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Abstract 
Controller Area Network (CAN) is widely used in 

automotive applications. Existing schedulability analysis for 
CAN is based on the assumption that the highest priority 
message ready for transmission at each node on the network 
will be entered into arbitration on the bus. However, in 
practice, some CAN device drivers implement FIFO rather 
than priority-based queues invalidating this assumption. In 
this paper, we introduce response time analysis and optimal 
priority assignment policies for CAN messages in networks 
where some nodes use FIFO queues while other nodes use 
priority queues. We show, via a case study, the impact that 
FIFO queues have on the real-time performance of CAN. 

1. Introduction 
Controller Area Network (CAN) [3], [19] was designed 

as a simple, efficient, and robust, broadcast communications 
bus for in-vehicle networks. Today, typical mainstream 
family cars contain 25-35 Electronic Control Units (ECUs), 
many of which communicate using CAN. As a result of this 
wholesale adoption of CAN by the automotive industry, 
annual sales of CAN nodes (8, 16 and 32-bit micro-
controllers with on-chip CAN controllers) have grown from 
under 50 million in 1999 to around 700 million in 20071 

CAN is an asynchronous multi-master serial data bus 
that uses Carrier Sense Multiple Access / Collision 
Resolution (CSMA/CR) to determine access to the bus. The 
CAN protocol requires that nodes wait for a bus idle period 
before attempting to transmit. If two or more nodes attempt 
to transmit messages at the same time, then the node with 
the message with the lowest numeric CAN Identifier will 
win arbitration and continue to send its message. The other 
nodes will cease transmitting and must wait until the bus 
becomes idle again before attempting to re-transmit their 
messages. (Full details of the CAN physical layer protocol 
are given in [3], with a summary in [10]). In effect CAN 
messages are sent according to fixed priority non-pre-
emptive scheduling, with the identifier (ID) of each message 
acting as its priority. 
1.1. Related work 

In 1994, Tindell et al. [28], [29], [30] showed how 
research into fixed priority scheduling for single processor 
systems could be adapted and applied to the scheduling of 
messages on CAN. The analysis of Tindell et al. provided a 

                                                 
1 Figures from the CAN in Automation (CiA) website www.can-cia.org 

method of calculating the maximum queuing delay and 
hence the worst-case response time of each message on the 
network. Tindell et al. [28], [29], [30] also recognised that 
with fixed priority scheduling, an appropriate priority 
assignment policy is key to obtaining effective real-time 
performance. Tindell et al. suggested that messages should 
be assigned priorities in ‘Deadline minus Jitter’ monotonic 
priority order [31]. 

The seminal work of Tindell et al. lead to a large body of 
research into scheduling theory for CAN [4], [5], [6], [7], 
[16], [17], [23], [24], [25], [26], and was used as the basis 
for commercial CAN schedulability analysis tools [8]. 

In 2007, Davis et al. [10] found and corrected significant 
flaws in the schedulability analysis given by Tindell et al. 
[28], [29], [30]. These flaws could potentially result in the 
original analysis providing guarantees for messages that 
could in fact miss their deadlines during network operation. 
Further, Davis et al. [10] showed that the ‘Deadline minus 
Jitter’ monotonic priority ordering, claimed by Tindell et al. 
to be optimal for CAN, is not in fact optimal; and that 
Audsley’s Optimal Priority Assignment (OPA) algorithm 
[1], [2] is required in this case.  

Prior to the advent of schedulability analysis and 
appropriate priority assignment policies for CAN, message 
IDs were typically assigned simply as a way of identifying 
the data and the sending node. This meant that only low 
levels of bus utilisation, around 30%, could be obtained 
before deadlines were missed. Further, the only means of 
obtaining confidence that message deadlines would not be 
missed was via extensive testing. Using the systematic 
approach of schedulability analysis, combined with a 
suitable priority assignment policy, it became possible to 
engineer CAN based systems for timing correctness, 
providing guarantees that all messages would meet their 
deadlines, with bus utilisations of up to about 80% [12], [8]. 
1.2. Motivation 

Engineers using schedulability analysis to analyse 
network / message configurations must ensure that all of the 
assumptions of the specified scheduling model hold for their 
particular system. Specifically, when using the analysis 
given by Davis et al. in [10], it is important that each CAN 
controller and device driver is capable of ensuring that 
whenever message arbitration starts on the bus, the highest 
priority message queued at that node is entered into 
arbitration. This behaviour is essential if message 
transmission is to take place as if there were a single global 



priority queue and for the analysis to be correct. 
As noted by Di Natale [14], there are a number of 

potential issues that can lead to behaviour that does not 
match that required by the scheduling model given in [10]. 
For example, if a CAN node has fewer transmit message 
buffers than the number of messages that it transmits, then 
the following properties of the CAN controller hardware can 
prove problematic: (i) internal message arbitration based on 
transmit buffer number rather than message ID (Fujitsu 
MB90385/90387, Fujitsu 90390, Intel 87C196 (82527), 
Infineon XC161CJ/167 (82C900)); (ii) non-abortable 
message transmission (Philips 82C200) [15]; (iii) fewer than 
3 transmit buffers [22] (Philips 8xC592 (SJA1000), Philips 
82C200). CAN controllers which avoid these potential 
problems include, the Atmel AT89C51CC03 / 
AT90CAN32/64 the Microchip MPC2515, and the 
Motorola MSCAN on-chip peripheral, all of which have at 
least 3 transmit buffers, internal message arbitration based 
on message ID rather than transmit buffer number, and 
abortable message transmission. 

The CAN device driver / software protocol layer 
implementation also has the potential to result in behaviour 
which does not match that required by the standard 
scheduling model [10]. Issues include, delays in refilling a 
transmit buffer [18], and FIFO queuing of messages in the 
device driver or CAN controller (The BXCAN and BECAN 
for the ST7 and ST9 Microcontrollers from 
STMicroelectronics include hardware support for both 
priority-queued and FIFO-queued message transmission 
[27]). 

In [14], Di Natale notes that using FIFO queues in CAN 
device drivers / software protocol layers can seem an 
attractive solution “because of its simplicity and the illusion 
that faster queue management improves the performance of 
the system”. This is unfortunate, because FIFO message 
queues undermine the priority-based bus arbitration used by 
CAN. They can introduce significant priority inversion and 
result in degraded real-time performance. Nevertheless, 
FIFO queues are a reality of some commercial CAN device 
drivers / software protocol layers. 

