
Traffic Shaping to Reduce Jitter in Controller Area Network (CAN)

Robert I. Davis
Real-Time Systems Research Group, Department of

Computer Science,
University of York, YO10 5DD, York, UK

rob.davis@cs.york.ac.uk

Nicolas Navet
INRIA / RTaW

615, rue du Jardin Botanique
54600 Villers-lès-Nancy (France)

nicolas.navet@inria.fr

Abstract— When a message is transferred from one CAN
bus to another via a gateway, variability in the response time
of the message on the source network typically translates
into queuing jitter on the destination network. This jitter
inheritance accumulates across each gateway and can
significantly impact the schedulability of lower priority
messages. In this paper, we show that the real-time
performance of the network can be enhanced by a simple
method of traffic shaping that eliminates this inherited
queuing jitter. This method does not require access to global
time, nor does it require precise time-stamping of when
messages are received at the gateway or blocking read calls.
It can also be extended to account for clock drifts between
networks.

Keywords-Controller Area Network (CAN); traffic
shaping; jitter; response time analysis; scheduling.

I. INTRODUCTION
In automotive applications, Controller Area Network

(CAN) [1], [4] is typically used to provide high speed
networks (500Kbits/s) connecting chassis and power-train
Electronic Control Units (ECUs), for example engine
management and transmission control. It is also used for
low speed networks connecting body and comfort
electronics. Data required by nodes on different networks
is transferred between different CAN buses by a gateway
connected to both.

Schedulability analysis for CAN [3] computes upper
bounds on the worst-case response times of messages on a
single network, and thus can be used to provide guarantees
that messages will meet their deadlines during normal
operation. When messages are transferred from one
network to another by a gateway, then holistic analysis [5]
can be used to determine the overall end-to-end response
time of each message, and thus determine if end-to-end
deadlines will be met.

If the gateway forwards messages for transmission on
the destination network as soon as they have been received
from the source network then this can result in those
messages exhibiting significant queuing jitter on the
destination network. Effectively all of the variability in the
message’s response time on the source network can
manifest itself as queuing jitter with respect to
transmission of the message on the destination network. In
the worst-case, multiple instances of the same message that
were originally queued periodically with only a small
amount of jitter on the source network, may end up being
transmitted back-to-back on a destination network, causing
increased delays to lower priority messages.

Holistic analysis [5] assumes that messages inherit all
of the response time up to their reception at a gateway plus

the maximum delay in being processed by the gateway as
queuing jitter on the destination network. This analysis can
be improved by considering the time at which messages
are queued on the destination network as a dynamic offset
[8] which can vary between some minimum and maximum
values. This model eliminates jitter equivalent to the best-
case response time. Techniques for reducing variability in
the length of messages caused by stuff-bits can also
eliminate some jitter [12], [13]; however, the difference
between best-case and worst-case response times can still
be large and so significant jitter remains. The use of offset
release times [11] between messages sent by the same
node can reduce worst-case response times on the source
network, again reducing but not eliminating queuing jitter
on the destination network.

The problem is that gatewayed messages with large
queuing jitter can have a significant impact on the
schedulability of lower priority messages on the
destination network. With two networks, the interference
from gatewayed messages can easily be doubled, with two
instances of a gatewayed message being sent during the
response time of a lower priority message, rather than just
one. Response time upper bounds for non-pre-emptive
scheduling highlight this effect – see equation (33) in [9].

In this short paper, we introduce a simple traffic
shaping technique that can be used in gateways to
eliminate all of the jitter due to variability in message
response times up to the point at which they are received
by the gateway. This technique builds upon the No Global
Time (NGT) method [2]. Thus it does not require the use
of global time, and the source and destination networks are
assumed to be unsynchronised. However, unlike NGT, it
does not require information about when each message
was received from the source network, nor does it assume
the use of a blocking read call, necessitating the use of a
separate task per gatewayed message. Instead, this
technique assumes only that there is a free-running timer
that may be read by a single periodic communications task
in the gateway. The technique proposed is related to the
leaky bucket / token bucket method [6], [10], [15] of traffic
shaping. In particular, it is a greedy method of traffic
shaping [14] which comes for free, in the sense that it does
not introduce any additional end-to-end delays. It also has
some similarities to the use of servers to shape flows on
Ethernet described in [17].

