
Controller Area Network (CAN) Schedulability Analysis with FIFO queues

Robert I. Davis

Real-Time Systems Research Group,
Department of Computer Science,

University of York, YO10 5DD, York, UK
rob.davis@cs.york.ac.uk

Steffen Kollmann, Victor Pollex, Frank Slomka
Institute of Embedded Systems / Real-Time Systems

Ulm University, Albert-Einstein-Allee 11, 89081 Ulm,
Germany

{steffen.kollmann, victor.pollex, frank.slomka} @uni-ulm.de

Abstract
Controller Area Network (CAN) is widely used in

automotive applications. Existing schedulability analysis for
CAN is based on the assumption that the highest priority
message ready for transmission at each node on the network
will be entered into arbitration on the bus. However, in
practice, some CAN device drivers implement FIFO rather
than priority-based queues invalidating this assumption. In
this paper, we introduce response time analysis and optimal
priority assignment policies for CAN messages in networks
where some nodes use FIFO queues while other nodes use
priority queues. We show, via a case study, the impact that
FIFO queues have on the real-time performance of CAN.

1. Introduction
Controller Area Network (CAN) [3], [19] was designed

as a simple, efficient, and robust, broadcast communications
bus for in-vehicle networks. Today, typical mainstream
family cars contain 25-35 Electronic Control Units (ECUs),
many of which communicate using CAN. As a result of this
wholesale adoption of CAN by the automotive industry,
annual sales of CAN nodes (8, 16 and 32-bit micro-
controllers with on-chip CAN controllers) have grown from
under 50 million in 1999 to around 700 million in 20071

CAN is an asynchronous multi-master serial data bus
that uses Carrier Sense Multiple Access / Collision
Resolution (CSMA/CR) to determine access to the bus. The
CAN protocol requires that nodes wait for a bus idle period
before attempting to transmit. If two or more nodes attempt
to transmit messages at the same time, then the node with
the message with the lowest numeric CAN Identifier will
win arbitration and continue to send its message. The other
nodes will cease transmitting and must wait until the bus
becomes idle again before attempting to re-transmit their
messages. (Full details of the CAN physical layer protocol
are given in [3], with a summary in [10]). In effect CAN
messages are sent according to fixed priority non-pre-
emptive scheduling, with the identifier (ID) of each message
acting as its priority.
1.1. Related work

In 1994, Tindell et al. [28], [29], [30] showed how
research into fixed priority scheduling for single processor
systems could be adapted and applied to the scheduling of
messages on CAN. The analysis of Tindell et al. provided a

1 Figures from the CAN in Automation (CiA) website www.can-cia.org

method of calculating the maximum queuing delay and
hence the worst-case response time of each message on the
network. Tindell et al. [28], [29], [30] also recognised that
with fixed priority scheduling, an appropriate priority
assignment policy is key to obtaining effective real-time
performance. Tindell et al. suggested that messages should
be assigned priorities in ‘Deadline minus Jitter’ monotonic
priority order [31].

The seminal work of Tindell et al. lead to a large body of
research into scheduling theory for CAN [4], [5], [6], [7],
[16], [17], [23], [24], [25], [26], and was used as the basis
for commercial CAN schedulability analysis tools [8].

In 2007, Davis et al. [10] found and corrected significant
flaws in the schedulability analysis given by Tindell et al.
[28], [29], [30]. These flaws could potentially result in the
original analysis providing guarantees for messages that
could in fact miss their deadlines during network operation.
Further, Davis et al. [10] showed that the ‘Deadline minus
Jitter’ monotonic priority ordering, claimed by Tindell et al.
to be optimal for CAN, is not in fact optimal; and that
Audsley’s Optimal Priority Assignment (OPA) algorithm
[1], [2] is required in this case.

Prior to the advent of schedulability analysis and
appropriate priority assignment policies for CAN, message
IDs were typically assigned simply as a way of identifying
the data and the sending node. This meant that only low
levels of bus utilisation, around 30%, could be obtained
before deadlines were missed. Further, the only means of
obtaining confidence that message deadlines would not be
missed was via extensive testing. Using the systematic
approach of schedulability analysis, combined with a
suitable priority assignment policy, it became possible to
engineer CAN based systems for timing correctness,
providing guarantees that all messages would meet their
deadlines, with bus utilisations of up to about 80% [12], [8].
1.2. Motivation

Engineers using schedulability analysis to analyse
network / message configurations must ensure that all of the
assumptions of the specified scheduling model hold for their
particular system. Specifically, when using the analysis
given by Davis et al. in [10], it is important that each CAN
controller and device driver is capable of ensuring that
whenever message arbitration starts on the bus, the highest
priority message queued at that node is entered into
arbitration. This behaviour is essential if message
transmission is to take place as if there were a single global

priority queue and for the analysis to be correct.
As noted by Di Natale [14], there are a number of

potential issues that can lead to behaviour that does not
match that required by the scheduling model given in [10].
For example, if a CAN node has fewer transmit message
buffers than the number of messages that it transmits, then
the following properties of the CAN controller hardware can
prove problematic: (i) internal message arbitration based on
transmit buffer number rather than message ID (Fujitsu
MB90385/90387, Fujitsu 90390, Intel 87C196 (82527),
Infineon XC161CJ/167 (82C900)); (ii) non-abortable
message transmission (Philips 82C200) [15]; (iii) fewer than
3 transmit buffers [22] (Philips 8xC592 (SJA1000), Philips
82C200). CAN controllers which avoid these potential
problems include, the Atmel AT89C51CC03 /
AT90CAN32/64 the Microchip MPC2515, and the
Motorola MSCAN on-chip peripheral, all of which have at
least 3 transmit buffers, internal message arbitration based
on message ID rather than transmit buffer number, and
abortable message transmission.

The CAN device driver / software protocol layer
implementation also has the potential to result in behaviour
which does not match that required by the standard
scheduling model [10]. Issues include, delays in refilling a
transmit buffer [18], and FIFO queuing of messages in the
device driver or CAN controller (The BXCAN and BECAN
for the ST7 and ST9 Microcontrollers from
STMicroelectronics include hardware support for both
priority-queued and FIFO-queued message transmission
[27]).

In [14], Di Natale notes that using FIFO queues in CAN
device drivers / software protocol layers can seem an
attractive solution “because of its simplicity and the illusion
that faster queue management improves the performance of
the system”. This is unfortunate, because FIFO message
queues undermine the priority-based bus arbitration used by
CAN. They can introduce significant priority inversion and
result in degraded real-time performance. Nevertheless,
FIFO queues are a reality of some commercial CAN device
drivers / software protocol layers.

As far as we are aware, there is no published research2
integrating FIFO queues into response time analysis for
CAN. This paper focuses on the issue of FIFO queues. We
provide response time analysis and appropriate priority
assignment policies for Controller Area Networks
comprising some nodes that use FIFO queues and other
nodes that use priority queues.
1.3. Organisation

The remainder of this paper is organised as follows: In
section 2, we introduce the scheduling model, notation, and
terminology used in the rest of the paper. In section 3 we
recap on the sufficient schedulability analysis for CAN
given in [10]. Section 4 then extends this analysis to
networks where some nodes implement priority-based

2 The commercial tool NETCAR-Analyzer (www.realtimeatwork.com)
claims to address the case of FIFO queues.

queues while others implement FIFO queues. Section 5
discusses priority assignment for mixed sets of FIFO-
queued and priority-queued messages. Section 6 presents
the results of a case study exploring the impact of FIFO
queues on message response times and network
schedulability. Finally, section 7 concludes with a summary
and recommendations.

