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Abstract— This paper presents the Fixed Priority until Zero 
Laxity (FPZL) scheduling algorithm for multiprocessor real-
time systems. FPZL is similar to global fixed priority pre-
emptive scheduling; however, whenever a task reaches a state 
of zero laxity it is given the highest priority. FPZL is a 
minimally dynamic algorithm, in that the priority of a job can 
change at most once during its execution, bounding the 
number of pre-emptions. Polynomial time and pseudo-
polynomial time sufficient schedulability tests are derived for 
FPZL. These tests are then improved by computing upper 
bounds on the amount of execution that each task can perform 
in the zero laxity state. An empirical evaluation shows that 
FPZL is highly effective, with a significantly larger number of 
tasksets deemed schedulable by the tests derived in this paper, 
than by state-of-the-art schedulability tests for Earliest 
Deadline until Zero Laxity (EDZL) scheduling. 
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I.  INTRODUCTION 
Approaches to multiprocessor real-time scheduling, can 

be categorised into two broad classes: partitioned and global. 
Partitioned approaches allocate each task to a single 
processor, dividing the multiprocessor scheduling problem 
into one of task allocation followed by uniprocessor 
scheduling. In contrast, global approaches allow tasks to 
migrate from one processor to another at run-time. Each 
approach has its distinct advantages and disadvantages [17]. 
Here, we focus on global scheduling techniques with the aim 
of increasing effectiveness, in terms of the number of 
tasksets that can be guaranteed schedulable, without 
compromising efficiency, in terms of the overheads caused 
by pre-emption and migration. 

In this paper, we present a minimally dynamic global 
scheduling algorithm called FPZL (Fixed Priority until Zero 
Laxity). FPZL is based on global fixed priority pre-emptive 
scheduling, which for brevity we refer to as global FP 
scheduling. Under FPZL, jobs are scheduled according to the 
fixed priority of their associated task, until a situation is 
reached where the remaining execution time of a job is equal 
to the time to its deadline. Such a job has zero laxity and will 
miss its deadline unless it executes continually until 
completion. FPZL gives such zero-laxity jobs the highest 
priority. The schedules produced by FPZL and global FP 
scheduling are identical until the latter fails to execute a task 
with zero laxity. Such a task will subsequently miss its 

deadline. Hence FPZL dominates global FP scheduling, in 
the sense that all priority ordered tasksets that are 
schedulable according to global FP scheduling are also 
schedulable according to FPZL. FPZL is closely related to 
EDZL [22], [12], [4], [11], [26], [27], and [14] which applies 
the same zero-laxity rule to global EDF scheduling. 

A. Related Work 
During the last ten years, sophisticated schedulability 

tests have been developed for global FP, and global EDF 
scheduling of sporadic tasksets with constrained and 
arbitrary deadlines. 

In 2003, Baker [2] developed a fundamental 
schedulability test strategy, based on considering the 
minimum amount of interference in a given interval that is 
necessary to cause a deadline to be missed, and then taking 
the contra-positive of this to form a sufficient schedulability 
test. This basic strategy underpins an extensive thread of 
subsequent research. 

Baker’s work was built upon by Bertogna et al. [7] in 
2005, (see also Bertogna et al. [9]). They developed 
sufficient schedulability tests for global EDF, and global FP 
scheduling based on bounding the maximum workload in a 
given interval. In 2007, Bertogna and Cirinei [8] adapted this 
approach to iteratively compute an upper bound on the 
response time of each task, using the upper bound response 
times of other tasks to limit the amount of interference 
considered. In 2009, Guan et al. [20] extended the response 
time analysis given in [8] using ideas from [6]. 

In 2009 and 2010, Davis and Burns [15], [16] showed 
that priority assignment is fundamental to the effectiveness 
of global FP scheduling. They proved that Audsley’s optimal 
priority assignment algorithm [1] is applicable to some of the 
sufficient tests developed for global FP scheduling, including 
the deadline-based test of Bertogna et al. [9], but not to 
others such as the response time tests of Bertogna and Cirinei 
[8], and Guan et al. [20]. 

The Earliest Deadline first until Zero Laxity (EDZL) 
algorithm was introduced in 1994 by Lee [22], who showed 
that EDZL dominates global EDF scheduling, and is sub-
optimal for two processors (see also Cho et al. [14], Park et 
al. [27]). Here, sub-optimal is used to mean that EDZL can 
“schedule any feasible set of ready tasks”. This weak form of 
optimality is appropriate for online scheduling algorithms, 
which cannot take account of future arrival times. In 2006, 
Piao et al. [26] showed that EDZL is completion time 



predictable in the sense defined by Ha and Liu [21], (see 
Section II.A). A simpler proof of predictability was given by 
Cirinei and Baker [12] in 2007, who also developed a 
sufficient schedulability test for EDZL based on the strategy 
of Baker [2]. 

In 2008, Baker et al. [4] gave an iterative sufficient test 
for EDZL based on the approach taken by Bertogna et al. [9] 
for work conserving algorithms and global EDF. The 
empirical evaluation in [4] shows that this iterative test for 
EDZL outperforms other tests for EDZL given in [12] and, 
as expected, similar tests for global EDF. 

Also in 2008, Kato and Yamasaki [23], introduced 
EDCL, a variant of EDZL, which increases job priority on 
the basis of critical-laxity at the release or completion time of 
a job. This has the effect of reducing the maximum number 
of context switches to two per job, the same as EDF, at the 
expense of slightly inferior schedulability, when compared to 
EDZL. Kato and Yamasaki [23] also corrected a minor flaw 
in the polynomial time schedulability test for EDZL given in 
[12]. 

In 2009, Kato et al. [28], [24] presented research on 
RMZL (RMZL and FPZL are different names for essentially 
the same scheduling algorithm). Papers [28] and [24] were 
initially published in Japanese, with an English language 
version of [28] subsequently made available in May 2010 as 
a technical report [25]. The FPZL schedulability analysis 
presented in this paper was developed independently and 
initially published as a technical report in April 2010 [18]. 
We now make a brief comparison between the RMZL 
analysis given in [25] and the FPZL analysis presented in 
this paper. 