As far as we are aware, there is no published research2 
integrating FIFO queues into response time analysis for 
CAN. This paper focuses on the issue of FIFO queues. We 
provide response time analysis and appropriate priority 
assignment policies for Controller Area Networks 
comprising some nodes that use FIFO queues and other 
nodes that use priority queues. 
1.3. Organisation 

The remainder of this paper is organised as follows: In 
section 2, we introduce the scheduling model, notation, and 
terminology used in the rest of the paper. In section 3 we 
recap on the sufficient schedulability analysis for CAN 
given in [10]. Section 4 then extends this analysis to 
networks where some nodes implement priority-based 

                                                 
2 The commercial tool NETCAR-Analyzer (www.realtimeatwork.com) 
claims to address the case of FIFO queues. 

queues while others implement FIFO queues. Section 5 
discusses priority assignment for mixed sets of FIFO-
queued and priority-queued messages. Section 6 presents 
the results of a case study exploring the impact of FIFO 
queues on message response times and network 
schedulability. Finally, section 7 concludes with a summary 
and recommendations. 

2. System model, notation and terminology 
In this section we describe a system model and notation 

that can be used to analyse the worst-case response times of 
messages on CAN. This model is based on that used in [10] 
with extensions to describe FIFO queues. 

The system is assumed to comprise a number of nodes 
(microprocessors) connected to a single CAN bus. Nodes 
are classified according to the type of message queue used 
in their device driver. Thus FQ-nodes implement a FIFO 
message queue, whereas PQ-nodes implement a priority 
queue. PQ-nodes are assumed to be capable of ensuring that, 
at any given time when bus arbitration starts, the highest 
priority message queued at the node is entered into 
arbitration. FQ-nodes are assumed to be capable of ensuring 
that, at any given time when bus arbitration starts, the oldest 
message in the FIFO queue is entered into arbitration. 

The system is assumed to contain a static set of hard 
real-time messages, each statically assigned to a single node 
on the network. Each message m has a fixed Identifier (ID) 
and hence a unique priority. As priority uniquely identifies 
each message, in the remainder of the paper we will 
overload m to mean either message m or priority m as 
appropriate. We use )(mhp  to denote the set of messages 
with priorities higher than m, and similarly, )(mlp  to denote 
the set of messages with priorities lower than m. 

Each message m has a maximum transmission time of 
mC  (see [10] for details of how to compute the maximum 

transmission time of messages on CAN, taking into account 
the number of data bytes and bit-stuffing). 

The event that triggers queuing of message m is assumed 
to occur with a minimum inter-arrival time of mT , referred 
to as the message period. Each message m has a hard 
deadline mD , corresponding to the maximum permitted 
time from occurrence of the initiating event to the end of 
successful transmission of the message, at which time the 
message data is assumed to be available on the receiving 
nodes that require it. Tasks on the receiving nodes may 
place different timing requirements on the data, however in 
such cases we assume that mD  is the shortest such time 
constraint. We assume that the deadline of each message is 
less than or equal to its period ( mm TD ≤ ). Each message m 
is assumed to be queued by a software task, process or 
interrupt handler executing on the sending node. This task is 
either invoked by, or polls for, the event that initiates the 
message, and takes a bounded amount of time, between 0 
and mJ , before the message is in the device driver queue 
available for transmission. mJ  is referred to as the queuing 
jitter of the message and is inherited from the overall 



response time of the task, including any polling delay3. The 
transmission deadline mE  of message m is given 
by mmm JDE −= , and represents the maximum permitted 
time from the message being queued at the sending node to 
it being received at other nodes on the bus. 

The maximum queuing delay mw , corresponds to the 
longest time that message m can remain in the device driver 
queue or CAN controller transmit buffers, before 
commencing successful transmission on the bus. 

In this paper4, we define the worst-case response time 
mR  of a message m as the maximum possible transmission 

delay from the message being queued until it is received at 
the receiving nodes. Hence: 

mmm CwR +=       (1) 
As noted by Broster [6], receiving nodes can access 

message m following the end of (message) frame marker 
and before the 3-bit inter-frame space. The analysis given in 
the remainder of this paper is therefore slightly pessimistic 
in that it includes the 3-bit inter-frame space in the 
computed worst-case response times. To remove this small 
degree of pessimism, it is valid to simply subtract 3 bitτ  
from the computed response time values, where bitτ is the 
transmission time for a single bit on the bus. 

A message is said to be schedulable if its worst-case 
response time is less than or equal to its transmission 
deadline )( mm ER ≤ . A system is said to be schedulable if 
all of the messages in the system are schedulable. 

The following additional notation is used to describe the 
properties of a set of messages that are transmitted by the 
same FQ-node and so share a FIFO queue. The FIFO group 

)(mM  is the set of messages that are transmitted by the FQ-
node that transmits message m. The lowest priority of any 
message in the FIFO group )(mM  is denoted by mL . 

MAX
mC  and MIN

mC  are the transmission times of the longest 
and shortest messages in the FIFO group, while SUM

mC  is 
the sum of the transmission times of all of the messages in 
the group. MIN

mE  is the shortest transmission deadline of any 
message in the group. 

We use mf  to denote the maximum buffering time from 
message m being queued until it is able to take part in 
priority-based arbitration. For a FIFO-queued message mf  
equates to the time from the message being entered into the 
FIFO queue to it becoming the oldest message in that queue. 
For a priority-queued message 0=mf . 

As well as determining message schedulability given a 
particular priority ordering, we are also interested in 
effective priority assignment policies.  
Definition 1: Optimal priority assignment policy: A priority 
assignment policy P is referred to as optimal with respect to 

                                                 
3 In the best case, the task could arrive the instant the event occurs and 
queue the message immediately, whereas in the worst-case, there could be 
a delay of up to the task’s period before it arrives and then a further delay 
of up to the task’s worst-case response time before it queues the message. 
4 Note this is a different way of defining response time to that used in [10] 
which includes queuing jitter. To compensate for not including queuing 
jitter in the response time, in this paper we compare response times with 
transmission deadlines to determine schedulability. 

a schedulability test S and a given network model, if and 
only if there is no set of messages that are compliant with 
the model that are deemed schedulable by test S using 
another priority assignment policy, that are not also deemed 
schedulable according to test S using policy P. 

We note that the above definition is applicable to both 
sufficient schedulability tests such as those given in 
Sections 3 and 4, as well as exact schedulability tests. 