2. System model, notation and terminology
In this section we describe a system model and notation

that can be used to analyse the worst-case response times of
messages on CAN. This model is based on that used in [10]
with extensions to describe FIFO queues.

The system is assumed to comprise a number of nodes
(microprocessors) connected to a single CAN bus. Nodes
are classified according to the type of message queue used
in their device driver. Thus FQ-nodes implement a FIFO
message queue, whereas PQ-nodes implement a priority
queue. PQ-nodes are assumed to be capable of ensuring that,
at any given time when bus arbitration starts, the highest
priority message queued at the node is entered into
arbitration. FQ-nodes are assumed to be capable of ensuring
that, at any given time when bus arbitration starts, the oldest
message in the FIFO queue is entered into arbitration.

The system is assumed to contain a static set of hard
real-time messages, each statically assigned to a single node
on the network. Each message m has a fixed Identifier (ID)
and hence a unique priority. As priority uniquely identifies
each message, in the remainder of the paper we will
overload m to mean either message m or priority m as
appropriate. We use)(mhp to denote the set of messages
with priorities higher than m, and similarly,)(mlp to denote
the set of messages with priorities lower than m.

Each message m has a maximum transmission time of
mC (see [10] for details of how to compute the maximum

transmission time of messages on CAN, taking into account
the number of data bytes and bit-stuffing).

The event that triggers queuing of message m is assumed
to occur with a minimum inter-arrival time of mT , referred
to as the message period. Each message m has a hard
deadline mD , corresponding to the maximum permitted
time from occurrence of the initiating event to the end of
successful transmission of the message, at which time the
message data is assumed to be available on the receiving
nodes that require it. Tasks on the receiving nodes may
place different timing requirements on the data, however in
such cases we assume that mD is the shortest such time
constraint. We assume that the deadline of each message is
less than or equal to its period (mm TD ≤). Each message m
is assumed to be queued by a software task, process or
interrupt handler executing on the sending node. This task is
either invoked by, or polls for, the event that initiates the
message, and takes a bounded amount of time, between 0
and mJ , before the message is in the device driver queue
available for transmission. mJ is referred to as the queuing
jitter of the message and is inherited from the overall

response time of the task, including any polling delay3. The
transmission deadline mE of message m is given
by mmm JDE −= , and represents the maximum permitted
time from the message being queued at the sending node to
it being received at other nodes on the bus.

The maximum queuing delay mw , corresponds to the
longest time that message m can remain in the device driver
queue or CAN controller transmit buffers, before
commencing successful transmission on the bus.

In this paper4, we define the worst-case response time
mR of a message m as the maximum possible transmission

delay from the message being queued until it is received at
the receiving nodes. Hence:

mmm CwR += (1)
As noted by Broster [6], receiving nodes can access

message m following the end of (message) frame marker
and before the 3-bit inter-frame space. The analysis given in
the remainder of this paper is therefore slightly pessimistic
in that it includes the 3-bit inter-frame space in the
computed worst-case response times. To remove this small
degree of pessimism, it is valid to simply subtract 3 bitτ
from the computed response time values, where bitτ is the
transmission time for a single bit on the bus.

A message is said to be schedulable if its worst-case
response time is less than or equal to its transmission
deadline)(mm ER ≤ . A system is said to be schedulable if
all of the messages in the system are schedulable.

The following additional notation is used to describe the
properties of a set of messages that are transmitted by the
same FQ-node and so share a FIFO queue. The FIFO group

)(mM is the set of messages that are transmitted by the FQ-
node that transmits message m. The lowest priority of any
message in the FIFO group)(mM is denoted by mL .

MAX
mC and MIN

mC are the transmission times of the longest
and shortest messages in the FIFO group, while SUM

mC is
the sum of the transmission times of all of the messages in
the group. MIN

mE is the shortest transmission deadline of any
message in the group.

We use mf to denote the maximum buffering time from
message m being queued until it is able to take part in
priority-based arbitration. For a FIFO-queued message mf
equates to the time from the message being entered into the
FIFO queue to it becoming the oldest message in that queue.
For a priority-queued message 0=mf .

As well as determining message schedulability given a
particular priority ordering, we are also interested in
effective priority assignment policies.
Definition 1: Optimal priority assignment policy: A priority
assignment policy P is referred to as optimal with respect to

3 In the best case, the task could arrive the instant the event occurs and
queue the message immediately, whereas in the worst-case, there could be
a delay of up to the task’s period before it arrives and then a further delay
of up to the task’s worst-case response time before it queues the message.
4 Note this is a different way of defining response time to that used in [10]
which includes queuing jitter. To compensate for not including queuing
jitter in the response time, in this paper we compare response times with
transmission deadlines to determine schedulability.

a schedulability test S and a given network model, if and
only if there is no set of messages that are compliant with
the model that are deemed schedulable by test S using
another priority assignment policy, that are not also deemed
schedulable according to test S using policy P.

We note that the above definition is applicable to both
sufficient schedulability tests such as those given in
Sections 3 and 4, as well as exact schedulability tests.

3. Schedulability Analysis with Priority Queues
In this section, we recapitulate the simple sufficient

schedulability analysis given in [10]. For networks of PQ-
nodes, complying with the scheduling model given in
Section 2, CAN effectively implements fixed priority non-
pre-emptive scheduling. In this case, Davis et al. [10]
showed that an upper bound on the response time mR of
each message m can be found by computing the maximum
queuing delay mw using the following fixed point iteration:

k
mhpk k

bitk
n
m

mm
n
m C

T
Jw

CBw ∑
∈∀

+

⎥
⎥
⎥

⎤

⎢
⎢
⎢

⎡ ++
+=

)(

1),max(
τ

 (2)

where bitτ is the transmission time for a single bit, and mB
is the blocking factor described below. Iteration starts with a
suitable initial value such as mm Cw =0 , and continues until
either mm

n
m ECw >++1 in which case the message is not

schedulable, or n
m

n
m ww =+1 in which case the message is

schedulable and its worst-case response time is given by:

m
n
mm CwR += +1 (3)

As CAN message transmission is non-pre-emptable, the
transmission of a single lower priority message can cause a
delay of up to mB (referred to as direct blocking) between
message m being queued and the first time that message m
could be entered into arbitration on the bus. mB represents
the maximum blocking time due to lower priority messages:

)(max
)(

k
mlpk

m CB
∈∀

= (4)

Alternatively, in some cases, the transmission of the
previous instance of message m could delay transmission of
a higher priority message causing a similar delay (referred
to as push-through blocking5) of up to mC . Both direct and
push-through blocking are accounted for by the 1st term on
the RHS of (2). The 2nd term represents interference from
higher priority messages that can win arbitration over
message m and so delay its transmission. Note that once
message m starts successful transmission it cannot be pre-
empted, so the message’s overall response time is simply
the queuing delay plus its transmission time (given by (3)).

Using (2) and (3), engineers can determine upper
bounds6 on worst-case response times and hence the
schedulability of all messages on a network comprising
solely PQ-nodes. Although the analysis embodied in (2) and
(3) is pseudo-polynomial in complexity in practice it is
tractable on a desktop PC for complex systems with

5 See [10] for an explanation of why push-through blocking is important.
6 Equation (2) is sufficient rather than exact due to the fact that push
through blocking may not necessarily be possible.

hundreds of messages. (A number of techniques are also
available for increasing the efficiency of such fixed point
iterations [11]).