Other methods of reducing jitter include synchronising
networks and then using offsets to determine message
release times on the destination network [16]. The work on
FTT-CAN [7] is an example of this approach; however,

mailto:rob.davis@cs.york.ac.uk�
mailto:nicolas.navet@inria.fr�

requiring synchronisation and effectively using TDMA on
top of CAN’s priority based arbitration has the
disadvantage of adding complexity and overheads. De-
coupling source and destination networks via periodic
message activation on the destination network is another
way of reducing jitter [19]; however, unlike the approach
taken in this paper, this reduction in jitter comes at a cost
of significantly increased end-to-end latencies.

Due to space constraints, we do not describe the CAN
protocol or its schedulability analysis in this paper. The
interested reader is referred instead to [3].

II. GATEWAYS AND TRAFFIC SHAPING
In automotive applications, there is often a

communications task that is responsible for the forwarding
of gatewayed messages. Let Δ be the maximum delay
between an event occurring (e.g. a message instance being
received) and the communications task recognising it.
Typically, Δ corresponds to the period (COMT) plus
worst-case response time (COMR) of the communications
task; assuming that it can execute as early as possible in
one period and then as late as possible in the next.

With a simple immediate forwarding policy, each time
the communications task runs, it checks for any received
messages from the source network and queues the
corresponding message on the destination network. Here,
as described in [5], the message m on the destination
network inherits queuing jitter from both the message on
the source network, and the communications task:

Δ++= SRC
m

SRC
m

DEST
m RJJ (1)

Where SRC
mJ and DEST

mJ are respectively the queuing
jitter on the source and destination networks, and SRC

mR is
the worst-case response time of the message on the source
network. (Note, here we assume that SRC

mR is made up of
the queuing delay and transmission time of message m on
the source network, but not its queuing jitter SRC

mJ which
is included separately). The inherited jitter DEST

mJ impacts
negatively schedulability on the destination network. It is
therefore interesting to consider ways in which this
inherited jitter can be eliminated. We note that in practice
not all of the response time on the source network
contributes to jitter, only the variability between the worst-
case and the best-case response time; however, we use the
simpler model here.
A. Jitter reduction policies

The No Global Time (NGT) policy introduced in [2]
removes jitter, without the need for global time or clock
synchronisation between different nodes.

With the NGT policy (see Algorithm 1), it is assumed
that the read is a blocking call that waits until the next
instance of the message is available from the source
network, if it has not already been received. The time t is
the local time at which the message instance was received,
period is the message period, and next is the earliest
time at which the next message may be queued onto the
destination network.

The effect of the NGT policy is to enforce a minimum
delay of period between the queuing of instances of the
message on the destination network, thus eliminating jitter

due to variability in the message response time on the
source network.

1 next = 0
2 read msg from source network
3 returning the time t at which it was
4 received
5 loop
6 queue output to destination network
7 next = max(next, t) + period
8 delay_until next
9 read msg from source network
10 returning t
11 end loop

Algorithm 1: NGT Policy for message m

One of the drawbacks of the NGT policy is that it
requires the time at which each message instance was
received to be available. This is not necessarily possible
with all CAN controller hardware. A second drawback is
that the read call is assumed to be blocking, and so
requires a separate task per forwarded message.

We now adapt the NGT policy making it more suited
to gateway nodes connecting networks using CAN. We
refer to the new policy as NJR for Non-blocking Jitter
Reduction. With the NJR policy, instead of a blocking read
call, we assume a single communications task that
executes periodically and has a maximum delay of Δ as
explained earlier. We do not require precise recording of
the times at which message instances are received from the
source network, instead this will be done approximately by
the communications task. We assume that instances of
gatewayed message m are placed in a FIFO buffer by the
CAN controller or interrupt handler, ready for processing
by the communications task.