The FPZL analysis, presented in this paper, is applicable 
to constrained-deadline tasksets with no restrictions on the 
priority ordering which may be used; whereas the RMZL 
analysis given in [25] is limited to implicit-deadline tasksets 
with task priorities assigned in Rate Monotonic priority 
order. The FPZL analysis computes which tasks can enter 
the zero-laxity state and only includes interference from 
those tasks; by comparison, the RMZL analysis includes 
zero-laxity interference from every lower priority task. This 
results in significant pessimism which heavily degrades 
performance as taskset cardinality increases much beyond 
the number of processors. The FPZL analysis computes an 
upper bound on the amount of execution that can take place 
in the zero-laxity state, while the RMZL analysis assumes 
that all of a zero-laxity task’s execution can take place in the 
zero-laxity state. 

In summary, the FPZL RTA-LC schedulability test 
presented in this paper is more widely applicable, dominates, 
and significantly outperforms the RMZL schedulability test 
given in [25]. 

B. Intuition and Motivation 
The research described in this paper is motivated by the 

need to close the large gap that currently exists between the 
best known approaches to global multiprocessor real-time 

scheduling for sporadic tasksets with constrained deadlines 
and what may be possible as indicated by feasibility / 
infeasibility tests. 

Dynamic priority scheduling has the potential to schedule 
many more tasksets than fixed task or fixed job priority 
algorithms. However, this theoretical advantage must be 
balanced against the increased overheads that dynamic 
changes in priority can bring via an increase in the number of 
pre-emptions / migrations. 

For example, the LLREF scheduling algorithm [13], 
which is optimal for periodic tasksets with implicit 
deadlines, and the LRE-TL scheduling algorithm [19] which 
is optimal for sporadic tasksets with implicit deadlines, 
divide the timeline into intervals that start and end at task 
releases/deadlines (referred to as TL-planes in [13]). In each 
interval, LLREF and LRE-TL ensure that each active task iτ  
executes for at least tUi , where iU  is the task’s utilisation, 
and t is the length of the time interval. Hence every task can 
in the worst-case execute in every interval between task 
deadlines, resulting in n-1 pre-emptions per job release, 
where n is the number of tasks. In systems with a large 
number of tasks, this level of pre-emptions leads to 
prohibitively high overheads. 

Minimally dynamic scheduling algorithms, such as FPZL 
(and EDZL) offer a potential solution to this problem. Note, 
by minimally dynamic, we mean that the priority of a job 
changes at most once during its execution, hence bounding 
the number of pre-emptions / migrations to at most two per 
job release. By comparison, global FP and global EDF 
scheduling incur at most one pre-emption / migration per job 
release.  

C. Organisation 
The remainder of the paper is organised as follows: 

Section II describes the terminology, notation and system 
model used. Section III describes sufficient tests for global 
FP scheduling. These tests are used in Section IV to derive 
polynomial time and pseudo-polynomial time sufficient 
schedulability tests for FPZL. Section V shows how the 
schedulability tests for FPZL can be improved by bounding 
the amount of execution that each task can perform in the 
zero-laxity state. Section VI presents an empirical 
investigation into the effectiveness of FPZL and its 
schedulability tests. Finally, Section VII concludes with a 
summary and suggestions for future research. 

II. SYSTEM MODEL, TERMINOLOGY AND NOTATION 
In this paper, we are interested in FPZL scheduling of an 

application on a homogeneous multiprocessor system 
comprising m identical processors. The application or taskset 
is assumed to comprise a static set of n tasks ( nττ ...1 ), where 
each task iτ  is assigned a unique priority i, from 1 to n 
(where n is the lowest priority). 

Tasks are assumed to comply with the sporadic task 
model. In this model, tasks give rise to a potentially infinite 
sequence of jobs. Each job of a task may arrive at any time 



once a minimum inter-arrival time has elapsed since the 
arrival of the previous job of the same task.  

Each task iτ  is characterised by its relative deadline iD , 
worst-case execution time iC , and minimum inter-arrival 
time or period iT . The utilisation iU  of each task is given 
by ii TC / . A task’s worst-case response time iR  is defined 
as the longest time from a job of the task arriving to it 
completing execution. 

It is assumed unless otherwise stated that all tasks have 
constrained deadlines ( ii TD ≤ ). The tasks are assumed to be 
independent and so cannot be blocked from executing by 
another task other than due to contention for the processors. 
Further, it is assumed that once a task starts to execute it will 
not voluntarily suspend itself. 

Intra-task parallelism is not permitted; hence, at any 
given time, each job may execute on at most one processor. 
As a result of pre-emption and subsequent resumption, a job 
may migrate from one processor to another. The cost of pre-
emption, migration, and the run-time operation of the 
scheduler is assumed to be either negligible, or subsumed 
into the worst-case execution time of each task. 
Notwithstanding this assumption, we are interested in 
scheduling schemes that will have low overheads in practice 
(i.e. a minimum number of pre-emptions / migrations). 

Under global FP scheduling, at any given time, the m 
highest priority ready jobs are executed. Under FPZL 
scheduling, if a job reaches zero laxity then it is given the 
highest priority and will execute until completion. The laxity 
of a job is given by the elapsed time to its deadline less its 
remaining execution time.  

Schedulability analysis may identify certain tasks as 
being able to enter the zero-laxity state. We refer to these 
tasks as zero-laxity tasks. An upper bound on the maximum 
amount of execution that a job of task iτ  can perform in the 
zero-laxity state is denoted by UB

iZ . Under FPZL, at any 
given time, at most m tasks may be in the zero-laxity state 
without a deadline being missed. 

Finally, when discussing the schedulability of a given 
task kτ , we use the term interference to refer to the 
execution of other tasks, at a priority higher than k, that can 
potentially delay the completion of task kτ . 

A. Predictability 
In 1994, Ha and Liu [21] defined the concept of 

scheduling algorithm predictability. A scheduling algorithm 
is referred to as predictable if the response times of jobs 
cannot be increased by decreases in their execution times, 
with all other parameters remaining constant. Predictability 
is a fundamental requirement for scheduling algorithms as in 
real systems task execution times are almost always variable 
up to some worst-case time. 

Ha and Liu [21] proved that all priority driven (i.e. fixed 
job priority and fixed task priority) pre-emptive scheduling 
algorithms for multiprocessor systems are predictable. 
However, FPZL is a dynamic priority algorithm, and as such 
it is necessary to prove the predictability of FPZL before it 

can be considered useful. Proof that the FPZL scheduling 
algorithm is predictable with respect to decreases in task 
execution times follows from the logic used in Theorem 1 of 
[4] to prove that EDZL is predictable. Noting that under 
FPZL, the choice to schedule different jobs from the two sets 
of jobs considered in Theorem 1 of [4] can only be due to the 
zero-laxity rule. This is because the jobs belong to the same 
task and therefore have the same priority. They differ only in 
their execution times. 