4. Schedulability Analysis with FIFO Queues
In this section, we derive sufficient schedulability

analysis for messages on networks with both PQ-nodes and
FQ-nodes. The analysis we introduce is FIFO-symmetric, by
this we mean that the same worst-case response time is
attributed to all of the messages in a FIFO group. We note
that FIFO-symmetric analysis incurs some pessimism in
terms of the worst-case response time attributed to the
higher priority messages in a FIFO group; however, in
practice this pessimism is likely to be small. This is because
the order in which messages are placed in a FIFO queue is
undefined, and so in the worst case, the highest priority
message in a FIFO group has to wait for an instance of each
lower priority message in the group to be transmitted.
4.1. Priority-queued messages

We now derive an upper bound on the worst-case
queuing delay for a priority-queued message m, in a system
with both PQ-nodes and FQ-nodes.

In the case of systems with only PQ-nodes, Davis et al.
[10] showed that the worst-case queuing delay for a priority-
queued message m occurs for an instance of that message
queued at the beginning of a priority level-m busy period7
that starts immediately after the longest lower priority
message begins transmission. Further, this maximal busy
period begins with a so-called critical instant where
message m is queued simultaneously with all higher priority
messages and then each of these higher priority messages is
subsequently queued again after the shortest possible time
interval. Equation (2) provides a sufficient upper bound on
this worst-case queuing delay.

The analysis embodied in (2) assumes that higher
priority messages are able to compete for access to the bus
(i.e. enter bus arbitration) as soon as they are queued;
however, this assumption does not hold for FIFO-queued
messages. Instead a FIFO-queued message k may have to
wait for up to a maximum time kf before it becomes the
oldest message in its FIFO queue, and can enter priority-
based arbitration. A FIFO-queued message k can therefore
be thought of as becoming priority queued after an
additional delay of kf . Stated otherwise, in terms of its
interference on lower priority messages, a FIFO-queued
message k can be viewed as if it were a priority-queued
message with its jitter increased by kf . (Note, we will
return to how kf is calculated for FIFO-queued messages
later). An upper bound on the queuing delay for a priority-
queued message m can therefore be calculated via the fixed
point iteration given by (5).

7 A priority level-m busy period is a contiguous interval of time during
which there is always at least one message of priority m that has not yet
completed transmission.

k
mhpk k

bitkk
n
m

mm
n
m C

T
fJw

CBw ∑
∈∀

+

⎥
⎥
⎥

⎤

⎢
⎢
⎢

⎡ +++
+=

)(

1),max(
τ

 (5)

As with (3), iteration starts with a suitable initial value such
as mm Cw =0 , and continues until either mm

n
m ECw >++1 in

which case the message is not schedulable, or n
m

n
m ww =+1 in

which case its response time is given by:

m
n
mm CwR += +1 (6)

Note that the queuing delay and response time are only
valid with respect to the values of kf used. We return to
this point later.
4.2. FIFO-queued messages

We now derive an upper bound on the worst-case
queuing delay for a FIFO-queued message m, in a system
with both PQ-nodes and FQ-nodes.

As our analysis is FIFO-symmetric, we will attribute the
same upper bound response time to all of the messages sent
by the same FQ-node. Our analysis derives this sufficient
response time by considering an arbitrary message from the
FIFO group)(mM . For the sake of simplicity, we will still
refer to this message as message m; however our analysis
will be independent of the exact choice of message from the
FIFO group. At each stage in our analysis we will make
worst-case assumptions, ensuring that the derived response
time is a correct upper bound. For example, we will frame
our calculation of the queuing delay mw by assuming the
lowest priority mL of any message in the FIFO group.
 As every message j in)(mM has jj TD ≤ then in a
schedulable system, when any arbitrary message from

)(mM is queued, there can be at most one instance of each
of the other messages in)(mM ahead of it in the FIFO
queue. The maximum transmission time of these messages,
and hence the maximum interference on an arbitrary
message m, due to messages sent by the same FQ-node, is
therefore upper bounded by:

MIN
m

SUM
m CC − (7)

Indirect blocking could also occur due to the non-pre-
emptive transmission of a previous instance of any one of
the messages in)(mM . This indirect blocking is upper
bounded by MAX

mC . As an alternative, direct blocking could
occur due to transmission of any of the messages of lower
priority than mL sent by other nodes. Finally, in terms of
interference from higher priority messages sent by other
FQ-nodes and PQ-nodes, the argument about increased jitter
made in the previous section applies, and so the interference
term from (5) can again be used.

Considering all of the above, an upper bound on the
queuing delay for an arbitrary message m belonging to the
FIFO group)(mM is given by the solution to the following
fixed point iteration:

+−+=+)(),max(1 MIN
m

SUM
m

MAX
mL

n
m CCCBw

m

k
mMkLhpk k

bitkk
n
m C

T
fJw

m

∑
∉∧∈∀ ⎥

⎥
⎥

⎤

⎢
⎢
⎢

⎡ +++

)()(

τ
 (8)

Iteration starts with a value of),max(0 MAX
mLm CBw

m
=

)(MIN
m

SUM
m CC −+ and continues until either

MIN
m

MIN
m

n
m ECw >++1 in which case the set of messages

)(mM is declared unschedulable, or n
m

n
m ww =+1 in which

case all of the messages in)(mM are deemed to have a
response time of:

MIN
m

n
mm CwR += +1 (9)

Equations (8) and (9) make the worst-case assumption
that interference from higher priority messages can occur up
to a time MIN

mC before transmission of message m
completes. We note that this is a pessimistic assumption
with respect to those messages belonging to the FIFO group
that have transmission times8 longer than MIN

mC .
4.3. Schedulability test with arbitrary priorities

We now derive a schedulability test from (5) & (6) and
(8) & (9). The basic idea is to avoid having to consider the
potentially complex interactions between the FIFO queues
of different nodes. This is achieved by abstracting the FIFO
behaviour of messages sent by other nodes as simply
additional jitter kf before each message k can enter priority
based arbitration on the bus. When calculating the response
time of a given message, we therefore need only consider
the behaviour of the node that sends that message (PQ-node
or FQ-node) and the buffering delays of messages sent by
other nodes9.

An upper bound on the buffering time mf of a FIFO-
queued message m is:

MIN
mmm CRf −= (10)

When the priorities of messages in different FIFO
groups are interleaved, this leads to an apparently circular
dependency in the response time calculations. For example,
let m and k be the priorities of messages in two different
FIFO groups with interleaved priorities (i.e.)(mLhpk ∈
and)(kLhpm∈). The response time kR of message k, and
hence its buffering time kf , depend on the buffering time

mf of message m as)(kLhpm∈ ; however, the buffering
time mf of message m depends on its response time mR
which in turn depends on kf as)(mLhpk ∈ . This apparent
problem can be solved by noting that the response times
calculated via (5) & (6) and (8) & (9) are monotonically
non-decreasing with respect to the buffering times, and that
the buffering times given by (10) are monotonically non-
decreasing with respect to the response times calculated via
(8) & (9). Hence by using an outer loop iteration, and
repeating response time calculations until the buffering
times no longer change, we can compute correct upper
bound response times and hence schedulability for all
messages, as shown in Algorithm 1. (Note, to speed up the
schedulability test, for each message m, the value of mw

8 In practice all messages sent on CAN often have the maximum length (8
data bytes) so as to minimise the relative overheads of the other fields in
the message (ID, CRC etc). In this case, no additional pessimism is
introduced by this assumption.
9 If the message belongs to a PQ-node, then the other messages sent by the
same node have buffering delays of zero, if it belongs to an FQ-node, then
the buffering delays for other messages sent by the same node are not
needed in the calculations (8) &(9).

computed on one iteration of the while loop (lines 3 to 23)
can be used as an initial value on the next iteration).

