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Abstract 
This paper investigates the problem of optimal priority 

assignment in multiprocessor real-time systems using global 
fixed task-priority pre-emptive scheduling. 

Previous work in this area showed that arguably the 
most effective pseudo-polynomial schedulability tests for 
global fixed priority pre-emptive scheduling, based on 
response time analysis, are not compatible with Audsley’s 
Optimal Priority Assignment (OPA) algorithm. 

In this paper, we derive upper and lower bounds on 
these response time tests that are compatible with the OPA 
algorithm. We show how these bounds can be used to limit 
the number of priority ordering combinations that need to 
be examined, and thus derive an optimal priority 
assignment algorithm with backtracking that is compatible 
with response time analysis. We show that response time 
analysis combined with the OPA-backtracking algorithm 
dominates previous approaches using OPA-compatible 
polynomial-time schedulability tests. 

1. Introduction 
Approaches to multiprocessor real-time scheduling, can 

be categorised into two broad classes: partitioned and 
global. Partitioned approaches allocate each task to a single 
processor, dividing the multiprocessor scheduling problem 
into one of task allocation followed by uniprocessor 
scheduling. In contrast, global approaches allow tasks to 
migrate from one processor to another at run-time. Real-
time scheduling algorithms can be categorised into three 
classes based on when priorities can change: fixed task-
priority (all invocations, or jobs, of a task have the same 
priority), fixed-job priority and dynamic-priority. In this 
paper, we focus on priority assignment policies for global 
fixed task-priority pre-emptive scheduling, which for 
brevity we refer to as global FP scheduling. 
1.1. Related work 

In the context of uniprocessor fixed priority scheduling, 
there are three fundamental results regarding priority 
assignment. In 1972, Serlin [25] and Liu and Layland [23] 
showed that Rate Monotonic priority ordering (RMPO) is 
optimal for independent synchronous periodic tasks (that 
share a common release time) that have implicit deadlines 
(equal to their periods). In 1982, Leung and Whitehead [24] 
showed that Deadline Monotonic priority ordering (DMPO) 
is optimal for independent synchronous tasks with 
constrained deadlines (less than or equal to their periods). 
In 1991, Audsley [5], [6] devised an optimal priority 

assignment (OPA) algorithm that solved the problem of 
priority assignment for asynchronous tasksets, and for tasks 
with arbitrary deadlines (which may be greater than their 
periods). Subsequently, George et al. [21] showed that 
Audsley’s OPA algorithm also solves the problem of 
determining the optimal priority assignment for system 
using fixed priority non-preemptive scheduling. 

In the context of multiprocessor global FP scheduling, 
work on priority assignment has focussed on circumventing 
the so called “Dhall effect”. In 1978, Dhall and Liu [18] 
showed that under global FP scheduling with RMPO, a set 
of periodic tasks with implicit deadlines and total utilisation 
just greater than 1 can be unschedulable on m processors. 
For this problem to occur at least one task must have a high 
utilisation. 

In 2001, Andersson et al. [2] gave a utilisation bound for 
global FP scheduling of periodic tasksets with implicit 
deadlines using the RM-US{ς } priority assignment policy. 
RM-US{ς } gives the highest priority to tasks with 
utilisation greater than a threshold ς . In 2003, Andersson 
and Jonsson [3] showed that the maximum utilisation bound 
for global FP scheduling of such tasksets is 

mm 41.0)12( ≈− , when priorities are defined as a scale 
invariant function of worst-case execution times and 
periods. 

In 2005, Bertogna [11] extended the work of Andersson 
et al. [2] to sporadic tasksets with constrained deadlines 
forming the DM-DS{ς } priority assignment policy. In 
2008, Andersson [4] proposed a form of slack monotonic 
priority assignment called SM-US{ς } Using a threshold of 

)53/(2 + , SM-US{ς } has a utilisation bound of 
mm 382.0)53/(2 ≈+  for sporadic tasksets with implicit-

deadlines. 
More sophisticated schedulability tests for global FP 

scheduling of sporadic tasksets with constrained and 
arbitrary deadlines have been developed using analysis of 
response times and processor load. 

In 2000, Andersson and Jonsson [1] gave a simple 
response time upper bound applicable to tasksets with 
constrained-deadlines. In 2001, Baker [7] developed a 
fundamental schedulability test strategy, based on 
considering the minimum amount of interference in a given 
interval that is necessary to cause a deadline to be missed, 
and then taking the contra-positive of this to form a 
sufficient schedulability test. This basic strategy underpins 
an extensive thread of subsequent research into 
schedulability tests [10], [11], [13], [14], [8], [19], [22]. 

Baker’s work was subsequently built upon by Bertogna 
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et al. [11] in 2005, (see also Bertogna and Cirinei [14]). 
They developed sufficient schedulability tests for global FP 
scheduling based on bounding the maximum workload in a 
given interval. In 2007, Bertogna and Cirinei [12] adapted 
this approach to iteratively compute an upper bound on the 
response time of each task, using the upper bound response 
times of other tasks to limit the amount of interference 
considered. In 2009, Guan et al. [22] extended the response 
time analysis of Bertogna and Cirinei [12], limiting the 
amount of carry-in interference due to jobs released prior to 
the start of the interval, using ideas from [9]. Guan et al. 
also extended the approach to tasksets with arbitrary 
deadlines. 

In 2009, Davis and Burns [16] showed that priority 
assignment is fundamental to the effectiveness of global FP 
scheduling. They proved that Audsley’s Optimal Priority 
Assignment (OPA) algorithm [5], [6], originally developed 
for uniprocessor FP scheduling, is applicable to some of the 
sufficient tests for global FP scheduling. These tests are 
referred to as OPA-compatible [16]. The response time test 
of Andersson and Jonsson [1] and the deadline-based test of 
Bertogna et al. [14] are OPA-compatible [16], while the 
response time analysis of Bertogna and Cirinei [12], and 
Guan et al. [22] are OPA-incompatible. 

