance 
Evaluation, 2(4): 237-250, December 1982. 
[5] L. Lundberg, “Multiprocessor scheduling of age constraint 
processes”. Proceedings of the International Conference on Real-
Time Computing Systems and Applications (RTCSA), 1998. 
[6] T. P. Baker. “Multiprocessor EDF and deadline monotonic 
schedulability analysis”. In Proc. RTSS, pp. 120–129, 2003. 
[7] S.K. Baruah, “Sustainable schedulability analysis of global 
EDF. In Proc. RTSS 2008. 
[8] M. Bertogna, “Real-Time Scheduling for Multiprocessor 
Platforms”. PhD Thesis, Scuola Superiore Sant’Anna, Pisa, 2007. 
[9] Baruah, S.K., Baker, T.P.: “An analysis of global EDF 
schedulability for arbitrary sporadic task systems. Real-Time 
Systems ECRTS special issue, to appear 2009. 
[10] S. Baruah, V. Bonifaci, A. Marchetti-Spaccamela, S. Stiller, 
“Implementation of a speedup-optimal global EDF schedulability 
test”, In Proc. ECRTS 2009. 
[11] M. Bertogna, M. Cirinei, and G. Lipari. New schedulability 
tests for real-time task sets scheduled by deadline monotonic on 
multiprocessors. In Proc. 9th International Conf. on Principles of 
Distributed Systems, Dec. 2005. 
[12] S.K. Baruah and N. Fisher. “Global Fixed-Priority 
Scheduling of Arbitrary-Deadline Sporadic Task Systems.” In 
Proc. of the 9th Int’l Conference on Distributed Computing and 
Networking, Jan 2008. 
[13] M. Bertogna, M. Cirinei, and G. Lipari. “Schedulability 
analysis of global scheduling algorithms on multiprocessor 
platforms”. IEEE Transactions on parallel and distributed system, 
20(4): 553-566. April 2009. 
[14] M. Bertogna, M. Cirinei, “Response Time Analysis for global 
scheduled symmetric multiprocessor platforms”. In proceedings 
28th IEEE Real-Time Systems Symposium, pp. 149-158, 2007. 
[15] Baker, T. P., Cirinei, M., and Bertogna, M. EDZL scheduling 
analysis. Real-Time Systems. 40, 3 (Dec. 2008), 264-289. 
[16] R.I. Davis, A. Burns. “Robust Priority Assignment for Fixed 
Priority Real-Time Systems”. In proceedings IEEE Real-Time 
Systems Symposium pp. 3-14. Tucson, Arizona, USA. December 
2007 
[17] B. Andersson, J. Jonsson, “Some insights on fixed-priority 
pre-emptive non-partitioned multiprocessor scheduling”. In 
Proceedings of the Real-Time Systems Symposium – Work-in-
Progress Session, November 2000. 



[18] B. Andersson, J. Jonsson, “Fixed-priority preemptive 
multiprocessor scheduling: to partition or not to partition”, 
Proceedings of the International Conference on Real-Time 
Computing Systems and Applications, Cheju Island, Korea 
(December 2000). 
[19] S. K. Dhall, C. L. Liu, “On a Real-Time Scheduling 
Problem”, Operations Research, vol. 26, No. 1, pp. 127-140, 1978. 
[20] E. Bini and G.C. Buttazzo. “Measuring the Performance of 
Schedulability tests”. Real-Time Systems, 30(1–2):129–154, May 
2005. 
[21] T. P. Baker. An analysis of fixed-priority scheduling on a 
multiprocessor. Real Time Systems, 32(1-2), 49-71, 2006. 
[22] N. Fisher, S.K. Baruah. “Global Static-Priority Scheduling of 
Sporadic Task Systems on Multiprocessor Platforms.” Proceedings 
of the IASTED International Conference on Parallel and 
Distributed Computing and Systems, Dallas, TX. November 2006. 
[23] S.K. Baruah and N. Fisher. “Global Fixed-Priority 
Scheduling of Arbitrary-Deadline Sporadic Task Systems.” 
Proceedings of the 9th International Conference on Distributed 
Computing and Networking, Kolkata, India. January 2008. 
[24] B. Andersson, S. Baruah, and J. Jonsson. Static-priority 
scheduling on multiprocessors. In Proc. RTSS, pp. 193–202, 2001. 
[25] B. Andersson, J. Jonsson, "The Utilization Bounds of 
Partitioned and Pfair Static-Priority Scheduling on 
Multiprocessors are 50%," In Proc. ECRTS, 2003. 
[26] B. Andersson, “Global static-priority preemptive 
multiprocessor scheduling with utilization bound 38%.” In Proc. 
International Conference on Principles of Distributed Systems, 
2008. 
[27] S. Lauzac, R. Melhem, and D. Mosse. “Comparison of global 
and partitioning schemes for scheduling rate monotonic tasks on a 
multiprocessor”. In Proc. of the EuroMicro Workshop on Real-
Time Systems, pages 188–195, June 17–19, 1998. 
[28] Cucu L. and Goossens J., "Feasibility Intervals for Fixed-
Priority Real-Time Scheduling on Uniform Multiprocessors", 11th 
IEEE International Conference on Emerging Technologies and 
Factory Automation, (ETFA'06), Prague, September 2006 
[29] Cucu L. and Goossens, J. "Feasibility Intervals for 
Multiprocessor Fixed-Priority Scheduling of Arbitrary Deadline 
Periodic Systems ", 10th Design, Automation and Test in Europe 
(DATE'07), ACM Press, Nice, April 2007 
[30] Cucu L., "Optimal priority assignment for periodic tasks on 
unrelated processors", Euromicro Conference on Real-Time 
Systems (ECRTS'08), WIP session, Prague, June 2008. 
[31] Liu, C.L.: Scheduling algorithms for multiprocessors in a 
hard real-time environment. JPL Space Programs Summary, vol. 
37-60, pp. 28-31, 1969. 
[32] Baker, T. P. “An analysis of EDF scheduling on a 
multiprocessor”. IEEE Trans. on Parallel and Distributed Systems, 
15(8):760–768, Aug. 2005. 
[33] Goossens, J., Funk S., Baruah, S., “Priority-driven scheduling 
of periodic task systems on multiprocessors”. Real Time Systems, 
25(2–3):187–205, Sept. 2003. 
[34] B. Andersson, S. Baruah, and J. Jonsson. Static-priority 
scheduling on multiprocessors. In Proc. 22nd IEEE Real-Time 
Systems Symposium, pages 193–202, London, UK, Dec. 2001. 
[35] Lundberg, L.: Analyzing Fixed-Priority Global 
Multiprocessor Scheduling. Eighth IEEE Real-Time and 
Embedded Technology and Applications Symposium (RTAS’02), 
2002. 


	Abstract
	1. Introduction
	1.1. Related work
	1.2. Intuition and motivation
	1.3. Organisation

	2. System model, terminology and notation
	2.1. Schedulability and optimality

	3. Recapitulation of schedulability tests
	4. Priority assignment
	4.1. Optimal priority assignment
	4.2. Heuristic priority assignment

	5. Taskset generation
	6. Empirical investigation
	6.1. Parameter generation
	6.2. Experiment 1 (Priority assignment)
	6.3. Experiment 2 (Number of tasks)

	7. Summary and conclusions
	7.1. Acknowledgements

	Appendix A: Implicit-deadline tasksets
	A.1 Experiment 1 (Priority assignment)
	A.2 Experiment 2 (Number of tasks)

	Appendix B: Other heuristic priority assignment policies
	B.1 Implicit-deadline tasksets
	B.2 Constrained-deadline tasksets

	References

