
FPZL Schedulability Analysis

Robert I. Davis and Alan Burns
Real-Time Systems Research Group, Department of Computer Science, University of York, YO10 5DD, York (UK)

rob.davis@cs.york.ac.uk; alan.burns@cs.york.ac.uk

Abstract— This paper presents the Fixed Priority until Zero
Laxity (FPZL) scheduling algorithm for multiprocessor real-
time systems. FPZL is similar to global fixed priority pre-
emptive scheduling; however, whenever a task reaches a state
of zero laxity it is given the highest priority. FPZL is a
minimally dynamic algorithm, in that the priority of a job can
change at most once during its execution, bounding the
number of pre-emptions. Polynomial time and pseudo-
polynomial time sufficient schedulability tests are derived for
FPZL. These tests are then improved by computing upper
bounds on the amount of execution that each task can perform
in the zero laxity state. An empirical evaluation shows that
FPZL is highly effective, with a significantly larger number of
tasksets deemed schedulable by the tests derived in this paper,
than by state-of-the-art schedulability tests for Earliest
Deadline until Zero Laxity (EDZL) scheduling.

Keywords-real-time; real-time; multiprocessor; scheduling;
fixed priority; zero laxity; FPZL

I. INTRODUCTION
Approaches to multiprocessor real-time scheduling, can

be categorised into two broad classes: partitioned and global.
Partitioned approaches allocate each task to a single
processor, dividing the multiprocessor scheduling problem
into one of task allocation followed by uniprocessor
scheduling. In contrast, global approaches allow tasks to
migrate from one processor to another at run-time. Each
approach has its distinct advantages and disadvantages [17].
Here, we focus on global scheduling techniques with the aim
of increasing effectiveness, in terms of the number of
tasksets that can be guaranteed schedulable, without
compromising efficiency, in terms of the overheads caused
by pre-emption and migration.

In this paper, we present a minimally dynamic global
scheduling algorithm called FPZL (Fixed Priority until Zero
Laxity). FPZL is based on global fixed priority pre-emptive
scheduling, which for brevity we refer to as global FP
scheduling. Under FPZL, jobs are scheduled according to the
fixed priority of their associated task, until a situation is
reached where the remaining execution time of a job is equal
to the time to its deadline. Such a job has zero laxity and will
miss its deadline unless it executes continually until
completion. FPZL gives such zero-laxity jobs the highest
priority. The schedules produced by FPZL and global FP
scheduling are identical until the latter fails to execute a task
with zero laxity. Such a task will subsequently miss its

deadline. Hence FPZL dominates global FP scheduling, in
the sense that all priority ordered tasksets that are
schedulable according to global FP scheduling are also
schedulable according to FPZL. FPZL is closely related to
EDZL [22], [12], [4], [11], [26], [27], and [14] which applies
the same zero-laxity rule to global EDF scheduling.

A. Related Work
During the last ten years, sophisticated schedulability

tests have been developed for global FP, and global EDF
scheduling of sporadic tasksets with constrained and
arbitrary deadlines.

In 2003, Baker [2] developed a fundamental
schedulability test strategy, based on considering the
minimum amount of interference in a given interval that is
necessary to cause a deadline to be missed, and then taking
the contra-positive of this to form a sufficient schedulability
test. This basic strategy underpins an extensive thread of
subsequent research.

Baker’s work was built upon by Bertogna et al. [7] in
2005, (see also Bertogna et al. [9]). They developed
sufficient schedulability tests for global EDF, and global FP
scheduling based on bounding the maximum workload in a
given interval. In 2007, Bertogna and Cirinei [8] adapted this
approach to iteratively compute an upper bound on the
response time of each task, using the upper bound response
times of other tasks to limit the amount of interference
considered. In 2009, Guan et al. [20] extended the response
time analysis given in [8] using ideas from [6].

In 2009 and 2010, Davis and Burns [15], [16] showed
that priority assignment is fundamental to the effectiveness
of global FP scheduling. They proved that Audsley’s optimal
priority assignment algorithm [1] is applicable to some of the
sufficient tests developed for global FP scheduling, including
the deadline-based test of Bertogna et al. [9], but not to
others such as the response time tests of Bertogna and Cirinei
[8], and Guan et al. [20].

The Earliest Deadline first until Zero Laxity (EDZL)
algorithm was introduced in 1994 by Lee [22], who showed
that EDZL dominates global EDF scheduling, and is sub-
optimal for two processors (see also Cho et al. [14], Park et
al. [27]). Here, sub-optimal is used to mean that EDZL can
“schedule any feasible set of ready tasks”. This weak form of
optimality is appropriate for online scheduling algorithms,
which cannot take account of future arrival times. In 2006,
Piao et al. [26] showed that EDZL is completion time

predictable in the sense defined by Ha and Liu [21], (see
Section II.A). A simpler proof of predictability was given by
Cirinei and Baker [12] in 2007, who also developed a
sufficient schedulability test for EDZL based on the strategy
of Baker [2].

In 2008, Baker et al. [4] gave an iterative sufficient test
for EDZL based on the approach taken by Bertogna et al. [9]
for work conserving algorithms and global EDF. The
empirical evaluation in [4] shows that this iterative test for
EDZL outperforms other tests for EDZL given in [12] and,
as expected, similar tests for global EDF.

Also in 2008, Kato and Yamasaki [23], introduced
EDCL, a variant of EDZL, which increases job priority on
the basis of critical-laxity at the release or completion time of
a job. This has the effect of reducing the maximum number
of context switches to two per job, the same as EDF, at the
expense of slightly inferior schedulability, when compared to
EDZL. Kato and Yamasaki [23] also corrected a minor flaw
in the polynomial time schedulability test for EDZL given in
[12].

In 2009, Kato et al. [28], [24] presented research on
RMZL (RMZL and FPZL are different names for essentially
the same scheduling algorithm). Papers [28] and [24] were
initially published in Japanese, with an English language
version of [28] subsequently made available in May 2010 as
a technical report [25]. The FPZL schedulability analysis
presented in this paper was developed independently and
initially published as a technical report in April 2010 [18].
We now make a brief comparison between the RMZL
analysis given in [25] and the FPZL analysis presented in
this paper.

The FPZL analysis, presented in this paper, is applicable
to constrained-deadline tasksets with no restrictions on the
priority ordering which may be used; whereas the RMZL
analysis given in [25] is limited to implicit-deadline tasksets
with task priorities assigned in Rate Monotonic priority
order. The FPZL analysis computes which tasks can enter
the zero-laxity state and only includes interference from
those tasks; by comparison, the RMZL analysis includes
zero-laxity interference from every lower priority task. This
results in significant pessimism which heavily degrades
performance as taskset cardinality increases much beyond
the number of processors. The FPZL analysis computes an
upper bound on the amount of execution that can take place
in the zero-laxity state, while the RMZL analysis assumes
that all of a zero-laxity task’s execution can take place in the
zero-laxity state.

In summary, the FPZL RTA-LC schedulability test
presented in this paper is more widely applicable, dominates,
and significantly outperforms the RMZL schedulability test
given in [25].

B. Intuition and Motivation
The research described in this paper is motivated by the

need to close the large gap that currently exists between the
best known approaches to global multiprocessor real-time

scheduling for sporadic tasksets with constrained deadlines
and what may be possible as indicated by feasibility /
infeasibility tests.

Dynamic priority scheduling has the potential to schedule
many more tasksets than fixed task or fixed job priority
algorithms. However, this theoretical advantage must be
balanced against the increased overheads that dynamic
changes in priority can bring via an increase in the number of
pre-emptions / migrations.