Davis and Burns [17] also studied the effectiveness of 
various heuristic priority assignment policies, including 
DkC [16], RM-US{ς } [2], DM-DS{ς } [11], and SM-
US{ς } [4], while all of these policies typically 
outperformed DMPO in terms of the number of tasksets 
found to be schedulable by the schedulability tests given in  
[14] and [12]. Their performance was shown to fall 
significantly below that of optimal priority assignment.  
1.2. Intuition and motivation 

Dynamic priority scheduling has the potential to 
schedule many more tasksets than fixed task or fixed job 
priority scheduling algorithms. However, this theoretical 
advantage must be balanced against the increased overheads 
inherent in dynamic changes in priority. For example, 
algorithms such as LLREF [15] and LRE-TL [20] which are 
optimal for implicit-deadline periodic and sporadic tasksets 
respectively, can in the worst-case result in n-1 pre-
emptions per job release, where n is the number of tasks. In 
systems with a large number of tasks, this level of pre-
emptions leads to prohibitively high overheads. By contrast, 
global FP scheduling results in at most one pre-emption per 
job release. 

In this paper, we are interested in priority assignment 
policies that enable the maximum possible guaranteed 
performance to be obtained from the simplest possible 
global scheduling algorithm; global FP scheduling.  

The motivation for our research comes from the fact that 
arguably the most effective schedulability test for global FP 
scheduling, the response time test of Bertogna and Cirinei 
[12] as improved by Guan et al. [22], is not compatible with 
Audsley’s Optimal Priority Assignment (OPA) algorithm. 
Hence the current state-of-the-art [16] involves either 
combining optimal priority assignment with polynomial-
time schedulability tests [14], which are dominated by 

response time analysis, or combining heuristic priority 
assignment policies such as DkC [16], which are dominated 
by OPA, with response time analysis. Clearly, improved 
performance can be obtained if a method of optimal priority 
assignment can be found that is compatible with response 
time analysis. 

In this paper, we derive upper and lower bounds on 
response time analysis that are OPA-compatible. We show 
how these bounds can then be used to reduce the number of 
priority ordering combinations that need to be examined, 
and thus derive an optimal priority assignment algorithm 
with backtracking that is compatible with response time 
analysis. While this algorithm can still require that n!/m! 
priority orderings are considered in the worst case (where n 
is the number of tasks, and m is the number of processors), 
in practice the upper and lower bounds can significantly 
reduce the number of priority ordering combinations that 
need to be examined. We show that response time analysis 
combined with the OPA-backtracking algorithm dominates 
previous approaches using OPA-compatible polynomial-
time schedulability tests. 
1.3. Organisation 

The remainder of this paper is organised as follows: 
Section 2 describes the terminology, notation and system 
model used. Section 3 describes response time analysis for 
global FP scheduling, while Section 4 discusses optimal 
priority assignment. Section 5 derives upper and lower 
bounds on response time analysis and shows that they are 
OPA-compatible. Section 6 introduces an optimal priority 
assignment algorithm with backtracking that is compatible 
with response time analysis. Section 7 presents the results of 
an empirical investigation into the effectiveness of the OPA-
Backtracking algorithm combined with response time 
analysis. Finally, Section 8 concludes with a summary and 
an outline of future work. 

2. System model, terminology and notation 
In this paper, we are interested in global FP scheduling 

of an application on a homogeneous multiprocessor system 
comprising m identical processors. The application or 
taskset is assumed to comprise a static set of n tasks 
( nττ ...1 ), where each task iτ  is assigned a unique priority i, 
from 1 to n (where n is the lowest priority). 

Tasks are assumed to comply with the sporadic task 
model. In this model, tasks give rise to a potentially infinite 
sequence of jobs. Each job of a task may arrive at any time 
once a minimum inter-arrival time has elapsed since the 
arrival of the previous job of the same task. 

Each task iτ  is characterised by: its relative deadline 
iD , worst-case execution time iC , and minimum inter-

arrival time or period iT . The utilisation iU  of each task is 
given by ii TC / . A task’s worst-case response time iR  is 
defined as the longest time from the task arriving to it 
completing execution. 

It is assumed unless otherwise stated that all tasks have 
constrained deadlines ( ii TD ≤ ). The tasks are assumed to 
be independent and so cannot be blocked from executing by 
another task other than due to contention for the processors. 



Further, it is assumed that once a task starts to execute it 
will not voluntarily suspend itself. 

Intra-task parallelism is not permitted; hence, at any 
given time, each job may execute on at most one processor. 
As a result of pre-emption and subsequent resumption, a job 
may migrate from one processor to another. The costs of 
pre-emption, migration, and the run-time operation of the 
scheduler are assumed to be either negligible, or subsumed 
into the worst-case execution time of each task. 
2.1. Feasibility, schedulability and optimality 

A taskset is referred to as feasible if there exists a 
scheduling algorithm that can schedule the taskset without 
any deadlines being missed. Further, we refer to a taskset as 
being global FP feasible if there exists a priority ordering 
under which the taskset is schedulable using global FP 
scheduling. 

In systems using global FP scheduling, it is useful to 
separate the two concepts of priority assignment and 
schedulability testing. The priority assignment problem is 
one of determining the relative priority ordering of a set of 
tasks. Given a taskset with some priority ordering, then the 
schedulability testing problem involves determining if the 
taskset is schedulable with that priority ordering. 

A schedulability test S can be classified as follows. Test 
S is said to be sufficient if all of the tasksets / priority 
ordering combinations that it deems schedulable are in fact 
schedulable. Similarly, test S is said to be necessary if all of 
the tasksets / priority ordering combinations that it deems 
unschedulable are in fact unschedulable. Finally, test S is 
referred to as exact if it is both sufficient and necessary. 

The concept of an optimal priority assignment policy 
can be defined with respect to a schedulability test S:  
Definition 1: Optimal priority assignment policy: A priority 
assignment policy P is referred to as optimal with respect to 
a schedulability test S and a given task model, if and only if 
the following holds: P is optimal if there are no tasksets that 
are compliant with the task model that are deemed 
schedulable by test S using another priority assignment 
policy, that are not also deemed schedulable by test S using 
policy P. 

We note that the above definition is applicable to both 
sufficient schedulability tests and exact schedulability tests. 
An optimal priority assignment policy for an exact 
schedulability test facilitates classification of all global FP 
feasible tasksets compliant with a particular task model. 
Using an optimal priority assignment policy for a sufficient 
test we cannot classify all global FP feasible tasksets, due to 
the sufficiency of the test. However, optimal performance is 
still provided with respect to the limitations of the test itself. 

3. Response Time Analysis 
In this section, we outline the pseudo-polynomial time 

sufficient test for global fixed priority scheduling of 
sporadic tasksets introduced by Bertogna and Cirinei [12]. 
This test was subsequently improved by Guan et al. [22], 
using ideas from [9] to limit the amount of carry-in 
interference. 