In the following, we assume that the event initiating the
queuing of message m on the source network occurs
sporadically with a minimum inter-arrival time of mT
referred to as the message period. (We assume that the
maximum delay Δ of the communications task is less than
the message period mT).

1 if the message m FIFO buffer is empty
2 return
3 get local time t
4 if t < mX // too early to process message m
5 return
6 get instance of message m from buffer
7 queue instance on destination network
8 mX = max(mX , Δ−t) + mT

Algorithm 2: NJR Policy for message m

Algorithm 2 illustrates the policy implemented in the
body of the periodic communications task for instances of
message m. mX represents the next time at which it is
permissible to queue an instance of message m on the
destination network. mX is assumed to be initialised to
zero, and the local incrementing free-running timer t
started at zero, before the task first runs. (Note that the
same communications task can deal with forwarding
multiple messages).

The NJR policy operates as follows. When the first
instance of message m arrives, it can be forwarded
immediately, and is queued on the destination network by
the communications task as soon as the task executes. As
the task has a maximum delay of Δ in detecting that there
is a message instance to process, the policy assumes that
all of this delay may have happened, and that it is therefore
permissible to queue the next instance of the message on
the destination network at a time mm TtX +Δ−= or later.
If one or more subsequent instances of message m arrive
before this time, then they will wait in the FIFO buffer for
later processing, with queuing of the kth subsequent
instance of the message now only permitted at or after time

mm kTX + .
The remaining behaviour of the NJR policy, and the

fact that reading and using the local time obtained on line 3
is sufficient to correctly determine the next permissible
queuing time, can be seen by considering what happens
when the communications task runs and first finds an
instance j of message m at the head of the FIFO buffer.
There are two cases to consider:

Case 1: The local time mXt < . In this case, we can be
certain that the time at which instance j was received is not
relevant for setting the earliest permitted queuing time for
the next instance (j+1). Instance j will be processed by a
subsequent invocation of the communications task that
obtains a local time t: Δ+≤≤ mm XtX . On that
invocation, line 8 will set mmm TXX += , without needing
a value of t that reflects when instance j was actually
received.

Case 2: The local time mXt ≥ . In this case, instance j
cannot have been in the FIFO buffer when the
communications task previously ran; otherwise we would
have Case 1. (Trivially, it cannot have been at the head of
the buffer. Further, it cannot have been behind any
previous instances in the buffer, because as mT<Δ , mX
advances by more than Δ for each instance of message m
processed, and so any instance that is received while a
previous instance is in the buffer must belong to Case 1).
Instance j must therefore have been received at some time
between Δ−t and t, and so t is a valid time to use in
computing the earliest permissible queuing time for
instance j+1, via line 8.

The effect of the NJR policy is to ensure that the period
or minimum inter-arrival time of message m on the
destination network is mT and its queuing jitter is

COM
DEST
m RJ +Δ= . Note, the additional COMR term

arises because there could be a delay of at most COMR
between the timer being read (i.e. time t on line 3 of
Algorithm 2) and the message being queued (line 7), yet
the next instance of the message may be queued at time

Δ−+ mTt . The longest possible delay between the event
triggering the sending of an instance of message m on the
source network and its processing by the communications
task being permitted is SRC

k
SRC
k RJ + (i.e. the same as the

maximum delay between the initiating event and the
reception of the corresponding message instance at the
gateway). This is the case because processing of an
instance of message m can only ever be delayed if it
arrives less than mkT after the kth previous instance.

