
On Optimal Priority Assignment for Response Time Analysis of Global Fixed
Priority Pre-emptive Scheduling in Multiprocessor Hard Real-Time Systems

Robert I. Davis and Alan Burns

Real-Time Systems Research Group, Department of Computer Science,
University of York, YO10 5DD, York (UK)

rob.davis@cs.york.ac.uk, alan.burns@cs.york.ac.uk

Abstract
This paper investigates the problem of optimal priority

assignment in multiprocessor real-time systems using global
fixed task-priority pre-emptive scheduling.

Previous work in this area showed that arguably the
most effective pseudo-polynomial schedulability tests for
global fixed priority pre-emptive scheduling, based on
response time analysis, are not compatible with Audsley’s
Optimal Priority Assignment (OPA) algorithm.

In this paper, we derive upper and lower bounds on
these response time tests that are compatible with the OPA
algorithm. We show how these bounds can be used to limit
the number of priority ordering combinations that need to
be examined, and thus derive an optimal priority
assignment algorithm with backtracking that is compatible
with response time analysis. We show that response time
analysis combined with the OPA-backtracking algorithm
dominates previous approaches using OPA-compatible
polynomial-time schedulability tests.

1. Introduction
Approaches to multiprocessor real-time scheduling, can

be categorised into two broad classes: partitioned and
global. Partitioned approaches allocate each task to a single
processor, dividing the multiprocessor scheduling problem
into one of task allocation followed by uniprocessor
scheduling. In contrast, global approaches allow tasks to
migrate from one processor to another at run-time. Real-
time scheduling algorithms can be categorised into three
classes based on when priorities can change: fixed task-
priority (all invocations, or jobs, of a task have the same
priority), fixed-job priority and dynamic-priority. In this
paper, we focus on priority assignment policies for global
fixed task-priority pre-emptive scheduling, which for
brevity we refer to as global FP scheduling.
1.1. Related work

In the context of uniprocessor fixed priority scheduling,
there are three fundamental results regarding priority
assignment. In 1972, Serlin [25] and Liu and Layland [23]
showed that Rate Monotonic priority ordering (RMPO) is
optimal for independent synchronous periodic tasks (that
share a common release time) that have implicit deadlines
(equal to their periods). In 1982, Leung and Whitehead [24]
showed that Deadline Monotonic priority ordering (DMPO)
is optimal for independent synchronous tasks with
constrained deadlines (less than or equal to their periods).
In 1991, Audsley [5], [6] devised an optimal priority

assignment (OPA) algorithm that solved the problem of
priority assignment for asynchronous tasksets, and for tasks
with arbitrary deadlines (which may be greater than their
periods). Subsequently, George et al. [21] showed that
Audsley’s OPA algorithm also solves the problem of
determining the optimal priority assignment for system
using fixed priority non-preemptive scheduling.

In the context of multiprocessor global FP scheduling,
work on priority assignment has focussed on circumventing
the so called “Dhall effect”. In 1978, Dhall and Liu [18]
showed that under global FP scheduling with RMPO, a set
of periodic tasks with implicit deadlines and total utilisation
just greater than 1 can be unschedulable on m processors.
For this problem to occur at least one task must have a high
utilisation.

In 2001, Andersson et al. [2] gave a utilisation bound for
global FP scheduling of periodic tasksets with implicit
deadlines using the RM-US{ς } priority assignment policy.
RM-US{ς } gives the highest priority to tasks with
utilisation greater than a threshold ς . In 2003, Andersson
and Jonsson [3] showed that the maximum utilisation bound
for global FP scheduling of such tasksets is

mm 41.0)12(≈− , when priorities are defined as a scale
invariant function of worst-case execution times and
periods.

In 2005, Bertogna [11] extended the work of Andersson
et al. [2] to sporadic tasksets with constrained deadlines
forming the DM-DS{ς } priority assignment policy. In
2008, Andersson [4] proposed a form of slack monotonic
priority assignment called SM-US{ς } Using a threshold of

)53/(2 + , SM-US{ς } has a utilisation bound of
mm 382.0)53/(2 ≈+ for sporadic tasksets with implicit-

deadlines.
More sophisticated schedulability tests for global FP

scheduling of sporadic tasksets with constrained and
arbitrary deadlines have been developed using analysis of
response times and processor load.

In 2000, Andersson and Jonsson [1] gave a simple
response time upper bound applicable to tasksets with
constrained-deadlines. In 2001, Baker [7] developed a
fundamental schedulability test strategy, based on
considering the minimum amount of interference in a given
interval that is necessary to cause a deadline to be missed,
and then taking the contra-positive of this to form a
sufficient schedulability test. This basic strategy underpins
an extensive thread of subsequent research into
schedulability tests [10], [11], [13], [14], [8], [19], [22].

Baker’s work was subsequently built upon by Bertogna

mailto:rob.davis@cs.york.ac.uk�
mailto:alan.burns@cs.york.ac.uk�

et al. [11] in 2005, (see also Bertogna and Cirinei [14]).
They developed sufficient schedulability tests for global FP
scheduling based on bounding the maximum workload in a
given interval. In 2007, Bertogna and Cirinei [12] adapted
this approach to iteratively compute an upper bound on the
response time of each task, using the upper bound response
times of other tasks to limit the amount of interference
considered. In 2009, Guan et al. [22] extended the response
time analysis of Bertogna and Cirinei [12], limiting the
amount of carry-in interference due to jobs released prior to
the start of the interval, using ideas from [9]. Guan et al.
also extended the approach to tasksets with arbitrary
deadlines.

In 2009, Davis and Burns [16] showed that priority
assignment is fundamental to the effectiveness of global FP
scheduling. They proved that Audsley’s Optimal Priority
Assignment (OPA) algorithm [5], [6], originally developed
for uniprocessor FP scheduling, is applicable to some of the
sufficient tests for global FP scheduling. These tests are
referred to as OPA-compatible [16]. The response time test
of Andersson and Jonsson [1] and the deadline-based test of
Bertogna et al. [14] are OPA-compatible [16], while the
response time analysis of Bertogna and Cirinei [12], and
Guan et al. [22] are OPA-incompatible.

Davis and Burns [17] also studied the effectiveness of
various heuristic priority assignment policies, including
DkC [16], RM-US{ς } [2], DM-DS{ς } [11], and SM-
US{ς } [4], while all of these policies typically
outperformed DMPO in terms of the number of tasksets
found to be schedulable by the schedulability tests given in
[14] and [12]. Their performance was shown to fall
significantly below that of optimal priority assignment.
1.2. Intuition and motivation

Dynamic priority scheduling has the potential to
schedule many more tasksets than fixed task or fixed job
priority scheduling algorithms. However, this theoretical
advantage must be balanced against the increased overheads
inherent in dynamic changes in priority. For example,
algorithms such as LLREF [15] and LRE-TL [20] which are
optimal for implicit-deadline periodic and sporadic tasksets
respectively, can in the worst-case result in n-1 pre-
emptions per job release, where n is the number of tasks. In
systems with a large number of tasks, this level of pre-
emptions leads to prohibitively high overheads. By contrast,
global FP scheduling results in at most one pre-emption per
job release.