1 repeat = true
2 initialise all kf = 0
3 while(repeat){
4 repeat = false
5 for each priority m, highest first{
6 if (m is FIFO-queued){
7 calc mR according to Eqs (8) & (9)
8 if(mR > MIN

mE) {
9 return unschedulable
10 }
11 if(mf mw=!){
12 mm wf =
13 repeat = true;
14 }
15 }
16 else {
17 calc mR according to Eqs (5) & (6)
18 if(mR > MIN

mE) {
19 return unschedulable
20 }
21 }
22 }
23 }
24 return schedulable
Algorithm 1: FIFO Symmetric Schedulability Test

Algorithm 1 provides a sufficient schedulability test for
FIFO-queued and priority-queued messages in any arbitrary
priority ordering.
4.4. Partial priority ordering with a FIFO group

In this section, we consider an appropriate priority
ordering for messages within a FIFO group.
Definition 2: A FIFO-adjacent priority ordering is any
priority ordering whereby all of the messages sharing a
FIFO queue are assigned adjacent priorities.
Theorem 1: If a priority ordering Q exists that is
schedulable according to the FIFO-symmetric schedulability
analysis of Algorithm 1 then a schedulable FIFO-adjacent
priority ordering P also exists.
Proof: Let m be a FIFO-queued message that is not the
lowest priority message in its FIFO group. Now consider a
priority transformation whereby message m is shifted down
in priority so that it is at a priority level immediately above
that of the lowest priority message in its FIFO group. We
will refer to the old priority ordering as Q and the new
priority ordering as Q’.

We observe from (5) and (8), that given the same fixed
set of buffering times kf , then (i) the response time
computed for message m is the same for both priority
orderings, and (ii) the response times computed for all other
messages are no larger in priority ordering Q’ than they are
in priority ordering Q. Due to the mutual monotonically
non-decreasing relationship between message buffering
times and response times, and the fact that Algorithm 1

starts with all the buffering times set to zero, this means that
on every iteration of Algorithm 1, the response times and
buffering times computed for each message under priority
ordering Q’ are no larger than those computed on the same
iteration for priority ordering Q. Hence if priority ordering
Q is schedulable, then so is priority ordering Q’.

Applying the priority transformation described above to
every FIFO-queued message that is not the lowest priority
message in its FIFO group transforms any schedulable
priority ordering Q into a FIFO-adjacent priority ordering P,
without any loss of schedulability □
Theorem 1 tells us that regardless of the priority assignment
applied to priority-queued messages, we should ensure that
all of the messages that share a single FIFO queue have
adjacent priorities. In terms of CAN message IDs we note
that this does not require that consecutive values are used
for the IDs, only that there is no interleaving with respect to
the priorities of other messages. In practice message IDs can
be chosen to meet these requirements, while also providing
appropriate bit patterns for message filtering.
4.5. Schedulability test FIFO-adjacent priorities

In this section, we derive an improved schedulability
test that is only valid for FIFO-adjacent priority orderings.

Recall that Davis et al. [10] showed that the worst-case
queuing delay for a priority-queued message m occurs
within the priority level-m busy period that starts with a
critical instant. Provided that a FIFO-adjacent priority
ordering is used, then the same situation also represents the
worst-case scenario when higher priority messages are sent
by either PQ-nodes or FQ-nodes. This can be seen by
considering the interference on a priority-queued message m
from a higher priority FIFO-queued message k. As message
k is of higher priority than message m, then so are all of the
other messages in the same FIFO group (i.e.)(kM). Thus
any message in)(kM that is queued prior to the start of
transmission of message m will be sent on the bus before
message m, irrespective of the order in which the messages
in)(kM are placed in the FIFO queue. In effect all of the
additional jitter on message k is already accounted for by
interference on message m from other messages in the same
FIFO group ()(kM). In this case, there is no additional
jitter on message k caused by messages of lower priority
than m. Hence for each FIFO message k, we can set kf = 0,
and use (5) & (6) to calculate the queuing delay and worst-
case response time of each message m. The same argument
applies when we consider the schedulability of a FIFO-
queued message m. In this case we can use (8) & (9) to
calculate the queuing delay and worst-case response time,
with all buffering times kf = 0. Further, as the buffering
times are all fixed at zero, a single pass over the priority
levels is all that is needed to determine schedulability. In
other words, lines 11-14 of Algorithm 1 can be omitted
when considering FIFO-adjacent priority orderings. This
revised schedulability test therefore dominates the test given
in Section 4.3 (i.e. Algorithm 1 with lines 11-14 present).

The simplified analysis given in this section is similar to
that provided for FP/FIFO scheduling of flows by Martin et

al. (Lemma 3 in [21]). We note however, that the analysis
given in [21] suffers from the same flaw as the analysis of
Tindell et al. [28], [29], [30], in that it does not correctly
account for the effect of push-through blocking.

5. Priority Assignment Policies
The schedulability test presented in Section 4.5 is

applicable irrespective of the overall priority ordering,
provided that messages sharing the same FIFO queue are
assigned adjacent priorities. Choosing an appropriate
priority ordering among the priority-queued messages and
the FIFO groups is however an important aspect of
achieving overall schedulability and hence effective real-
time performance.

In this section, we consider the assignment of messages
to priority bands, where a priority band comprises either a
single priority level containing one priority-queued
message, or a number of adjacent priority levels containing
a FIFO group of messages. We derive priority assignment
policies that are optimal with respect to the schedulability
analysis given in Section 4.5.
5.1. Optimal priority assignment

Davis et al. [10], showed that, assuming solely priority
queuing, Audsley’s Optimal Priority Assignment (OPA)
algorithm [1], [2] provides the optimal priority assignment
for CAN messages. We now show that with an appropriate
modification to handle FIFO groups, Audsley’s algorithm is
also optimal with respect to the schedulability test given in
Section 4.5. The pseudo code for this OPA-FP/FIFO
algorithm is given in Algorithm 2. Note that only one
message from each FIFO group is considered in the initial
list, as once this message is assigned to a priority band, then
so are the other messages in the same FIFO group.

for each priority band k, lowest first
{

for each message msg in the initial list {
 if msg is schedulable in priority band k according to

 schedulability test S with all unassigned priority-
 queued messages / other FIFO groups assumed to be
 in higher priority bands {

 assign msg to priority band k
 if msg is part of a FIFO group {
 assign all other messages in the FIFO group

 to adjacent priorities within priority band k
 }
 break (continue outer loop)
 }
}
 return unschedulable

}
return schedulable

Algorithm 2: Optimal Priority Assignment
(OPA-FP/FIFO)

In [13] Davis and Burns showed that Audsley’s OPA
algorithm is optimal with respect to any schedulability test
that meets three specific Conditions. According to Theorem
1, we need only consider the priority bands assigned to each
priority-queued message, and each FIFO group (as all

messages in the group have adjacent priorities in an optimal
priority ordering). We therefore re-state these three
Conditions in the context of priority-queued messages and
FIFO groups.