Hence processing of message instances with the maximum
delay SRC

k
SRC
k RJ + is unconstrained by the NJR policy,

and processing of instances which are received after a
delay of yRJ SRC

k
SRC
k −+ is only constrained (not

permitted) for at most an interval of time y. The NJR
policy therefore adds nothing to the worst-case delay with
which gatewayed messages are queued onto the destination
network. Recall that with immediate forwarding, such
messages need to be considered as having jitter of

Δ++= SRC
m

SRC
m

DEST
m RJJ . Instead with the NJR Policy,

they can, in the worst-case, be considered as having been
subject to a fixed delay of COM

SRC
m

SRC
m RRJ −+ , before

being queued with a period of mT and a queuing jitter of
COM

DEST
m RJ +Δ= . We note that while there may be little

if any difference in the overall worst-case end-to-end
response time for a single gatewayed message, compared
to an immediate forwarding policy, there can be significant
differences in the response times of lower priority
messages, including other gatewayed messages. This is
because the elimination of the majority of the queuing
jitter reduces the number of instances of messages that can
be queued onto the destination network in a short interval
of time.
B. Jitter reduction policy experiments

We conducted some simple experiments to
demonstrate the jitter reduction that occurs with the NJR
policy.

0

20

40

60

80

100

120

140

160

0 100 200 300 400 500 600 700 800 900

Message Instance

D
el

ay
 fr

om
 in

iti
at

in
g

ev
en

t (
m

s)

Constraint on delay
No Jitter Elimination
Jitter Elimination

Figure 1: Overall delay in queuing messages onto the destination

network

The results of one of these experiments is shown in
Figure 1. This experiment is based on a typical 125Kbit/s
body electronics network configuration generated by
NETCARBENCH [18] with 145 messages. We selected
the lowest priority message with a period of 200ms, as an
example of a gatewayed message. This message has a
worst-case response time of just under 140ms. The period
(COMT) of the communications task was set to 6ms and its
worst-case response time (COMR) to 3ms, giving a value
for Δ of 9ms.

The bottom line in Figure 1 shows the delay from the
initiating event for each message instance to the time at
which it was queued on the destination network, assuming

an immediate forwarding policy. The middle line shows
the same delay using the NJR policy. The top line shows
the bound on this time (147.5ms in this case). It is notable
that the delay is far more consistent with the NJR policy.

It is noticeable in Figure 1 that there is a transient
behaviour for the first 300 or so message instances, this
happens as the observed delay since the initiating event
increases up to a maximum value. The small overshoot
evident at around 300 is due to using Δ−+ mTt as the
next permitted queuing time when the communications
task has not actually exhibited a delay as long as Δ .

100

120

140

160

180

200

220

240

260

280

300

0 100 200 300 400 500 600 700 800 900
Instance

G
ap

Queuing interval (no jitter reduction)

Queuing interval (jitter reduction)
Constraint with jitter reduction

Figure 2: Time between queuing message instances (with / without jitter

reduction)

Figure 2 shows the time interval between queuing two
instances of the same message on the destination network
with and without jitter reduction. Figure 2 illustrates how
the NJR policy ensures that the queuing of 2≥k instances
of message m can only take place in an interval whose
length is at least mCOMm TkRT)2(−+−Δ− (i.e.
respecting the period mT and queuing jitter

COM
DEST
m RJ +Δ= of the message on the destination

network) This constraint is shown as a horizontal line on
the graph.

III. SUMMARY AND CONCLUSIONS
The simple traffic shaping policy Non-blocking Jitter

Reduction (NJR) introduced in this paper significantly
reduces the amount of queuing jitter on gatewayed
messages forwarded onto a destination network. The
policy is particularly suited to CAN for the following
reasons:
o It does not require the use of global time. The source

and destination networks can be unsynchronised.
o It does not require the precise time-stamping of when

messages are received. Instead only access to a local
free-running timer is needed.

o The gatewaying of messages can be performed by a
single, simple periodic task that does not block, and
can therefore be implemented on a single stack
operating system (e.g. OSEK BCC1).

The approach can easily be adapted to cater for clock
drifts by simply assuming a slightly smaller period on the
destination network, thus ensuring that the long term rate
at which messages are gatewayed onto that network does
not fall below the rate at which they arrive from the source

network. We note that the NJR policy could also be
applied to messages forwarded onto other types of
network.