3. Schedulability Analysis with Priority Queues 
In this section, we recapitulate the simple sufficient 

schedulability analysis given in [10]. For networks of PQ-
nodes, complying with the scheduling model given in 
Section 2, CAN effectively implements fixed priority non-
pre-emptive scheduling. In this case, Davis et al. [10] 
showed that an upper bound on the response time mR  of 
each message m can be found by computing the maximum 
queuing delay mw  using the following fixed point iteration: 

k
mhpk k

bitk
n
m

mm
n
m C

T
Jw

CBw ∑
∈∀

+

⎥
⎥
⎥

⎤

⎢
⎢
⎢

⎡ ++
+=

)(

1 ),max(
τ

 (2) 

where bitτ is the transmission time for a single bit, and mB  
is the blocking factor described below. Iteration starts with a 
suitable initial value such as mm Cw =0 , and continues until 
either mm

n
m ECw >++1  in which case the message is not 

schedulable, or n
m

n
m ww =+1  in which case the message is 

schedulable and its worst-case response time is given by: 

m
n
mm CwR += +1       (3) 

As CAN message transmission is non-pre-emptable, the 
transmission of a single lower priority message can cause a 
delay of up to mB  (referred to as direct blocking) between 
message m being queued and the first time that message m 
could be entered into arbitration on the bus. mB  represents 
the maximum blocking time due to lower priority messages: 

)(max
)(

k
mlpk

m CB
∈∀

=     (4) 

Alternatively, in some cases, the transmission of the 
previous instance of message m could delay transmission of 
a higher priority message causing a similar delay (referred 
to as push-through blocking5) of up to mC . Both direct and 
push-through blocking are accounted for by the 1st term on 
the RHS of (2). The 2nd term represents interference from 
higher priority messages that can win arbitration over 
message m and so delay its transmission. Note that once 
message m starts successful transmission it cannot be pre-
empted, so the message’s overall response time is simply 
the queuing delay plus its transmission time (given by (3)).  

Using (2) and (3), engineers can determine upper 
bounds6 on worst-case response times and hence the 
schedulability of all messages on a network comprising 
solely PQ-nodes. Although the analysis embodied in (2) and 
(3) is pseudo-polynomial in complexity in practice it is 
tractable on a desktop PC for complex systems with 

                                                 
5 See [10] for an explanation of why push-through blocking is important.  
6 Equation (2) is sufficient rather than exact due to the fact that push 
through blocking may not necessarily be possible. 



hundreds of messages. (A number of techniques are also 
available for increasing the efficiency of such fixed point 
iterations [11]). 

4. Schedulability Analysis with FIFO Queues 
In this section, we derive sufficient schedulability 

analysis for messages on networks with both PQ-nodes and 
FQ-nodes. The analysis we introduce is FIFO-symmetric, by 
this we mean that the same worst-case response time is 
attributed to all of the messages in a FIFO group. We note 
that FIFO-symmetric analysis incurs some pessimism in 
terms of the worst-case response time attributed to the 
higher priority messages in a FIFO group; however, in 
practice this pessimism is likely to be small. This is because 
the order in which messages are placed in a FIFO queue is 
undefined, and so in the worst case, the highest priority 
message in a FIFO group has to wait for an instance of each 
lower priority message in the group to be transmitted. 
4.1. Priority-queued messages 

We now derive an upper bound on the worst-case 
queuing delay for a priority-queued message m, in a system 
with both PQ-nodes and FQ-nodes. 

In the case of systems with only PQ-nodes, Davis et al. 
[10] showed that the worst-case queuing delay for a priority-
queued message m occurs for an instance of that message 
queued at the beginning of a priority level-m busy period7 
that starts immediately after the longest lower priority 
message begins transmission. Further, this maximal busy 
period begins with a so-called critical instant where 
message m is queued simultaneously with all higher priority 
messages and then each of these higher priority messages is 
subsequently queued again after the shortest possible time 
interval. Equation (2) provides a sufficient upper bound on 
this worst-case queuing delay.  

The analysis embodied in (2) assumes that higher 
priority messages are able to compete for access to the bus 
(i.e. enter bus arbitration) as soon as they are queued; 
however, this assumption does not hold for FIFO-queued 
messages. Instead a FIFO-queued message k may have to 
wait for up to a maximum time kf  before it becomes the 
oldest message in its FIFO queue, and can enter priority-
based arbitration. A FIFO-queued message k can therefore 
be thought of as becoming priority queued after an 
additional delay of kf . Stated otherwise, in terms of its 
interference on lower priority messages, a FIFO-queued 
message k can be viewed as if it were a priority-queued 
message with its jitter increased by kf . (Note, we will 
return to how kf  is calculated for FIFO-queued messages 
later). An upper bound on the queuing delay for a priority-
queued message m can therefore be calculated via the fixed 
point iteration given by (5). 

                                                 
7 A priority level-m busy period is a contiguous interval of time during 
which there is always at least one message of priority m that has not yet 
completed transmission. 
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As with (3), iteration starts with a suitable initial value such 
as mm Cw =0 , and continues until either mm

n
m ECw >++1  in 

which case the message is not schedulable, or n
m

n
m ww =+1  in 

which case its response time is given by: 

m
n
mm CwR += +1       (6) 

Note that the queuing delay and response time are only 
valid with respect to the values of kf  used. We return to 
this point later. 
4.2. FIFO-queued messages 

We now derive an upper bound on the worst-case 
queuing delay for a FIFO-queued message m, in a system 
with both PQ-nodes and FQ-nodes. 

As our analysis is FIFO-symmetric, we will attribute the 
same upper bound response time to all of the messages sent 
by the same FQ-node. Our analysis derives this sufficient 
response time by considering an arbitrary message from the 
FIFO group )(mM . For the sake of simplicity, we will still 
refer to this message as message m; however our analysis 
will be independent of the exact choice of message from the 
FIFO group. At each stage in our analysis we will make 
worst-case assumptions, ensuring that the derived response 
time is a correct upper bound. For example, we will frame 
our calculation of the queuing delay mw  by assuming the 
lowest priority mL  of any message in the FIFO group. 
 As every message j in )(mM  has jj TD ≤  then in a 
schedulable system, when any arbitrary message from 

)(mM  is queued, there can be at most one instance of each 
of the other messages in )(mM  ahead of it in the FIFO 
queue. The maximum transmission time of these messages, 
and hence the maximum interference on an arbitrary 
message m, due to messages sent by the same FQ-node, is 
therefore upper bounded by: 

MIN
m

SUM
m CC −       (7) 

Indirect blocking could also occur due to the non-pre-
emptive transmission of a previous instance of any one of 
the messages in )(mM . This indirect blocking is upper 
bounded by MAX

mC . As an alternative, direct blocking could 
occur due to transmission of any of the messages of lower 
priority than mL  sent by other nodes. Finally, in terms of 
interference from higher priority messages sent by other 
FQ-nodes and PQ-nodes, the argument about increased jitter 
made in the previous section applies, and so the interference 
term from (5) can again be used. 