III. SCHEDULABILITY TESTS FOR GLOBAL FP 
In this section, we recapitulate two sufficient 

schedulability tests for global FP scheduling of sporadic 
tasksets. These tests are described in more detail in [16].  

A. Deadline Analysis for global FP 
In [9], Bertogna et al. showed that if task kτ  is 

schedulable under global FP scheduling in an interval of 
length L, then an upper bound on the interference over the 
interval due to a higher priority task iτ  with or without a 
carry-in job is given by the following equation1. (Note a 
carry-in job is a job that is released prior to the start of the 
interval, and causes interference within that interval). 
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In [20], Guan et al. showed that if task kτ  is schedulable in 
an interval of length L, then an upper bound on the 
interference over the interval due to a higher priority task iτ  
without a carry-in job is given by: 
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The difference between the two interference terms given by 
(1) and (4) is: 
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Building on the work of Guan et al. [20], Davis and Burns 
[16] showed that the worst-case scenario for a task kτ  under 
global FP scheduling occurs when it is released at the start of 
an interval where there are at most m-1 carry-in jobs of 
higher priority tasks (Theorem 1 of [16]). This observation, 

                                                           
1 Note we adopt the approach to time representation used in [9]. Time is 
represented by non-negative integer values, with each time value t viewed 
as representing the whole of the interval [t, t+1). This enables mathematical 
induction on clock ticks and avoids confusion with respect to end points of 
execution. 



lead to the introduction in [16] of an improved version of the 
polynomial-time, deadline-based test of Bertogna [9]: 

DA-LC test for global FP scheduling [16]: A sporadic 
taskset is schedulable, if for every task kτ  in the taskset, the 
inequality given by (8) holds: 
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where MD(k, m-1) is the subset of the min(k, m-1) tasks with 
the largest values of ),( kk

DDIFF
i CDI −  from the set of tasks 

hp(k) with priorities higher than k. 

B. Response Time Analysis for global FP 
In [8], Bertogna and Cirinei showed that if task kτ  is 

schedulable under global FP scheduling in an interval of 
length L, then an upper bound on the interference in that 
interval due to a higher priority task iτ  with or without a 
carry-in job is given by: 
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where, )(LW R
i  is an upper bound on the workload of task 

iτ  in an interval of length L, taking into account the upper 
bound response time ( UB

iR ) of task iτ : 
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In [20], Guan et al. showed that if task iτ  does not have 

a carry-in job, then the interference term is given by (4). The 
difference between the two interference terms, (9) and (4), is 
then given by: 
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Further, Guan et al. [20] showed that for their analysis, the 
worst-case occurs when at most m-1 higher priority tasks 
with carry-in jobs contribute interference, thus deriving an 
improved version of the response time test of Bertogna and 
Cirinei [8]: 

RTA-LC test for global FP scheduling [20]: A sporadic 
taskset is schedulable, if for every task kτ  in the taskset, the 
upper bound response time UB

kR  computed via the fixed 
point iteration given in (13) is less than or equal to the task’s 
deadline: 
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where MR(k, m-1) is the subset of the min(k, m-1) tasks with 
the largest values of ),( k

UB
k

RDIFF
i CRI − , given by (12), from 

the set of tasks hp(k). Iteration starts with k
UB
k CR = , and 

continues until the value of UB
kR  converges or until 

k
UB
k DR > , in which case task kτ  is unschedulable. 

We note that using the RTA-LC test, task schedulability 
needs to be determined in priority order, highest priority 
first, as upper bounds on the response times of higher 
priority tasks are required for computation of the interference 

term )( UB
k

R
i RI . The RTA-LC test is pseudo-polynomial in 

complexity, and dominates the DA-LC test. 

IV. SCHEDULABILITY TESTS FOR FPZL 
In this section, we derive polynomial time and pseudo-

polynomial time sufficient schedulability tests for FPZL. 
These tests are applicable to sporadic tasksets with 
constrained deadlines, and are independent of the priority 
assignment policy used. They are based on the tests 
described in the previous section for global FP scheduling. 

A. Deadline Analysis for FPZL  
Schedulability under FPZL differs from that under global 

FP scheduling in two important aspects: 
1. Under FPZL, up to m tasks may be deemed 

unschedulable according to analysis of their response 
times; and yet, due to the zero-laxity rule, the tasks will 
not miss their deadlines. 

2. Tasks that enter the zero-laxity state have an additional 
impact on the schedulability of other tasks. 

We now derive the maximum interference on a higher 
priority task kτ , in an interval of length L, that could 
possibly be caused by a lower priority task jτ  executing in 
the zero-laxity state.  

 
Figure 1:  Zero-laxity interference in an interval 

Figure 1 illustrates the worst-case scenario. This occurs 
when the first job of jτ  in the interval starts executing in the 
zero-laxity state, i.e. at the highest priority, at the start of the 
interval, and completes at its deadline. As zero-laxity 
execution can only occur immediately prior to a task’s 
deadline, in the worst case, subsequent zero-laxity execution 
of the jobs of jτ  occurs at minimum intervals of iT . Thus an 
upper bound on the amount of zero-laxity workload due to 
task jτ in an interval of length L is given by: 
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where )(LN Z
j  is the maximum number of jobs of task jτ  

that contribute all of their zero-laxity execution in the 
interval 
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Note, UB
jZ  ( jC≤ ) is an upper bound on the amount of 

execution that any job of task jτ  can perform in the zero-
laxity state. 

If task kτ  is schedulable in an interval of length L, then 
an upper bound on the interference in that interval due to a 
lower priority task jτ  executing in the zero-laxity state is 
given by: 
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Davis and Burns [16] showed that the worst-case 
scenario for global FP scheduling of a task kτ  occurs when 
there are at most m-1 higher priority tasks with carry-in jobs. 
We observe that as execution of a lower priority task in the 
zero-laxity state can simply be modelled as the execution of 
a virtual higher priority task, then the same observation 
applies to our analysis of FPZL. We therefore need to 
consider the interference from each lower priority zero-laxity 
task with and without a carry-in job. The interference on task 

kτ  due to a lower priority zero-laxity task jτ , in an interval 
of length L, is the same irrespective of whether jτ  is 
considered as having a carry-in job or not. Hence task jτ  
cannot contribute any additional carry-in interference (its 

DDIFF
jI −  term is effectively zero) and so does not need to be 

included when determining the m-1 tasks that contribute the 
largest amounts of additional carry-in interference. 