The three Conditions refer to properties or attributes of
the messages. Message properties are referred to as
independent if they have no dependency on the priority
assigned to the message. For example the longest
transmission time, deadline, and minimum inter-arrival time
of a message are all independent properties, while the worst-
case response time typically depends on the message’s
priority and so is a dependent property.
Condition 1: The schedulability of a message / FIFO group
identified by m, may, according to test S, depend on any
independent properties of other messages / FIFO groups in
higher priority bands than m, but not on any properties of
those messages / FIFO groups that depend on their relative
priority ordering.
Condition 2: The schedulability of a message / FIFO group
identified by m may, according to test S, depend on any
independent properties of the messages / FIFO groups in
lower priority bands than m, but not on any properties of
those messages / FIFO groups that depend on their relative
priority ordering.
Condition 3: When the priorities of any two adjacent
priority bands are swapped, then the message / FIFO group
being assigned the higher priority band cannot become
unschedulable according to test S, if it was previously
schedulable in the lower priority band. (As a corollary, the
message / FIFO group being assigned the lower priority
band cannot become schedulable according to test S, if it
was previously unschedulable in the higher priority band).
Theorem 2: The OPA-FP/FIFO algorithm is an optimal
priority assignment algorithm with respect to the FIFO-
symmetric schedulability test of Section 4.5 (Algorithm 1
with lines 11-14 omitted).
Proof: It suffices to show that Conditions 1-3 hold with
respect to the schedulability test given by Algorithm 1 with
lines 11-14 omitted.
Condition 1: Inspection of (5) & (6) and (8) & (9), assuming
all kf are fixed at zero, shows that the response time of
each message m is dependent on the set of messages in
higher priority bands, but not on their relative priority
ordering.
Condition 2: Inspection of (5) & (6) and (8) & (9), shows
that the response time of each message m is dependent on
the set of messages in lower priority bands via the direct
blocking term, but not on their relative priority ordering.
Condition 3: Inspection of (5) & (6) and (8) & (9), assuming
all kf are fixed at zero, shows that increasing the priority
band of message m cannot result in a longer response time.
This is because although the direct blocking term can get
larger with increasing priority this is always counteracted by
a decrease in interference that is at least as large; hence the
length of the queuing delay cannot increase with increasing
priority, and so neither can the response time □

For N priority-queued messages / FIFO groups, the
OPA-FP/FIFO algorithm performs at most N(N-1)/2
schedulability tests and is guaranteed to find a schedulable
priority assignment if one exists. It does not however
specify an order in which messages should be tried in each
priority band. This order heavily influences the priority
assignment chosen if there is more than one ordering that is
schedulable. In fact, a poor choice of initial ordering can
result in a priority assignment that leaves the system only
just schedulable. We suggest that, as a useful heuristic,
priority-queued messages and FIFO groups are tried at each
priority level in order of transmission deadline (i.e. mE or

MIN
mE), largest value first. This will result in transmission

deadline (i.e. deadline minus jitter) monotonic priority
ordering if that ordering is schedulable. Alternatively,
approaches which result in a robust priority assignment can
be developed from the techniques described in [12].
5.2. Transmission deadline monotonic priority

assignment
In industrial practice, CAN configurations are often

designed such that all of the messages are of the same
maximum length (8 data bytes). This is done to ameliorate
the effects of the large overhead of the other fields
(arbitration, CRC etc) in each message.
Theorem 3: Transmission deadline monotonic ordering is
an optimal policy for assigning priority-queued messages
and FIFO groups to priority bands, with respect to the
sufficient schedulability test given in Section 4.5 (Algorithm
1 with lines 11-14 omitted), provided that all messages have
the same worst-case transmission time.
Proof: See Appendix A.
5.3. Priority inversion

All of the messages in a FIFO group need to have
sufficiently high priorities that the message with the shortest
transmission deadline in the group can still meet its
deadline. We have shown that with the FIFO-symmetric
schedulability analysis introduced in this paper, the most
effective way to achieve this is to assign adjacent priorities
to all of the messages in a FIFO group. Despite this, we note
that the use of FIFO queues still typically results in priority
inversion with respect to the priority assignment that would
be used if all nodes implemented priority queues.

The problem of priority inversion can be seen by
considering transmission deadline monotonic priority
ordering, see Figure 1 below. With only PQ-nodes, the
priority assigned to each message would depend only on its
transmission deadline, with a longer deadline implying
lower priority. With FIFO queues, there are two forms of
priority inversion. Firstly, within the FIFO queue, messages
with longer transmission deadlines can enter the queue
before, and so be transmitted ahead of, messages with
shorter transmission deadlines. Secondly, all of the
messages in a FIFO group effectively obtain priorities based
on the shortest transmission deadline of any message in that
group. This has the effect of creating priority inversion with
respect to priority-queued messages with transmission

deadlines between the maximum and minimum transmission
deadlines of messages in the FIFO group. This is illustrated
in Figure 1, where messages causing priority inversion are
shaded in grey.

PQ-msg1: E = 5

FQ-group1: EMIN = 10
FQ-msg1: E = 10

FQ-group2: EMIN = 50

PQ-msg2: E = 10

PQ-msg3: E = 20

PQ-msg4: E = 50

PQ-msg5: E = 100

PQ-msg6: E = 250

PQ-msg7: E = 250

PQ-msg8: E = 500

FQ-msg2: E = 25
FQ-msg3: E = 100

FQ-msg4: E = 50
FQ-msg5: E = 100
FQ-msg6: E = 1000
FQ-msg7: E = 1000
FQ-msg8: E = 1000

Higher
priority

Lower
priority

FIFO group1

FIFO group2

Figure 1: Priority ordering

In Figure 1, observe that the messages within each
FIFO group also have their priorities assigned according to
transmission deadline monotonic priority assignment. We
recommend this approach as although it does not alter the
sufficient worst-case response times of the messages as
calculated by our analysis, in practice it could result in
lower actual worst-case response times for those messages
in the group that have shorter transmission deadlines.

6. Case Study: Automotive
To show that our priority assignment policies and

schedulability analysis work with a real application we
analysed a CAN bus architecture from the automotive
domain, first presented in [20]. Figure 2 shows this
architecture. The system consists of a 500 kBit/s CAN bus
connecting 10 ECUs. There are a total of 85 messages sent
on the bus. The number of messages sent by each ECU is
given by the annotations in Figure 2. All messages are sent
strictly periodically and have no offsets with respect to each
other. We assumed that the queuing jitter for each message
was 1% of its period.

Figure 2: CAN bus architecture

We compared five different configurations of the system:
Expt. 1: All ECUs use priority queues.
Expt. 2: ECU3 and ECU6 use FIFO queues and the

remaining ECUs use priority queues.
Expt. 3: All ECUs use FIFO queues.
Expt. 4: All ECUs use priority queues, but the priority

ordering is that established by Expt 3.
Expt. 5: All ECUs use priority queues, but the priority

ordering used is random.

In each experiment we determined the lowest bus speed
commensurate with a schedulable system. The minimum
bus speed was found by a binary search with the message
priorities assigned according to the OPA-FP/FIFO algorithm
(Algorithm 2) using transmission deadline monotonic
priority ordering as the reverse ordering for the initial list.
Based on the priority ordering obtained, we analysed and
simulated the system assuming a 500 kBit/s bus. The
simulated network operating time was 1 hour. We used the
commercial simulator chronSIM from Inchron [9] to
produce the simulation results.

There are four lines plotted on each of the graphs. The
lines give the following information for each message: (i)
transmission deadline; (ii) worst-case response time
computed using the analysis given in Section 4.5, assuming
a 500Kbit/s bus; (iii) maximum observed response time
found by simulation, assuming a 500Kbit/s bus, and (iv)
worst-case response time computed using the analysis given
in Section 4.5, assuming the minimum schedulable bus
speed for the configuration. All of this data is plotted in ms
on the y-axis using a logarithmic scale. The x-axis on the
graphs represents the priority order of the messages. Hence
data for the message assigned the highest priority in a
particular configuration appears on the LHS of the graph,
while data for the lowest priority message appears on the
RHS. Note the priority order is different in each experiment.