In this paper, we are interested in priority assignment
policies that enable the maximum possible guaranteed
performance to be obtained from the simplest possible
global scheduling algorithm; global FP scheduling.

The motivation for our research comes from the fact that
arguably the most effective schedulability test for global FP
scheduling, the response time test of Bertogna and Cirinei
[12] as improved by Guan et al. [22], is not compatible with
Audsley’s Optimal Priority Assignment (OPA) algorithm.
Hence the current state-of-the-art [16] involves either
combining optimal priority assignment with polynomial-
time schedulability tests [14], which are dominated by

response time analysis, or combining heuristic priority
assignment policies such as DkC [16], which are dominated
by OPA, with response time analysis. Clearly, improved
performance can be obtained if a method of optimal priority
assignment can be found that is compatible with response
time analysis.

In this paper, we derive upper and lower bounds on
response time analysis that are OPA-compatible. We show
how these bounds can then be used to reduce the number of
priority ordering combinations that need to be examined,
and thus derive an optimal priority assignment algorithm
with backtracking that is compatible with response time
analysis. While this algorithm can still require that n!/m!
priority orderings are considered in the worst case (where n
is the number of tasks, and m is the number of processors),
in practice the upper and lower bounds can significantly
reduce the number of priority ordering combinations that
need to be examined. We show that response time analysis
combined with the OPA-backtracking algorithm dominates
previous approaches using OPA-compatible polynomial-
time schedulability tests.
1.3. Organisation

The remainder of this paper is organised as follows:
Section 2 describes the terminology, notation and system
model used. Section 3 describes response time analysis for
global FP scheduling, while Section 4 discusses optimal
priority assignment. Section 5 derives upper and lower
bounds on response time analysis and shows that they are
OPA-compatible. Section 6 introduces an optimal priority
assignment algorithm with backtracking that is compatible
with response time analysis. Section 7 presents the results of
an empirical investigation into the effectiveness of the OPA-
Backtracking algorithm combined with response time
analysis. Finally, Section 8 concludes with a summary and
an outline of future work.

2. System model, terminology and notation
In this paper, we are interested in global FP scheduling

of an application on a homogeneous multiprocessor system
comprising m identical processors. The application or
taskset is assumed to comprise a static set of n tasks
(nττ ...1), where each task iτ is assigned a unique priority i,
from 1 to n (where n is the lowest priority).

Tasks are assumed to comply with the sporadic task
model. In this model, tasks give rise to a potentially infinite
sequence of jobs. Each job of a task may arrive at any time
once a minimum inter-arrival time has elapsed since the
arrival of the previous job of the same task.

Each task iτ is characterised by: its relative deadline
iD , worst-case execution time iC , and minimum inter-

arrival time or period iT . The utilisation iU of each task is
given by ii TC / . A task’s worst-case response time iR is
defined as the longest time from the task arriving to it
completing execution.

It is assumed unless otherwise stated that all tasks have
constrained deadlines (ii TD ≤). The tasks are assumed to
be independent and so cannot be blocked from executing by
another task other than due to contention for the processors.

Further, it is assumed that once a task starts to execute it
will not voluntarily suspend itself.

Intra-task parallelism is not permitted; hence, at any
given time, each job may execute on at most one processor.
As a result of pre-emption and subsequent resumption, a job
may migrate from one processor to another. The costs of
pre-emption, migration, and the run-time operation of the
scheduler are assumed to be either negligible, or subsumed
into the worst-case execution time of each task.
2.1. Feasibility, schedulability and optimality

A taskset is referred to as feasible if there exists a
scheduling algorithm that can schedule the taskset without
any deadlines being missed. Further, we refer to a taskset as
being global FP feasible if there exists a priority ordering
under which the taskset is schedulable using global FP
scheduling.

In systems using global FP scheduling, it is useful to
separate the two concepts of priority assignment and
schedulability testing. The priority assignment problem is
one of determining the relative priority ordering of a set of
tasks. Given a taskset with some priority ordering, then the
schedulability testing problem involves determining if the
taskset is schedulable with that priority ordering.

A schedulability test S can be classified as follows. Test
S is said to be sufficient if all of the tasksets / priority
ordering combinations that it deems schedulable are in fact
schedulable. Similarly, test S is said to be necessary if all of
the tasksets / priority ordering combinations that it deems
unschedulable are in fact unschedulable. Finally, test S is
referred to as exact if it is both sufficient and necessary.

The concept of an optimal priority assignment policy
can be defined with respect to a schedulability test S:
Definition 1: Optimal priority assignment policy: A priority
assignment policy P is referred to as optimal with respect to
a schedulability test S and a given task model, if and only if
the following holds: P is optimal if there are no tasksets that
are compliant with the task model that are deemed
schedulable by test S using another priority assignment
policy, that are not also deemed schedulable by test S using
policy P.

We note that the above definition is applicable to both
sufficient schedulability tests and exact schedulability tests.
An optimal priority assignment policy for an exact
schedulability test facilitates classification of all global FP
feasible tasksets compliant with a particular task model.
Using an optimal priority assignment policy for a sufficient
test we cannot classify all global FP feasible tasksets, due to
the sufficiency of the test. However, optimal performance is
still provided with respect to the limitations of the test itself.

3. Response Time Analysis
In this section, we outline the pseudo-polynomial time

sufficient test for global fixed priority scheduling of
sporadic tasksets introduced by Bertogna and Cirinei [12].
This test was subsequently improved by Guan et al. [22],
using ideas from [9] to limit the amount of carry-in
interference.

In [12], Bertogna and Cirinei showed that if task kτ is
schedulable in an interval of length L, then an upper bound
on the interference in that interval due to a higher priority
task iτ with a carry-in job, released prior to the start of the
interval, is given by1:

)1),(min()(+−= k
R

i
R
i CLLWLI (1)

where,)(LW R
i is an upper bound on the workload of task

iτ in an interval of length L:
))(,min()()(i

R
iiiii

R
i

R
i TLNCXLCCLNLW −−++= (2)

and)(LN R
i is given by:

⎥
⎦

⎥
⎢
⎣

⎢ −+
=

i

iiR
i T

CXL
LN)((3)

where iX is the upper bound response time UB
iR of higher

priority task iτ . The response time test of Bertogna and
Cirinei [12] may be expressed as follows:

RTA test for global FP scheduling (Theorem 7 in [12]):
A sporadic taskset is schedulable, if for every task kτ in the
taskset, the upper bound response time UB

kR computed via
the fixed point iteration given in Equation (4) is less than or
equal to the task’s deadline:

⎥
⎥
⎦

⎥

⎢
⎢
⎣

⎢
+← ∑

∈∀)(
)(1

khpi

UB
k

R
ik

UB
k RI

m
CR (4)

where hp(k) is the set of tasks with priorities higher than k.
Iteration starts with k

UB
k CR = , and continues until the

value of UB
kR converges or until k

UB
k DR > , in which case

task kτ is unschedulable. We note that using Equation (4),
task schedulability needs to be determined in priority order,
highest priority first, as upper bounds on the response times
of higher priority tasks are required for computation of the
interference term)(UB

k
R
i RI .