We now consider the interference from a higher priority 
task iτ  capable of entering the zero-laxity state. In this case, 
the maximum interference with a carry-in job occurs when 
the first job of iτ  in the interval starts executing at the start 
of the interval, and completes at its deadline, with all 
subsequent jobs executing as early as possible, see Figure 2 
below. We observe that this is the same scenario that leads to 
the worst-case interference from a higher priority task which 
does not enter the zero-laxity state but completes at its 
deadline, and is given by (1). Similarly, zero-laxity execution 
cannot increase the amount of interference from a higher 
priority task with no carry-in job, given by (4). This is an 
important observation. It means that when calculating 
interference from higher priority tasks, we do not need to 
know if they are zero-laxity tasks. 

 
Figure 2: Interference in an interval 

Under FPZL, each task kτ  is therefore schedulable 
without entering the zero-laxity state if the following 
inequality holds: 
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where ),( kk
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given by (7), ),( kk
Z
j CDI  is given by (16), and lpzl(k) is the 

set of zero-laxity tasks with lower priorities than k. 
If the inequality in (17) does not hold, then the task is a 

zero-laxity task. Under FPZL, at most m tasks can be zero-
laxity tasks without a deadline being missed.  

We note that the zero-laxity status of each task is 
unknown until its schedulability is checked via (17), hence 
task schedulability needs to be checked in priority order, 
lowest priority first. 

Algorithm 1 presents the DA-LC schedulability test for 
FPZL. For now we make the pessimistic assumption that a 
zero-laxity task completes all of its execution in the zero-
laxity state, hence ‘Compute UB

kZ ’ can be assumed to set 
k

UB
k CZ = . Section V describes the calculation of less 

pessimistic upper bounds on zero-laxity execution. 
1 countZL = 0 
2 for (each priority level k, lowest first) { 
3  Determine schedulability of kτ  using (17) 
4  if ( kτ  is not schedulable) { 
5   mark kτ  as a ‘zero-laxity’ task 
6   countZL = countZL + 1 
7   Compute UB

kZ  
8  } 
9 } 
10 if (countZL > m) 
11  return unschedulable 
12 else 
13  return schedulable 

Algorithm 1: DA-LC schedulability test for FPZL 

The DA-LC schedulability test for FPZL is a polynomial 
time test requiring )( 2nO  operations (assuming that 
‘Compute UB

kZ ’ takes linear time). Note that identifying the 
tasks with the m-1 largest values of ),( kk

DDIFF
i CDI −  can be 

achieved using a linear time selection algorithm [10]. 
We note that the DA-LC schedulability test for FPZL 

reduces to the DA-LC test for global FP scheduling for any 
taskset that the latter finds schedulable. Hence, the DA-LC 
test for FPZL dominates the DA-LC test for global FP 
scheduling. 

We observe that a task kτ  may reach zero laxity, but 
still be schedulable at its fixed priority k, and so complete at 
its deadline. Such a task cannot have any impact on the 
execution of higher priority tasks, even though it is given the 
highest priority by the FPZL algorithm once it reaches zero 
laxity. This is because the maximum possible interference 
from higher priority tasks and lower priority zero-laxity tasks 
has already been accounted for and yet task kτ  was found to 
be schedulable, assuming execution at priority k. Hence there 
cannot be any time t between the release and the deadline of 
a job of kτ  at which it has zero laxity and there are m jobs 
with higher priorities are ready to execute, (otherwise kτ  
would be unschedulable). Thus execution of task kτ  at the 
highest priority once it reaches zero laxity cannot interfere 
with the execution of any higher priority tasks. As there can 
be no interference on higher priority tasks, we do not classify 
a task that can reach zero-laxity but is nevertheless 
schedulable as a zero-laxity task, nor do we regard it as 
entering the zero-laxity state. 



B. Response Time Analysis for FPZL 
Building on the work of Bertogna and Cirinei [8] and 

Guan et al. [20] (i.e. (13)), we now derive a sufficient 
schedulability test for FPZL which computes an upper bound 

UB
kR  on the response time of each task kτ . 

If task kτ  is schedulable under FPZL with a response 
time bounded by UB

kR , then an upper bound on the 
interference in an interval of length UB

kR  due to a lower 
priority task jτ  executing in the zero-laxity state can be 
obtained by substituting UB

kR  for the length of the interval L 
in (16). 

We observe that again the maximum interference on task 
kτ  due to a lower priority zero-laxity task jτ  is the same 

irrespective of whether jτ  is considered as having a carry-in 
job or not. Hence task jτ  cannot contribute any additional 
carry-in interference and so does not need to be included 
when determining the m-1 tasks that contribute the largest 
amounts of additional carry-in interference. 

In the previous section, we showed that using deadline 
analysis the maximum interference on task kτ  from a higher 
priority task iτ  capable of entering the zero-laxity state can 
be determined using (1) assuming a carry-in job, and using 
(4) assuming no carry-in job. Thus we showed that the 
maximum interference from a higher priority task is 
independent of whether or not that task is a zero-laxity task. 

We now consider the situation when response time 
analysis ((9) and (4)) is used to compute the interference due 
a higher priority zero-laxity task. As the upper bound 
response time UB

iR  of a zero-laxity task is equal to its 
deadline iD , we find that (9) reduces to (1). Hence the 
maximum interference from a higher priority task is again 
independent of whether or not that task is a zero-laxity task. 
An upper bound on the worst-case response time of a task 

kτ  that is schedulable under FPZL without entering the zero-
laxity state can therefore be found using the fixed point 
iteration given by (18). 
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where ),( k
UB
k

NC
i CRI  is given by (4), ),( k

UB
k

RDIFF
i CRI −  is 

given by (12), and ),( k
UB
k

Z
j CRI  is given by (16). 

Iteration starts with k
UB
k CR = , and continues until the 

value of UB
kR  converges in which case kτ  is schedulable, or 

until k
UB
k DR > . If k

UB
k DR > , then the task is a zero-laxity 

task. Recall that under FPZL, at most m tasks may be zero-
laxity tasks without a deadline being missed. 