Figure 3 depicts the results of Expt. 1, with all ECUs
using priority queues. In this case, the minimum bus speed
was 277 kBit/s, and the corresponding bus utilisation 84.5%.
We observe that with this bus speed, the 26th highest priority
message only just meets its deadline. We observe that the
results of analysis and simulation for a 500 kBit/s bus are
close together. This is because the messages have no offsets,
and all of the ECUs used priority-based queues, hence there
is very little pessimism in the analysis, and the simulation
captures the worst-case scenario well.

Figure 4 depicts the results of Expt. 2, where ECU3 and
ECU6 used FIFO queues and the other ECUs used priority
queues. In this case, the minimum bus speed was 389 kBit/s,
and the corresponding bus utilisation 60.1%. Our analysis
attributes the same worst-case response time to all of the
messages in a FIFO queue. This results in the horizontal
segments of the analysis lines in Figure 4. The first FIFO
queue is the 12 messages sent by ECU3, and the second, the
6 messages sent by ECU6. The minimum transmission
deadline for both FIFO queues was 13.8 ms. We observe
that in Figure 4 the results of analysis and simulation are
close together for the messages sent via priority queues,
whereas for the messages sent via FIFO queue there are
larger gaps. These gaps are predominantly due to the
simulation not capturing the worst-case scenario for all of
the FIFO-queued messages. This is evident from the
variability of the maximum response times obtained via
simulation for messages in the same FIFO group.

Figure 5 depicts the results of Expt. 3, where all ECUs
used FIFO queues. In this case, the minimum bus speed was
654 kBit/s, and the corresponding bus utilisation only

35.8%. In contrast with the Expt. 1 & 2, this configuration
was not schedulable at a bus speed of 500 kBit/s. At 500
 kBit/s, the 54 highest priority messages were found to be
schedulable by the analysis. For the remaining lower
priority messages, some appear to have worst-case response
times that are less than their deadlines; however, this does
not imply that such messages are schedulable. Once a single
higher priority message is unschedulable, then the
assumptions made by the analysis may be broken and the
computed worst-case response times no longer valid. For
example, the analysis assumes that due to constrained
deadlines at most one instance of each of the other messages
in the same FIFO group may be ahead of a particular
message in the queue. If one of the messages in the FIFO
group cannot meet its deadline then this assumption may no
longer hold. In Expt. 3, some of the maximum response
times observed in the simulation are very low compared to
the worst-case response times computed by the analysis.
This is caused by differences in the order in which messages
enter the FIFO queues in the simulation, compared to the
assumptions made by the analysis.

Figure 3: Response Times (PQ only)

Figure 4: Response Times (FQ and PQ)

Figure 5: Response Times (FQ only)

Figure 6: Response Times (PQ only, FQ priorities)

Figure 7: Response Times (PQ only, random

priorities)
Figure 6 depicts the results of Expt. 4 which used the

priority ordering obtained in Expt. 3, but assumed priority
queues rather than FIFO queues. In this case, the minimum
bus speed required was 608 kBit/s, and the corresponding
bus utilisation 38.5%. Comparison of these results with

those from Expt. 1 and Expt. 3 shows that the majority of
the performance degradation caused by using FIFO queues
occurs as a result of unavoidable priority inversion in the
form of a disrupted priority ordering, rather than as a
consequence of pessimistic schedulability analysis for FIFO
queues.

Finally, Expt. 5 examined 1000 random priority
orderings with no correlation between message priority and
transmission deadline. This experiment simulates assigning
priorities to messages on the basis of the type of data or
ECU, or indeed any other metric that has little or no
correlation with message transmission deadlines. In this
case, the mean value for the minimum bus speed required
was 731 kBit/s (min. 618 kBit/s, max. 750 kBit/s), and the
corresponding bus utilisation 32.0% (max. 37.8%, min.
31.2%). Figure 7 depicts the results of Expt. 5 for the worst
of the random priority orderings, which required a minimum
bus speed of 750 kBit/s to be schedulable. It is clear from
the graph, that it is the assignment of a low priority (80th
highest priority) to a message with a short transmission
deadline that results in the need for such a high bus speed.
Expt. 5 is directly comparable with Expt. 1 and shows the
importance of appropriate priority assignment. In this case,
arbitrary priority assignment increased the minimum bus
speed required by 163% while reducing the maximum
schedulable bus utilisation from 84.5% to 32.0% (figures for
the average case).

The results of the experiments are summarised in Table
1 below.

Table 1: Summary of results
Expt. Node

type
Priority order Min bus

speed
Max

bus util.
1 All PQ OPA 277 Kbit/s 84.5%
2 2 FQ,

8 PQ
OPA-FP/FIFO 389 Kbit/s 60.1%

3 All FQ OPA-FP/FIFO 654 Kbit/s 35.8%
4 All PQ Priority ordering

from Expt. 3
608 Kbit/s 38.5%

5 All PQ Random10 731 Kbit/s 32.0%

7. Summary and Conclusions
The major contribution of this paper is the derivation of

sufficient response time analysis for CAN where some of
the nodes on the network implement FIFO queues, while
others implement priority queues. This analysis is FIFO-
symmetric in that it attributes the same worst-case response
time (measured from the time a message is queued in the
sending node until it is received by other nodes on the bus)
to all of the messages that share the same FIFO. For this
schedulability analysis, we proved that it is optimal to
assign adjacent priorities to messages that share the same
FIFO. We modified Audsley’s Optimal Priority Assignment
algorithm to provide an overall priority assignment policy
(OPA-FP/FIFO) that is optimal with respect to our analysis
for both priority-queued messages and groups of messages

10 Values are the average for 1000 random orderings.

that share a FIFO. Further, we showed that transmission
deadline monotonic priority assignment is optimal with
respect to our analysis for the specific case when all
messages are of the same length.

Although this paper provides schedulability analysis for
CAN assuming FIFO queues, we cannot recommend the use
of such queues. By comparison with priority queues, FIFO
queues inevitably cause priority inversion which is
detrimental to real-time performance.

The use of FIFO queues increases the minimum bus
speed necessary to ensure that all deadlines are met. This
was illustrated in our case study where allowing just two
ECUs (sending 18 out of the 85 messages) to use FIFO
queues increased the minimum bus speed required from
277 kBit/s with priority queues to 389 kBit/s, a 40%
increase. With all ECUs using FIFO queues, the minimum
bus speed required increased to 654 kBit/s; an increase of
over 130%. Using FIFO queues reduces the maximum bus
utilisation achievable before any deadlines are missed, thus
limiting the scope for extending a system by adding further
messages without having to increase bus speed. In our case
study, the maximum bus utilisation with priority queues was
84.5%, this reduced to 60.1% when two ECUs used FIFO
queues, and to just 35.8% when all of the ECUs used FIFO
queues. Such reductions in achievable utilisation also
decrease the robustness of the network to errors that result
in message re-transmission.

We recommend that CAN device drivers / software
protocol layers implement priority-based queues, rather than
FIFO queues whenever possible. FIFO queues are appealing
because they are simpler to implement and make the device
driver appear more efficient; however, this perceived local
gain typically comes at the expense of undermining the
priority-based message arbitration scheme used by CAN,
and significantly degrading the overall real-time
performance capability of the network.