In [12], Bertogna and Cirinei showed that if task kτ  is 
schedulable in an interval of length L, then an upper bound 
on the interference in that interval due to a higher priority 
task iτ  with a carry-in job, released prior to the start of the 
interval, is given by1: 
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where iX  is the upper bound response time UB
iR  of higher 

priority task iτ . The response time test of Bertogna and 
Cirinei [12] may be expressed as follows: 

RTA test for global FP scheduling (Theorem 7 in [12]): 
A sporadic taskset is schedulable, if for every task kτ  in the 
taskset, the upper bound response time UB

kR  computed via 
the fixed point iteration given in Equation (4) is less than or 
equal to the task’s deadline: 
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where hp(k) is the set of tasks with priorities higher than k. 
Iteration starts with k

UB
k CR = , and continues until the 

value of UB
kR  converges or until k

UB
k DR > , in which case 

task kτ  is unschedulable. We note that using Equation (4), 
task schedulability needs to be determined in priority order, 
highest priority first, as upper bounds on the response times 
of higher priority tasks are required for computation of the 
interference term )( UB

k
R
i RI . 

In [22], Guan et al. showed that at most m-1 higher 
priority tasks with carry-in jobs may contribute interference 
in the worst-case, and used this result to improve the above 
test as follows: 

Guan et al. [22] showed that if task iτ  does not have a 
carry-in job, then the interference term is given by: 
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The difference between the two interference terms 
(Equation (1) and Equation (5)) is then given by: 
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RTA-LC test for global FP scheduling (Guan et al. [22]): 
A sporadic taskset is schedulable, if for every task kτ  in the 
taskset, the upper bound response time UB

kR  computed via 

                                                 
1 Note we adopt the approach to time representation used in [14]. Time is 
represented by non-negative integer values, with each time value t viewed 
as representing the whole of the interval [t, t+1). This enables mathematical 
induction on clock ticks and avoids confusion with respect to end points of 
execution. 



the fixed point iteration given in Equation (9) is less than or 
equal to the task’s deadline: 
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where MR(k, m-1) is the subset of the min(k, m-1) tasks with 
the largest values of )( UB

k
RDIFF

i RI − , given by Equation (8), 
from the set of tasks hp(k). Iteration again starts with 

k
UB
k CR = , and continues until the value of UB

kR  converges 
or until k

UB
k DR > , in which case task kτ  is unschedulable. 

We note that the RTA-LC test reduces to the RTA test if 
the )( UB

k
RDIFF

i RI −  term is included for all of the higher 
priority tasks, rather than just those with the m-1 largest 
values. Hence the RTA-LC test dominates the earlier RTA 
test. Both RTA and RTA-LC tests dominate the polynomial-
time deadline-based analysis of Bertogna and Cirinei [14]. 

4. Optimal Priority Assignment 
In this section, we outline prior results on optimal 

priority assignment for global FP scheduling. 
In 2009, Davis and Burns [16] proved that Audsley’s 

Optimal Priority Assignment (OPA) algorithm [5], [6] is 
applicable to any schedulability test S for global FP 
scheduling that complies with the following conditions: 
Condition 1: The schedulability of a task kτ  may, 
according to test S, be dependent on the set of higher 
priority tasks, but not on the relative priority ordering of 
those tasks. 
Condition 2: The schedulability of a task kτ  may, 
according to test S, be dependent on the set of lower priority 
tasks, but not on the relative priority ordering of those tasks. 
Condition 3: When the priorities of any two tasks of 
adjacent priority are swapped, the task being assigned the 
higher priority cannot become unschedulable according to 
test S, if it was previously schedulable at the lower priority. 
(As a corollary, the task being assigned the lower priority 
cannot become schedulable according to test S, if it was 
previously unschedulable at the higher priority). 

Optimal Priority Assignment Algorithm 
for each priority level k, lowest first { 
 for each unassigned task τ { 
  if(τ is schedulable at priority k according to test S  
      with all unassigned tasks assumed to have higher 
      priorities){ 
   assign τ to priority k 
   break (continue outer loop) 
  } 
 } 
 return unschedulable 
} 
return schedulable 

Figure 1: OPA algorithm 
The pseudo code for Audsley’s OPA algorithm, using 

some schedulability test S, is given in Figure 1 above. 
For n tasks, the OPA algorithm performs at most 

n(n+1)/2 schedulability tests and is guaranteed to find a 
priority assignment that is schedulable according to 

schedulability test S if one exists. This is a significant 
improvement over inspecting all n! possible priority 
orderings. (Such an exhaustive search becomes intractable 
even for modest values of n. For example, 12! 322≈ ). Note 
that the OPA algorithm does not specify the order in which 
tasks should be tried at each priority level. 

As the RTA and RTA-LC tests are dependent on the 
upper bound response times of higher priority tasks, which 
are themselves dependent on the relative priority ordering of 
those tasks, these tests do not comply with Condition 1, and 
so are not compatible with the OPA algorithm (For a proof 
see Theorem 4 of [16]). 

5. Upper and Lower Bounds  
In this section, we derive a schedulability test (the D-

RTA-LC test) that lower bounds the RTA-LC test given in 
Equation (9), and a pseudo-schedulability condition (the C-
RTA condition) that upper bounds the RTA-LC test. We 
then prove some theorems about these conditions and the 
RTA-LC test. These Theorems are subsequently used in the 
construction of the OPA-backtracking algorithm described 
in Section 6. 

The D-RTA-LC test is formed from Equation (9) by 
using the largest possible schedulable value that the 
response time upper bound of each higher priority task can 
take (i.e., by setting ii DX =  instead of UB

iR  in Equations 
(2) and (3)). 

We observe that as Equation (2) is monotonically non-
decreasing in iX , then the RTA-LC test dominates the D-
RTA-LC test. By this we mean that any taskset / priority 
ordering combination deemed schedulable by the D-RTA-
LC test will also be deemed schedulable by the RTA-LC 
test. Thus the D-RTA-LC test is a lower bound on task 
schedulability under the RTA-LC test. 

The C-RTA2 condition is formed from Equation (9) by 
using the smallest possible value that the response time 
upper bound of each higher priority task could take (i.e. by 
setting ii CX =  instead of UB

iR  in Equations (2) and (3)). It 
is important to note that the C-RTA condition is not a 
schedulability test; it may deem tasksets / priority ordering 
combinations schedulable that are unschedulable. It may 
also deem tasksets / priority ordering combinations 
unschedulable, when in fact they are schedulable.  