Using (18), we can construct a sufficient schedulability 
test for FPZL based on upper bound response times; 
however, this is not entirely straightforward. Equation (18) 
depends on the response times of higher priority tasks (via 
(10)), and also on which lower priority tasks are zero-laxity 

tasks. Thus it would appear that we cannot compute task 
schedulability in increasing or decreasing priority order. This 
problem can however be solved by backtracking as shown in 
Algorithm 2. 

Algorithm 2 initially assumes that there are no zero-
laxity tasks and starts computing task response times in 
priority order, highest priority first (lines 6 and 7). Then, 
whenever a task kτ  is encountered where (18) results in a 
value of k

UB
k DR > , the task is marked as a zero-laxity task 

and its upper bound response time is set to its deadline (lines 
8 and 9). We note that provided that the taskset is 
schedulable under FPZL, then this is the correct upper bound 
response time, as the zero-laxity rule will prevent the task 
from actually missing its deadline. 

1 countZL = 0 
2 Initialize all UB

kR = kC and UB
kZ  = 0 

3 repeat = true 
4 while (repeat) { 
5  repeat = false 
6  for (each priority level k, highest first) { 
7   Determine UB

kR  according to (18) 
8   if ( UB

kR  > kD ) { 
9    UB

kR  = kD  
10    Compute UB

kZ  
11    if ( kτ  not marked as a ZL task) { 
12     mark kτ  as a ZL task 
13     repeat = true 
14     countZL = countZL + 1 
15     if(countZL > m) { 
16      repeat = false 
17      break (exit for loop) 
18     } 
19    } 
20   } 
21   [if ( UB

kR  or UB
kZ  differ from prev. values) 

22    repeat = true] 
23  } 
24 } 
25 if (countZL > m) 
26  return unschedulable 
27 else 
28  return schedulable 

Algorithm 2: RTA-LC schedulability test for FPZL 

The discovery of a zero-laxity task effectively 
invalidates the upper bound response times calculated for all 
higher priority tasks. These values could be too small, and 
therefore the process of upper bound response time 
calculation needs to be repeated (line 13). However, if more 
than m zero-laxity tasks have been found, then even the zero-
laxity rule cannot prevent deadline misses and the taskset is 
deemed unschedulable. In this case, the algorithm can exit 
immediately (lines 15-17). 

We note that lines 21-22 are not required when a simple 
fixed value of k

UB
k CZ =  is used for the zero-laxity 

execution time of task kτ . However, when the computed 
value of UB

kZ  depends on the response times of higher 
priority tasks then this additional convergence check is 
required. This point is discussed in detail in Section V. 



We note that the upper bound response time for a task 
iτ  is monotonically non-decreasing in the amount of zero-

laxity execution time of each of the tasks with lower priority 
than i. Hence, the calculation of UB

iR  can be made more 
efficient on subsequent iterations of the ‘while’ loop (line 4) 
by using as an initial value, the value of UB

iR  computed on 
the previous iteration. 

The ‘while’ loop (lines 4-24) continues to iterate until 
either m+1 zero-laxity tasks are found, in which case the 
taskset is unschedulable under FPZL, or there are m or fewer 
zero-laxity tasks and the upper bound response times have 
been re-calculated since the final zero-laxity task was found. 
In this case, the taskset is schedulable. 

Under the assumption that ‘Compute UB
kZ ’ sets 

k
UB
k CZ = , the RTA-LC schedulability test for FPZL 

requires at most )(mnO  response time calculations (i.e. 
(18)), each of which is pseudo-polynomial in complexity. 
This can be seen by noting that when ‘Compute UB

kZ ’ sets 
k

UB
k CZ = , lines 21-22 are not required, and so the ‘while’ 

loop (line 4) only repeats when ‘repeat’ is set to true on line 
13. This can only happen at most m times, as a result of 
finding a zero-laxity task, before the taskset is declared 
unschedulable. Hence the maximum number of times that a 
response time can be computed (line 7) is )(mnO . By 
comparison, the RTA-LC test for global FP scheduling 
requires )(nO  such response time calculations. 

We note that the RTA-LC schedulability test for FPZL 
reduces to the RTA-LC test for global FP scheduling for any 
taskset that the latter finds schedulable. Hence, the RTA-LC 
test for FPZL dominates the RTA-LC test for global FP 
scheduling. Further, the RTA-LC test for FPZL also 
dominates the DA-LC test for FPZL. 

V. BOUNDING ZERO LAXITY EXECUTION TIME 
So far, we have made the potentially pessimistic 

assumption that a task that can reach the zero-laxity state 
does so without having started to execute. Hence, we used an 
upper bound on the zero-laxity execution time of k

UB
k CZ = . 

In this section, we derive a more effective upper bound and 
use this bound to improve the schedulability tests derived in 
Section IV.  

Calculation of an improved bound relies on the concept 
of DC-Sustainability. A schedulability test for task kτ  is 
referred to as DC-Sustainable if it is sustainable [5] with 
respect to simultaneous and equal changes in both the 
execution time and the deadline of the task. Below we give a 
formal definition of DC-Sustainability. 
Definition: A schedulability test S for a task kτ  is DC-
Sustainable if the following two conditions hold: 
Condition 1: If task kτ  is deemed schedulable by test S with 
some paired deadline and execution time values 

vDD kk −=′ , vCC kk −=′  where kCv ≤≤0  then test S is 
guaranteed to deem task kτ  schedulable for all deadline and 
execution time pairs wDD kk −=′ , wCC kk −=′  where 

kCwv ≤≤ . 

Condition 2: If task kτ  is deemed unschedulable by test S 
with some paired deadline and execution time values 

vDD kk −=′ , vCC kk −=′  where kCv ≤≤0  then test S is 
guaranteed to deem task kτ  unschedulable for all deadline 
and execution time pairs wDD kk −=′ , wCC kk −=′  where 

vw ≤≤0 . 