In [22], Guan et al. showed that at most m-1 higher
priority tasks with carry-in jobs may contribute interference
in the worst-case, and used this result to improve the above
test as follows:

Guan et al. [22] showed that if task iτ does not have a
carry-in job, then the interference term is given by:

)1),(min()(+−= k
NC

i
NC
i CLLWLI (5)

where:
))(,min()()(i

NC
iii

NC
i

NC
i TLNLCCLNLW −+= (6)

and
⎣ ⎦i

NC
i TLLN /) (= (7)

The difference between the two interference terms
(Equation (1) and Equation (5)) is then given by:

)()()(LILILI NC
i

R
i

RDIFF
i −=− (8)

RTA-LC test for global FP scheduling (Guan et al. [22]):
A sporadic taskset is schedulable, if for every task kτ in the
taskset, the upper bound response time UB

kR computed via

1 Note we adopt the approach to time representation used in [14]. Time is
represented by non-negative integer values, with each time value t viewed
as representing the whole of the interval [t, t+1). This enables mathematical
induction on clock ticks and avoids confusion with respect to end points of
execution.

the fixed point iteration given in Equation (9) is less than or
equal to the task’s deadline:

⎥
⎥
⎦

⎥

⎢
⎢
⎣

⎢

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
++← ∑∑

−∈

−

∈∀)1,()(
)()(1

mkMRi

UB
k

RDIFF
i

khpi

UB
k

NC
ik

UB
k RIRI

m
CR

 (9)
where MR(k, m-1) is the subset of the min(k, m-1) tasks with
the largest values of)(UB

k
RDIFF

i RI − , given by Equation (8),
from the set of tasks hp(k). Iteration again starts with

k
UB
k CR = , and continues until the value of UB

kR converges
or until k

UB
k DR > , in which case task kτ is unschedulable.

We note that the RTA-LC test reduces to the RTA test if
the)(UB

k
RDIFF

i RI − term is included for all of the higher
priority tasks, rather than just those with the m-1 largest
values. Hence the RTA-LC test dominates the earlier RTA
test. Both RTA and RTA-LC tests dominate the polynomial-
time deadline-based analysis of Bertogna and Cirinei [14].

4. Optimal Priority Assignment
In this section, we outline prior results on optimal

priority assignment for global FP scheduling.
In 2009, Davis and Burns [16] proved that Audsley’s

Optimal Priority Assignment (OPA) algorithm [5], [6] is
applicable to any schedulability test S for global FP
scheduling that complies with the following conditions:
Condition 1: The schedulability of a task kτ may,
according to test S, be dependent on the set of higher
priority tasks, but not on the relative priority ordering of
those tasks.
Condition 2: The schedulability of a task kτ may,
according to test S, be dependent on the set of lower priority
tasks, but not on the relative priority ordering of those tasks.
Condition 3: When the priorities of any two tasks of
adjacent priority are swapped, the task being assigned the
higher priority cannot become unschedulable according to
test S, if it was previously schedulable at the lower priority.
(As a corollary, the task being assigned the lower priority
cannot become schedulable according to test S, if it was
previously unschedulable at the higher priority).

Optimal Priority Assignment Algorithm
for each priority level k, lowest first {
 for each unassigned task τ {
 if(τ is schedulable at priority k according to test S
 with all unassigned tasks assumed to have higher
 priorities){
 assign τ to priority k
 break (continue outer loop)
 }
 }
 return unschedulable
}
return schedulable

Figure 1: OPA algorithm
The pseudo code for Audsley’s OPA algorithm, using

some schedulability test S, is given in Figure 1 above.
For n tasks, the OPA algorithm performs at most

n(n+1)/2 schedulability tests and is guaranteed to find a
priority assignment that is schedulable according to

schedulability test S if one exists. This is a significant
improvement over inspecting all n! possible priority
orderings. (Such an exhaustive search becomes intractable
even for modest values of n. For example, 12! 322≈). Note
that the OPA algorithm does not specify the order in which
tasks should be tried at each priority level.

As the RTA and RTA-LC tests are dependent on the
upper bound response times of higher priority tasks, which
are themselves dependent on the relative priority ordering of
those tasks, these tests do not comply with Condition 1, and
so are not compatible with the OPA algorithm (For a proof
see Theorem 4 of [16]).

5. Upper and Lower Bounds
In this section, we derive a schedulability test (the D-

RTA-LC test) that lower bounds the RTA-LC test given in
Equation (9), and a pseudo-schedulability condition (the C-
RTA condition) that upper bounds the RTA-LC test. We
then prove some theorems about these conditions and the
RTA-LC test. These Theorems are subsequently used in the
construction of the OPA-backtracking algorithm described
in Section 6.

The D-RTA-LC test is formed from Equation (9) by
using the largest possible schedulable value that the
response time upper bound of each higher priority task can
take (i.e., by setting ii DX = instead of UB

iR in Equations
(2) and (3)).

We observe that as Equation (2) is monotonically non-
decreasing in iX , then the RTA-LC test dominates the D-
RTA-LC test. By this we mean that any taskset / priority
ordering combination deemed schedulable by the D-RTA-
LC test will also be deemed schedulable by the RTA-LC
test. Thus the D-RTA-LC test is a lower bound on task
schedulability under the RTA-LC test.

The C-RTA2 condition is formed from Equation (9) by
using the smallest possible value that the response time
upper bound of each higher priority task could take (i.e. by
setting ii CX = instead of UB

iR in Equations (2) and (3)). It
is important to note that the C-RTA condition is not a
schedulability test; it may deem tasksets / priority ordering
combinations schedulable that are unschedulable. It may
also deem tasksets / priority ordering combinations
unschedulable, when in fact they are schedulable.

We observe that as Equation (2) is monotonically non-
decreasing in iX and the minimum possible value for UB

iR
is iC , then the C-RTA condition dominates the RTA-LC
test. By this, we mean that any taskset / priority ordering
combination deemed unschedulable by the C-RTA
condition will necessarily also be deemed unschedulable by
the RTA-LC test. Thus the C-RTA condition forms an upper
bound on task schedulability under the RTA-LC test.
Theorem 1: The D-RTA-LC schedulability test is OPA-
compatible.
Proof: It suffices to show that Conditions 1-3 hold.
 Inspection of Equation (9) and its component equations

2 The C-RTA condition is the same with or without limiting carry-in
interference, hence we drop the “-LC”.

shows that the upper bound response time UB
kR computed

for task kτ depends on the set of higher priority tasks, and
their parameters (iC , iD , iT) but not on their upper bound
response times (as ii DX =) or their relative priority
ordering, hence Condition 1 holds.

Equation (9) has no dependency on the set of tasks with
priorities lower than k, hence Condition 2 holds.