Considering all of the above, an upper bound on the 
queuing delay for an arbitrary message m belonging to the 
FIFO group )(mM  is given by the solution to the following 
fixed point iteration: 
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Iteration starts with a value of ),max(0 MAX
mLm CBw

m
=  



)( MIN
m

SUM
m CC −+  and continues until either 

MIN
m

MIN
m

n
m ECw >++1  in which case the set of messages 

)(mM  is declared unschedulable, or n
m

n
m ww =+1  in which 

case all of the messages in )(mM  are deemed to have a 
response time of: 

MIN
m

n
mm CwR += +1       (9) 

Equations (8) and (9) make the worst-case assumption 
that interference from higher priority messages can occur up 
to a time MIN

mC  before transmission of message m 
completes. We note that this is a pessimistic assumption 
with respect to those messages belonging to the FIFO group 
that have transmission times8 longer than MIN

mC . 
4.3. Schedulability test with arbitrary priorities  

We now derive a schedulability test from (5) & (6) and 
(8) & (9). The basic idea is to avoid having to consider the 
potentially complex interactions between the FIFO queues 
of different nodes. This is achieved by abstracting the FIFO 
behaviour of messages sent by other nodes as simply 
additional jitter kf  before each message k can enter priority 
based arbitration on the bus. When calculating the response 
time of a given message, we therefore need only consider 
the behaviour of the node that sends that message (PQ-node 
or FQ-node) and the buffering delays of messages sent by 
other nodes9.  

An upper bound on the buffering time mf  of a FIFO-
queued message m is: 

MIN
mmm CRf −=        (10) 

When the priorities of messages in different FIFO 
groups are interleaved, this leads to an apparently circular 
dependency in the response time calculations. For example, 
let m and k be the priorities of messages in two different 
FIFO groups with interleaved priorities (i.e. )( mLhpk ∈  
and )( kLhpm∈ ). The response time kR  of message k, and 
hence its buffering time kf , depend on the buffering time 

mf  of message m as )( kLhpm∈ ; however, the buffering 
time mf  of message m depends on its response time mR  
which in turn depends on kf  as )( mLhpk ∈ . This apparent 
problem can be solved by noting that the response times 
calculated via (5) & (6) and (8) & (9) are monotonically 
non-decreasing with respect to the buffering times, and that 
the buffering times given by (10) are monotonically non-
decreasing with respect to the response times calculated via 
(8) & (9). Hence by using an outer loop iteration, and 
repeating response time calculations until the buffering 
times no longer change, we can compute correct upper 
bound response times and hence schedulability for all 
messages, as shown in Algorithm 1. (Note, to speed up the 
schedulability test, for each message m, the value of mw  

                                                 
8 In practice all messages sent on CAN often have the maximum length (8 
data bytes) so as to minimise the relative overheads of the other fields in 
the message (ID, CRC etc). In this case, no additional pessimism is 
introduced by this assumption. 
9 If the message belongs to a PQ-node, then the other messages sent by the 
same node have buffering delays of zero, if it belongs to an FQ-node, then 
the buffering delays for other messages sent by the same node are not 
needed in the calculations (8) &(9). 

computed on one iteration of the while loop (lines 3 to 23) 
can be used as an initial value on the next iteration). 

1 repeat = true 
2 initialise all kf  = 0 
3 while(repeat){ 
4 repeat = false 
5 for each priority m, highest first{ 
6  if (m is FIFO-queued){ 
7   calc mR  according to Eqs (8) & (9) 
8   if( mR > MIN

mE ) { 
9    return unschedulable 
10   } 
11   if( mf  mw=! ){ 
12    mm wf =  
13    repeat = true; 
14   } 
15  } 
16  else { 
17   calc mR  according to Eqs (5) & (6)  
18   if( mR > MIN

mE ) { 
19    return unschedulable 
20   } 
21  } 
22 } 
23 } 
24 return schedulable 
Algorithm 1: FIFO Symmetric Schedulability Test 

Algorithm 1 provides a sufficient schedulability test for 
FIFO-queued and priority-queued messages in any arbitrary 
priority ordering. 
4.4. Partial priority ordering with a FIFO group 

In this section, we consider an appropriate priority 
ordering for messages within a FIFO group. 
Definition 2: A FIFO-adjacent priority ordering is any 
priority ordering whereby all of the messages sharing a 
FIFO queue are assigned adjacent priorities. 
Theorem 1: If a priority ordering Q exists that is 
schedulable according to the FIFO-symmetric schedulability 
analysis of Algorithm 1 then a schedulable FIFO-adjacent 
priority ordering P also exists. 
Proof: Let m be a FIFO-queued message that is not the 
lowest priority message in its FIFO group. Now consider a 
priority transformation whereby message m is shifted down 
in priority so that it is at a priority level immediately above 
that of the lowest priority message in its FIFO group. We 
will refer to the old priority ordering as Q and the new 
priority ordering as Q’. 

We observe from (5) and (8), that given the same fixed 
set of buffering times kf , then (i) the response time 
computed for message m is the same for both priority 
orderings, and (ii) the response times computed for all other 
messages are no larger in priority ordering Q’ than they are 
in priority ordering Q. Due to the mutual monotonically 
non-decreasing relationship between message buffering 
times and response times, and the fact that Algorithm 1 



starts with all the buffering times set to zero, this means that 
on every iteration of Algorithm 1, the response times and 
buffering times computed for each message under priority 
ordering Q’ are no larger than those computed on the same 
iteration for priority ordering Q. Hence if priority ordering 
Q is schedulable, then so is priority ordering Q’. 

Applying the priority transformation described above to 
every FIFO-queued message that is not the lowest priority 
message in its FIFO group transforms any schedulable 
priority ordering Q into a FIFO-adjacent priority ordering P, 
without any loss of schedulability □ 
Theorem 1 tells us that regardless of the priority assignment 
applied to priority-queued messages, we should ensure that 
all of the messages that share a single FIFO queue have 
adjacent priorities. In terms of CAN message IDs we note 
that this does not require that consecutive values are used 
for the IDs, only that there is no interleaving with respect to 
the priorities of other messages. In practice message IDs can 
be chosen to meet these requirements, while also providing 
appropriate bit patterns for message filtering. 
4.5. Schedulability test FIFO-adjacent priorities 

In this section, we derive an improved schedulability 
test that is only valid for FIFO-adjacent priority orderings.  

Recall that Davis et al. [10] showed that the worst-case 
queuing delay for a priority-queued message m occurs 
within the priority level-m busy period that starts with a 
critical instant. Provided that a FIFO-adjacent priority 
ordering is used, then the same situation also represents the 
worst-case scenario when higher priority messages are sent 
by either PQ-nodes or FQ-nodes. This can be seen by 
considering the interference on a priority-queued message m 
from a higher priority FIFO-queued message k. As message 
k is of higher priority than message m, then so are all of the 
other messages in the same FIFO group (i.e. )(kM ). Thus 
any message in )(kM  that is queued prior to the start of 
transmission of message m will be sent on the bus before 
message m, irrespective of the order in which the messages 
in )(kM  are placed in the FIFO queue. In effect all of the 
additional jitter on message k is already accounted for by 
interference on message m from other messages in the same 
FIFO group ( )(kM ). In this case, there is no additional 
jitter on message k caused by messages of lower priority 
than m. Hence for each FIFO message k, we can set kf  = 0, 
and use (5) & (6) to calculate the queuing delay and worst-
case response time of each message m. The same argument 
applies when we consider the schedulability of a FIFO-
queued message m. In this case we can use (8) & (9) to 
calculate the queuing delay and worst-case response time, 
with all buffering times kf  = 0. Further, as the buffering 
times are all fixed at zero, a single pass over the priority 
levels is all that is needed to determine schedulability. In 
other words, lines 11-14 of Algorithm 1 can be omitted 
when considering FIFO-adjacent priority orderings. This 
revised schedulability test therefore dominates the test given 
in Section 4.3 (i.e. Algorithm 1 with lines 11-14 present). 