Theorem 1: Equation (17) is a DC-Sustainable schedulability 
test for task kτ . 
Proof: We can re-write (17) as follows: 
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Consider the behavior of (19) for paired deadline and 
execution time values wDD kk −=′ , wCC kk −=′  as w 
takes different values in the range kCw ≤≤0 . The RHS of 
(19) gives an upper bound on the interference from higher 
priority tasks and lower priority tasks executing in the zero-
laxity state in an interval of length wDD kk −=′ . By 
inspecting (1), (2), (3), (4), (5), (6), (7), (14), (15), and (16) it 
can be seen that this interference is monotonically non-
decreasing with respect to the length of the interval kD′ . We 
must however also consider the dependence of equations (1), 
(4) and (16) on kC ′ , which also varies with w. kC ′  appears in 
the second term in the min( ) function of each of these 
equations in the expression 1+′−′ kk CD . This expression is 
unchanged by varying w. The RHS of (19) is therefore 
monotonically non-increasing with respect to increasing 
values of w.  
 In the case of Condition 1, as the LHS of (19) is 
unchanged and the RHS is monotonically non-increasing for 
increasing values of w: kCw ≤≤0  then it follows that, given 
that (19) holds for w=v, it must also hold for all values of w: 

kCwv ≤≤ . 
In the case of Condition 2 as the LHS of (19) is 

unchanged and the RHS is monotonically non-decreasing for 
decreasing values of w: kCw ≤≤0  then it follows that, 
given that (19) does not hold for w=v, then it cannot hold for 
any value of w: vw ≤≤0  □ 

We now prove that (18) is also a DC-Sustainable 
schedulability test for task kτ . Below, we re-write (18), 
using the variable q to indicate the fixed point iteration. 
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Recall that iteration begins with kk CR ′=0  (the execution 
time of task kτ ), and ends when either q

k
q
k RR =+1  or when 

k
q
k DR ′>+1 , in which case task kτ  is unschedulable. 

Let ),( CDRUB
k  be the response time upper bound given 

by (20) for task kτ (D, C) with deadline D and execution 
time C. Similarly, let ),( xCxDRUB

k ++  be the response 
time upper bound given by (20) for task kτ ( xD + , xC + ) 
with deadline xD +  and execution time xC + . 
Lemma 1: If kτ (D, C) is schedulable according to (20) then 

xCRxCR UB
k

UB
k +≥+ )()( . Further, if kτ (D, C) is not 

schedulable according to (20) then neither is 
kτ ( xD + , xC + ). 

Proof: Let )(CRq
k  be the value computed by the qth iteration 

of (20) for task kτ (D, C). Similarly, let )( xCRq
k +  be the 

value computed by the qth iteration of (20) for task 
kτ ( xD + , xC + ). 

 We prove the Lemma by induction, showing that on 
each iteration q, until either convergence or the deadline of 

kτ (D, C) is exceeded, then xCRxCR q
k

q
k +≥+ )()( . 

Initial condition: in each case iteration starts with an 
initial value corresponding to the execution time of kτ , 
hence CCRk =)(0  and xCxCRk +=+ )(0 , so 

xCRxCR kk +≥+ )()( 00 . 
Inductive step: assume that xCRxCR q

k
q
k +≥+ )()( , and 

consider the values computed for )(1 xCRq
k ++  and 

)(1 CRq
k
+ on iteration q+1. The floor function (second term 

on the RHS of (20)) contains three summation terms; 
together, these terms give an upper bound on the interference 
from higher priority tasks and lower priority tasks executing 
in the zero-laxity state in an interval of length q

kR . 
Inspection of (4), (5), (6), (9), (10), (11), (12), (14), (15), and 
(16) shows that this interference term is no smaller for input 
values xCRxCR q

k
q
k +≥+ )()( , and xCCk +=′  (the latter 

is used in (4), (9) and (16)) than it is for input values )(CRq
k  

and CCk =′ , hence once the value of kC ′  is added (first term 
on the RHS of (20)), we have xCRxCR q

k
q
k +≥+ ++ )()( 11 . 

We note that if the fixed point iteration for kτ (D, C) 
converges on )(),( 1 CRCDR q

k
UB
k

+= , then the smallest 
possible value of ),( xCxDRUB

k ++  is xCRq
k ++ )(1 . 

Further, if kτ (D, C) is unschedulable, then it follows that 
DCRq

k >+ )(1  which implies that xDxCRq
k +>++ )(1  and 

therefore kτ ( xD + , xC + ) must also be unschedulable □ 
Theorem 4: Equation (20), and hence (18) is a DC-
Sustainable schedulability test for task kτ . 
Proof: We can choose an execution time of 0=′kC  and a 
deadline of kkk CDD −=′  for task kτ . With these 
parameters, kτ  is deemed schedulable by Equation (20). We 
then consider all possible deadline and execution time pairs 

wDD kk −=′ , wCC kk −=′  for w from 1 to kC  (recall that 
execution times are represented by non-negative integers). 
Let v be the largest value of w, if any, for which kτ  is 
unschedulable. Lemma 1 tells us that for all smaller values of 
w, kτ  will also be unschedulable. Proof that Conditions 1 
and 2 in the definition of DC-Sustainability hold follows 
directly from the observation that task schedulability is 

therefore monotonically decreasing with respect to 
decreasing values of w □ 

We now show how a bound on the zero laxity execution 
time of each zero-laxity task can be derived. Let us assume 
that we are using the DA-LC schedulability test (Algorithm 
1) or the RTA-LC schedulability test (Algorithm 2) for 
FPZL, and that task kτ  has been identified as a zero-laxity 
task by (17) or (18). We know that task kτ  cannot be 
guaranteed to complete all of its execution within its 
deadline, without entering the zero-laxity state. However, if 
we can show that kτ  is guaranteed to complete vCC kk −=′  
units of execution time by an effective deadline of 

vDD kk −=′ , when executing at priority k, then that proves 
that the task can execute for at most v units of time in the 
zero-laxity state. (Note for the reasons described at the end 
of Section VI.A, a job of task kτ  may reach zero laxity at or 
before vDk −  from its release, but cannot cause interference 
on higher priority tasks until after vDk − , otherwise vCk −  
units of execution time at priority k would not be schedulable 
by vDk − . We therefore need only consider task kτ  as 
entering the zero-laxity state at vDk − , with zero-laxity 
execution time v). 

Due to the DC-Sustainability of the single task 
schedulability tests given by (17) and (18), each of these 
equations can be used as the basis of a binary search to 
determine the smallest value of v )0( kCv ≤≤  such that task 

kτ  is guaranteed to complete vCC kk −=′  units of 
execution time by a deadline vDD kk −=′ , thus computing 
an upper bound vZ UB

k =  on the amount of time that a job of 
task kτ  can spend executing in the zero-laxity state. The 
initial minimum value of v for the search is 0=v  which is 
known to result in un-schedulability, as kτ  is a zero-laxity 
task, while the initial maximum value is kCv =  which is 
deemed to result in schedulability, as it is equivalent to kτ  
having zero execution time. 