Consider two tasks A and B initially at priorities k and
k+1 respectively. The upper bound response time of task B
cannot increase when it is shifted up one priority level to
priority k, as the only change in the response time
computation (Equation (9)) is the removal of task A from
the set of tasks that have higher priority than task B, hence
Condition 3 holds □
Theorem 2: The C-RTA condition is OPA-compatible.
Proof: Follows exactly the same logic as the proof of
Theorem 1, noting that ii CX = in this case □
Theorem 3: The RTA-LC test, although OPA-incompatible
due to non-compliance with Condition 1 [16], is compliant
with Condition 3.
Proof: Follows exactly the same logic as the proof of
compliance with Condition 3, given in Theorem 1 above □

In attempting to find a priority ordering that is
schedulable according to the RTA-LC test, we would like to
use the greedy assignment method of the OPA algorithm for
as many of the lower priority levels as possible, without
needing to backtrack and revise these priority assignments.
The following theorem proves that we can do this, so long
as the D-RTA-LC test continues to find a schedulable task
at each priority level examined.
Theorem 4: For any sporadic taskset, where there exists a
priority ordering Q that is schedulable according to the
RTA-LC test, then assuming that the D-RTA-LC test is used
in conjunction with the OPA algorithm to successfully
assign schedulable tasks to priority levels from n to k
generating a partial priority ordering P, then there also
exists a complete priority ordering that is schedulable
according to the RTA-LC test that also has the tasks at
priority levels n to k in partial priority order P.
Proof: Let)(jQ identify the task at priority j in priority
order Q. Similarly, let)(iP identify the task at priority i in
priority order P.

We prove the theorem by iterating over increasing
priority levels (values of i) from n to k. On each iteration,
we transform priority ordering nQQ = into knn QQ −− ...1 .
After each iteration, the new priority ordering remains
schedulable according to the RTA-LC test, and once all of
the iterations have been completed, then the tasks assigned
to priority levels n to k are the same as those in partial
priority order P.

Each iteration / transformation of the priority order iQ ,
over values of i from n to k, works as follows: As the RTA-
LC test is compliant with Condition 3 (Theorem 2), we
repeatedly swap the priority of task)(iP in priority order

iQ with the next lowest priority task until it reaches priority
i (see Figure 2). This cannot cause any of the tasks of
priority higher than i to become unschedulable according to

the RTA-LC test (Theorem 3). Further, as task)(iP is
deemed schedulable at priority i by the D-RTA-LC test,
then it follows that it is also guaranteed to be schedulable at
that priority according to the RTA-LC test, independent of
the priority ordering of those tasks with higher priorities,
assuming only that they remain schedulable according to the
RTA-LC test, which they do. Further, as the tasks of lower
priority than i are schedulable according to the D-RTA-LC
test, they are guaranteed to remain schedulable according to
the RTA-LC test independent of any changes in the relative
priority ordering of higher priority tasks.

After n-k+1 iterations, we have a priority ordering
knQ − that is schedulable according to the RTA-LC test and

has the tasks at priority levels n to k assigned according to
the partial priority order P □

Figure 2: Priority re-ordering

Theorem 5: The m highest priority tasks are schedulable
according to the RTA-LC test, with upper bound response
times equal to their execution times, i.e. k

UB
k CR = .

Proof: With the RTA-LC test, Equation (9) is used to
compute UB

kR for each task kτ in priority order, highest
priority first. The proof is by induction:

Consider the highest priority task k=1, it is subject to no
interference and hence Equation (9) trivially converges on
the initial value kC .

Inductive step: Now consider each task in priority order
from k = 2 to m. Every task iτ with a higher priority than k,
has i

UB
i CR = , hence Equations (1) and (5) are equivalent,

and so the RDIFF
iI − term defined by Equation (8) is zero.

Using Equation (9) to calculate UB
kR , starting with kC as an

initial value therefore results in a value of k-1 for the first
summation term and zero for the second. As m > k-1, the
floor function evaluates to zero, and Equation (9)
immediately converges on the initial value of kC □
Theorem 6: The schedulability of any task kτ (mk ≥) is,
according to the RTA-LC test, independent of the relative
priority ordering of the m highest priority tasks.
Proof: Follows from the fact that the m highest priority
tasks have i

UB
i CR = (Theorem 5), independent of their

relative priority order. Hence their interference on any lower
priority task kτ , given by Equations (8), (5) and (1), is
independent of their relative priority order. (In fact
Equations (1) and (5) are equivalent in this case, and so the

)(UB
k

RDIFF
i RI − term is zero for these tasks) □

Theorem 7: The D-RTA-LC test dominates the polynomial-

time schedulability test of Bertogna and Cirinei [14],
referred to in [16] as the DA test.
Proof: We observe that the D-RTA-LC test effectively
reduces to the DA test if we include all of the

)(UB
k

RDIFF
i RI − terms, and use an initial value of kD .

Hence, if task kτ is schedulable according to the DA test,
then the D-RTA-LC test is guaranteed to converge to a
value of k

UB
k DR ≤ □

Theorem 8: The RTA-LC test and the C-RTA condition are
equivalent for the m+1 highest priority tasks.
Proof: Using the RTA-LC test, the m highest priority tasks
have i

UB
i CR = (Theorem 5), hence for any task kτ among

the m+1 highest priority tasks, the interference term (floor
function in Equation (9)) due to higher priority tasks is the
same for both the RTA-LC test and the C-RTA condition.
Thus the computed upper bound response time for task kτ
is the same in each case □

6. OPA-Backtracking Algorithm
In this section, we derive an optimal priority assignment

algorithm that is compatible with the RTA-LC test. We refer
to this algorithm as the OPA-Backtracking algorithm.

The basic intuition behind the OPA-Backtracking
algorithm is to start at the lowest priority level, and use the
D-RTA-LC test to assign tasks to each priority level, until a
priority level k is reached where no tasks are schedulable
according to that test. Assignment of tasks to priority levels
n to k+1 is effectively permanent, since no backtracking is
needed at these priority levels (Theorem 4). At all
subsequent priority levels (k to 1), the algorithm uses the C-
RTA condition to assign a potentially schedulable task to
each priority level. The complete priority ordering is then
checked using the RTA-LC test. If it is not schedulable, then
the algorithm backtracks. It revisits the priority levels where
the C-RTA condition was used, and assigns a different task
that is also potentially schedulable at that priority level
according to the C-RTA condition. Note that backtracking
skips over priority levels 1 to m as these priorities are
equivalent in terms of schedulability.

The detailed operation of the OPA-Backtracking
algorithm is as follows, the line numbers refer to the
pseudo-code3 shown in Figure 3:
(1) It is assumed that the tasks are initially ordered

according to some heuristic, for example DkC [16].
This determines the order in which unassigned tasks
will be examined at each priority level. Each task is
identified by an index value from 1 to n, corresponding
to the initial heuristic priority ordering.

(2) The outer ‘while’ loop (lines 8-79) examines different
priority orderings. Once a priority ordering is found that
is schedulable according to the RTA-LC test (line 63),
then the algorithm exits declaring the taskset
schedulable, otherwise it continues to examine
alternative priority orderings that could potentially be
schedulable, only exiting and declaring the taskset

3 Detailed pseudo-code is provided to ensure that the algorithm and
experiments can be replicated by other researchers.

unschedulable when all viable options have been
exhausted, or some pragmatic limit on the maximum
number of iterations has been reached (line 8).

(3) Within the outer ‘while’ loop, is a ‘for’ loop which
attempts to construct a new priority ordering (lines 10-
38). This loop begins by mimicking the operation of the
OPA algorithm combined with the D-RTA-LC test
(lines 12-21). Thus, starting at the lowest priority level,
it assigns tasks that are schedulable according to the D-
RTA-LC test, until a priority level is reached at which
no unassigned tasks are found that are schedulable
according to that test. Due to Theorem 4, the algorithm
never needs to backtrack on these priority assignments.
Alternatively, the D-RTA-LC condition may be
successful in assigning a task to every priority level, in
which case a schedulable priority ordering has been
found and the algorithm exits (lines 60-61).