We observe that as Equation (2) is monotonically non-
decreasing in iX  and the minimum possible value for UB

iR  
is iC , then the C-RTA condition dominates the RTA-LC 
test. By this, we mean that any taskset / priority ordering 
combination deemed unschedulable by the C-RTA 
condition will necessarily also be deemed unschedulable by 
the RTA-LC test. Thus the C-RTA condition forms an upper 
bound on task schedulability under the RTA-LC test. 
Theorem 1: The D-RTA-LC schedulability test is OPA-
compatible. 
Proof: It suffices to show that Conditions 1-3 hold. 
 Inspection of Equation (9) and its component equations 

                                                 
2 The C-RTA condition is the same with or without limiting carry-in 
interference, hence we drop the “-LC”. 



shows that the upper bound response time UB
kR  computed 

for task kτ  depends on the set of higher priority tasks, and 
their parameters ( iC , iD , iT ) but not on their upper bound 
response times (as ii DX = ) or their relative priority 
ordering, hence Condition 1 holds. 

Equation (9) has no dependency on the set of tasks with 
priorities lower than k, hence Condition 2 holds. 

Consider two tasks A and B initially at priorities k and 
k+1 respectively. The upper bound response time of task B 
cannot increase when it is shifted up one priority level to 
priority k, as the only change in the response time 
computation (Equation (9)) is the removal of task A from 
the set of tasks that have higher priority than task B, hence 
Condition 3 holds □ 
Theorem 2: The C-RTA condition is OPA-compatible. 
Proof: Follows exactly the same logic as the proof of 
Theorem 1, noting that ii CX =  in this case □ 
Theorem 3: The RTA-LC test, although OPA-incompatible 
due to non-compliance with Condition 1 [16], is compliant 
with Condition 3. 
Proof: Follows exactly the same logic as the proof of 
compliance with Condition 3, given in Theorem 1 above □ 

In attempting to find a priority ordering that is 
schedulable according to the RTA-LC test, we would like to 
use the greedy assignment method of the OPA algorithm for 
as many of the lower priority levels as possible, without 
needing to backtrack and revise these priority assignments. 
The following theorem proves that we can do this, so long 
as the D-RTA-LC test continues to find a schedulable task 
at each priority level examined. 
Theorem 4: For any sporadic taskset, where there exists a 
priority ordering Q that is schedulable according to the 
RTA-LC test, then assuming that the D-RTA-LC test is used 
in conjunction with the OPA algorithm to successfully 
assign schedulable tasks to priority levels from n to k 
generating a partial priority ordering P, then there also 
exists a complete priority ordering that is schedulable 
according to the RTA-LC test that also has the tasks at 
priority levels n to k in partial priority order P. 
Proof: Let )( jQ  identify the task at priority j in priority 
order Q. Similarly, let )(iP  identify the task at priority i in 
priority order P. 

We prove the theorem by iterating over increasing 
priority levels (values of i) from n to k. On each iteration, 
we transform priority ordering nQQ =  into knn QQ −− ...1 . 
After each iteration, the new priority ordering remains 
schedulable according to the RTA-LC test, and once all of 
the iterations have been completed, then the tasks assigned 
to priority levels n to k are the same as those in partial 
priority order P. 

Each iteration / transformation of the priority order iQ , 
over values of i from n to k, works as follows: As the RTA-
LC test is compliant with Condition 3 (Theorem 2), we 
repeatedly swap the priority of task )(iP  in priority order 

iQ  with the next lowest priority task until it reaches priority 
i (see Figure 2). This cannot cause any of the tasks of 
priority higher than i to become unschedulable according to 

the RTA-LC test (Theorem 3). Further, as task )(iP  is 
deemed schedulable at priority i by the D-RTA-LC test, 
then it follows that it is also guaranteed to be schedulable at 
that priority according to the RTA-LC test, independent of 
the priority ordering of those tasks with higher priorities, 
assuming only that they remain schedulable according to the 
RTA-LC test, which they do. Further, as the tasks of lower 
priority than i are schedulable according to the D-RTA-LC 
test, they are guaranteed to remain schedulable according to 
the RTA-LC test independent of any changes in the relative 
priority ordering of higher priority tasks. 

After n-k+1 iterations, we have a priority ordering 
knQ −  that is schedulable according to the RTA-LC test and 

has the tasks at priority levels n to k assigned according to 
the partial priority order P □ 

 
Figure 2: Priority re-ordering 

Theorem 5: The m highest priority tasks are schedulable 
according to the RTA-LC test, with upper bound response 
times equal to their execution times, i.e. k

UB
k CR = . 

Proof: With the RTA-LC test, Equation (9) is used to 
compute UB

kR  for each task kτ  in priority order, highest 
priority first. The proof is by induction: 

Consider the highest priority task k=1, it is subject to no 
interference and hence Equation (9) trivially converges on 
the initial value kC . 

Inductive step: Now consider each task in priority order 
from k = 2 to m. Every task iτ  with a higher priority than k, 
has i

UB
i CR = , hence Equations (1) and (5) are equivalent, 

and so the RDIFF
iI −  term defined by Equation (8) is zero. 

Using Equation (9) to calculate UB
kR , starting with kC  as an 

initial value therefore results in a value of k-1 for the first 
summation term and zero for the second. As m > k-1, the 
floor function evaluates to zero, and Equation (9) 
immediately converges on the initial value of kC  □ 
Theorem 6: The schedulability of any task kτ  ( mk ≥ ) is, 
according to the RTA-LC test, independent of the relative 
priority ordering of the m highest priority tasks. 
Proof: Follows from the fact that the m highest priority 
tasks have i

UB
i CR =  (Theorem 5), independent of their 

relative priority order. Hence their interference on any lower 
priority task kτ , given by Equations (8), (5) and (1), is 
independent of their relative priority order. (In fact 
Equations (1) and (5) are equivalent in this case, and so the 

)( UB
k

RDIFF
i RI −  term is zero for these tasks) □ 

Theorem 7: The D-RTA-LC test dominates the polynomial-



time schedulability test of Bertogna and Cirinei [14], 
referred to in [16] as the DA test. 
Proof: We observe that the D-RTA-LC test effectively 
reduces to the DA test if we include all of the 

)( UB
k

RDIFF
i RI −  terms, and use an initial value of kD . 