For example, the LLREF scheduling algorithm [13],
which is optimal for periodic tasksets with implicit
deadlines, and the LRE-TL scheduling algorithm [19] which
is optimal for sporadic tasksets with implicit deadlines,
divide the timeline into intervals that start and end at task
releases/deadlines (referred to as TL-planes in [13]). In each
interval, LLREF and LRE-TL ensure that each active task iτ
executes for at least tUi , where iU is the task’s utilisation,
and t is the length of the time interval. Hence every task can
in the worst-case execute in every interval between task
deadlines, resulting in n-1 pre-emptions per job release,
where n is the number of tasks. In systems with a large
number of tasks, this level of pre-emptions leads to
prohibitively high overheads.

Minimally dynamic scheduling algorithms, such as FPZL
(and EDZL) offer a potential solution to this problem. Note,
by minimally dynamic, we mean that the priority of a job
changes at most once during its execution, hence bounding
the number of pre-emptions / migrations to at most two per
job release. By comparison, global FP and global EDF
scheduling incur at most one pre-emption / migration per job
release.

C. Organisation
The remainder of the paper is organised as follows:

Section II describes the terminology, notation and system
model used. Section III describes sufficient tests for global
FP scheduling. These tests are used in Section IV to derive
polynomial time and pseudo-polynomial time sufficient
schedulability tests for FPZL. Section V shows how the
schedulability tests for FPZL can be improved by bounding
the amount of execution that each task can perform in the
zero-laxity state. Section VI presents an empirical
investigation into the effectiveness of FPZL and its
schedulability tests. Finally, Section VII concludes with a
summary and suggestions for future research.

II. SYSTEM MODEL, TERMINOLOGY AND NOTATION
In this paper, we are interested in FPZL scheduling of an

application on a homogeneous multiprocessor system
comprising m identical processors. The application or taskset
is assumed to comprise a static set of n tasks (nττ ...1), where
each task iτ is assigned a unique priority i, from 1 to n
(where n is the lowest priority).

Tasks are assumed to comply with the sporadic task
model. In this model, tasks give rise to a potentially infinite
sequence of jobs. Each job of a task may arrive at any time

once a minimum inter-arrival time has elapsed since the
arrival of the previous job of the same task.

Each task iτ is characterised by its relative deadline iD ,
worst-case execution time iC , and minimum inter-arrival
time or period iT . The utilisation iU of each task is given
by ii TC / . A task’s worst-case response time iR is defined
as the longest time from a job of the task arriving to it
completing execution.

It is assumed unless otherwise stated that all tasks have
constrained deadlines (ii TD ≤). The tasks are assumed to be
independent and so cannot be blocked from executing by
another task other than due to contention for the processors.
Further, it is assumed that once a task starts to execute it will
not voluntarily suspend itself.

Intra-task parallelism is not permitted; hence, at any
given time, each job may execute on at most one processor.
As a result of pre-emption and subsequent resumption, a job
may migrate from one processor to another. The cost of pre-
emption, migration, and the run-time operation of the
scheduler is assumed to be either negligible, or subsumed
into the worst-case execution time of each task.
Notwithstanding this assumption, we are interested in
scheduling schemes that will have low overheads in practice
(i.e. a minimum number of pre-emptions / migrations).

Under global FP scheduling, at any given time, the m
highest priority ready jobs are executed. Under FPZL
scheduling, if a job reaches zero laxity then it is given the
highest priority and will execute until completion. The laxity
of a job is given by the elapsed time to its deadline less its
remaining execution time.

Schedulability analysis may identify certain tasks as
being able to enter the zero-laxity state. We refer to these
tasks as zero-laxity tasks. An upper bound on the maximum
amount of execution that a job of task iτ can perform in the
zero-laxity state is denoted by UB

iZ . Under FPZL, at any
given time, at most m tasks may be in the zero-laxity state
without a deadline being missed.

Finally, when discussing the schedulability of a given
task kτ , we use the term interference to refer to the
execution of other tasks, at a priority higher than k, that can
potentially delay the completion of task kτ .

A. Predictability
In 1994, Ha and Liu [21] defined the concept of

scheduling algorithm predictability. A scheduling algorithm
is referred to as predictable if the response times of jobs
cannot be increased by decreases in their execution times,
with all other parameters remaining constant. Predictability
is a fundamental requirement for scheduling algorithms as in
real systems task execution times are almost always variable
up to some worst-case time.

Ha and Liu [21] proved that all priority driven (i.e. fixed
job priority and fixed task priority) pre-emptive scheduling
algorithms for multiprocessor systems are predictable.
However, FPZL is a dynamic priority algorithm, and as such
it is necessary to prove the predictability of FPZL before it

can be considered useful. Proof that the FPZL scheduling
algorithm is predictable with respect to decreases in task
execution times follows from the logic used in Theorem 1 of
[4] to prove that EDZL is predictable. Noting that under
FPZL, the choice to schedule different jobs from the two sets
of jobs considered in Theorem 1 of [4] can only be due to the
zero-laxity rule. This is because the jobs belong to the same
task and therefore have the same priority. They differ only in
their execution times.

III. SCHEDULABILITY TESTS FOR GLOBAL FP
In this section, we recapitulate two sufficient

schedulability tests for global FP scheduling of sporadic
tasksets. These tests are described in more detail in [16].

A. Deadline Analysis for global FP
In [9], Bertogna et al. showed that if task kτ is

schedulable under global FP scheduling in an interval of
length L, then an upper bound on the interference over the
interval due to a higher priority task iτ with or without a
carry-in job is given by the following equation1. (Note a
carry-in job is a job that is released prior to the start of the
interval, and causes interference within that interval).

)1),(min(),(+−= k
D

ik
D
i CLLWCLI (1)

where)(LW D
i is an upper bound on the workload of task iτ

in an interval of length L, given by:
))(,min()()(i

D
iiiii

D
i

D
i TLNCDLCCLNLW −−++= (2)

and)(LN D
i is the maximum number of jobs of task iτ that

contribute all of their execution time in the interval:
⎣ ⎦iii

D
i TCDLLN /)()(−+= (3)

In [20], Guan et al. showed that if task kτ is schedulable in
an interval of length L, then an upper bound on the
interference over the interval due to a higher priority task iτ
without a carry-in job is given by:

)1),(min(),(+−= k
NC

ik
NC
i CLLWCLI (4)

where:
))(,min()()(i

NC
iii

NC
i

NC
i TLNLCCLNLW −+= (5)

and
⎣ ⎦i

NC
i TLLN /) (= (6)

The difference between the two interference terms given by
(1) and (4) is:

),(),(),(k
NC
ik

D
ik

DDIFF
i CLICLICLI −=− (7)

Building on the work of Guan et al. [20], Davis and Burns
[16] showed that the worst-case scenario for a task kτ under
global FP scheduling occurs when it is released at the start of
an interval where there are at most m-1 carry-in jobs of
higher priority tasks (Theorem 1 of [16]). This observation,

1 Note we adopt the approach to time representation used in [9]. Time is
represented by non-negative integer values, with each time value t viewed
as representing the whole of the interval [t, t+1). This enables mathematical
induction on clock ticks and avoids confusion with respect to end points of
execution.

lead to the introduction in [16] of an improved version of the
polynomial-time, deadline-based test of Bertogna [9]:

DA-LC test for global FP scheduling [16]: A sporadic
taskset is schedulable, if for every task kτ in the taskset, the
inequality given by (8) holds:

⎥
⎥
⎦

⎥

⎢
⎢
⎣

⎢

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
++≥ ∑∑

−∈

−

∈∀)1,()(
),(),(1

mkMDi
kk

DDIFF
i

khpi
kk

NC
ikk CDICDI

m
CD

(8)
where MD(k, m-1) is the subset of the min(k, m-1) tasks with
the largest values of),(kk

DDIFF
i CDI − from the set of tasks

hp(k) with priorities higher than k.

B. Response Time Analysis for global FP
In [8], Bertogna and Cirinei showed that if task kτ is

schedulable under global FP scheduling in an interval of
length L, then an upper bound on the interference in that
interval due to a higher priority task iτ with or without a
carry-in job is given by:

)1),(min(),(+−= k
R

ik
R
i CLLWCLI (9)

where,)(LW R
i is an upper bound on the workload of task

iτ in an interval of length L, taking into account the upper
bound response time (UB

iR) of task iτ :
))(,min()()(i

R
ii

UB
iii

R
i

R
i TLNCRLCCLNLW −−++= (10)

and)(LN R
i is given by:

⎣ ⎦ii
UBR

i TCRLLN
i

/)()(−+= (11)
In [20], Guan et al. showed that if task iτ does not have

a carry-in job, then the interference term is given by (4). The
difference between the two interference terms, (9) and (4), is
then given by:

),(),(),(k
NC
ik

R
ik

RDIFF
i CLICLICLI −=− (12)

Further, Guan et al. [20] showed that for their analysis, the
worst-case occurs when at most m-1 higher priority tasks
with carry-in jobs contribute interference, thus deriving an
improved version of the response time test of Bertogna and
Cirinei [8]:

RTA-LC test for global FP scheduling [20]: A sporadic
taskset is schedulable, if for every task kτ in the taskset, the
upper bound response time UB

kR computed via the fixed
point iteration given in (13) is less than or equal to the task’s
deadline:

⎥
⎥
⎦

⎥

⎢
⎢
⎣

⎢

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
++← ∑∑

−∈

−

∈∀)1,()(
),(),(1

mkMRi
k

UB
k

RDIFF
i

khpi
k

UB
k

NC
ik

UB
k CRICRI

m
CR

 (13)
where MR(k, m-1) is the subset of the min(k, m-1) tasks with
the largest values of),(k

UB
k

RDIFF
i CRI − , given by (12), from

the set of tasks hp(k). Iteration starts with k
UB
k CR = , and

continues until the value of UB
kR converges or until

k
UB
k DR > , in which case task kτ is unschedulable.

We note that using the RTA-LC test, task schedulability
needs to be determined in priority order, highest priority
first, as upper bounds on the response times of higher
priority tasks are required for computation of the interference

term)(UB
k

R
i RI . The RTA-LC test is pseudo-polynomial in

complexity, and dominates the DA-LC test.

IV. SCHEDULABILITY TESTS FOR FPZL
In this section, we derive polynomial time and pseudo-

polynomial time sufficient schedulability tests for FPZL.
These tests are applicable to sporadic tasksets with
constrained deadlines, and are independent of the priority
assignment policy used. They are based on the tests
described in the previous section for global FP scheduling.

A. Deadline Analysis for FPZL
Schedulability under FPZL differs from that under global

FP scheduling in two important aspects:
1. Under FPZL, up to m tasks may be deemed

unschedulable according to analysis of their response
times; and yet, due to the zero-laxity rule, the tasks will
not miss their deadlines.

2. Tasks that enter the zero-laxity state have an additional
impact on the schedulability of other tasks.

We now derive the maximum interference on a higher
priority task kτ , in an interval of length L, that could
possibly be caused by a lower priority task jτ executing in
the zero-laxity state.

Figure 1: Zero-laxity interference in an interval

Figure 1 illustrates the worst-case scenario. This occurs
when the first job of jτ in the interval starts executing in the
zero-laxity state, i.e. at the highest priority, at the start of the
interval, and completes at its deadline. As zero-laxity
execution can only occur immediately prior to a task’s
deadline, in the worst case, subsequent zero-laxity execution
of the jobs of jτ occurs at minimum intervals of iT . Thus an
upper bound on the amount of zero-laxity workload due to
task jτ in an interval of length L is given by:

))(,min()()(j
Z
j

UB
j

UB
j

Z
j

Z
j TLNLZZLNLW −+= (14)

where)(LN Z
j is the maximum number of jobs of task jτ

that contribute all of their zero-laxity execution in the
interval

⎣ ⎦j
Z
j TLLN /)(= (15)

Note, UB
jZ (jC≤) is an upper bound on the amount of

execution that any job of task jτ can perform in the zero-
laxity state.

If task kτ is schedulable in an interval of length L, then
an upper bound on the interference in that interval due to a
lower priority task jτ executing in the zero-laxity state is
given by:

)1),(min(),(+−= k
Z
jk

Z
j CLLWCLI (16)

Davis and Burns [16] showed that the worst-case
scenario for global FP scheduling of a task kτ occurs when
there are at most m-1 higher priority tasks with carry-in jobs.
We observe that as execution of a lower priority task in the
zero-laxity state can simply be modelled as the execution of
a virtual higher priority task, then the same observation
applies to our analysis of FPZL. We therefore need to
consider the interference from each lower priority zero-laxity
task with and without a carry-in job. The interference on task

kτ due to a lower priority zero-laxity task jτ , in an interval
of length L, is the same irrespective of whether jτ is
considered as having a carry-in job or not. Hence task jτ
cannot contribute any additional carry-in interference (its

DDIFF
jI − term is effectively zero) and so does not need to be

included when determining the m-1 tasks that contribute the
largest amounts of additional carry-in interference.

We now consider the interference from a higher priority
task iτ capable of entering the zero-laxity state. In this case,
the maximum interference with a carry-in job occurs when
the first job of iτ in the interval starts executing at the start
of the interval, and completes at its deadline, with all
subsequent jobs executing as early as possible, see Figure 2
below. We observe that this is the same scenario that leads to
the worst-case interference from a higher priority task which
does not enter the zero-laxity state but completes at its
deadline, and is given by (1). Similarly, zero-laxity execution
cannot increase the amount of interference from a higher
priority task with no carry-in job, given by (4). This is an
important observation. It means that when calculating
interference from higher priority tasks, we do not need to
know if they are zero-laxity tasks.

Figure 2: Interference in an interval

Under FPZL, each task kτ is therefore schedulable
without entering the zero-laxity state if the following
inequality holds:

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎥

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎢

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

+

+

+≥

∑

∑

∑

∈∀

−∈

−

∈∀

)(

)1,(

)(

),(

),(

),(

1

klpzlj
kk

Z
j

mkMDi
kk

DDIFF
i

khpi
kk

NC
i

kk

CDI

CDI

CDI

m
CD (17)

where),(kk
NC
i CDI is given by (4),),(kk

DDIFF
i CDI − is

given by (7),),(kk
Z
j CDI is given by (16), and lpzl(k) is the

set of zero-laxity tasks with lower priorities than k.
If the inequality in (17) does not hold, then the task is a

zero-laxity task. Under FPZL, at most m tasks can be zero-
laxity tasks without a deadline being missed.

We note that the zero-laxity status of each task is
unknown until its schedulability is checked via (17), hence
task schedulability needs to be checked in priority order,
lowest priority first.

Algorithm 1 presents the DA-LC schedulability test for
FPZL. For now we make the pessimistic assumption that a
zero-laxity task completes all of its execution in the zero-
laxity state, hence ‘Compute UB

kZ ’ can be assumed to set
k

UB
k CZ = . Section V describes the calculation of less

pessimistic upper bounds on zero-laxity execution.
1 countZL = 0
2 for (each priority level k, lowest first) {
3 Determine schedulability of kτ using (17)
4 if (kτ is not schedulable) {
5 mark kτ as a ‘zero-laxity’ task
6 countZL = countZL + 1
7 Compute UB

kZ
8 }
9 }
10 if (countZL > m)
11 return unschedulable
12 else
13 return schedulable

Algorithm 1: DA-LC schedulability test for FPZL

The DA-LC schedulability test for FPZL is a polynomial
time test requiring)(2nO operations (assuming that
‘Compute UB

kZ ’ takes linear time). Note that identifying the
tasks with the m-1 largest values of),(kk

DDIFF
i CDI − can be

achieved using a linear time selection algorithm [10].
We note that the DA-LC schedulability test for FPZL

reduces to the DA-LC test for global FP scheduling for any
taskset that the latter finds schedulable. Hence, the DA-LC
test for FPZL dominates the DA-LC test for global FP
scheduling.

We observe that a task kτ may reach zero laxity, but
still be schedulable at its fixed priority k, and so complete at
its deadline. Such a task cannot have any impact on the
execution of higher priority tasks, even though it is given the
highest priority by the FPZL algorithm once it reaches zero
laxity. This is because the maximum possible interference
from higher priority tasks and lower priority zero-laxity tasks
has already been accounted for and yet task kτ was found to
be schedulable, assuming execution at priority k. Hence there
cannot be any time t between the release and the deadline of
a job of kτ at which it has zero laxity and there are m jobs
with higher priorities are ready to execute, (otherwise kτ
would be unschedulable). Thus execution of task kτ at the
highest priority once it reaches zero laxity cannot interfere
with the execution of any higher priority tasks. As there can
be no interference on higher priority tasks, we do not classify
a task that can reach zero-laxity but is nevertheless
schedulable as a zero-laxity task, nor do we regard it as
entering the zero-laxity state.

B. Response Time Analysis for FPZL
Building on the work of Bertogna and Cirinei [8] and

Guan et al. [20] (i.e. (13)), we now derive a sufficient
schedulability test for FPZL which computes an upper bound

UB
kR on the response time of each task kτ .

If task kτ is schedulable under FPZL with a response
time bounded by UB

kR , then an upper bound on the
interference in an interval of length UB

kR due to a lower
priority task jτ executing in the zero-laxity state can be
obtained by substituting UB

kR for the length of the interval L
in (16).

We observe that again the maximum interference on task
kτ due to a lower priority zero-laxity task jτ is the same

irrespective of whether jτ is considered as having a carry-in
job or not. Hence task jτ cannot contribute any additional
carry-in interference and so does not need to be included
when determining the m-1 tasks that contribute the largest
amounts of additional carry-in interference.

In the previous section, we showed that using deadline
analysis the maximum interference on task kτ from a higher
priority task iτ capable of entering the zero-laxity state can
be determined using (1) assuming a carry-in job, and using
(4) assuming no carry-in job. Thus we showed that the
maximum interference from a higher priority task is
independent of whether or not that task is a zero-laxity task.

We now consider the situation when response time
analysis ((9) and (4)) is used to compute the interference due
a higher priority zero-laxity task. As the upper bound
response time UB

iR of a zero-laxity task is equal to its
deadline iD , we find that (9) reduces to (1). Hence the
maximum interference from a higher priority task is again
independent of whether or not that task is a zero-laxity task.
An upper bound on the worst-case response time of a task

kτ that is schedulable under FPZL without entering the zero-
laxity state can therefore be found using the fixed point
iteration given by (18).

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎥

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎢

⎟⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

+

+

+←

∑

∑

∑

∈∀

−∈

−

∈∀

)(

)1,(

)(

),(

),(

),(

1

klpzlj
k

UB
k

Z
j

mkMRi
k

UB
k

RDIFF
i

khpi
k

UB
k

NC
i

k
UB
k

CRI

CRI

CRI

m
CR (18)

where),(k
UB
k

NC
i CRI is given by (4),),(k

UB
k

RDIFF
i CRI − is

given by (12), and),(k
UB
k

Z
j CRI is given by (16).

Iteration starts with k
UB
k CR = , and continues until the

value of UB
kR converges in which case kτ is schedulable, or

until k
UB
k DR > . If k

UB
k DR > , then the task is a zero-laxity

task. Recall that under FPZL, at most m tasks may be zero-
laxity tasks without a deadline being missed.

Using (18), we can construct a sufficient schedulability
test for FPZL based on upper bound response times;
however, this is not entirely straightforward. Equation (18)
depends on the response times of higher priority tasks (via
(10)), and also on which lower priority tasks are zero-laxity

tasks. Thus it would appear that we cannot compute task
schedulability in increasing or decreasing priority order. This
problem can however be solved by backtracking as shown in
Algorithm 2.

Algorithm 2 initially assumes that there are no zero-
laxity tasks and starts computing task response times in
priority order, highest priority first (lines 6 and 7). Then,
whenever a task kτ is encountered where (18) results in a
value of k

UB
k DR > , the task is marked as a zero-laxity task

and its upper bound response time is set to its deadline (lines
8 and 9). We note that provided that the taskset is
schedulable under FPZL, then this is the correct upper bound
response time, as the zero-laxity rule will prevent the task
from actually missing its deadline.

1 countZL = 0
2 Initialize all UB

kR = kC and UB
kZ = 0

3 repeat = true
4 while (repeat) {
5 repeat = false
6 for (each priority level k, highest first) {
7 Determine UB

kR according to (18)
8 if (UB

kR > kD) {
9 UB

kR = kD
10 Compute UB

kZ
11 if (kτ not marked as a ZL task) {
12 mark kτ as a ZL task
13 repeat = true
14 countZL = countZL + 1
15 if(countZL > m) {
16 repeat = false
17 break (exit for loop)
18 }
19 }
20 }
21 [if (UB

kR or UB
kZ differ from prev. values)

22 repeat = true]
23 }
24 }
25 if (countZL > m)
26 return unschedulable
27 else
28 return schedulable

Algorithm 2: RTA-LC schedulability test for FPZL

The discovery of a zero-laxity task effectively
invalidates the upper bound response times calculated for all
higher priority tasks. These values could be too small, and
therefore the process of upper bound response time
calculation needs to be repeated (line 13). However, if more
than m zero-laxity tasks have been found, then even the zero-
laxity rule cannot prevent deadline misses and the taskset is
deemed unschedulable. In this case, the algorithm can exit
immediately (lines 15-17).

We note that lines 21-22 are not required when a simple
fixed value of k

UB
k CZ = is used for the zero-laxity

execution time of task kτ . However, when the computed
value of UB

kZ depends on the response times of higher
priority tasks then this additional convergence check is
required. This point is discussed in detail in Section V.

We note that the upper bound response time for a task
iτ is monotonically non-decreasing in the amount of zero-

laxity execution time of each of the tasks with lower priority
than i. Hence, the calculation of UB

iR can be made more
efficient on subsequent iterations of the ‘while’ loop (line 4)
by using as an initial value, the value of UB

iR computed on
the previous iteration.

The ‘while’ loop (lines 4-24) continues to iterate until
either m+1 zero-laxity tasks are found, in which case the
taskset is unschedulable under FPZL, or there are m or fewer
zero-laxity tasks and the upper bound response times have
been re-calculated since the final zero-laxity task was found.
In this case, the taskset is schedulable.

Under the assumption that ‘Compute UB
kZ ’ sets

k
UB
k CZ = , the RTA-LC schedulability test for FPZL

requires at most)(mnO response time calculations (i.e.
(18)), each of which is pseudo-polynomial in complexity.
This can be seen by noting that when ‘Compute UB

kZ ’ sets
k

UB
k CZ = , lines 21-22 are not required, and so the ‘while’

loop (line 4) only repeats when ‘repeat’ is set to true on line
13. This can only happen at most m times, as a result of
finding a zero-laxity task, before the taskset is declared
unschedulable. Hence the maximum number of times that a
response time can be computed (line 7) is)(mnO . By
comparison, the RTA-LC test for global FP scheduling
requires)(nO such response time calculations.

We note that the RTA-LC schedulability test for FPZL
reduces to the RTA-LC test for global FP scheduling for any
taskset that the latter finds schedulable. Hence, the RTA-LC
test for FPZL dominates the RTA-LC test for global FP
scheduling. Further, the RTA-LC test for FPZL also
dominates the DA-LC test for FPZL.

V. BOUNDING ZERO LAXITY EXECUTION TIME
So far, we have made the potentially pessimistic

assumption that a task that can reach the zero-laxity state
does so without having started to execute. Hence, we used an
upper bound on the zero-laxity execution time of k

UB
k CZ = .

In this section, we derive a more effective upper bound and
use this bound to improve the schedulability tests derived in
Section IV.

Calculation of an improved bound relies on the concept
of DC-Sustainability. A schedulability test for task kτ is
referred to as DC-Sustainable if it is sustainable [5] with
respect to simultaneous and equal changes in both the
execution time and the deadline of the task. Below we give a
formal definition of DC-Sustainability.
Definition: A schedulability test S for a task kτ is DC-
Sustainable if the following two conditions hold:
Condition 1: If task kτ is deemed schedulable by test S with
some paired deadline and execution time values

vDD kk −=′ , vCC kk −=′ where kCv ≤≤0 then test S is
guaranteed to deem task kτ schedulable for all deadline and
execution time pairs wDD kk −=′ , wCC kk −=′ where

kCwv ≤≤ .

Condition 2: If task kτ is deemed unschedulable by test S
with some paired deadline and execution time values

vDD kk −=′ , vCC kk −=′ where kCv ≤≤0 then test S is
guaranteed to deem task kτ unschedulable for all deadline
and execution time pairs wDD kk −=′ , wCC kk −=′ where

vw ≤≤0 .

Theorem 1: Equation (17) is a DC-Sustainable schedulability
test for task kτ .
Proof: We can re-write (17) as follows:

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎥

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎢

⎟⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

′′

+′′

+′′

≥′−′

∑

∑

∑

∈∀

−∈

−

∈∀

)(

)1,(

)(

),(

),(

),(

1

klpzlj
kk

Z
j

mkMDi
kk

DDIFF
i

khpi
kk

NC
i

kk

CDI

CDI

CDI

m
CD (19)

Consider the behavior of (19) for paired deadline and
execution time values wDD kk −=′ , wCC kk −=′ as w
takes different values in the range kCw ≤≤0 . The RHS of
(19) gives an upper bound on the interference from higher
priority tasks and lower priority tasks executing in the zero-
laxity state in an interval of length wDD kk −=′ . By
inspecting (1), (2), (3), (4), (5), (6), (7), (14), (15), and (16) it
can be seen that this interference is monotonically non-
decreasing with respect to the length of the interval kD′ . We
must however also consider the dependence of equations (1),
(4) and (16) on kC ′ , which also varies with w. kC ′ appears in
the second term in the min() function of each of these
equations in the expression 1+′−′ kk CD . This expression is
unchanged by varying w. The RHS of (19) is therefore
monotonically non-increasing with respect to increasing
values of w.
 In the case of Condition 1, as the LHS of (19) is
unchanged and the RHS is monotonically non-increasing for
increasing values of w: kCw ≤≤0 then it follows that, given
that (19) holds for w=v, it must also hold for all values of w:

kCwv ≤≤ .
In the case of Condition 2 as the LHS of (19) is

unchanged and the RHS is monotonically non-decreasing for
decreasing values of w: kCw ≤≤0 then it follows that,
given that (19) does not hold for w=v, then it cannot hold for
any value of w: vw ≤≤0 □

We now prove that (18) is also a DC-Sustainable
schedulability test for task kτ . Below, we re-write (18),
using the variable q to indicate the fixed point iteration.

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎥

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎢

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

′

+′

+′

+′←

∑

∑

∑

∈∀

−∈

−

∈∀

+

)(

)1,(

)(

1

),(

),(

),(

1

klpzlj
k

q
k

Z
j

mkMRi
k

q
k

RDIFF
i

khpi
k

q
k

NC
i

k
q
k

CRI

CRI

CRI

m
CR (20)

Recall that iteration begins with kk CR ′=0 (the execution
time of task kτ), and ends when either q

k
q
k RR =+1 or when

k
q
k DR ′>+1 , in which case task kτ is unschedulable.

Let),(CDRUB
k be the response time upper bound given

by (20) for task kτ (D, C) with deadline D and execution
time C. Similarly, let),(xCxDRUB

k ++ be the response
time upper bound given by (20) for task kτ (xD + , xC +)
with deadline xD + and execution time xC + .
Lemma 1: If kτ (D, C) is schedulable according to (20) then

xCRxCR UB
k

UB
k +≥+)()(. Further, if kτ (D, C) is not

schedulable according to (20) then neither is
kτ (xD + , xC +).

Proof: Let)(CRq
k be the value computed by the qth iteration

of (20) for task kτ (D, C). Similarly, let)(xCRq
k + be the

value computed by the qth iteration of (20) for task
kτ (xD + , xC +).

 We prove the Lemma by induction, showing that on
each iteration q, until either convergence or the deadline of

kτ (D, C) is exceeded, then xCRxCR q
k

q
k +≥+)()(.

Initial condition: in each case iteration starts with an
initial value corresponding to the execution time of kτ ,
hence CCRk =)(0 and xCxCRk +=+)(0 , so

xCRxCR kk +≥+)()(00 .
Inductive step: assume that xCRxCR q

k
q
k +≥+)()(, and

consider the values computed for)(1 xCRq
k ++ and

)(1 CRq
k
+ on iteration q+1. The floor function (second term

on the RHS of (20)) contains three summation terms;
together, these terms give an upper bound on the interference
from higher priority tasks and lower priority tasks executing
in the zero-laxity state in an interval of length q

kR .
Inspection of (4), (5), (6), (9), (10), (11), (12), (14), (15), and
(16) shows that this interference term is no smaller for input
values xCRxCR q

k
q
k +≥+)()(, and xCCk +=′ (the latter

is used in (4), (9) and (16)) than it is for input values)(CRq
k

and CCk =′ , hence once the value of kC ′ is added (first term
on the RHS of (20)), we have xCRxCR q

k
q
k +≥+ ++)()(11 .

We note that if the fixed point iteration for kτ (D, C)
converges on)(),(1 CRCDR q

k
UB
k

+= , then the smallest
possible value of),(xCxDRUB

k ++ is xCRq
k ++)(1 .

Further, if kτ (D, C) is unschedulable, then it follows that
DCRq

k >+)(1 which implies that xDxCRq
k +>++)(1 and

therefore kτ (xD + , xC +) must also be unschedulable □
Theorem 4: Equation (20), and hence (18) is a DC-
Sustainable schedulability test for task kτ .
Proof: We can choose an execution time of 0=′kC and a
deadline of kkk CDD −=′ for task kτ . With these
parameters, kτ is deemed schedulable by Equation (20). We
then consider all possible deadline and execution time pairs

wDD kk −=′ , wCC kk −=′ for w from 1 to kC (recall that
execution times are represented by non-negative integers).
Let v be the largest value of w, if any, for which kτ is
unschedulable. Lemma 1 tells us that for all smaller values of
w, kτ will also be unschedulable. Proof that Conditions 1
and 2 in the definition of DC-Sustainability hold follows
directly from the observation that task schedulability is

therefore monotonically decreasing with respect to
decreasing values of w □

We now show how a bound on the zero laxity execution
time of each zero-laxity task can be derived. Let us assume
that we are using the DA-LC schedulability test (Algorithm
1) or the RTA-LC schedulability test (Algorithm 2) for
FPZL, and that task kτ has been identified as a zero-laxity
task by (17) or (18). We know that task kτ cannot be
guaranteed to complete all of its execution within its
deadline, without entering the zero-laxity state. However, if
we can show that kτ is guaranteed to complete vCC kk −=′
units of execution time by an effective deadline of

vDD kk −=′ , when executing at priority k, then that proves
that the task can execute for at most v units of time in the
zero-laxity state. (Note for the reasons described at the end
of Section VI.A, a job of task kτ may reach zero laxity at or
before vDk − from its release, but cannot cause interference
on higher priority tasks until after vDk − , otherwise vCk −
units of execution time at priority k would not be schedulable
by vDk − . We therefore need only consider task kτ as
entering the zero-laxity state at vDk − , with zero-laxity
execution time v).

Due to the DC-Sustainability of the single task
schedulability tests given by (17) and (18), each of these
equations can be used as the basis of a binary search to
determine the smallest value of v)0(kCv ≤≤ such that task

kτ is guaranteed to complete vCC kk −=′ units of
execution time by a deadline vDD kk −=′ , thus computing
an upper bound vZ UB

k = on the amount of time that a job of
task kτ can spend executing in the zero-laxity state. The
initial minimum value of v for the search is 0=v which is
known to result in un-schedulability, as kτ is a zero-laxity
task, while the initial maximum value is kCv = which is
deemed to result in schedulability, as it is equivalent to kτ
having zero execution time.

In the DA-LC test, a binary search based on (17) can be
used to ‘Compute UB

kZ ’ (line 8 of Algorithm 1), for each
zero-laxity task, improving the effectiveness of the test.
Similarly, in the RTA-LC test, a binary search based on (18)
can be used to ‘Compute UB

kZ ’ (line 10 of Algorithm 2) for
each zero-laxity task. However, in this case, a further
convergence check (lines 21-22) is required as the zero-
laxity execution times computed by the binary searches are
dependent on the response times of higher priority tasks, and
vice-versa. We note that Algorithm 2 will either find more
than m zero-laxity tasks or converge on unchanging values
for the response times and zero-laxity execution times. Such
convergence is guaranteed because the response times of
higher priority tasks are monotonically non-decreasing with
respect to increases in the zero laxity execution time of lower
priority tasks, and similarly, the zero laxity execution times
of lower priority tasks computed by binary search are
monotonically non-decreasing with respect to increases in
the response times of higher priority tasks.

VI. EMPIRICAL INVESTIGATION
In this section, we present the results of an empirical

investigation, examining the effectiveness of the
schedulability tests for FPZL. We also conducted scheduling
simulations which form necessary but not sufficient
schedulability tests, thus providing upper bounds on the
potential performance of the various algorithms.

A. Taskset parameter generation
The taskset parameters used in our experiments were

randomly generated as follows:
o Task utilisations were generated using the UUnifast-

Discard algorithm [15], giving an unbiased distribution.
o Task periods were generated according to a log-uniform

distribution with a factor of 1000 difference between the
minimum and maximum possible task period. This
represents a spread of task periods from 1ms to 1
second, as found in most hard real-time applications.

o Task execution times were set based on the utilisation
and period selected: iii TUC = .

o To generate constrained-deadline tasksets, task
deadlines were assigned according to a uniform random
distribution, in the range],[ii TC . For implicit-deadline
tasksets, deadlines were set equal to periods.

In each experiment, the taskset utilisation (x-axis value) was
varied from 0.025 to 0.975 times the number of processors in
steps of 0.025. For each utilisation value, 1000 valid tasksets
were generated and the schedulability of those tasksets
determined using the various schedulability tests for different
scheduling algorithms. The graphs plot the percentage of
tasksets generated that were deemed schedulable in each
case. The lines on all of the graphs appear in the order given
in the legend. (The graphs are best viewed online in colour).

B. Scheduling simulation
We used a simulation of global FP, FPZL, global EDF

and EDZL scheduling to provide an upper bound on the
potential performance of each scheduling algorithm, and
hence to evaluate the quality of the schedulability tests.
(Further details of the simulation are given in [18]) The
simulation deemed a taskset schedulable by a given
algorithm if it did not find a deadline miss during the time
interval simulated, or any unavoidable deadline miss for any
job that had execution time remaining at the end of the
interval. Thus the simulation provides a necessary but not
sufficient schedulability test. Any taskset failing the
simulation, with a deadline miss, is guaranteed to be
unschedulable, while tasksets that pass the simulation may or
may not be schedulable. We note that in the case of
constrained-deadline sporadic tasksets, to the best of our
knowledge, no tractable exact tests exist for any of the
algorithms studied. Thus upper bounds on performance
derived via simulation are one of the few ways in which the
performance potential of each algorithm can be explored.

C. Schedulability test effectiveness
We investigated the performance of the FPZL DA-LC

schedulability test using Audsley’s OPA algorithm [1] to
assign priorities. (When no task was found to be schedulable
at a given priority then a heuristic assignment was made,
selecting the task with the smallest proportion of execution
time in the zero-laxity state). We compared the performance
of the FPZL DA-LC test to that of the equivalent tests for
global FP scheduling, and to schedulability tests for global
EDF [9] (the “EDF-RTA” test) and EDZL scheduling [4]
(the “EDZL-I test”). Also shown on the graphs are results for
the necessary infeasibility test of Baker and Cirinei [3]
(labelled “LOAD*”). This line gives the total number of
tasksets at each utilisation level that we cannot be certain are
infeasible (i.e. unschedulable by any algorithm). Further, the
narrow lines on the graphs indicate an upper bound on the
performance of each algorithm found via simulation. In the
case of global FP and FPZL scheduling, these upper bounds
assume Deadline minus Computation time Monotonic
Priority Ordering (DCMPO) [15],[16], which was found in
the simulation studies to be significantly more effective than
Deadline Monotonic Priority Ordering (DMPO). Note it is
not possible to simulate optimal priority assignment as
simulation of all possible priority orderings is completely
intractable.

Figures 3, 4, and 5 show the results of experiments for
systems with 2, 4, and 8 processors and 10, 20, and 40
constrained-deadline tasks respectively.

From Figure 5 for the 8 processor case, we can see that
the EDF-RTA test for global EDF scheduling and the DA-
LC test for global FP scheduling using DMPO have the
lowest performance, with approximately 50% of the
generated tasksets schedulable at a utilisation of 2.7
(=0.34m) and 2.8 (=0.35m) respectively. The EDZL-I test
performs significantly better with 50% of the tasksets
schedulable at a utilisation of approx. 3.4 (=0.43m). Using
optimal priority assignment significantly improves the
performance of global FP scheduling, with 50% of the
tasksets schedulable at a utilisation of approximately 4.7
(=0.59m) according to the DA-LC test. Finally, the DA-LC
test for FPZL, using Audsley’s OPA algorithm and a binary
search to bound zero laxity execution time (marked FPZL-
LZ on the graph) has the highest performance, with 50% of
tasksets deemed schedulable at a utilisation of approx. 4.9
(=0.61m); a modest improvement over global FP scheduling.

The simulation results in Figure 5 show that both global
EDF and global FP scheduling with DMPO have relatively
poor performance potential. This is because these algorithms
typically favour executing tasks with short deadlines first.
This has the effect of reducing the amount of available
concurrency, in terms of the number of ready tasks, which
makes the remaining tasks more difficult to schedule.

0%

20%

40%

60%

80%

100%

120%

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0
Utilisation

Pe
rc

en
ta

ge
 o

f t
as

ks
et

s
sc

he
du

la
bl

e

LOAD* infeasible
FPZL Sim (DCMPO)
EDZL Sim
FP Sim (DCMPO)
EDF Sim
FP Sim (DMPO)
FPZL-LZ DA-LC (OPA)
FP DA-LC (OPA)
EDZL (I)
FP DA-LC (DMPO)
EDF (RTA)

Figure 3: (2 processors, 10 tasks, D≤T)

0%

20%

40%

60%

80%

100%

120%

0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9 2.1 2.3 2.5 2.7 2.9 3.1 3.3 3.5 3.7 3.9
Utilisation

Pe
rc

en
ta

ge
 o

f t
as

ks
et

s
sc

he
du

la
bl

e

LOAD* infeasible
FPZL Sim (DCMPO)
EDZL Sim
FP Sim (DCMPO)
EDF Sim
FP Sim (DMPO)
FPZL-LZ DA-LC (OPA)
FP DA-LC (OPA)
EDZL (I)
FP DA-LC (DMPO)
EDF (RTA)

Figure 4: (4 processors, 20 tasks, D≤T)

0%

20%

40%

60%

80%

100%

120%

0.2 0.6 1.0 1.4 1.8 2.2 2.6 3.0 3.4 3.8 4.2 4.6 5.0 5.4 5.8 6.2 6.6 7.0 7.4 7.8
Utilisation

Pe
rc

en
ta

ge
 o

f t
as

ks
et

s
sc

he
du

la
bl

e

LOAD* infeasible
FPZL Sim (DCMPO)
EDZL Sim
FP Sim (DCMPO)
EDF Sim
FP Sim (DMPO)
FPZL-LZ DA-LC (OPA)
FP DA-LC (OPA)
EDZL (I)
FP DA-LC (DMPO)
EDF (RTA)

Figure 5: (8 processors, 40 tasks, D≤T)

0%

20%

40%

60%

80%

100%

120%

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0
Utilisation

Pe
rc

en
ta

ge
 o

f t
as

ks
et

s
sc

he
du

la
bl

e

FPZL Sim (DCMPO)
EDZL Sim
FP Sim (DCMPO)
EDF Sim
FP Sim (DMPO)
FPZL-LZ DA-LC (OPA)
FP DA-LC (OPA)
EDZL (I)
FP DA-LC (DMPO)
EDF (RTA)
RMZL(RMPO)

Figure 6: (2 processors, 10 tasks, D=T)

0%

20%

40%

60%

80%

100%

120%

0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9 2.1 2.3 2.5 2.7 2.9 3.1 3.3 3.5 3.7 3.9
Utilisation

Pe
rc

en
ta

ge
 o

f t
as

ks
et

s
sc

he
du

la
bl

e

FPZL Sim (DCMPO)
EDZL Sim
FP Sim (DCMPO)
EDF Sim
FP Sim (DMPO)
FPZL-LZ DA-LC (OPA)
FP DA-LC (OPA)
EDZL (I)
FP DA-LC (DMPO)
EDF (RTA)
RMZL(RMPO)

Figure 7: (4 processors, 20 tasks, D=T)

0%

20%

40%

60%

80%

100%

120%

0.2 0.6 1.0 1.4 1.8 2.2 2.6 3.0 3.4 3.8 4.2 4.6 5.0 5.4 5.8 6.2 6.6 7.0 7.4 7.8
Utilisation

Pe
rc

en
ta

ge
 o

f t
as

ks
et

s
sc

he
du

la
bl

e

FPZL Sim (DCMPO)
EDZL Sim
FP Sim (DCMPO)
EDF Sim
FP Sim (DMPO)
FPZL-LZ DA-LC (OPA)
FP DA-LC (OPA)
EDZL (I)
FP DA-LC (DMPO)
EDF (RTA)
RMZL(RMPO)

Figure 8: (8 processors, 40 tasks, D=T)

By contrast, using DCMPO greatly improves the
performance potential of global FP scheduling, particularly
when there are a large number of processors and tasks. The
simulation results show that EDZL and FPZL with DCMPO
priority ordering have similar performance potential, which
as the number of processors and tasks increases becomes
close to the bound given by the LOAD* infeasibility test.

Figures 6, 7, and 8 show the results of the same
experiment, repeated for implicit-deadline tasksets. These
graphs show that the performance of the schedulability tests
for FPZL significantly exceed that of the tests for global FP,
global EDF and EDZL, with an increased gap between FPZL
and global FP scheduling using OPA, compared to the
constrained deadline case. This increase in the relative
performance of FPZL is due to the calculation of a less
pessimistic bound on the amount of zero-laxity execution
time having an increased effect in the implicit deadline case.

The performance of the RMZL schedulability test [25] is
also shown in Figures 6, 7, and 8. The cause of significant
pessimism in the RMZL test can be clearly seen in the results
of a further experiment. This experiment compares the
performance of the RMZL test with that of an equivalent
FPZL RTA schedulability test2 for implicit-deadline tasksets
with varying cardinality (n = 6, 8, 12, 20, and 36) on a 4
processor system. The results are shown in Figure 9.

0%

20%

40%

60%

80%

100%

120%

0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9 2.1 2.3 2.5 2.7 2.9 3.1 3.3 3.5 3.7 3.9
Utilisation

Pe
rc

en
ta

ge
 o

f t
as

ks
et

s
sc

he
du

la
bl

e

FPZL (n = 6)
FPZL (n = 8)
FPZL (n = 12)
FPZL (n = 20)
FPZL (n = 36)
RMZL (n = 6)
RMZL (n = 8)
RMZL (n = 12)
RMZL (n = 20)
RMZL (n = 36)

Figure 9: (4 processors, variable number of tasks, D=T)

From Figure 9, it is clear that the performance of the
RMZL schedulability test deteriorates rapidly as the number
of tasks is increased. This is due to the pessimism inherent in
including an interference contribution from every lower
priority task, rather than only from those that can enter the
zero-laxity state. By comparison, the performance of the
FPZL schedulability test is much less sensitive to the number
of tasks, and shows similar behaviour to that of the response
time test for global FP scheduling examined in [15] and [16].

2 To obtain a simple and direct comparison, we used an FPZL
schedulability test based on response time analysis, but not including the
improvements derived by Guan et al. [20] and assuming that the entire
execution of every zero-laxity task takes place in the zero-laxity state.

We also examined the relative improvements in the
FPZL schedulability tests obtained by (i) computing a more
effective bound on the zero-laxity execution time, (ii) using
the pseudo-polynomial time RTA-LC tests rather than the
polynomial time DA-LC tests. These appear in [18].

VII. CONCLUSIONS AND FUTURE WORK
The motivation for our work was the desire to improve

upon current state-of-the-art global scheduling methods for
hard real-time systems in terms of practical techniques that
enable the efficient use of processing capacity.

The intuition behind our work was that dynamic priority
scheduling has the potential to schedule many more tasksets
than fixed task or fixed job priority algorithms, and yet this
theoretical advantage has to be tempered by the need to
avoid prohibitively large overheads due to a high number of
pre-emptions. This led us to consider minimally dynamic
scheduling algorithms which permit each job to change
priority at most once during its execution. One such
algorithm is EDZL. We applied the zero-laxity rule from
EDZL to global FP scheduling, forming the FPZL
scheduling algorithm. The number of context switches with
FPZL is at most two per zero-laxity task, and one per
ordinary task. As there are at most m zero-laxity tasks, the
increase in overheads compared to global FP scheduling is
tightly bounded.

The key contributions of this paper are as follows:
o The derivation of effective polynomial time and pseudo-

polynomial time sufficient schedulability tests for FPZL.
o Improvements to these tests, bounding the amount of

execution that may take place in the zero-laxity state.
The main conclusions that can be drawn from our empirical
investigations are as follows:
o The zero-laxity rule employed by FPZL appears to have

a large impact on taskset schedulability, compared to the
performance of global FP scheduling, as shown by the
simulation results. The performance potential of FPZL
using DCMPO was found to be broadly similar to that
of EDZL, and significantly better than that of global FP
or global EDF scheduling.

o Using Audsley’s OPA algorithm to assign task
priorities, the polynomial time schedulability test for
FPZL results in a modest improvement over the
equivalent test for global FP scheduling in the case of
constrained-deadline tasksets, with an increased
improvement for implicit-deadline tasksets.

o The schedulability tests for FPZL derived in this paper,
and the schedulability tests for global FP scheduling,
appear to significantly outperform tests for global EDF
and EDZL. Even so, there remains a large gap between
the sufficient schedulability tests for FPZL and what
might be possible as shown by the simulation results.