OPA-Backtracking Algorithm
0 numTries = 0;
1 Pass2: // label
2 startPri = n;
3 bCRTAUsed = false;
4 for(each priority i) {
5 CRTAIndx[i] = n;
6 CRTALevel[i] = false;
7 }
8 while(numTries < MAX_ITERATIONS) {
9 numTries++;
10 for(each priority i from startPri to 1) {
11 bSchedulable = false
12 if(!bCRTAUsed // Use D-RTA
 || (bHeuristic && !CRTALevel[i])) {
13 for(each task t) {
14 if(assigned t) continue
15 bSchedulable = DRTATest(t, i);
16 if(bSchedulable) {
17 AssignTask(t,i)
18 break
19 }
20 }
21 }
22 if(!bSchedulable) { // Use C-RTA
23 bCRTAUsed = true
24 CRTALevel[i] = true
25 for(each task t from CRTAIndx[i] to 1) {
26 if(assigned t) continue
27 bSchedulable = CRTATest(t,i)
28 if(bSchedulable) {
29 AssignTask(t,i)
30 CRTAIndx[i] = t-1
31 break;
32 }
33 }
34 }
35 if(!bSchedulable) {
36 break
37 }
38 }
39 if(!bSchedulable) { //Incomplete priority assignment
40 if(CRTAIndx[i] == n) {
41 return unschedulable
42 }
43 else { // Backtrack if possible
44 CRTAIndx[i] = n
 CRTALevel[i] = false
45 i++
46 while((i <= n) && !CRTALevel[i]) {

47 UnassignTask at priority i
48 i++
49 }
50 if((i <= n) && CRTALevel[i]) {
51 UnassignTask at priority i
52 startPri = i
53 }
54 else {
55 return unschedulable
56 }
57 }
58 }
59 else { //Complete priority assignment
60 if(!bCRTAUsed) {
61 return schedulable
62 }
63 else if(RTA-LCTest()) {
64 return schedulable
65 }
66 else { //Backtrack to priority m+1
67 for(priority i = 1 to m) {
68 UnassignTask at priority i
69 CRTAIndices[i] = n
 CRTALevel[i] = false
70 }
71 while((i<=n) && !CRTALevel[i]) {
72 UnassignTask at priority i
73 i++
74 }
75 UnassignTask at priority i
76 startPri = i;
77 }
78 }
79 }
80 return unschedulable

Figure 3: OPA-Backtracking algorithm
(4) Assuming that a priority level is reached where no

unassigned tasks are schedulable according to the D-
RTA-LC test, then the ‘for’ loop switches to using the
C-RTA condition and again examines the suitability of
unassigned tasks for assignment to the current priority
level (lines 22-34).

(5) The C-RTA condition is used to identify the first
unassigned task that is potentially schedulable at the
current priority level. Note that checking begins at the
highest task index value not yet tried at this priority
level (line 25)). If a potentially schedulable task is
found, then it is assigned to the current priority level,
and the task’s index – 1 recorded, to avoid repeating
this priority ordering later (line 30). The algorithm then
continues to the next higher priority level and so on,
now using only the C-RTA condition (lines 23 and 12).
Note for now we assume that the value of the Boolean
variable ‘bHeuristic’ (line 12) is false.

(6) If a priority level is reached where the C-RTA
condition is unable to identify a potentially schedulable
unassigned task (that has not been examined before in
combination with the current assignment of tasks to
lower priority levels), then priority assignment cannot
continue and so control breaks out of the ‘for’ loop
(lines 35-37).

(7) On exit from the ‘for’ loop, there is either a complete
and potentially schedulable priority ordering, or step (6)
applied and the priority assignment is incomplete.

(8) If the priority assignment is incomplete (lines 39-58),
then the algorithm first checks if there were any
potentially schedulable tasks (at all) at the current
priority level. If not, then no schedulable priority
ordering exists according to the C-RTA condition and
the algorithm exits declaring the taskset unschedulable
(line 40). If there were some potentially schedulable
tasks at the current priority level, then these have all
been examined and so the algorithm attempts to
backtrack (lines 43-57). The algorithm backtracks to the
next lower priority level, if any, at which the C-RTA
condition was used. All priority assignments down to
and including that priority level are revoked, and the
algorithm continues from there (lines 44-52, back to
line 10), building up a new priority assignment. If no
lower priority level is found at which the C-RTA
condition was used, then no further backtracking is
possible, as all viable alternatives have been tried, and
the algorithm therefore exits, declaring the taskset
unschedulable (line 55).

(9) If the priority assignment is complete (lines 59-78) then
an immediate exit is possible if the D-RTA-LC test
alone was sufficient to allocate all tasks to priority
levels (line 61). Alternatively, the RTA-LC test is used
to determine if the current priority ordering is in fact
schedulable (line 63). If so, then the algorithm exits
(line 64), if not then it backtracks (lines 66-77).

(10) Once a priority ordering has been examined using the
RTA-LC test and found unschedulable, then Theorem 6
shows that all other priority orderings where only the
relative priority ordering of the m highest priority tasks
is changed are also unschedulable. The algorithm
therefore skips all of these priority combinations by
backtracking to priority level m+1 (lines 67-70). It then
continues to backtrack to lower priority levels until a
priority level is found where the C-RTA condition was
used. Note that this must be the case, as the alternative
is that the D-RTA-LC test succeeded in placing tasks at
priorities n to m+1, in which case, the RTA-LC test is
guaranteed to find the priority ordering schedulable.
Note, the RTA-LC test is also guaranteed to find the
taskset schedulable if there are m or fewer tasks.

6.1. Example of OPA-Backtracking operation
We now illustrate the operation of the OPA-

Backtracking algorithm via a simple example. In the
following discussion, ‘step (x)’ refers to steps (1) to (10) in
the above description of the algorithm.

The example comprises a two processor system, with
five tasks identified by indices 1-5, and five priority levels
1-5. Figure 4 (a) illustrates the first iteration of the OPA-
backtracking algorithm. The cells highlighted in grey
represent the first complete priority assignment examined.
Note that ‘ ’ indicates schedulability according to the D-
RTA-LC test, while ‘?’ and ‘ ’ indicate potentially
schedulable and unschedulable respectively, according to
the C-RTA condition.

The OPA-Backtracking algorithm operates as follows:
First the D-RTA-LC test identifies that task 5 is schedulable

at priority level 5. This assignment is permanent (see step
(3)). However, at priority level 4, the D-RTA-LC test finds
that no unassigned tasks are schedulable. Hence the
algorithm switches to using the C-RTA condition (step (4)).
The C-RTA condition finds that task 4 is potentially
schedulable at priority level 4 and assigns it, setting the
index for priority level 4 to 3, so that this assignment will
not be revisited (step (5)). Priority level 3 is then examined,
task 3 assigned priority 3, and the index for priority level 3
set to 2, and so on for priority levels 2 and 1. At this point, a
complete priority assignment has been made (Figure 4 (a)),
and the RTA-LC test is therefore used to determine if the
assignment is schedulable (step (9)). We will assume that it
is not.