Hence, if task kτ  is schedulable according to the DA test, 
then the D-RTA-LC test is guaranteed to converge to a 
value of k

UB
k DR ≤  □ 

Theorem 8: The RTA-LC test and the C-RTA condition are 
equivalent for the m+1 highest priority tasks. 
Proof: Using the RTA-LC test, the m highest priority tasks 
have i

UB
i CR =  (Theorem 5), hence for any task kτ  among 

the m+1 highest priority tasks, the interference term (floor 
function in Equation (9)) due to higher priority tasks is the 
same for both the RTA-LC test and the C-RTA condition. 
Thus the computed upper bound response time for task kτ  
is the same in each case □ 

6. OPA-Backtracking Algorithm 
In this section, we derive an optimal priority assignment 

algorithm that is compatible with the RTA-LC test. We refer 
to this algorithm as the OPA-Backtracking algorithm.  

The basic intuition behind the OPA-Backtracking 
algorithm is to start at the lowest priority level, and use the 
D-RTA-LC test to assign tasks to each priority level, until a 
priority level k is reached where no tasks are schedulable 
according to that test. Assignment of tasks to priority levels 
n to k+1 is effectively permanent, since no backtracking is 
needed at these priority levels (Theorem 4). At all 
subsequent priority levels (k to 1), the algorithm uses the C-
RTA condition to assign a potentially schedulable task to 
each priority level. The complete priority ordering is then 
checked using the RTA-LC test. If it is not schedulable, then 
the algorithm backtracks. It revisits the priority levels where 
the C-RTA condition was used, and assigns a different task 
that is also potentially schedulable at that priority level 
according to the C-RTA condition. Note that backtracking 
skips over priority levels 1 to m as these priorities are 
equivalent in terms of schedulability. 

The detailed operation of the OPA-Backtracking 
algorithm is as follows, the line numbers refer to the 
pseudo-code3 shown in Figure 3: 
(1) It is assumed that the tasks are initially ordered 

according to some heuristic, for example DkC [16]. 
This determines the order in which unassigned tasks 
will be examined at each priority level. Each task is 
identified by an index value from 1 to n, corresponding 
to the initial heuristic priority ordering. 

(2) The outer ‘while’ loop (lines 8-79) examines different 
priority orderings. Once a priority ordering is found that 
is schedulable according to the RTA-LC test (line 63), 
then the algorithm exits declaring the taskset 
schedulable, otherwise it continues to examine 
alternative priority orderings that could potentially be 
schedulable, only exiting and declaring the taskset 

                                                 
3 Detailed pseudo-code is provided to ensure that the algorithm and 
experiments can be replicated by other researchers. 

unschedulable when all viable options have been 
exhausted, or some pragmatic limit on the maximum 
number of iterations has been reached (line 8). 

(3) Within the outer ‘while’ loop, is a ‘for’ loop which 
attempts to construct a new priority ordering (lines 10-
38). This loop begins by mimicking the operation of the 
OPA algorithm combined with the D-RTA-LC test 
(lines 12-21). Thus, starting at the lowest priority level, 
it assigns tasks that are schedulable according to the D-
RTA-LC test, until a priority level is reached at which 
no unassigned tasks are found that are schedulable 
according to that test. Due to Theorem 4, the algorithm 
never needs to backtrack on these priority assignments. 
Alternatively, the D-RTA-LC condition may be 
successful in assigning a task to every priority level, in 
which case a schedulable priority ordering has been 
found and the algorithm exits (lines 60-61). 

OPA-Backtracking Algorithm 
0 numTries = 0; 
1 Pass2: // label 
2 startPri = n; 
3 bCRTAUsed = false; 
4 for(each priority i) { 
5  CRTAIndx[i] = n; 
6  CRTALevel[i] = false; 
7 } 
8 while(numTries < MAX_ITERATIONS) { 
9  numTries++; 
10  for(each priority i from startPri to 1) { 
11   bSchedulable = false 
12   if(!bCRTAUsed  // Use D-RTA 
    || (bHeuristic && !CRTALevel[i])) { 
13    for(each task t) { 
14     if(assigned t) continue 
15     bSchedulable = DRTATest(t, i); 
16     if(bSchedulable) { 
17      AssignTask(t,i) 
18      break 
19     } 
20    } 
21   } 
22   if(!bSchedulable) { // Use C-RTA 
23    bCRTAUsed = true 
24    CRTALevel[i] = true 
25    for(each task t from CRTAIndx[i] to 1) { 
26     if(assigned t) continue 
27     bSchedulable = CRTATest(t,i) 
28     if(bSchedulable) { 
29      AssignTask(t,i) 
30      CRTAIndx[i] = t-1 
31      break; 
32     } 
33    } 
34   } 
35   if(!bSchedulable) { 
36    break  
37   } 
38  } 
39  if(!bSchedulable) { //Incomplete priority assignment 
40   if(CRTAIndx[i] == n) { 
41    return unschedulable 
42   } 
43   else {  // Backtrack if possible 
44    CRTAIndx[i] = n 
    CRTALevel[i] = false 
45    i++ 
46    while((i <= n) && !CRTALevel[i]) { 



47     UnassignTask at priority i 
48     i++ 
49    } 
50    if((i <= n) && CRTALevel[i]) { 
51     UnassignTask at priority i 
52     startPri = i 
53    } 
54    else { 
55     return unschedulable 
56    } 
57   } 
58  } 
59  else { //Complete priority assignment 
60   if(!bCRTAUsed) { 
61    return schedulable 
62   } 
63   else if(RTA-LCTest()) {  
64    return schedulable 
65   } 
66   else {  //Backtrack to priority m+1 
67    for(priority i = 1 to m) { 
68     UnassignTask at priority i 
69     CRTAIndices[i] = n 
     CRTALevel[i] = false 
70    }  
71    while((i<=n) && !CRTALevel[i]) { 
72     UnassignTask at priority i 
73     i++ 
74    } 
75    UnassignTask at priority i 
76    startPri = i; 
77   } 
78  } 
79 } 
80 return unschedulable 

Figure 3: OPA-Backtracking algorithm 
(4) Assuming that a priority level is reached where no 

unassigned tasks are schedulable according to the D-
RTA-LC test, then the ‘for’ loop switches to using the 
C-RTA condition and again examines the suitability of 
unassigned tasks for assignment to the current priority 
level (lines 22-34). 