The simplified analysis given in this section is similar to 
that provided for FP/FIFO scheduling of flows by Martin et 

al. (Lemma 3 in [21]). We note however, that the analysis 
given in [21] suffers from the same flaw as the analysis of 
Tindell et al. [28], [29], [30], in that it does not correctly 
account for the effect of push-through blocking. 

5. Priority Assignment Policies 
The schedulability test presented in Section 4.5 is 

applicable irrespective of the overall priority ordering, 
provided that messages sharing the same FIFO queue are 
assigned adjacent priorities. Choosing an appropriate 
priority ordering among the priority-queued messages and 
the FIFO groups is however an important aspect of 
achieving overall schedulability and hence effective real-
time performance. 

In this section, we consider the assignment of messages 
to priority bands, where a priority band comprises either a 
single priority level containing one priority-queued 
message, or a number of adjacent priority levels containing 
a FIFO group of messages. We derive priority assignment 
policies that are optimal with respect to the schedulability 
analysis given in Section 4.5. 
5.1. Optimal priority assignment 

Davis et al. [10], showed that, assuming solely priority 
queuing, Audsley’s Optimal Priority Assignment (OPA) 
algorithm [1], [2] provides the optimal priority assignment 
for CAN messages. We now show that with an appropriate 
modification to handle FIFO groups, Audsley’s algorithm is 
also optimal with respect to the schedulability test given in 
Section 4.5. The pseudo code for this OPA-FP/FIFO 
algorithm is given in Algorithm 2. Note that only one 
message from each FIFO group is considered in the initial 
list, as once this message is assigned to a priority band, then 
so are the other messages in the same FIFO group. 

for each priority band k, lowest first 
{ 

for each message msg in the initial list { 
  if msg is schedulable in priority band k according to 

  schedulability test S with all unassigned priority- 
  queued messages / other FIFO groups assumed to be 
  in higher priority bands { 

   assign msg to priority band k 
   if msg is part of a FIFO group { 
    assign all other messages in the FIFO group 

    to adjacent priorities within  priority band k 
   }  
   break (continue outer loop) 
  } 
} 
 return unschedulable 

} 
return schedulable 

Algorithm 2: Optimal Priority Assignment 
(OPA-FP/FIFO) 

In [13] Davis and Burns showed that Audsley’s OPA 
algorithm is optimal with respect to any schedulability test 
that meets three specific Conditions. According to Theorem 
1, we need only consider the priority bands assigned to each 
priority-queued message, and each FIFO group (as all 



messages in the group have adjacent priorities in an optimal 
priority ordering). We therefore re-state these three 
Conditions in the context of priority-queued messages and 
FIFO groups. 

The three Conditions refer to properties or attributes of 
the messages. Message properties are referred to as 
independent if they have no dependency on the priority 
assigned to the message. For example the longest 
transmission time, deadline, and minimum inter-arrival time 
of a message are all independent properties, while the worst-
case response time typically depends on the message’s 
priority and so is a dependent property. 
Condition 1: The schedulability of a message / FIFO group 
identified by m, may, according to test S, depend on any 
independent properties of other messages / FIFO groups in 
higher priority bands than m, but not on any properties of 
those messages / FIFO groups that depend on their relative 
priority ordering. 
Condition 2: The schedulability of a message / FIFO group 
identified by m may, according to test S, depend on any 
independent properties of the messages / FIFO groups in 
lower priority bands than m, but not on any properties of 
those messages / FIFO groups that depend on their relative 
priority ordering. 
Condition 3: When the priorities of any two adjacent 
priority bands are swapped, then the message / FIFO group 
being assigned the higher priority band cannot become 
unschedulable according to test S, if it was previously 
schedulable in the lower priority band. (As a corollary, the 
message / FIFO group being assigned the lower priority 
band cannot become schedulable according to test S, if it 
was previously unschedulable in the higher priority band). 
Theorem 2: The OPA-FP/FIFO algorithm is an optimal 
priority assignment algorithm with respect to the FIFO-
symmetric schedulability test of Section 4.5 (Algorithm 1 
with lines 11-14 omitted). 
Proof: It suffices to show that Conditions 1-3 hold with 
respect to the schedulability test given by Algorithm 1 with 
lines 11-14 omitted. 
Condition 1: Inspection of (5) & (6) and (8) & (9), assuming 
all kf  are fixed at zero, shows that the response time of 
each message m is dependent on the set of messages in 
higher priority bands, but not on their relative priority 
ordering. 
Condition 2: Inspection of (5) & (6) and (8) & (9), shows 
that the response time of each message m is dependent on 
the set of messages in lower priority bands via the direct 
blocking term, but not on their relative priority ordering. 
Condition 3: Inspection of (5) & (6) and (8) & (9), assuming 
all kf  are fixed at zero, shows that increasing the priority 
band of message m cannot result in a longer response time. 
This is because although the direct blocking term can get 
larger with increasing priority this is always counteracted by 
a decrease in interference that is at least as large; hence the 
length of the queuing delay cannot increase with increasing 
priority, and so neither can the response time □ 

For N priority-queued messages / FIFO groups, the 
OPA-FP/FIFO algorithm performs at most N(N-1)/2 
schedulability tests and is guaranteed to find a schedulable 
priority assignment if one exists. It does not however 
specify an order in which messages should be tried in each 
priority band. This order heavily influences the priority 
assignment chosen if there is more than one ordering that is 
schedulable. In fact, a poor choice of initial ordering can 
result in a priority assignment that leaves the system only 
just schedulable. We suggest that, as a useful heuristic, 
priority-queued messages and FIFO groups are tried at each 
priority level in order of transmission deadline (i.e. mE  or 

MIN
mE ), largest value first. This will result in transmission 

deadline (i.e. deadline minus jitter) monotonic priority 
ordering if that ordering is schedulable. Alternatively, 
approaches which result in a robust priority assignment can 
be developed from the techniques described in [12]. 
5.2. Transmission deadline monotonic priority 

assignment 
In industrial practice, CAN configurations are often 

designed such that all of the messages are of the same 
maximum length (8 data bytes). This is done to ameliorate 
the effects of the large overhead of the other fields 
(arbitration, CRC etc) in each message. 
Theorem 3: Transmission deadline monotonic ordering is 
an optimal policy for assigning priority-queued messages 
and FIFO groups to priority bands, with respect to the 
sufficient schedulability test given in Section 4.5 (Algorithm 
1 with lines 11-14 omitted), provided that all messages have 
the same worst-case transmission time.  
Proof: See Appendix A. 
5.3. Priority inversion 

All of the messages in a FIFO group need to have 
sufficiently high priorities that the message with the shortest 
transmission deadline in the group can still meet its 
deadline. We have shown that with the FIFO-symmetric 
schedulability analysis introduced in this paper, the most 
effective way to achieve this is to assign adjacent priorities 
to all of the messages in a FIFO group. Despite this, we note 
that the use of FIFO queues still typically results in priority 
inversion with respect to the priority assignment that would 
be used if all nodes implemented priority queues. 