The algorithm then backtracks to priority level m+1 = 3
(step (10)) and continues its next iteration from that priority
level. At priority level 3, there are no potentially
schedulable tasks identified by the C-RTA condition that
have not already been tried (only tasks 2 and 1 are checked
as the index for priority level 3 is 2). The algorithm
therefore backtracks further to priority level 4 (via steps (6)
and (8)), in the process resetting the index for priority level
3 to the value 5. At priority level 4, task 3 is now examined
and found to be potentially schedulable according to the C-
RTA condition. Task 3 is therefore assigned priority 4 and
the index for priority level 4 is set to 2, so that this
assignment will not be revisited (step (5)). The algorithm
then proceeds by assigning tasks 4, 2, and 1 to priority
levels 3, 2, and 1 respectively (See Figure 4 (b)). At this
point, a complete priority assignment has again been made,
so the RTA-LC test is used to determine if it is schedulable
(step (6)). Again we will assume that it is not.

5
4
3
2
1

54321

-??
--?
---?
----?

5
4
3
2
1

54321

-??
--?
---?
----?

Priority
Level

Task Index

 5
4
3
2
1

54321

-??
-?-?
---?
----?

5
4
3
2
1

54321

-??
-?-?
---?
----?

Priority
Level

Task Index

(a) (b)

5
4
3
2
1

54321

-??
-?-?
-?--
----?

5
4
3
2
1

54321

-??
-?-?
-?--
----?

Priority
Level

Task Index

 (c)

Figure 4: Priority assignments
The algorithm again backtracks to priority level 3 (step

(10)); however, this time task 2 is potentially schedulable
according to the C-RTA condition, so it is assigned priority
3, with tasks 4, and 1 subsequently assigned priorities 2, and
1 respectively (See Figure 4 (c)). This is the final complete
priority assignment that the algorithm will examine. We will
assume that this priority ordering is schedulable according
to the RTA-LC test and so the algorithm is successful.

If the priority ordering shown in Figure 4 (c) was not
schedulable, then the algorithm would backtrack again
looking for a priority level at which there were remaining
tasks, with indices less than or equal to those currently set
for the priority level, that are schedulable according to the
C-RTA condition. As there are now none at priority level 3,
and none at priority level 4, the algorithm would exit
declaring the taskset unschedulable (step (8)).

Note in this example, there were n! = 120 possible
priority orderings; however, the OPA-Backtracking
algorithm only had to examine three complete priority
orderings to find a schedulable ordering. The algorithm used
three techniques to prune away unschedulable priority
orderings without checking them:
1. Theorem 6 shows that the relative priority ordering of

the highest m priority tasks is unimportant This rule
reduces the number of distinct priority orderings that
need to be examined to n!/m! = 60, eliminating 60
alternative priority orderings.

2. The D-RTA-LC test enabled task 5 to be assigned
priority 5. Theorem 4 shows that if any schedulable
ordering exists according to the RTA-LC test, then a
schedulable ordering will exist with this priority
assignment. Discounting other tasks from consideration
at priority level 5 eliminated a further 48 alternatives.

3. Finally, the C-RTA condition removed two possibilities
(tasks 1 and 2) from consideration at priority level 4,
eliminating 6 alternative priority orderings. Then, with
task 4 at priority 4, it also removed tasks 1 and 2 from
consideration at priority level 3, whereas, with task 3 at
priority 4, it removed task 1 from consideration at
priority level 3. In total, the C-RTA condition removed
a further 9 alternative priority orderings, leaving just 3
which were examined using the RTA-LC test.

6.2. Heuristic OPA-Backtracking
The D-RTA-LC test and the C-RTA condition typically

result in significant pruning of the number of priority
ordering combinations examined by the OPA-Backtracking
algorithm. Nevertheless, the number of priority orderings
that remain to be explored can be excessive. The main
reason for this is that once a priority level k is reached at
which there is no schedulable task according to the D-RTA-
LC test, then in order to ensure optimality, all combinations
of assignments of the remaining tasks to priority levels k to
1, that are potentially schedulable according to the C-RTA
condition, need to be explored. (With the exception of those
varying only in the relative priority ordering of the highest
m priority tasks). The reason that all these possibilities need
to be explored to ensure optimality is that once a task is
placed according to the C-RTA condition, its schedulability
according to the RTA-LC test is dependent on the relative
priority ordering of higher priority tasks, and so these
relative priority orderings must be explored.

In pathological cases, the D-RTA-LC test may fail to
find a schedulable task at priority n, and yet all of the tasks
may be potentially schedulable at all priority levels
according to the C-RTA condition. In this case, the OPA-
Backtracking algorithm can attempt to explore n!/m! priority

orderings. With 8 processors and 40 tasks, this equates to
> 4310 priority ordering combinations. It is therefore
essential to set a pragmatic limit on the number of iterations
of the algorithm. Given a finite iteration limit (<< n!/m!),
the OPA-Backtracking algorithm is no longer guaranteed to
find a schedulable priority ordering if one exists according
to the RTA-LC test. In this case, the order in which
candidate priority orderings are examined has an influence
on the overall effectiveness of the algorithm.

With the aim of finding schedulable priority orderings
quickly, we can form a heuristic version of the OPA-
Backtracking algorithm by setting the value of the Boolean
variable ‘bHeuristic’, tested on line 12 of Figure 3, to true.
The effect of this is to first employ the D-RTA-LC test at
each priority level, even if the C-RTA condition has been
used to assign a potentially schedulable task to a lower
priority level. Further, if a task is found to be schedulable
according to the D-RTA-LC test, then it is the only task
tried at that priority level in conjunction with the current
assignment of tasks to lower priority levels. Hence
backtracking effectively only takes place over priority levels
where the C-RTA condition has been employed.

This approach is not optimal as it does not necessarily
consider all viable priority orderings above the priority level
k at which the C-RTA condition is first employed. Thus the
heuristic algorithm may fail to examine the particular
relative priority ordering of tasks at priorities k+1 to 1
needed to make the task assigned to priority k schedulable.

The heuristic version of the OPA-Backtracking
algorithm uses the D-RTA-LC test to greedily assign tasks
that are themselves guaranteed to be schedulable at a given
priority level. Thus, it tends to build up priority orderings
where most of the tasks are known to be schedulable,
assigned by the D-RTA-LC test, and only a few are
potentially schedulable, assigned by the C-RTA condition.
Further, once a particular priority ordering is found to be
unschedulable, the heuristic algorithm varies its choice of
potentially schedulable tasks, rather than varying the
priority order of tasks at higher priorities to try and make a
potentially schedulable task schedulable. Intuitively, this
would seem to be a more effective way of finding
schedulable priority orderings quickly.

The heuristic OPA-Backtracking algorithm is similar in
its approach to the priority ordering algorithm for real-time
wormhole communication given by Zheng and Burns in
[26]. We note that for the same basic reasons, the algorithm
given in [26] is also heuristic rather than optimal.