(5) The C-RTA condition is used to identify the first 
unassigned task that is potentially schedulable at the 
current priority level. Note that checking begins at the 
highest task index value not yet tried at this priority 
level (line 25)). If a potentially schedulable task is 
found, then it is assigned to the current priority level, 
and the task’s index – 1 recorded, to avoid repeating 
this priority ordering later (line 30). The algorithm then 
continues to the next higher priority level and so on, 
now using only the C-RTA condition (lines 23 and 12). 
Note for now we assume that the value of the Boolean 
variable ‘bHeuristic’ (line 12) is false. 

(6) If a priority level is reached where the C-RTA 
condition is unable to identify a potentially schedulable 
unassigned task (that has not been examined before in 
combination with the current assignment of tasks to 
lower priority levels), then priority assignment cannot 
continue and so control breaks out of the ‘for’ loop 
(lines 35-37). 

(7) On exit from the ‘for’ loop, there is either a complete 
and potentially schedulable priority ordering, or step (6) 
applied and the priority assignment is incomplete. 

(8) If the priority assignment is incomplete (lines 39-58), 
then the algorithm first checks if there were any 
potentially schedulable tasks (at all) at the current 
priority level. If not, then no schedulable priority 
ordering exists according to the C-RTA condition and 
the algorithm exits declaring the taskset unschedulable 
(line 40). If there were some potentially schedulable 
tasks at the current priority level, then these have all 
been examined and so the algorithm attempts to 
backtrack (lines 43-57). The algorithm backtracks to the 
next lower priority level, if any, at which the C-RTA 
condition was used. All priority assignments down to 
and including that priority level are revoked, and the 
algorithm continues from there (lines 44-52, back to 
line 10), building up a new priority assignment. If no 
lower priority level is found at which the C-RTA 
condition was used, then no further backtracking is 
possible, as all viable alternatives have been tried, and 
the algorithm therefore exits, declaring the taskset 
unschedulable (line 55). 

(9) If the priority assignment is complete (lines 59-78) then 
an immediate exit is possible if the D-RTA-LC test 
alone was sufficient to allocate all tasks to priority 
levels (line 61). Alternatively, the RTA-LC test is used 
to determine if the current priority ordering is in fact 
schedulable (line 63). If so, then the algorithm exits 
(line 64), if not then it backtracks (lines 66-77). 

(10) Once a priority ordering has been examined using the 
RTA-LC test and found unschedulable, then Theorem 6 
shows that all other priority orderings where only the 
relative priority ordering of the m highest priority tasks 
is changed are also unschedulable. The algorithm 
therefore skips all of these priority combinations by 
backtracking to priority level m+1 (lines 67-70). It then 
continues to backtrack to lower priority levels until a 
priority level is found where the C-RTA condition was 
used. Note that this must be the case, as the alternative 
is that the D-RTA-LC test succeeded in placing tasks at 
priorities n to m+1, in which case, the RTA-LC test is 
guaranteed to find the priority ordering schedulable. 
Note, the RTA-LC test is also guaranteed to find the 
taskset schedulable if there are m or fewer tasks. 

6.1. Example of OPA-Backtracking operation 
We now illustrate the operation of the OPA-

Backtracking algorithm via a simple example. In the 
following discussion, ‘step (x)’ refers to steps (1) to (10) in 
the above description of the algorithm. 

The example comprises a two processor system, with 
five tasks identified by indices 1-5, and five priority levels 
1-5. Figure 4 (a) illustrates the first iteration of the OPA-
backtracking algorithm. The cells highlighted in grey 
represent the first complete priority assignment examined. 
Note that ‘ ’ indicates schedulability according to the D-
RTA-LC test, while ‘?’ and ‘ ’ indicate potentially 
schedulable and unschedulable respectively, according to 
the C-RTA condition. 

The OPA-Backtracking algorithm operates as follows: 
First the D-RTA-LC test identifies that task 5 is schedulable 



at priority level 5. This assignment is permanent (see step 
(3)). However, at priority level 4, the D-RTA-LC test finds 
that no unassigned tasks are schedulable. Hence the 
algorithm switches to using the C-RTA condition (step (4)). 
The C-RTA condition finds that task 4 is potentially 
schedulable at priority level 4 and assigns it, setting the 
index for priority level 4 to 3, so that this assignment will 
not be revisited (step (5)). Priority level 3 is then examined, 
task 3 assigned priority 3, and the index for priority level 3 
set to 2, and so on for priority levels 2 and 1. At this point, a 
complete priority assignment has been made (Figure 4 (a)), 
and the RTA-LC test is therefore used to determine if the 
assignment is schedulable (step (9)). We will assume that it 
is not. 

The algorithm then backtracks to priority level m+1 = 3 
(step (10)) and continues its next iteration from that priority 
level. At priority level 3, there are no potentially 
schedulable tasks identified by the C-RTA condition that 
have not already been tried (only tasks 2 and 1 are checked 
as the index for priority level 3 is 2). The algorithm 
therefore backtracks further to priority level 4 (via steps (6) 
and (8)), in the process resetting the index for priority level 
3 to the value 5. At priority level 4, task 3 is now examined 
and found to be potentially schedulable according to the C-
RTA condition. Task 3 is therefore assigned priority 4 and 
the index for priority level 4 is set to 2, so that this 
assignment will not be revisited (step (5)). The algorithm 
then proceeds by assigning tasks 4, 2, and 1 to priority 
levels 3, 2, and 1 respectively (See Figure 4 (b)). At this 
point, a complete priority assignment has again been made, 
so the RTA-LC test is used to determine if it is schedulable 
(step (6)). Again we will assume that it is not. 
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    (c) 

Figure 4: Priority assignments 
The algorithm again backtracks to priority level 3 (step 

(10)); however, this time task 2 is potentially schedulable 
according to the C-RTA condition, so it is assigned priority 
3, with tasks 4, and 1 subsequently assigned priorities 2, and 
1 respectively (See Figure 4 (c)). This is the final complete 
priority assignment that the algorithm will examine. We will 
assume that this priority ordering is schedulable according 
to the RTA-LC test and so the algorithm is successful. 

If the priority ordering shown in Figure 4 (c) was not 
schedulable, then the algorithm would backtrack again 
looking for a priority level at which there were remaining 
tasks, with indices less than or equal to those currently set 
for the priority level, that are schedulable according to the 
C-RTA condition. As there are now none at priority level 3, 
and none at priority level 4, the algorithm would exit 
declaring the taskset unschedulable (step (8)). 