In the DA-LC test, a binary search based on (17) can be 
used to ‘Compute UB

kZ ’ (line 8 of Algorithm 1), for each 
zero-laxity task, improving the effectiveness of the test. 
Similarly, in the RTA-LC test, a binary search based on (18) 
can be used to ‘Compute UB

kZ ’ (line 10 of Algorithm 2) for 
each zero-laxity task. However, in this case, a further 
convergence check (lines 21-22) is required as the zero-
laxity execution times computed by the binary searches are 
dependent on the response times of higher priority tasks, and 
vice-versa. We note that Algorithm 2 will either find more 
than m zero-laxity tasks or converge on unchanging values 
for the response times and zero-laxity execution times. Such 
convergence is guaranteed because the response times of 
higher priority tasks are monotonically non-decreasing with 
respect to increases in the zero laxity execution time of lower 
priority tasks, and similarly, the zero laxity execution times 
of lower priority tasks computed by binary search are 
monotonically non-decreasing with respect to increases in 
the response times of higher priority tasks. 



VI. EMPIRICAL INVESTIGATION 
In this section, we present the results of an empirical 

investigation, examining the effectiveness of the 
schedulability tests for FPZL. We also conducted scheduling 
simulations which form necessary but not sufficient 
schedulability tests, thus providing upper bounds on the 
potential performance of the various algorithms. 

A. Taskset parameter generation 
The taskset parameters used in our experiments were 

randomly generated as follows: 
o Task utilisations were generated using the UUnifast-

Discard algorithm [15], giving an unbiased distribution. 
o Task periods were generated according to a log-uniform 

distribution with a factor of 1000 difference between the 
minimum and maximum possible task period. This 
represents a spread of task periods from 1ms to 1 
second, as found in most hard real-time applications. 

o Task execution times were set based on the utilisation 
and period selected: iii TUC = . 

o To generate constrained-deadline tasksets, task 
deadlines were assigned according to a uniform random 
distribution, in the range ],[ ii TC . For implicit-deadline 
tasksets, deadlines were set equal to periods. 

In each experiment, the taskset utilisation (x-axis value) was 
varied from 0.025 to 0.975 times the number of processors in 
steps of 0.025. For each utilisation value, 1000 valid tasksets 
were generated and the schedulability of those tasksets 
determined using the various schedulability tests for different 
scheduling algorithms. The graphs plot the percentage of 
tasksets generated that were deemed schedulable in each 
case. The lines on all of the graphs appear in the order given 
in the legend. (The graphs are best viewed online in colour). 

B. Scheduling simulation 
We used a simulation of global FP, FPZL, global EDF 

and EDZL scheduling to provide an upper bound on the 
potential performance of each scheduling algorithm, and 
hence to evaluate the quality of the schedulability tests. 
(Further details of the simulation are given in [18]) The 
simulation deemed a taskset schedulable by a given 
algorithm if it did not find a deadline miss during the time 
interval simulated, or any unavoidable deadline miss for any 
job that had execution time remaining at the end of the 
interval. Thus the simulation provides a necessary but not 
sufficient schedulability test. Any taskset failing the 
simulation, with a deadline miss, is guaranteed to be 
unschedulable, while tasksets that pass the simulation may or 
may not be schedulable. We note that in the case of 
constrained-deadline sporadic tasksets, to the best of our 
knowledge, no tractable exact tests exist for any of the 
algorithms studied. Thus upper bounds on performance 
derived via simulation are one of the few ways in which the 
performance potential of each algorithm can be explored. 

C. Schedulability test effectiveness 
We investigated the performance of the FPZL DA-LC 

schedulability test using Audsley’s OPA algorithm [1] to 
assign priorities. (When no task was found to be schedulable 
at a given priority then a heuristic assignment was made, 
selecting the task with the smallest proportion of execution 
time in the zero-laxity state). We compared the performance 
of the FPZL DA-LC test to that of the equivalent tests for 
global FP scheduling, and to schedulability tests for global 
EDF [9] (the “EDF-RTA” test) and EDZL scheduling [4] 
(the “EDZL-I test”). Also shown on the graphs are results for 
the necessary infeasibility test of Baker and Cirinei [3] 
(labelled “LOAD*”). This line gives the total number of 
tasksets at each utilisation level that we cannot be certain are 
infeasible (i.e. unschedulable by any algorithm). Further, the 
narrow lines on the graphs indicate an upper bound on the 
performance of each algorithm found via simulation. In the 
case of global FP and FPZL scheduling, these upper bounds 
assume Deadline minus Computation time Monotonic 
Priority Ordering (DCMPO) [15],[16], which was found in 
the simulation studies to be significantly more effective than 
Deadline Monotonic Priority Ordering (DMPO). Note it is 
not possible to simulate optimal priority assignment as 
simulation of all possible priority orderings is completely 
intractable. 

Figures 3, 4, and 5 show the results of experiments for 
systems with 2, 4, and 8 processors and 10, 20, and 40 
constrained-deadline tasks respectively. 

From Figure 5 for the 8 processor case, we can see that 
the EDF-RTA test for global EDF scheduling and the DA-
LC test for global FP scheduling using DMPO have the 
lowest performance, with approximately 50% of the 
generated tasksets schedulable at a utilisation of 2.7 
(=0.34m) and 2.8 (=0.35m) respectively. The EDZL-I test 
performs significantly better with 50% of the tasksets 
schedulable at a utilisation of approx. 3.4 (=0.43m). Using 
optimal priority assignment significantly improves the 
performance of global FP scheduling, with 50% of the 
tasksets schedulable at a utilisation of approximately 4.7 
(=0.59m) according to the DA-LC test. Finally, the DA-LC 
test for FPZL, using Audsley’s OPA algorithm and a binary 
search to bound zero laxity execution time (marked FPZL-
LZ on the graph) has the highest performance, with 50% of 
tasksets deemed schedulable at a utilisation of approx. 4.9 
(=0.61m); a modest improvement over global FP scheduling. 