The problem of priority inversion can be seen by 
considering transmission deadline monotonic priority 
ordering, see Figure 1 below. With only PQ-nodes, the 
priority assigned to each message would depend only on its 
transmission deadline, with a longer deadline implying 
lower priority. With FIFO queues, there are two forms of 
priority inversion. Firstly, within the FIFO queue, messages 
with longer transmission deadlines can enter the queue 
before, and so be transmitted ahead of, messages with 
shorter transmission deadlines. Secondly, all of the 
messages in a FIFO group effectively obtain priorities based 
on the shortest transmission deadline of any message in that 
group. This has the effect of creating priority inversion with 
respect to priority-queued messages with transmission 



deadlines between the maximum and minimum transmission 
deadlines of messages in the FIFO group. This is illustrated 
in Figure 1, where messages causing priority inversion are 
shaded in grey. 

PQ-msg1: E = 5 

FQ-group1: EMIN = 10 
FQ-msg1: E = 10

FQ-group2: EMIN = 50 

PQ-msg2: E = 10 

PQ-msg3: E = 20 

PQ-msg4: E = 50 

PQ-msg5: E = 100 

PQ-msg6: E = 250 

PQ-msg7: E = 250 

PQ-msg8: E = 500 

FQ-msg2: E = 25
FQ-msg3: E = 100

FQ-msg4: E = 50
FQ-msg5: E = 100
FQ-msg6: E = 1000
FQ-msg7: E = 1000
FQ-msg8: E = 1000

Higher 
priority

Lower 
priority

FIFO group1

FIFO group2

 
Figure 1: Priority ordering 

In Figure 1, observe that the messages within each 
FIFO group also have their priorities assigned according to 
transmission deadline monotonic priority assignment. We 
recommend this approach as although it does not alter the 
sufficient worst-case response times of the messages as 
calculated by our analysis, in practice it could result in 
lower actual worst-case response times for those messages 
in the group that have shorter transmission deadlines. 

6. Case Study: Automotive 
To show that our priority assignment policies and 

schedulability analysis work with a real application we 
analysed a CAN bus architecture from the automotive 
domain, first presented in [20]. Figure 2 shows this 
architecture. The system consists of a 500 kBit/s CAN bus 
connecting 10 ECUs. There are a total of 85 messages sent 
on the bus. The number of messages sent by each ECU is 
given by the annotations in Figure 2. All messages are sent 
strictly periodically and have no offsets with respect to each 
other. We assumed that the queuing jitter for each message 
was 1% of its period.  

 
Figure 2: CAN bus architecture 

We compared five different configurations of the system: 
Expt. 1: All ECUs use priority queues. 
Expt. 2: ECU3 and ECU6 use FIFO queues and the 

remaining ECUs use priority queues. 
Expt. 3: All ECUs use FIFO queues. 
Expt. 4: All ECUs use priority queues, but the priority 

ordering is that established by Expt 3. 
Expt. 5: All ECUs use priority queues, but the priority 

ordering used is random. 

In each experiment we determined the lowest bus speed 
commensurate with a schedulable system. The minimum 
bus speed was found by a binary search with the message 
priorities assigned according to the OPA-FP/FIFO algorithm 
(Algorithm 2) using transmission deadline monotonic 
priority ordering as the reverse ordering for the initial list. 
Based on the priority ordering obtained, we analysed and 
simulated the system assuming a 500 kBit/s bus. The 
simulated network operating time was 1 hour. We used the 
commercial simulator chronSIM from Inchron [9] to 
produce the simulation results. 

There are four lines plotted on each of the graphs. The 
lines give the following information for each message: (i) 
transmission deadline; (ii) worst-case response time 
computed using the analysis given in Section 4.5, assuming 
a 500Kbit/s bus; (iii) maximum observed response time 
found by simulation, assuming a 500Kbit/s bus, and (iv) 
worst-case response time computed using the analysis given 
in Section 4.5, assuming the minimum schedulable bus 
speed for the configuration. All of this data is plotted in ms 
on the y-axis using a logarithmic scale. The x-axis on the 
graphs represents the priority order of the messages. Hence 
data for the message assigned the highest priority in a 
particular configuration appears on the LHS of the graph, 
while data for the lowest priority message appears on the 
RHS. Note the priority order is different in each experiment. 

Figure 3 depicts the results of Expt. 1, with all ECUs 
using priority queues. In this case, the minimum bus speed 
was 277 kBit/s, and the corresponding bus utilisation 84.5%. 
We observe that with this bus speed, the 26th highest priority 
message only just meets its deadline. We observe that the 
results of analysis and simulation for a 500 kBit/s bus are 
close together. This is because the messages have no offsets, 
and all of the ECUs used priority-based queues, hence there 
is very little pessimism in the analysis, and the simulation 
captures the worst-case scenario well. 

Figure 4 depicts the results of Expt. 2, where ECU3 and 
ECU6 used FIFO queues and the other ECUs used priority 
queues. In this case, the minimum bus speed was 389 kBit/s, 
and the corresponding bus utilisation 60.1%. Our analysis 
attributes the same worst-case response time to all of the 
messages in a FIFO queue. This results in the horizontal 
segments of the analysis lines in Figure 4. The first FIFO 
queue is the 12 messages sent by ECU3, and the second, the 
6 messages sent by ECU6. The minimum transmission 
deadline for both FIFO queues was 13.8 ms. We observe 
that in Figure 4 the results of analysis and simulation are 
close together for the messages sent via priority queues, 
whereas for the messages sent via FIFO queue there are 
larger gaps. These gaps are predominantly due to the 
simulation not capturing the worst-case scenario for all of 
the FIFO-queued messages. This is evident from the 
variability of the maximum response times obtained via 
simulation for messages in the same FIFO group. 