Note in this example, there were n! = 120 possible 
priority orderings; however, the OPA-Backtracking 
algorithm only had to examine three complete priority 
orderings to find a schedulable ordering. The algorithm used 
three techniques to prune away unschedulable priority 
orderings without checking them: 
1. Theorem 6 shows that the relative priority ordering of 

the highest m priority tasks is unimportant This rule 
reduces the number of distinct priority orderings that 
need to be examined to n!/m! = 60, eliminating 60 
alternative priority orderings. 

2. The D-RTA-LC test enabled task 5 to be assigned 
priority 5. Theorem 4 shows that if any schedulable 
ordering exists according to the RTA-LC test, then a 
schedulable ordering will exist with this priority 
assignment. Discounting other tasks from consideration 
at priority level 5 eliminated a further 48 alternatives.  

3. Finally, the C-RTA condition removed two possibilities 
(tasks 1 and 2) from consideration at priority level 4, 
eliminating 6 alternative priority orderings. Then, with 
task 4 at priority 4, it also removed tasks 1 and 2 from 
consideration at priority level 3, whereas, with task 3 at 
priority 4, it removed task 1 from consideration at 
priority level 3. In total, the C-RTA condition removed 
a further 9 alternative priority orderings, leaving just 3 
which were examined using the RTA-LC test. 

6.2. Heuristic OPA-Backtracking 
The D-RTA-LC test and the C-RTA condition typically 

result in significant pruning of the number of priority 
ordering combinations examined by the OPA-Backtracking 
algorithm. Nevertheless, the number of priority orderings 
that remain to be explored can be excessive. The main 
reason for this is that once a priority level k is reached at 
which there is no schedulable task according to the D-RTA-
LC test, then in order to ensure optimality, all combinations 
of assignments of the remaining tasks to priority levels k to 
1, that are potentially schedulable according to the C-RTA 
condition, need to be explored. (With the exception of those 
varying only in the relative priority ordering of the highest 
m priority tasks). The reason that all these possibilities need 
to be explored to ensure optimality is that once a task is 
placed according to the C-RTA condition, its schedulability 
according to the RTA-LC test is dependent on the relative 
priority ordering of higher priority tasks, and so these 
relative priority orderings must be explored. 

In pathological cases, the D-RTA-LC test may fail to 
find a schedulable task at priority n, and yet all of the tasks 
may be potentially schedulable at all priority levels 
according to the C-RTA condition. In this case, the OPA-
Backtracking algorithm can attempt to explore n!/m! priority 



orderings. With 8 processors and 40 tasks, this equates to 
> 4310  priority ordering combinations. It is therefore 
essential to set a pragmatic limit on the number of iterations 
of the algorithm. Given a finite iteration limit (<< n!/m!), 
the OPA-Backtracking algorithm is no longer guaranteed to 
find a schedulable priority ordering if one exists according 
to the RTA-LC test. In this case, the order in which 
candidate priority orderings are examined has an influence 
on the overall effectiveness of the algorithm. 

With the aim of finding schedulable priority orderings 
quickly, we can form a heuristic version of the OPA-
Backtracking algorithm by setting the value of the Boolean 
variable ‘bHeuristic’, tested on line 12 of Figure 3, to true. 
The effect of this is to first employ the D-RTA-LC test at 
each priority level, even if the C-RTA condition has been 
used to assign a potentially schedulable task to a lower 
priority level. Further, if a task is found to be schedulable 
according to the D-RTA-LC test, then it is the only task 
tried at that priority level in conjunction with the current 
assignment of tasks to lower priority levels. Hence 
backtracking effectively only takes place over priority levels 
where the C-RTA condition has been employed. 

This approach is not optimal as it does not necessarily 
consider all viable priority orderings above the priority level 
k at which the C-RTA condition is first employed. Thus the 
heuristic algorithm may fail to examine the particular 
relative priority ordering of tasks at priorities k+1 to 1 
needed to make the task assigned to priority k schedulable. 

The heuristic version of the OPA-Backtracking 
algorithm uses the D-RTA-LC test to greedily assign tasks 
that are themselves guaranteed to be schedulable at a given 
priority level. Thus, it tends to build up priority orderings 
where most of the tasks are known to be schedulable, 
assigned by the D-RTA-LC test, and only a few are 
potentially schedulable, assigned by the C-RTA condition. 
Further, once a particular priority ordering is found to be 
unschedulable, the heuristic algorithm varies its choice of 
potentially schedulable tasks, rather than varying the 
priority order of tasks at higher priorities to try and make a 
potentially schedulable task schedulable. Intuitively, this 
would seem to be a more effective way of finding 
schedulable priority orderings quickly. 

The heuristic OPA-Backtracking algorithm is similar in 
its approach to the priority ordering algorithm for real-time 
wormhole communication given by Zheng and Burns in 
[26]. We note that for the same basic reasons, the algorithm 
given in [26] is also heuristic rather than optimal. 

7. Empirical investigation 
In this section, we present the results of an empirical 

investigation, examining the effectiveness of the RTA-LC 
test for global FP scheduling when combined with the OPA-
Backtracking algorithm. We examined the performance of 
three variants of the algorithm, (i) the standard OPA-
Backtracking approach, (labelled OPA-Bk), (ii) the heuristic 
approach (labelled OPA-heuristic), and (iii) a two pass 
approach (labelled OPA-2Pass), which first uses the 
heuristic algorithm (bHeuristic = true), and then if that fails 

to find a schedulable priority ordering, makes a second pass 
using the standard OPA-Backtracking approach (bHeuristic 
= false). In each case, the total number of iterations per 
taskset was limited to 1000. This relatively low limit was 
used as our experiments needed to explore 1000’s of 
tasksets. In examining the schedulability of a single taskset, 
a much higher limit could be used. The order of task indices 
was set according to the DkC heuristic [16].  

For comparison purposes, we also provide results for: 
the DA-LC and D-RTA-LC tests with optimal priority 
assignment, labelled DA-LC(OPA) and D-RTA-LC(OPA) 
respectively; and the C-RTA condition with optimal priority 
assignment, labelled C-RTA(OPA). The results for the DA-
LC and D-RTA-LC tests were almost identical, with the D-
RTA-LC test able to schedule only a few additional tasksets 
at each utilisation level.  

We note that D-RTA-LC(OPA) lower bounds the 
performance of RTA-LC (OPA-Bk), while C-RTA(OPA) 
upper bounds it. Recall that the C-RTA condition is not a 
schedulability test. Instead, it is a necessary condition for 
task schedulability under the RTA-LC test. Hence in the 
graphs below, the line for the C-RTA condition indicates 
only potentially schedulable tasksets. 