7. Empirical investigation
In this section, we present the results of an empirical

investigation, examining the effectiveness of the RTA-LC
test for global FP scheduling when combined with the OPA-
Backtracking algorithm. We examined the performance of
three variants of the algorithm, (i) the standard OPA-
Backtracking approach, (labelled OPA-Bk), (ii) the heuristic
approach (labelled OPA-heuristic), and (iii) a two pass
approach (labelled OPA-2Pass), which first uses the
heuristic algorithm (bHeuristic = true), and then if that fails

to find a schedulable priority ordering, makes a second pass
using the standard OPA-Backtracking approach (bHeuristic
= false). In each case, the total number of iterations per
taskset was limited to 1000. This relatively low limit was
used as our experiments needed to explore 1000’s of
tasksets. In examining the schedulability of a single taskset,
a much higher limit could be used. The order of task indices
was set according to the DkC heuristic [16].

For comparison purposes, we also provide results for:
the DA-LC and D-RTA-LC tests with optimal priority
assignment, labelled DA-LC(OPA) and D-RTA-LC(OPA)
respectively; and the C-RTA condition with optimal priority
assignment, labelled C-RTA(OPA). The results for the DA-
LC and D-RTA-LC tests were almost identical, with the D-
RTA-LC test able to schedule only a few additional tasksets
at each utilisation level.

We note that D-RTA-LC(OPA) lower bounds the
performance of RTA-LC (OPA-Bk), while C-RTA(OPA)
upper bounds it. Recall that the C-RTA condition is not a
schedulability test. Instead, it is a necessary condition for
task schedulability under the RTA-LC test. Hence in the
graphs below, the line for the C-RTA condition indicates
only potentially schedulable tasksets.

The task parameters used in our experiments were
randomly generated as follows:
o Task utilisations were generated using the UUnifast-

Discard algorithm [16], using a discard limit of 1000.
o Task periods were generated according to a log-uniform

distribution with a factor of 1000 difference between
the minimum and maximum possible task period. This
represents a spread of task periods from 1ms to 1
second, as found in most hard real-time applications.

o Task execution times were set based on the utilisation
and period selected: iii TUC = .

o Task deadlines were assigned according to a uniform
random distribution, in the range],[ii TC .

7.1. Experimental results
In each experiment, the taskset utilisation (x-axis value)

was varied from 0.025 to 0.975 times the number of
processors in steps of 0.025. For each utilisation value, 1000
valid tasksets were generated and the schedulability of those
tasksets determined using each combination of priority
assignment policy and schedulability test / condition.

The graphs plot the percentage of tasksets generated that
were deemed schedulable in each case. Figures 5 to 8 show
this data for 2, 4, 8, and 16 processors. In each case, the
number of tasks was set to 5 times the number of
processors. Note the differing x-axis scale on the graphs.

From the graphs, we can see that the D-RTA-LC (OPA)
lower bound and the C-RTA (OPA) upper bound tightly
envelop the performance of RTA-LC test with optimal
priority assignment. We observe that the results for the three
variants of the backtracking algorithm were very similar for
small numbers of processors / tasks; with differences
becoming apparent as the number of processors / tasks
increased. As the number of processors / tasks was
increased, the OPA-heuristic and OPA-2Pass approaches
become more effective than the OPA-Bk approach at

identifying schedulable priority orderings.

0%

20%

40%

60%

80%

100%

120%

0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8
Utilisation

Pe
rc

en
ta

ge
 o

f t
as

ks
et

s
sc

he
du

la
bl

e

C-RTA (OPA)
RTA(OPA-2Pass)
RTA-LC (OPA-Bk)
RTA(OPA-Heuristic)
D-RTA-LC (OPA)
DA-LC (OPA)

Figure 5: (2 processors, 10 tasks, D≤T)

0%

20%

40%

60%

80%

100%

120%

1.3 1.5 1.7 1.9 2.1 2.3 2.5 2.7 2.9 3.1
Utilisation

Pe
rc

en
ta

ge
 o

f t
as

ks
et

s
sc

he
du

la
bl

e

C-RTA (OPA)
RTA(OPA-2Pass)
RTA(OPA-Heuristic)
RTA-LC (OPA-Bk)
D-RTA-LC (OPA)
DA-LC (OPA)

Figure 6: (4 processors, 20 tasks, D≤T)

0%

20%

40%

60%

80%

100%

120%

3.2 3.6 4.0 4.4 4.8 5.2 5.6 6.0
Utilisation

Pe
rc

en
ta

ge
 o

f t
as

ks
et

s
sc

he
du

la
bl

e

C-RTA (OPA)
RTA(OPA-2Pass)
RTA(OPA-Heuristic)
RTA-LC (OPA-Bk)
D-RTA-LC (OPA)
DA-LC (OPA)

Figure 7: (8 processors, 40 tasks, D≤T)

0%

20%

40%

60%

80%

100%

120%

7.2 8.0 8.8 9.6 10.4 11.2 12.0
Utilisation

Pe
rc

en
ta

ge
 o

f t
as

ks
et

s
sc

he
du

la
bl

e

C-RTA (OPA)
RTA(OPA-2Pass)
RTA(OPA-Heuristic)
RTA-LC (OPA-Bk)
D-RTA-LC (OPA)
DA-LC (OPA)

Figure 8: (16 processors, 80 tasks, D≤T)

Table 1 below shows the total number of tasksets found
to be schedulable by each of the algorithms studied for 2, 4,
8, and 16 processors. The first row of data, marked OPA
(DA-LC), summarises the results for the polynomial-time
schedulability test, DA-LC, combined with Audsley’s OPA
algorithm. The second, third, and fourth rows of data give
the results for the three variants of the OPA-Backtracking
approach.

Table 1: Number of tasksets found to be
schedulable

 #Processors
Algorithm 2 4 8 16

DA-LC (OPA) 24,278 23,085 22,989 23,270
RTA-LC(OPA-Bk) 25,096 23,748 23,393 23,444

RTA-LC(OPA-
heuristic)

24,925 23,768 23,593 23,747

RTA-LC(OPA-2Pass) 25,099 23,846 23,615 23,795
We conclude that for larger numbers of processors /

tasks, the OPA-2Pass approach (using the heuristic
algorithm first) is more effective than using either the
standard backtracking algorithm or the heuristic algorithm
alone. In each case, the OPA-2Pass approach found
approximately 3% more schedulable tasksets than the
polynomial-time DA-LC test combined with Optimal
Priority Assignment.

8. Summary and conclusions
The motivation for this research comes from the fact that

priority assignment is of fundamental importance to the
effectiveness of global FP scheduling [16], and yet prior to
this work, arguably the most effective schedulability test for
global FP scheduling, the response time analysis of
Bertogna and Cirinei [12], improved by Guan et al. [22]
(RTA-LC test), could only be used with heuristic priority
assignment policies. This was due to its incompatibility with
Audsley’s Optimal Priority Assignment algorithm [16].

The key contribution of this paper is in providing an
optimal priority assignment algorithm (OPA-Backtracking)
that is compatible with the RTA-LC test. This algorithm
eliminates large numbers of priority ordering combinations

from consideration via utilising: (i) The D-RTA-LC test
which lower bounds the RTA-LC test; (ii) the C-RTA
condition which upper bounds the RTA-LC test; (iii) the
fact that the relative priority ordering of the m highest
priority tasks is unimportant.