The simulation results in Figure 5 show that both global 
EDF and global FP scheduling with DMPO have relatively 
poor performance potential. This is because these algorithms 
typically favour executing tasks with short deadlines first. 
This has the effect of reducing the amount of available 
concurrency, in terms of the number of ready tasks, which 
makes the remaining tasks more difficult to schedule. 
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Figure 3:  (2 processors, 10 tasks, D≤T) 
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Figure 4:  (4 processors, 20 tasks, D≤T) 
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Figure 5:  (8 processors, 40 tasks, D≤T) 
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Figure 6:  (2 processors, 10 tasks, D=T) 
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Figure 7:  (4 processors, 20 tasks, D=T) 
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Figure 8:  (8 processors, 40 tasks, D=T) 



By contrast, using DCMPO greatly improves the 
performance potential of global FP scheduling, particularly 
when there are a large number of processors and tasks. The 
simulation results show that EDZL and FPZL with DCMPO 
priority ordering have similar performance potential, which 
as the number of processors and tasks increases becomes 
close to the bound given by the LOAD* infeasibility test. 

Figures 6, 7, and 8 show the results of the same 
experiment, repeated for implicit-deadline tasksets. These 
graphs show that the performance of the schedulability tests 
for FPZL significantly exceed that of the tests for global FP, 
global EDF and EDZL, with an increased gap between FPZL 
and global FP scheduling using OPA, compared to the 
constrained deadline case. This increase in the relative 
performance of FPZL is due to the calculation of a less 
pessimistic bound on the amount of zero-laxity execution 
time having an increased effect in the implicit deadline case.  

The performance of the RMZL schedulability test [25] is 
also shown in Figures 6, 7, and 8. The cause of significant 
pessimism in the RMZL test can be clearly seen in the results 
of a further experiment. This experiment compares the 
performance of the RMZL test with that of an equivalent 
FPZL RTA schedulability test2 for implicit-deadline tasksets 
with varying cardinality (n = 6, 8, 12, 20, and 36) on a 4 
processor system. The results are shown in Figure 9. 
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Figure 9:  (4 processors, variable number of tasks, D=T) 

From Figure 9, it is clear that the performance of the 
RMZL schedulability test deteriorates rapidly as the number 
of tasks is increased. This is due to the pessimism inherent in 
including an interference contribution from every lower 
priority task, rather than only from those that can enter the 
zero-laxity state. By comparison, the performance of the 
FPZL schedulability test is much less sensitive to the number 
of tasks, and shows similar behaviour to that of the response 
time test for global FP scheduling examined in [15] and [16]. 

                                                           
2  To obtain a simple and direct comparison, we used an FPZL 
schedulability test based on response time analysis, but not including the 
improvements derived by Guan et al. [20] and assuming that the entire 
execution of every zero-laxity task takes place in the zero-laxity state. 

We also examined the relative improvements in the 
FPZL schedulability tests obtained by (i) computing a more 
effective bound on the zero-laxity execution time, (ii) using 
the pseudo-polynomial time RTA-LC tests rather than the 
polynomial time DA-LC tests. These appear in [18]. 

VII. CONCLUSIONS AND FUTURE WORK 
The motivation for our work was the desire to improve 

upon current state-of-the-art global scheduling methods for 
hard real-time systems in terms of practical techniques that 
enable the efficient use of processing capacity. 

The intuition behind our work was that dynamic priority 
scheduling has the potential to schedule many more tasksets 
than fixed task or fixed job priority algorithms, and yet this 
theoretical advantage has to be tempered by the need to 
avoid prohibitively large overheads due to a high number of 
pre-emptions. This led us to consider minimally dynamic 
scheduling algorithms which permit each job to change 
priority at most once during its execution. One such 
algorithm is EDZL. We applied the zero-laxity rule from 
EDZL to global FP scheduling, forming the FPZL 
scheduling algorithm. The number of context switches with 
FPZL is at most two per zero-laxity task, and one per 
ordinary task. As there are at most m zero-laxity tasks, the 
increase in overheads compared to global FP scheduling is 
tightly bounded. 

The key contributions of this paper are as follows: 
o The derivation of effective polynomial time and pseudo-

polynomial time sufficient schedulability tests for FPZL. 
o Improvements to these tests, bounding the amount of 

execution that may take place in the zero-laxity state. 
The main conclusions that can be drawn from our empirical 
investigations are as follows: 
o The zero-laxity rule employed by FPZL appears to have 

a large impact on taskset schedulability, compared to the 
performance of global FP scheduling, as shown by the 
simulation results. The performance potential of FPZL 
using DCMPO was found to be broadly similar to that 
of EDZL, and significantly better than that of global FP 
or global EDF scheduling. 

o Using Audsley’s OPA algorithm to assign task 
priorities, the polynomial time schedulability test for 
FPZL results in a modest improvement over the 
equivalent test for global FP scheduling in the case of 
constrained-deadline tasksets, with an increased 
improvement for implicit-deadline tasksets. 

o The schedulability tests for FPZL derived in this paper, 
and the schedulability tests for global FP scheduling, 
appear to significantly outperform tests for global EDF 
and EDZL. Even so, there remains a large gap between 
the sufficient schedulability tests for FPZL and what 
might be possible as shown by the simulation results. 

Given the similarities between FPZL and EDZL, it is 
interesting to consider why the schedulability tests for FPZL 
significantly outperform those for EDZL. All of these 
schedulability tests are sufficient, and so suffer from a degree 



of pessimism in terms of the computed interference. The 
advantage that the schedulability tests for FPZL have over 
those for EDZL is that this pessimism is restricted to tasks 
with higher priorities and lower priority zero-laxity tasks. 
With the schedulability tests for EDZL (and EDF), there is 
pessimism attributable to the calculation of interference from 
all other tasks. Further, the techniques derived in this paper, 
reduce the amount of interference considered due to tasks 
executing in the zero-laxity state, by bounding the amount of 
execution that takes place in that state. Nevertheless, the tests 
for FPZL have an additional element of pessimism compared 
to similar tests for global FP scheduling due to the inclusion 
of zero-laxity tasks in the interference term. This may 
account for the fact that the difference in performance 
between the schedulability tests for FPZL and global FP 
scheduling is not as large as the difference in the potential 
performance of the two algorithms as shown by simulation.  

In future, we intend to investigate priority assignment 
policies for FPZL, including how task priorities should be 
assigned when it is inevitable that there will be some zero-
laxity tasks. We also intend to look at variants of FPZL that 
reduce the number of scheduling points, based on the idea of 
critical-laxity and EDCL [23]. 

Semi-partitioned scheduling algorithms, where a small 
number of tasks are permitted to migrate from one processor 
to another, offer an alternative approach to achieving 
enhanced schedulability without excessive overheads, based 
on partitioning rather than global scheduling. In future, it 
would be interesting to compare the performance of FPZL 
with that of semi-partitioned scheduling algorithms. 
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