The task parameters used in our experiments were 
randomly generated as follows: 
o Task utilisations were generated using the UUnifast-

Discard algorithm [16], using a discard limit of 1000. 
o Task periods were generated according to a log-uniform 

distribution with a factor of 1000 difference between 
the minimum and maximum possible task period. This 
represents a spread of task periods from 1ms to 1 
second, as found in most hard real-time applications. 

o Task execution times were set based on the utilisation 
and period selected: iii TUC = . 

o Task deadlines were assigned according to a uniform 
random distribution, in the range ],[ ii TC . 

7.1. Experimental results 
In each experiment, the taskset utilisation (x-axis value) 

was varied from 0.025 to 0.975 times the number of 
processors in steps of 0.025. For each utilisation value, 1000 
valid tasksets were generated and the schedulability of those 
tasksets determined using each combination of priority 
assignment policy and schedulability test / condition. 

The graphs plot the percentage of tasksets generated that 
were deemed schedulable in each case. Figures 5 to 8 show 
this data for 2, 4, 8, and 16 processors. In each case, the 
number of tasks was set to 5 times the number of 
processors. Note the differing x-axis scale on the graphs. 

From the graphs, we can see that the D-RTA-LC (OPA) 
lower bound and the C-RTA (OPA) upper bound tightly 
envelop the performance of RTA-LC test with optimal 
priority assignment. We observe that the results for the three 
variants of the backtracking algorithm were very similar for 
small numbers of processors / tasks; with differences 
becoming apparent as the number of processors / tasks 
increased. As the number of processors / tasks was 
increased, the OPA-heuristic and OPA-2Pass approaches 
become more effective than the OPA-Bk approach at 



identifying schedulable priority orderings. 
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Figure 5: (2 processors, 10 tasks, D≤T) 
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Figure 6: (4 processors, 20 tasks, D≤T) 
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Figure 7: (8 processors, 40 tasks, D≤T) 
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Figure 8: (16 processors, 80 tasks, D≤T) 

Table 1 below shows the total number of tasksets found 
to be schedulable by each of the algorithms studied for 2, 4, 
8, and 16 processors. The first row of data, marked OPA 
(DA-LC), summarises the results for the polynomial-time 
schedulability test, DA-LC, combined with Audsley’s OPA 
algorithm. The second, third, and fourth rows of data give 
the results for the three variants of the OPA-Backtracking 
approach. 

Table 1: Number of tasksets found to be 
schedulable 

 #Processors 
Algorithm 2 4 8 16 

DA-LC (OPA) 24,278 23,085 22,989 23,270 
RTA-LC(OPA-Bk) 25,096 23,748 23,393 23,444 

RTA-LC(OPA-
heuristic) 

24,925 23,768 23,593 23,747 

RTA-LC(OPA-2Pass) 25,099 23,846 23,615 23,795 
We conclude that for larger numbers of processors / 

tasks, the OPA-2Pass approach (using the heuristic 
algorithm first) is more effective than using either the 
standard backtracking algorithm or the heuristic algorithm 
alone. In each case, the OPA-2Pass approach found 
approximately 3% more schedulable tasksets than the 
polynomial-time DA-LC test combined with Optimal 
Priority Assignment. 

8. Summary and conclusions 
The motivation for this research comes from the fact that 

priority assignment is of fundamental importance to the 
effectiveness of global FP scheduling [16], and yet prior to 
this work, arguably the most effective schedulability test for 
global FP scheduling, the response time analysis of 
Bertogna and Cirinei [12], improved by Guan et al. [22] 
(RTA-LC test), could only be used with heuristic priority 
assignment policies. This was due to its incompatibility with 
Audsley’s Optimal Priority Assignment algorithm [16]. 

The key contribution of this paper is in providing an 
optimal priority assignment algorithm (OPA-Backtracking) 
that is compatible with the RTA-LC test. This algorithm 
eliminates large numbers of priority ordering combinations 



from consideration via utilising: (i) The D-RTA-LC test 
which lower bounds the RTA-LC test; (ii) the C-RTA 
condition which upper bounds the RTA-LC test; (iii) the 
fact that the relative priority ordering of the m highest 
priority tasks is unimportant. 

The RTA-LC test combined with OPA-Backtracking 
dominates the D-RTA-LC test combined with OPA. It also 
dominates the DA test (Deadline Analysis test of Bertogna 
and Cirinei [14]) combined with OPA, which was 
previously shown to be the best performing approach in 
[16]. Further, these dominance results hold even if the OPA-
Backtracking algorithm is only permitted a single iteration 
(i.e. no backtracking). This is because if a taskset is 
schedulable according to the D-RTA-LC test combined with 
OPA, then it will be found schedulable on the first iteration 
of the OPA-Backtracking algorithm. As the D-RTA-LC test 
dominates the DA test, then the same applies to any taskset 
that is schedulable according to the DA test with OPA. 

Given an unlimited number of iterations, the OPA-
Backtracking algorithm is guaranteed to find a priority 
ordering that is schedulable according to the RTA-LC test if 
one exists. However, in pathological cases it may need to 
explore up to n!/m! priority orderings, hence in practice a 
limit needs to be set, either in terms of the number of 
iterations, or the execution time of the algorithm, once this 
limit is reached, then the taskset is declared unschedulable. 

Given that a pragmatic limit is placed on the number of 
iterations, then the order in which priority orderings are 
examined has an influence on the effectiveness of the 
algorithm. In this respect, we found that first using a 
heuristic version of the backtracking algorithm that greedily 
employs the D-RTA-LC test, and then switching to the 
standard approach, improved performance particularly in 
cases with a larger number of processors and tasks. 

We note that the backtracking algorithms described in 
this paper typically require a large number of iterations of 
the RTA-LC schedulability test, which itself is a pseudo-
polynomial time algorithm. Hence the backtracking 
approach to priority assignment is only appropriate for use 
in an off-line, as opposed to an on-line, context. 

The main result of this paper is to provide an indication 
of the maximum possible performance that can be obtained 
from the state-of-the-art RTA-LC schedulability test via 
appropriate priority assignment. The paper achieves this in 
two ways. Firstly, it derives the OPA-Backtracking 
algorithm that can be used to search for a schedulable 
priority assignment in a way that is more effective than 
exhaustive search. Secondly it provides an upper bound on 
the maximum possible performance that could ever be 
obtained from the RTA-LC test. That bound is given by 
combining the C-RTA condition with Audsley’s OPA 
algorithm. 
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