Given the similarities between FPZL and EDZL, it is
interesting to consider why the schedulability tests for FPZL
significantly outperform those for EDZL. All of these
schedulability tests are sufficient, and so suffer from a degree

of pessimism in terms of the computed interference. The
advantage that the schedulability tests for FPZL have over
those for EDZL is that this pessimism is restricted to tasks
with higher priorities and lower priority zero-laxity tasks.
With the schedulability tests for EDZL (and EDF), there is
pessimism attributable to the calculation of interference from
all other tasks. Further, the techniques derived in this paper,
reduce the amount of interference considered due to tasks
executing in the zero-laxity state, by bounding the amount of
execution that takes place in that state. Nevertheless, the tests
for FPZL have an additional element of pessimism compared
to similar tests for global FP scheduling due to the inclusion
of zero-laxity tasks in the interference term. This may
account for the fact that the difference in performance
between the schedulability tests for FPZL and global FP
scheduling is not as large as the difference in the potential
performance of the two algorithms as shown by simulation.

In future, we intend to investigate priority assignment
policies for FPZL, including how task priorities should be
assigned when it is inevitable that there will be some zero-
laxity tasks. We also intend to look at variants of FPZL that
reduce the number of scheduling points, based on the idea of
critical-laxity and EDCL [23].

Semi-partitioned scheduling algorithms, where a small
number of tasks are permitted to migrate from one processor
to another, offer an alternative approach to achieving
enhanced schedulability without excessive overheads, based
on partitioning rather than global scheduling. In future, it
would be interesting to compare the performance of FPZL
with that of semi-partitioned scheduling algorithms.

ACKNOWLEDGEMENTS
This work was funded by the EPSRC Tempo project

(EP/G055548/1) and the EU funded ArtistDesign Network of
Excellence. The authors would like to thank Shinpei Kato for
providing a translation of [28], and for discussions about the
RMZL schedulability test.

REFERENCES
[1] N.C. Audsley, “On priority assignment in fixed priority scheduling”,

Information Processing Letters, 79(1): 39-44, May 2001.
[2] T.P. Baker. “Multiprocessor EDF and deadline monotonic

schedulability analysis”. In Proc. RTSS, pp. 120–129, 2003.
[3] T.P. Baker, M. Cirinei, “A necessary and sometimes sufficient

condition for the feasibility of sets of sporadic hard-deadline tasks”,
In proc. Work-In-Progress (WIP) session of RTSS 2006.

[4] T.P.Baker, M. Cirinei, M. Bertogna, “EDZL scheduling analysis”.
Real-Time Systems. 40:3, 264-289, 2008

[5] S.K. Baruah., A. Burns, “Sustainable Scheduling Analysis”. In Proc.
RTSS, pp. 159-168, 2006.

[6] S.K. Baruah, “Techniques for Multiprocessor Global Schedulability
Analysis”. In Proc. RTSS, pp. 119-128, 2007.

[7] M. Bertogna, M. Cirinei, G. Lipari, “New schedulability tests for real-
time task sets scheduled by deadline monotonic on multiprocessors”.
In Proc. 9th International Conf. on Principles of Distributed Systems,
pp. 306-321, Dec. 2005.

[8] M. Bertogna, M. Cirinei, “Response Time Analysis for global
scheduled symmetric multiprocessor platforms”. In Proc. RTSS, pp.
149-158, 2007.

[9] M. Bertogna, M. Cirinei, G. Lipari. “Schedulability analysis of global
scheduling algorithms on multiprocessor platforms”. IEEE
Transactions on parallel and distributed systems, 20(4): 553-566.
April 2009.

[10] M. Blum, R.W. Floyd, V. Pratt, R. Rivest and R. Tarjan, "Time
bounds for selection," Journal of Computer and System Sciences. 7
(1973) pp. 448-461.

[11] Y-H Chao, S-S Lin, K-J Lin, “Schedulability issues for EDZL
scheduling on real-time multiprocessor systems”, Information
Processing Letters, Volume 107, Issue 5, pp. 158-164, 16 August
2008

[12] M. Cirinei, T. P. Baker. “EDZL scheduling analysis”. In Proc.
ECRTS, pp. 9–18, 2007.

[13] H. Cho, B. Ravindran, E.D. Jensen, “An Optimal Real-Time
Scheduling Algorithm for Multiprocessors”. In Proc. RTSS pp. 1001-
110, 2006.

[14] S. Cho, S-K. Lee, A. Han, K-J Lin, “Efficient real-time scheduling
algorithms for multiprocessor systems”. IEICE Transactions on
Communications Vol. E85-B No. 12, pp.2859–2867, 2002.

[15] R.I. Davis, A. Burns, “Priority Assignment for Global Fixed Priority
Pre-emptive Scheduling in Multiprocessor Real-Time Systems”. In
Proc. RTSS, pp. 398-409, 2009.

[16] R.I. Davis, A. Burns, “Improved Priority Assignment for Global
Fixed Priority Pre-emptive Scheduling in Multiprocessor Real-Time
Systems”. Real-Time Systems (to appear). DOI 10.1007/s11241-010-
9106-5. Available from http://www-users.cs.york.ac.uk/~robdavis/

[17] R.I. Davis, A. Burns, “A Survey of Hard Real-Time Scheduling for
Multiprocessor Systems”, ACM Computing Surveys (to appear).
Available from http://www-users.cs.york.ac.uk/~robdavis/

[18] R.I. Davis, A. Burns, “FPZL Schedulability Analysis”, Technical
Report YCS-2010-452, Dept. of Computer Science, University of
York, April 2010. Available from http://www-
users.cs.york.ac.uk/~robdavis/

[19] S. Funk, V. Nadadur, “LRE-TL: An Optimal Multiprocessor
Algorithm for Sporadic Task Sets”. In Proc. RTNS, pp. 159-168,
2009.

[20] N. Guan, M. Stigge, W.Yi, G. Yu, “New Response Time Bounds for
Fixed Priority Multiprocessor Scheduling”. In Proc. RTSS, pp 387-
397 2009.

[21] R. Ha, J. W.-S. Liu, “Validating timing constraints in multiprocessor
and distributed real-time systems”. In Proc. of the International
conference on Distributed Computing Systems, pp. 162–171, 1994.

[22] S.K. Lee, “On-line multiprocessor scheduling algorithms for real-time
tasks”, In Proc. IEEE Region 10’s Ninth Annual International
Conference, pp. 607–611, 1994.

[23] S. Kato, N. Yamasaki, “Global EDF-based scheduling with efficient
priority promotion”. In Proc. of RTCSA pp. 197–206, 2008.

[24] S. Kato, N. Yamasaki. "Real-Time Scheduling Module for Linux
Kernel", IPSJ Transactions on Advanced Computing Systems, Vol. 2,
No. 1 (ACS25), pp. 75-86, 2009. (in Japanese).

[25] S. Kato, A. Takeda, N. Yamasaki. "Global Rate-Monotonic
Scheduling with Priority Promotion", Technical Report CMU-ECE-
TR10-05, May, 2010.

[26] Piao X, Han S, Kim H, Park M, Cho Y, Cho S “Predictability of
earliest deadline zero laxity algorithm for multiprocessor real time
systems”. In: Proc. of the international symposium on object and
component-oriented real-time distributed computing, 2006.

[27] M. Park, S. Han, H. Kim, S. Cho, Y. Cho, “Comparison of deadline-
based scheduling algorithms for periodic real-time tasks on
multiprocessor”. IEICE Transactions on Information Systems Vol.
E88-D No. 3, pp. 658–661, 2005.

[28] A. Takeda, S. Kato N. Yamasaki. "Real-Time Scheduling based on
Rate Monotonic for Multiprocessors", IPSJ Transactions on
Advanced Computing Systems, Vol. 2, No. 1 (ACS25), pp. 64-74,
2009. (in Japanese)