Finally, our case study confirmed that when priority
queues are used, appropriate priority assignment is vital to
obtaining effective real-time performance from Controller
Area Networks. Using a random priority assignment policy,
representative of priority assignment based on the type of
data and ECU, or indeed any other metric that has little or
no correlation with transmission deadlines, increased the
minimum bus speed required from 277 kBit/s to 731 kBit/s,
and reduced the maximum bus utilisation from 84.5% to just
32.0%, as compared to an optimal priority assignment
policy. We therefore strongly recommend that in Controller
Area Networks, message IDs are assigned using an optimal
or near optimal priority ordering reflecting message
transmission deadlines.

Acknowledgements
The authors would like to thank Alan Burns for his

comments on a previous draft of this paper. This work was
partially funded by the UK EPSRC funded Tempo project
(EP/G055548/1), the EU funded ArtistDesign Network of
Excellence, the German Research Foundation, and the Carl
Zeiss Foundation.

8. References
[1] N.C. Audsley, "Optimal priority assignment and feasibility of static
priority tasks with arbitrary start times", Technical Report YCS 164, Dept.
Computer Science, University of York, UK, Dec. 1991.
[2] N.C. Audsley, “On priority assignment in fixed priority scheduling”,
Information Processing Letters, 79(1): 39-44, May 2001.
[3] Bosch. “CAN Specification version 2.0”. Robert Bosch GmbH,
Postfach 30 02 40, D-70442 Stuttgart, 1991.
[4] I. Broster, A. Burns , G. Rodríguez-Navas, “Probabilistic Analysis of
CAN with Faults”, In Proceedings of the 23rd IEEE Real-Time Systems
Symposium (RTSS'02), pp. 269-278, December, 2002.
[5] I. Broster and A. Burns. “An Analysable Bus-Guardian for Event-
Triggered Communication”. In Proceedings of the 24th Real-time Systems
Symposium, pp. 410-419, IEEE Computer Society Press, December 2003.
[6] I. Broster. “Flexibility in dependable communication”. PhD Thesis,
Department of Computer Science, University of York, UK, August 2003.
[7] I. Broster, A. Burns and G. Rodriguez-Navas, “Timing analysis of
real-time communication under electromagnetic interference”, Real-Time
Systems, 30(1-2) pp. 55-81, May 2005.
[8] L. Casparsson, A. Rajnak, K. Tindell, and P. Malmberg. “Volcano - a
revolution in on-board communications”. Volvo Technology Report,
1998/1.
[9] chronSIM. http://www.inchron.com
[10] R.I. Davis, A. Burns, R.J. Bril, and J.J. Lukkien. “Controller Area
Network (CAN) Schedulability Analysis: Refuted, Revisited and Revised”.
Real-Time Systems, Volume 35, Number 3, pp. 239-272, April 2007.
[11] R.I. Davis, A. Zabos, A. Burns, "Efficient Exact Schedulability Tests
for Fixed Priority Real-Time Systems”. IEEE Transactions on Computers
IEEE Computer Society Digital Library. IEEE Computer Society,
September 2008 (Vol. 57, No. 9) pp. 1261-1276.
[12] R.I. Davis, A. Burns "Robust priority assignment for messages on
Controller Area Network (CAN)”. Real-Time Systems, Volume 41, Issue 2,
pages 152-180, February 2009.
[13] R.I. Davis and A. Burns, "Improved Priority Assignment for Global
Fixed Priority Pre-emptive Scheduling in Multiprocessor Real-Time
Systems”. Real-Time Systems, Volume 47, Issue 1, pages 1-40, 2010.
[14] M. Di Natale, “Understanding and using the Controller Area network”
inst.eecs.berkeley.edu/~ee249/fa08/Lectures/ handout_canbus2.pdf.
[15] M. Di Natale, “Evaluating message transmission times in Controller
Area Networks without buffer preemption”, In 8th Brazilian Workshop on
Real-Time Systems, 2006.
[16] J. Ferreira, A. Oliveira, P. Fonseca, J. A. Fonseca. “An Experiment to
Assess Bit Error Rate in CAN”. In Proceedings of 3rd International
Workshop of Real-Time Networks (RTN2004), pp. 15-18, Cantania, Italy.
June 2004.
[17] H. Hansson, T. Nolte, C. Norstrom, and S. Punnekkat. “Integrating
Reliability and Timing Analysis of CAN-based Systems”. IEEE
Transaction on Industrial Electronics, 49(6): 1240-1250, December 2002.
[18] D.A. Khan, R.J. Bril, N. Navet, "Integrating hardware limitations in
CAN schedulability analysis," IEEE International Workshop on Factory
Communication Systems (WFCS) pp.207-210, 18-21 May 2010. doi:
10.1109/WFCS.2010.5548604.
[19] ISO 11898-1. “Road Vehicles – interchange of digital information –
controller area network (CAN) for high-speed communication”, ISO
Standard-11898, International Standards Organisation (ISO), Nov. 1993.
[20] S. Kollmann, V. Pollex, K. Kempf, F. Slomka, M. Traub, T. Bone, J.
Becker (2010). "Comparative Application of Real-Time Verification
Methods to an Automotive Architecture, " In Proceedings of the 18th
International Conference on Real-Time and Network Systems, Nov. 2010.
[21] S. Martin, P. Minet, L. George, “Non pre-emptive Fixed Priority
scheduling with FIFO arbitration: uniprocessor and distributed cases”,
Technical Report No. 5051, INRIA Rocquencourt, Dec. 2007.
[22] A. Meschi, M. DiNatale, and M. Spuri, “Priority inversion at the
network adapter when scheduling messages with earliest deadline
techniques,” in Proceedings of Euromicro Conference on Real-Time
Systems, June 12-14 1996.
[23] T. Nolte. “Share-driven scheduling of embedded networks”, PhD
Thesis, Malardalen University Press, May 2006.

[24] T. Nolte, H. Hansson, and C. Norstrom. “Minimizing CAN response-
time analysis jitter by message manipulation”. In Proceedings 8th IEEE
Real-Time and Embedded Technology and Applications Symposium
(RTAS'02), pp 197-206, September 2002.
[25] T. Nolte, H. Hansson, and C. Norstrom, "Probabilistic worst-case
response-time analysis for the Controller Area Network." In Proceedings of
the 9th IEEE Real-Time and Embedded Technology and Applications
Symposium (RTAS'03), pp. 200-207, May 2003.
[26] J. Rufino, P. Verissimo, G. Arroz, C. Almeida, and L. Rodrigues.
“Fault-tolerant broadcasts in CAN”. In Digest of Papers, The 28th IEEE
International Symposium on Fault-Tolerant Computing (FTCS’98). pp.
150-159, June 1998.
[27] STMicroelectronics, “AN1077 Application note. Overview of
enhanced CAN controllers for the ST7 and ST9 MCUS” 2001 (available
from www.st.com).
[28] K.W. Tindell and A. Burns. “Guaranteeing message latencies on
Controller Area Network (CAN)”, In Proceedings of 1st International CAN
Conference, pp. 1-11, September 1994.
[29] K.W. Tindell, A. Burns, and A. J. Wellings. “Calculating Controller
Area Network (CAN) message response times”. Control Engineering
Practice, 3(8): 1163-1169, August 1995.
[30] K.W. Tindell, H. Hansson, and A.J. Wellings. “Analysing real-time
communications: Controller Area Network (CAN)”. In Proceedings 15th
Real-Time Systems Symposium (RTSS’94), pp. 259-263. IEEE Computer
Society Press, December 1994.
[31] A. Zuhily and A. Burns, “Optimality of (D-J)-Monotonic Priority
Assignment”. Information Processing Letters, no. 103, pp. 247-250, Apr.
2007.