Figure 5 depicts the results of Expt. 3, where all ECUs 
used FIFO queues. In this case, the minimum bus speed was 
654 kBit/s, and the corresponding bus utilisation only 



35.8%. In contrast with the Expt. 1 & 2, this configuration 
was not schedulable at a bus speed of 500  kBit/s. At 500 
 kBit/s, the 54 highest priority messages were found to be 
schedulable by the analysis. For the remaining lower 
priority messages, some appear to have worst-case response 
times that are less than their deadlines; however, this does 
not imply that such messages are schedulable. Once a single 
higher priority message is unschedulable, then the 
assumptions made by the analysis may be broken and the 
computed worst-case response times no longer valid. For 
example, the analysis assumes that due to constrained 
deadlines at most one instance of each of the other messages 
in the same FIFO group may be ahead of a particular 
message in the queue. If one of the messages in the FIFO 
group cannot meet its deadline then this assumption may no 
longer hold. In Expt. 3, some of the maximum response 
times observed in the simulation are very low compared to 
the worst-case response times computed by the analysis. 
This is caused by differences in the order in which messages 
enter the FIFO queues in the simulation, compared to the 
assumptions made by the analysis. 

 
Figure 3: Response Times (PQ only) 

 
Figure 4: Response Times (FQ and PQ) 

 
Figure 5: Response Times (FQ only) 

 
Figure 6: Response Times (PQ only, FQ priorities) 

 
Figure 7: Response Times (PQ only, random 

priorities) 
Figure 6 depicts the results of Expt. 4 which used the 

priority ordering obtained in Expt. 3, but assumed priority 
queues rather than FIFO queues. In this case, the minimum 
bus speed required was 608 kBit/s, and the corresponding 
bus utilisation 38.5%. Comparison of these results with 



those from Expt. 1 and Expt. 3 shows that the majority of 
the performance degradation caused by using FIFO queues 
occurs as a result of unavoidable priority inversion in the 
form of a disrupted priority ordering, rather than as a 
consequence of pessimistic schedulability analysis for FIFO 
queues. 

Finally, Expt. 5 examined 1000 random priority 
orderings with no correlation between message priority and 
transmission deadline. This experiment simulates assigning 
priorities to messages on the basis of the type of data or 
ECU, or indeed any other metric that has little or no 
correlation with message transmission deadlines. In this 
case, the mean value for the minimum bus speed required 
was 731 kBit/s (min. 618 kBit/s, max. 750 kBit/s), and the 
corresponding bus utilisation 32.0% (max. 37.8%, min. 
31.2%). Figure 7 depicts the results of Expt. 5 for the worst 
of the random priority orderings, which required a minimum 
bus speed of 750 kBit/s to be schedulable. It is clear from 
the graph, that it is the assignment of a low priority (80th 
highest priority) to a message with a short transmission 
deadline that results in the need for such a high bus speed. 
Expt. 5 is directly comparable with Expt. 1 and shows the 
importance of appropriate priority assignment. In this case, 
arbitrary priority assignment increased the minimum bus 
speed required by 163% while reducing the maximum 
schedulable bus utilisation from 84.5% to 32.0% (figures for 
the average case). 

The results of the experiments are summarised in Table 
1 below. 

Table 1: Summary of results 
Expt. Node 

type 
Priority order Min bus 

speed  
Max 

bus util. 
1 All PQ OPA 277 Kbit/s 84.5% 
2 2 FQ, 

8 PQ 
OPA-FP/FIFO 389 Kbit/s 60.1% 

3 All FQ OPA-FP/FIFO 654 Kbit/s 35.8% 
4 All PQ Priority ordering 

from Expt. 3 
608 Kbit/s 38.5% 

5 All PQ Random10 731 Kbit/s 32.0% 

7. Summary and Conclusions 
The major contribution of this paper is the derivation of 

sufficient response time analysis for CAN where some of 
the nodes on the network implement FIFO queues, while 
others implement priority queues. This analysis is FIFO-
symmetric in that it attributes the same worst-case response 
time (measured from the time a message is queued in the 
sending node until it is received by other nodes on the bus) 
to all of the messages that share the same FIFO. For this 
schedulability analysis, we proved that it is optimal to 
assign adjacent priorities to messages that share the same 
FIFO. We modified Audsley’s Optimal Priority Assignment 
algorithm to provide an overall priority assignment policy 
(OPA-FP/FIFO) that is optimal with respect to our analysis 
for both priority-queued messages and groups of messages 
                                                 
10 Values are the average for 1000 random orderings. 

that share a FIFO. Further, we showed that transmission 
deadline monotonic priority assignment is optimal with 
respect to our analysis for the specific case when all 
messages are of the same length. 

Although this paper provides schedulability analysis for 
CAN assuming FIFO queues, we cannot recommend the use 
of such queues. By comparison with priority queues, FIFO 
queues inevitably cause priority inversion which is 
detrimental to real-time performance.  

The use of FIFO queues increases the minimum bus 
speed necessary to ensure that all deadlines are met. This 
was illustrated in our case study where allowing just two 
ECUs (sending 18 out of the 85 messages) to use FIFO 
queues increased the minimum bus speed required from 
277 kBit/s with priority queues to 389 kBit/s, a 40% 
increase. With all ECUs using FIFO queues, the minimum 
bus speed required increased to 654 kBit/s; an increase of 
over 130%. Using FIFO queues reduces the maximum bus 
utilisation achievable before any deadlines are missed, thus 
limiting the scope for extending a system by adding further 
messages without having to increase bus speed. In our case 
study, the maximum bus utilisation with priority queues was 
84.5%, this reduced to 60.1% when two ECUs used FIFO 
queues, and to just 35.8% when all of the ECUs used FIFO 
queues. Such reductions in achievable utilisation also 
decrease the robustness of the network to errors that result 
in message re-transmission. 

We recommend that CAN device drivers / software 
protocol layers implement priority-based queues, rather than 
FIFO queues whenever possible. FIFO queues are appealing 
because they are simpler to implement and make the device 
driver appear more efficient; however, this perceived local 
gain typically comes at the expense of undermining the 
priority-based message arbitration scheme used by CAN, 
and significantly degrading the overall real-time 
performance capability of the network. 

Finally, our case study confirmed that when priority 
queues are used, appropriate priority assignment is vital to 
obtaining effective real-time performance from Controller 
Area Networks. Using a random priority assignment policy, 
representative of priority assignment based on the type of 
data and ECU, or indeed any other metric that has little or 
no correlation with transmission deadlines, increased the 
minimum bus speed required from 277 kBit/s to 731 kBit/s, 
and reduced the maximum bus utilisation from 84.5% to just 
32.0%, as compared to an optimal priority assignment 
policy. We therefore strongly recommend that in Controller 
Area Networks, message IDs are assigned using an optimal 
or near optimal priority ordering reflecting message 
transmission deadlines. 
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Appendix A: Transmission deadline monotonic 
priority assignment 