The RTA-LC test combined with OPA-Backtracking
dominates the D-RTA-LC test combined with OPA. It also
dominates the DA test (Deadline Analysis test of Bertogna
and Cirinei [14]) combined with OPA, which was
previously shown to be the best performing approach in
[16]. Further, these dominance results hold even if the OPA-
Backtracking algorithm is only permitted a single iteration
(i.e. no backtracking). This is because if a taskset is
schedulable according to the D-RTA-LC test combined with
OPA, then it will be found schedulable on the first iteration
of the OPA-Backtracking algorithm. As the D-RTA-LC test
dominates the DA test, then the same applies to any taskset
that is schedulable according to the DA test with OPA.

Given an unlimited number of iterations, the OPA-
Backtracking algorithm is guaranteed to find a priority
ordering that is schedulable according to the RTA-LC test if
one exists. However, in pathological cases it may need to
explore up to n!/m! priority orderings, hence in practice a
limit needs to be set, either in terms of the number of
iterations, or the execution time of the algorithm, once this
limit is reached, then the taskset is declared unschedulable.

Given that a pragmatic limit is placed on the number of
iterations, then the order in which priority orderings are
examined has an influence on the effectiveness of the
algorithm. In this respect, we found that first using a
heuristic version of the backtracking algorithm that greedily
employs the D-RTA-LC test, and then switching to the
standard approach, improved performance particularly in
cases with a larger number of processors and tasks.

We note that the backtracking algorithms described in
this paper typically require a large number of iterations of
the RTA-LC schedulability test, which itself is a pseudo-
polynomial time algorithm. Hence the backtracking
approach to priority assignment is only appropriate for use
in an off-line, as opposed to an on-line, context.

The main result of this paper is to provide an indication
of the maximum possible performance that can be obtained
from the state-of-the-art RTA-LC schedulability test via
appropriate priority assignment. The paper achieves this in
two ways. Firstly, it derives the OPA-Backtracking
algorithm that can be used to search for a schedulable
priority assignment in a way that is more effective than
exhaustive search. Secondly it provides an upper bound on
the maximum possible performance that could ever be
obtained from the RTA-LC test. That bound is given by
combining the C-RTA condition with Audsley’s OPA
algorithm.
8.1. Acknowledgements

This work was funded in part by the EPSRC Tempo
project (EP/G055548/1) and the Artist Design Network of
Excellence.

References
[1] B. Andersson, J. Jonsson, “Some insights on fixed-priority pre-
emptive non-partitioned multiprocessor scheduling”. In Proc. RTSS –
Work-in-Progress Session, Nov. 2000.
[2] B. Andersson, S. Baruah, J. Jonsson, “Static-priority scheduling on
multiprocessors”. In Proc. RTSS, pp. 193–202, 2001.
[3] B. Andersson, J. Jonsson, "The Utilization Bounds of Partitioned and
Pfair Static-Priority Scheduling on Multiprocessors are 50%," In Proc.
ECRTS, pp. 33-40, 2003.
[4] B. Andersson, “Global static-priority preemptive multiprocessor
scheduling with utilization bound 38%.” In Proc. International Conference
on Principles of Distributed Systems, pp. 73-88, 2008.
[5] N.C. Audsley, "Optimal priority assignment and feasibility of static
priority tasks with arbitrary start times", Technical Report YCS 164, Dept.
Computer Science, University of York, UK, Dec. 1991.
[6] N.C. Audsley, “On priority assignment in fixed priority scheduling”,
Information Processing Letters, 79(1): 39-44, May 2001.
[7] T.P. Baker. “Multiprocessor EDF and deadline monotonic
schedulability analysis”. In Proc. RTSS, pp. 120–129, 2003.
[8] T.P. Baker. “An analysis of fixed-priority scheduling on a
multiprocessor”. Real Time Systems, 32(1-2), 49-71, 2006.
[9] S.K. Baruah, “Techniques for Multiprocessor Global Schedulability
Analysis”. In proc. RTSS, pp. 119-128, 2007.
[10] S.K. Baruah, N. Fisher. “Global Fixed-Priority Scheduling of
Arbitrary-Deadline Sporadic Task Systems” In Proc. International
Conference on Distributed Computing and Networking, pp. 215-226, Jan
2008.
[11] M. Bertogna, M. Cirinei, G. Lipari, “New schedulability tests for real-
time task sets scheduled by deadline monotonic on multiprocessors”. In
Proc. International Conference on Principles of Distributed Systems, pp.
306-321, Dec. 2005.
[12] M. Bertogna, M. Cirinei, “Response Time Analysis for global
scheduled symmetric multiprocessor platforms”. In Proc. RTSS, pp. 149-
158, 2007.
[13] M. Bertogna, “Real-Time Scheduling for Multiprocessor Platforms”.
PhD Thesis, Scuola Superiore Sant’Anna, Pisa, 2007.
[14] M. Bertogna, M. Cirinei, G. Lipari. “Schedulability analysis of global
scheduling algorithms on multiprocessor platforms”. IEEE Transactions on
parallel and distributed systems, 20(4): 553-566. April 2009.
[15] H. Cho, B. Ravindran, E.D. Jensen, “An Optimal Real-Time
Scheduling Algorithm for Multiprocessors”. In Proc. RTSS pp. 1001-110,
2006.
[16] R.I. Davis, A. Burns. “Priority Assignment for Global Fixed Priority
Pre-emptive Scheduling in Multiprocessor Real-Time Systems”. In Proc.
RTSS, pp. 398-409, Dec. 2009.
[17] R.I. Davis, A. Burns. “Priority Assignment for Global Fixed Priority
Pre-emptive Scheduling in Multiprocessor Real-Time Systems”. University
of York, Dept. of Computer Science Technical Report YCS-440-2009,
May 2009.
[18] S.K. Dhall, C.L. Liu, “On a Real-Time Scheduling Problem”,
Operations Research, vol. 26, No. 1, pp. 127-140, 1978.
[19] N. Fisher, S.K. Baruah. “Global Static-Priority Scheduling of
Sporadic Task Systems on Multiprocessor Platforms.” In Proc.
International Conference on Parallel and Distributed Computing and
Systems. Nov. 2006.
[20] S. Funk, V. Nadadur, “LRE-TL: An Optimal Multiprocessor
Algorithm for Sporadic Task Sets”. In Proc. RTNS, pp. 159-168, 2009.
[21] George, L., Rivierre, N., Spuri, M., “Preemptive and Non-Preemptive
Real-Time UniProcessor Scheduling”, INRIA Research Report, No. 2966,
September 1996.
[22] N. Guan, M. Stigge, W.Yi, G. Yu, “New Response Time Bounds for
Fixed Priority Multiprocessor Scheduling”. In Proc. RTSS, pp. 388-397
2009.
[23] C.L. Liu, J.W. Layland, "Scheduling algorithms for
multiprogramming in a hard-real-time environment”, Journal of the
ACM, 20(1): 46-61, Jan. 1973.

[24] J. Y.-T. Leung and J. Whitehead, "On the complexity of fixed-
priority scheduling of periodic real-time tasks," Performance
Evaluation, 2(4): 237-250, Dec. 1982.
[25] O. Serlin, “Scheduling of time critical processes”. In proceedings
AFIPS Spring Computing Conference, pp 925-932, 1972.
[26] S. Zheng, A. Burns, “Priority Assignment for Real-Time Wormhole
Communication in On-Chip Networks”. In Proc. RTSS, pp. 421-430, 2008.