Appendix A: Transmission deadline monotonic
priority assignment

In this appendix, we show that transmission deadline
monotonic priority ordering is optimal, with respect to the
sufficient schedulability test given in Section 4.5 (i.e.
Algorithm 1 with lines 11-14 omitted) when all messages
have the same worst-case transmission time (C).
Corollary A.1: For networks where all of the message
transmission times are the same, then the blocking factor,
used in both the sufficient schedulability test given by Davis
et al. in [10] (recapitulated in Section 3) and the sufficient
schedulability tests given in Section 4 of this paper, is the
same for every message, and is equal to the worst-case
message transmission time (C).
Lemma A.1: For a set of messages that all have the same
worst-case transmission time (C). Let i and j be the indices
of two adjacent priority bands in a priority ordering that is
schedulable according to the sufficient schedulability test
given in Section 4.5 (i.e. Algorithm 1 with lines 11-14
omitted). Assume that i is of higher priority than j, and that
the transmission deadline XE of the priority-queued
message / FIFO group (X) initially in priority band i is
longer than the transmission deadline YE of priority-queued
message / FIFO group (Y) initially in priority band j. If the
priorities of X and Y are swapped, so that X is in the lower
priority band j, and Y is in the higher priority band i, then X
remains schedulable.
Proof: Let jYR , be the response time of Y in priority band j,
(with X in the higher priority band i). Similarly, let jXR , be
the response time of X in priority band j, (with Y in the
higher priority band i). As Y is schedulable when it is in the
lower priority band, then, YjY ER ≤, , thus as XY EE < , it

follows that to prove the Lemma, we need only show that
jYjX RR ,, ≤ . Further, as all messages have the same worst-

case transmission time (C), and so the response times are
equal to the queuing delays plus C, we need only compare
the two queuing delays, referred to for convenience as jXw ,
and jYw , . Below we give formulae for jXw , and jYw ,
based on (5) & (6) and (8) & (9). We have separated out the
interference terms for X and Y. Further, we use)(jB to
represent the blocking factor, and),(wiI to represent the
interference from messages in higher priority bands.

CCBjB j ==),max()(

C
T
Jw

wiI
ihpk k

bitk
n

∑
∈∀ ⎥

⎥
⎥

⎤

⎢
⎢
⎢

⎡ ++
=

)(
),(

τ

(i) Queuing delay jXw , (simplified by cancelling out the
blocking factor C and the –C from (CC SUM

X −)) is given
by:

),(,1
, wiIC

T
Jw

Cw
Yk k

bitk
n

jXSUM
X

n
jX +

⎥
⎥
⎥

⎤

⎢
⎢
⎢

⎡ ++
+= ∑

∈∀

+ τ
 (A.1)

Note, in (A.1), if X is a priority-queued message, then
CC SUM

X = , also, if Y is a priority-queued message, then
there is only one message Yk ∈ present in the summation
term; similarly for (A.2) below.
(ii) Queuing delay jYw , :

),(,1
, wiIC

T
Jw

Cw
Xk k

bitk
n

jYSUM
Y

n
jY +

⎥
⎥
⎥

⎤

⎢
⎢
⎢

⎡ ++
+= ∑

∈∀

+ τ
 (A.2)

We can simplify (A.2) by noting that as Y is schedulable
according to the assumption given in the Lemma, then

Xk
kk

Xk
kkXYjY JTJDEECw

∈∀∈∀
−≤−=<≤+)min()min(,

Hence, at most one instance of each message in X can
contribute to the interference term and so we have:

),(1
, wiICCw SUM

X
SUM
Y

n
jY ++=+ (A.3)

Now let us consider the iterative solution to (A.1), for all
values of

bit
Xk

kkYjX JTCEw τ−−<−≤
∈∀

)min(, ,

only one instance of each message in Y can contribute to the
interference term. Hence for CEw YjX −≤, , (A.1) reduces
to:

),(1
, wiICCw SUM

Y
SUM
X

n
jX ++=+ (A.4)

Equations (A.3) and (A.4) are the same, hence as we
know that (A.3) converges on a value CEw YjY −≤, , then
(A.4) must also converge on the same value, hence

jYjX ww ,, = , and so jYjX RR ,, = □
Theorem 3: Transmission deadline monotonic ordering is
an optimal policy for assigning priority-queued messages
and FIFO groups to priority bands, with respect to the
sufficient schedulability test given in Section 4.5 (Algorithm
1 with lines 11-14 omitted), provided that all messages have
the same worst-case transmission time.
Proof: We prove the theorem by showing that any ordering

Q of priority bands that is schedulable according to the
sufficient schedulability test given in Section 4.5 can be
transformed into a transmission deadline monotonic priority
ordering without any loss of schedulability.
 Let i and j be the indices of two adjacent priority bands
in an ordering that is schedulable according to the sufficient
schedulability test given in Section 4.5. Assume that i is of
higher priority than j, and that the transmission deadline

XE of the priority-queued message / FIFO group (X) in
priority band i is longer than the transmission deadline YE
of the priority-queued message / FIFO group (Y) in priority
band j.

We now consider what happens to the schedulability of
all of the messages in the system when we swap the
priorities of X and Y (i.e. when we place X in the lower
priority band j, and Y in the higher priority band i) to create
priority ordering Q’. There are four cases to consider:
1. Priority bands with higher priority than i ()(ihph∈):

Inspection of (5) & (6) and (8) & (9) shows that the
response times of each of the messages in these bands is
the same in priority ordering Q’ as it is in priority
ordering Q. This is because the priority ordering of the
messages with higher priorities than h is unchanged and
the direct blocking factor due to the set of messages
with lower priority than h depends only on the set of
messages)(hlp and not on their relative priority
ordering, and is in any case equal to C for all priority
bands. All of the messages in bands with priorities
higher than j are therefore schedulable in priority
ordering Q’.

2. Priority band i: Y was previously schedulable in the
lower priority band j. Shifting Y up in priority above X
results in no change to the blocking factor, but removes
interference due to X, hence the worst-case response
time for Y can be no greater than it was in priority
ordering Q, Y is therefore schedulable in priority
ordering Q’.

3. Priority band j: Lemma A.1 proves that X is
schedulable in priority band j.

4. Priority bands with lower priority than j ()(jhpl ∈):
Inspection of (5) & (6) and (8) & (9) shows that the
response times of each of these messages is the same in
priority ordering Q’ as it is in priority ordering Q. This
is because the set of messages in higher priority bands
is the same in both orderings, and the interference due
to higher priority messages does not depend on their
relative priority ordering. Further, the blocking factor
due to the set of messages with lower priority than l
depends only on the set of messages)(llp and not on
their relative priority ordering, and is in any case equal
to C for all priority bands. All of the messages in bands
with priorities lower than j are therefore schedulable in
priority ordering Q’.

By repeatedly swapping the priorities of any two
adjacent priority bands that are not in transmission deadline
monotonic priority order, any arbitrary schedulable priority
ordering Q can be transformed into a transmission deadline

monotonic priority ordering without any loss of
schedulability □.
Corollary A.2: For the case where all messages have the
same worst-case transmission time, transmission deadline
monotonic ordering is an optimal priority assignment policy
with respect to the sufficient schedulability test given by
Davis et al. in [10] (recapitulated in Section 3).

Note that transmission deadline (i.e. Deadline minus
Jitter) monotonic priority ordering has also been shown to
be an effective heuristic policy in the general case with
mixed length messages [12].