In this appendix, we show that transmission deadline 
monotonic priority ordering is optimal, with respect to the 
sufficient schedulability test given in Section 4.5 (i.e. 
Algorithm 1 with lines 11-14 omitted) when all messages 
have the same worst-case transmission time (C). 
Corollary A.1: For networks where all of the message 
transmission times are the same, then the blocking factor, 
used in both the sufficient schedulability test given by Davis 
et al. in [10] (recapitulated in Section 3) and the sufficient 
schedulability tests given in Section 4 of this paper, is the 
same for every message, and is equal to the worst-case 
message transmission time (C). 
Lemma A.1: For a set of messages that all have the same 
worst-case transmission time (C). Let i and j be the indices 
of two adjacent priority bands in a priority ordering that is 
schedulable according to the sufficient schedulability test 
given in Section 4.5 (i.e. Algorithm 1 with lines 11-14 
omitted). Assume that i is of higher priority than j, and that 
the transmission deadline XE  of the priority-queued 
message / FIFO group (X) initially in priority band i is 
longer than the transmission deadline YE  of priority-queued 
message / FIFO group (Y) initially in priority band j. If the 
priorities of X and Y are swapped, so that X is in the lower 
priority band j, and Y is in the higher priority band i, then X 
remains schedulable. 
Proof: Let jYR ,  be the response time of Y in priority band j, 
(with X in the higher priority band i). Similarly, let jXR ,  be 
the response time of X in priority band j, (with Y in the 
higher priority band i). As Y is schedulable when it is in the 
lower priority band, then, YjY ER ≤, , thus as XY EE < , it 



follows that to prove the Lemma, we need only show that 
jYjX RR ,, ≤ . Further, as all messages have the same worst-

case transmission time (C), and so the response times are 
equal to the queuing delays plus C, we need only compare 
the two queuing delays, referred to for convenience as jXw ,  
and jYw , . Below we give formulae for jXw ,  and jYw ,  
based on (5) & (6) and (8) & (9). We have separated out the 
interference terms for X and Y. Further, we use )( jB  to 
represent the blocking factor, and ),( wiI  to represent the 
interference from messages in higher priority bands. 

CCBjB j == ),max()(  
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(i) Queuing delay jXw ,  (simplified by cancelling out the 
blocking factor C and the –C from ( CC SUM

X − )) is given 
by: 

),(,1
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 (A.1) 

Note, in (A.1), if X is a priority-queued message, then 
CC SUM

X = , also, if Y is a priority-queued message, then 
there is only one message Yk ∈  present in the summation 
term; similarly for (A.2) below. 
(ii) Queuing delay jYw , : 
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⎡ ++
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 (A.2) 

We can simplify (A.2) by noting that as Y is schedulable 
according to the assumption given in the Lemma, then 

Xk
kk

Xk
kkXYjY JTJDEECw
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−≤−=<≤+ )min()min(,   

Hence, at most one instance of each message in X can 
contribute to the interference term and so we have:  

),(1
, wiICCw SUM

X
SUM
Y

n
jY ++=+      (A.3) 

Now let us consider the iterative solution to (A.1), for all 
values of 

bit
Xk

kkYjX JTCEw τ−−<−≤
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)min(, , 

only one instance of each message in Y can contribute to the 
interference term. Hence for CEw YjX −≤, , (A.1) reduces 
to: 

),(1
, wiICCw SUM

Y
SUM
X

n
jX ++=+      (A.4) 

Equations (A.3) and (A.4) are the same, hence as we 
know that (A.3) converges on a value CEw YjY −≤, , then 
(A.4) must also converge on the same value, hence 

jYjX ww ,, = , and so jYjX RR ,, =  □ 
Theorem 3: Transmission deadline monotonic ordering is 
an optimal policy for assigning priority-queued messages 
and FIFO groups to priority bands, with respect to the 
sufficient schedulability test given in Section 4.5 (Algorithm 
1 with lines 11-14 omitted), provided that all messages have 
the same worst-case transmission time.  
Proof: We prove the theorem by showing that any ordering 

Q of priority bands that is schedulable according to the 
sufficient schedulability test given in Section 4.5 can be 
transformed into a transmission deadline monotonic priority 
ordering without any loss of schedulability. 
 Let i and j be the indices of two adjacent priority bands 
in an ordering that is schedulable according to the sufficient 
schedulability test given in Section 4.5. Assume that i is of 
higher priority than j, and that the transmission deadline 

XE  of the priority-queued message / FIFO group (X) in 
priority band i is longer than the transmission deadline YE  
of the priority-queued message / FIFO group (Y) in priority 
band j. 

We now consider what happens to the schedulability of 
all of the messages in the system when we swap the 
priorities of X and Y (i.e. when we place X in the lower 
priority band j, and Y in the higher priority band i) to create 
priority ordering Q’. There are four cases to consider: 
1. Priority bands with higher priority than i ( )(ihph∈ ): 

Inspection of (5) & (6) and (8) & (9) shows that the 
response times of each of the messages in these bands is 
the same in priority ordering Q’ as it is in priority 
ordering Q. This is because the priority ordering of the 
messages with higher priorities than h is unchanged and 
the direct blocking factor due to the set of messages 
with lower priority than h depends only on the set of 
messages )(hlp  and not on their relative priority 
ordering, and is in any case equal to C for all priority 
bands. All of the messages in bands with priorities 
higher than j are therefore schedulable in priority 
ordering Q’. 

2. Priority band i: Y was previously schedulable in the 
lower priority band j. Shifting Y up in priority above X 
results in no change to the blocking factor, but removes 
interference due to X, hence the worst-case response 
time for Y can be no greater than it was in priority 
ordering Q, Y is therefore schedulable in priority 
ordering Q’. 

3. Priority band j: Lemma A.1 proves that X is 
schedulable in priority band j. 

4. Priority bands with lower priority than j ( )( jhpl ∈ ): 
Inspection of (5) & (6) and (8) & (9) shows that the 
response times of each of these messages is the same in 
priority ordering Q’ as it is in priority ordering Q. This 
is because the set of messages in higher priority bands 
is the same in both orderings, and the interference due 
to higher priority messages does not depend on their 
relative priority ordering. Further, the blocking factor 
due to the set of messages with lower priority than l 
depends only on the set of messages )(llp  and not on 
their relative priority ordering, and is in any case equal 
to C for all priority bands. All of the messages in bands 
with priorities lower than j are therefore schedulable in 
priority ordering Q’. 

By repeatedly swapping the priorities of any two 
adjacent priority bands that are not in transmission deadline 
monotonic priority order, any arbitrary schedulable priority 
ordering Q can be transformed into a transmission deadline 



monotonic priority ordering without any loss of 
schedulability □. 
Corollary A.2: For the case where all messages have the 
same worst-case transmission time, transmission deadline 
monotonic ordering is an optimal priority assignment policy 
with respect to the sufficient schedulability test given by 
Davis et al. in [10] (recapitulated in Section 3).  

Note that transmission deadline (i.e. Deadline minus 
Jitter) monotonic priority ordering has also been shown to 
be an effective heuristic policy in the general case with 
mixed length messages [12]. 