ACKNOWLEDGEMENTS
This work was partially funded by the UK EPSRC

funded Tempo project (EP/G055548/1), the EU funded
ArtistDesign Network of Excellence. The authors would
like to thank Ralph Eastwood for his work on simulating
the traffic shaping policy.

REFERENCES
[1] Bosch. “CAN Specification version 2.0”. Robert Bosch GmbH,

Postfach 30 02 40, D-70442 Stuttgart, 1991.
[2] A. Burns, Y. Chen, “Implementing Transactions in a Distributed

Real-Time System without Global Time”. In proceedings Work-in-
Progress session, RTSS 2009.

[3] R.I. Davis, A. Burns, R.J. Bril, J.J. Lukkien. “Controller Area
Network (CAN) Schedulability Analysis: Refuted, Revisited and
Revised”. Real-Time Systems, Volume 35, Number 3, pp. 239-
272, April 2007.

[4] ISO 11898-1. “Road Vehicles – interchange of digital information
– controller area network (CAN) for high-speed communication”,
ISO Standard-11898, International Standards Organisation (ISO),
Nov. 1993.

[5] K.W. Tindell, J.A. Clark, Holistic schedulability analysis for
distributed hard real-time systems, Microprocessing and
Microprogramming, Vol. 40, Issues 2-3, pp 117-134, April 1994.

[6] J.S. Turner. New directions in communications (or which way to
the information age?). IEEE Communications Magazine,
24(10):8{15, October 1986.

[7] P. Pedreiras, L. Almeida, "Message routing in multi-segment FTT
networks: The Isochronous Approach" In proceedings WPDRTS
2004.

[8] J.C. Palencia, M. González Harbour, “Schedulability Analysis for
Tasks with Static and Dynamic Offsets”. In proceedings RTSS
1998.

[9] R.I. Davis, A. Burns. "Response Time Upper Bounds for Fixed
Priority Real-Time Systems" . In proceedings RTSS 2008

[10] J. Löser and H. Härtig. Low-Latency Hard Real-Time
Communication over Switched Ethernet. In proceedings ECRTS,
pp 13–22, 2004.

[11] M. Grenier, L. Havet, and N. Navet. Pushing the limits of CAN -
scheduling frames with offsets provides a major performance
boost. In proceedings ERTS 2008.

[12] T. Nolte, H. Hansson, C. Norstrom, S. Punnekkat. Using Bit-
Stuffing Distributions in CAN Analysis. In proceedings RTES
2001.

[13] T. Nolte, H. Hansson, C. Norstrom. “Minimizing CAN response-
time analysis jitter by message manipulation”. In Proceedings
RTAS, pp 197-206, 2002.

[14] E. Wandeler , A. Maxiaguine , L. Thiele, “Performance analysis of
greedy shapers in real-time systems”, In proceedings DATE, 2006.

[15] S.-K.Kweon, K.G. Shin, “Achieving real-time communication over
Ethernet with adaptive traffic smoothing”. In proceedings RTAS
2000.

[16] P. Pedreiras, L, Almeida, “Minimizing the end-to-end latency in
multi-segment time triggered networks”, INCOM 2004.

[17] R. Santos, P. Pedreiras, M. Behnam, T. Nolte, L. Almeida. “Multi-
level Hierarchical Scheduling in Ethernet Switches”. In
proceedings EMSOFT 2011.

[18] C. Braun, L. Havet, and N. Navet, “NETCARBENCH: a
benchmark for techniques and tools used in the design of
automotive communication systems,” in proceedings FET 2007.
Available at http://www.netcarbench.org.

[19] M. Di Natale, W. Zheng, C. Pinello, P. Giusto, A.S. Vincentelli,
“Optimizing end-to-end latencies by adaptation of the activation
events in distributed automotive systems”, pp. 293-302 RTAS
2007

http://www-users.cs.york.ac.uk/~robdavis/papers/ResponseTimeUpperBound3.0.pdf�
http://www-users.cs.york.ac.uk/~robdavis/papers/ResponseTimeUpperBound3.0.pdf�
http://www.netcarbench.org/�

