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Abstract— When a message is transferred from one CAN 
bus to another via a gateway, variability in the response time 
of the message on the source network typically translates 
into queuing jitter on the destination network. This jitter 
inheritance accumulates across each gateway and can 
significantly impact the schedulability of lower priority 
messages. In this paper, we show that the real-time 
performance of the network can be enhanced by a simple 
method of traffic shaping that eliminates this inherited 
queuing jitter. This method does not require access to global 
time, nor does it require precise time-stamping of when 
messages are received at the gateway or blocking read calls. 
It can also be extended to account for clock drifts between 
networks. 

Keywords-Controller Area Network (CAN); traffic 
shaping; jitter; response time analysis; scheduling. 

I. INTRODUCTION 
In automotive applications, Controller Area Network 

(CAN) [1], [4] is typically used to provide high speed 
networks (500Kbits/s) connecting chassis and power-train 
Electronic Control Units (ECUs), for example engine 
management and transmission control. It is also used for 
low speed networks connecting body and comfort 
electronics. Data required by nodes on different networks 
is transferred between different CAN buses by a gateway 
connected to both. 

Schedulability analysis for CAN [3] computes upper 
bounds on the worst-case response times of messages on a 
single network, and thus can be used to provide guarantees 
that messages will meet their deadlines during normal 
operation. When messages are transferred from one 
network to another by a gateway, then holistic analysis [5] 
can be used to determine the overall end-to-end response 
time of each message, and thus determine if end-to-end 
deadlines will be met. 

If the gateway forwards messages for transmission on 
the destination network as soon as they have been received 
from the source network then this can result in those 
messages exhibiting significant queuing jitter on the 
destination network. Effectively all of the variability in the 
message’s response time on the source network can 
manifest itself as queuing jitter with respect to 
transmission of the message on the destination network. In 
the worst-case, multiple instances of the same message that 
were originally queued periodically with only a small 
amount of jitter on the source network, may end up being 
transmitted back-to-back on a destination network, causing 
increased delays to lower priority messages. 

Holistic analysis [5] assumes that messages inherit all 
of the response time up to their reception at a gateway plus 

the maximum delay in being processed by the gateway as 
queuing jitter on the destination network. This analysis can 
be improved by considering the time at which messages 
are queued on the destination network as a dynamic offset 
[8] which can vary between some minimum and maximum 
values. This model eliminates jitter equivalent to the best-
case response time. Techniques for reducing variability in 
the length of messages caused by stuff-bits can also 
eliminate some jitter [12], [13]; however, the difference 
between best-case and worst-case response times can still 
be large and so significant jitter remains. The use of offset 
release times [11] between messages sent by the same 
node can reduce worst-case response times on the source 
network, again reducing but not eliminating queuing jitter 
on the destination network. 

The problem is that gatewayed messages with large 
queuing jitter can have a significant impact on the 
schedulability of lower priority messages on the 
destination network. With two networks, the interference 
from gatewayed messages can easily be doubled, with two 
instances of a gatewayed message being sent during the 
response time of a lower priority message, rather than just 
one. Response time upper bounds for non-pre-emptive 
scheduling highlight this effect – see equation (33) in [9]. 

In this short paper, we introduce a simple traffic 
shaping technique that can be used in gateways to 
eliminate all of the jitter due to variability in message 
response times up to the point at which they are received 
by the gateway. This technique builds upon the No Global 
Time (NGT) method [2]. Thus it does not require the use 
of global time, and the source and destination networks are 
assumed to be unsynchronised. However, unlike NGT, it 
does not require information about when each message 
was received from the source network, nor does it assume 
the use of a blocking read call, necessitating the use of a 
separate task per gatewayed message. Instead, this 
technique assumes only that there is a free-running timer 
that may be read by a single periodic communications task 
in the gateway. The technique proposed is related to the 
leaky bucket / token bucket method [6], [10], [15] of traffic 
shaping. In particular, it is a greedy method of traffic 
shaping [14] which comes for free, in the sense that it does 
not introduce any additional end-to-end delays. It also has 
some similarities to the use of servers to shape flows on 
Ethernet described in [17]. 

Other methods of reducing jitter include synchronising 
networks and then using offsets to determine message 
release times on the destination network [16]. The work on 
FTT-CAN [7] is an example of this approach; however, 
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requiring synchronisation and effectively using TDMA on 
top of CAN’s priority based arbitration has the 
disadvantage of adding complexity and overheads. De-
coupling source and destination networks via periodic 
message activation on the destination network is another 
way of reducing jitter [19]; however, unlike the approach 
taken in this paper, this reduction in jitter comes at a cost 
of significantly increased end-to-end latencies. 

Due to space constraints, we do not describe the CAN 
protocol or its schedulability analysis in this paper. The 
interested reader is referred instead to [3]. 

II. GATEWAYS AND TRAFFIC SHAPING 
In automotive applications, there is often a 

communications task that is responsible for the forwarding 
of gatewayed messages. Let Δ  be the maximum delay 
between an event occurring (e.g. a message instance being 
received) and the communications task recognising it. 
Typically, Δ  corresponds to the period ( COMT ) plus 
worst-case response time ( COMR ) of the communications 
task; assuming that it can execute as early as possible in 
one period and then as late as possible in the next. 

With a simple immediate forwarding policy, each time 
the communications task runs, it checks for any received 
messages from the source network and queues the 
corresponding message on the destination network. Here, 
as described in [5], the message m on the destination 
network inherits queuing jitter from both the message on 
the source network, and the communications task: 

Δ++= SRC
m

SRC
m

DEST
m RJJ     (1) 

Where SRC
mJ  and DEST

mJ  are respectively the queuing 
jitter on the source and destination networks, and SRC

mR  is 
the worst-case response time of the message on the source 
network. (Note, here we assume that SRC

mR  is made up of 
the queuing delay and transmission time of message m on 
the source network, but not its queuing jitter SRC

mJ  which 
is included separately). The inherited jitter DEST

mJ  impacts 
negatively schedulability on the destination network. It is 
therefore interesting to consider ways in which this 
inherited jitter can be eliminated. We note that in practice 
not all of the response time on the source network 
contributes to jitter, only the variability between the worst-
case and the best-case response time; however, we use the 
simpler model here. 
A. Jitter reduction policies 

The No Global Time (NGT) policy introduced in [2] 
removes jitter, without the need for global time or clock 
synchronisation between different nodes. 

With the NGT policy (see Algorithm 1), it is assumed 
that the read is a blocking call that waits until the next 
instance of the message is available from the source 
network, if it has not already been received. The time t is 
the local time at which the message instance was received, 
period is the message period, and next is the earliest 
time at which the next message may be queued onto the 
destination network. 

The effect of the NGT policy is to enforce a minimum 
delay of period between the queuing of instances of the 
message on the destination network, thus eliminating jitter 

due to variability in the message response time on the 
source network. 

1 next = 0 
2 read msg from source network  
3 returning the time t at which it was 
4 received 
5 loop 
6 queue output to destination network 
7 next = max(next, t) + period 
8 delay_until next 
9 read msg from source network 
10 returning t 
11 end loop 

Algorithm 1: NGT Policy for message m 

One of the drawbacks of the NGT policy is that it 
requires the time at which each message instance was 
received to be available. This is not necessarily possible 
with all CAN controller hardware. A second drawback is 
that the read call is assumed to be blocking, and so 
requires a separate task per forwarded message.  

We now adapt the NGT policy making it more suited 
to gateway nodes connecting networks using CAN. We 
refer to the new policy as NJR for Non-blocking Jitter 
Reduction. With the NJR policy, instead of a blocking read 
call, we assume a single communications task that 
executes periodically and has a maximum delay of Δ  as 
explained earlier. We do not require precise recording of 
the times at which message instances are received from the 
source network, instead this will be done approximately by 
the communications task. We assume that instances of 
gatewayed message m are placed in a FIFO buffer by the 
CAN controller or interrupt handler, ready for processing 
by the communications task. 

In the following, we assume that the event initiating the 
queuing of message m on the source network occurs 
sporadically with a minimum inter-arrival time of mT  
referred to as the message period. (We assume that the 
maximum delay Δ  of the communications task is less than 
the message period mT ). 

1 if the message m FIFO buffer is empty 
2 return 
3 get local time t  
4 if t < mX  // too early to process message m 
5 return 
6 get instance of message m from buffer 
7 queue instance on destination network 
8 mX = max( mX , Δ−t ) + mT  

Algorithm 2: NJR Policy for message m 

Algorithm 2 illustrates the policy implemented in the 
body of the periodic communications task for instances of 
message m. mX  represents the next time at which it is 
permissible to queue an instance of message m on the 
destination network. mX  is assumed to be initialised to 
zero, and the local incrementing free-running timer t 
started at zero, before the task first runs. (Note that the 
same communications task can deal with forwarding 
multiple messages). 



The NJR policy operates as follows. When the first 
instance of message m arrives, it can be forwarded 
immediately, and is queued on the destination network by 
the communications task as soon as the task executes. As 
the task has a maximum delay of Δ  in detecting that there 
is a message instance to process, the policy assumes that 
all of this delay may have happened, and that it is therefore 
permissible to queue the next instance of the message on 
the destination network at a time mm TtX +Δ−=  or later. 
If one or more subsequent instances of message m arrive 
before this time, then they will wait in the FIFO buffer for 
later processing, with queuing of the kth subsequent 
instance of the message now only permitted at or after time 

mm kTX + . 
The remaining behaviour of the NJR policy, and the 

fact that reading and using the local time obtained on line 3 
is sufficient to correctly determine the next permissible 
queuing time, can be seen by considering what happens 
when the communications task runs and first finds an 
instance j of message m at the head of the FIFO buffer. 
There are two cases to consider: 

Case 1: The local time mXt < . In this case, we can be 
certain that the time at which instance j was received is not 
relevant for setting the earliest permitted queuing time for 
the next instance (j+1). Instance j will be processed by a 
subsequent invocation of the communications task that 
obtains a local time t: Δ+≤≤ mm XtX . On that 
invocation, line 8 will set mmm TXX += , without needing 
a value of t that reflects when instance j was actually 
received. 

Case 2: The local time mXt ≥ . In this case, instance j 
cannot have been in the FIFO buffer when the 
communications task previously ran; otherwise we would 
have Case 1. (Trivially, it cannot have been at the head of 
the buffer. Further, it cannot have been behind any 
previous instances in the buffer, because as mT<Δ , mX  
advances by more than Δ  for each instance of message m 
processed, and so any instance that is received while a 
previous instance is in the buffer must belong to Case 1). 
Instance j must therefore have been received at some time 
between Δ−t  and t, and so t is a valid time to use in 
computing the earliest permissible queuing time for 
instance j+1, via line 8. 

The effect of the NJR policy is to ensure that the period 
or minimum inter-arrival time of message m on the 
destination network is mT  and its queuing jitter is 

COM
DEST
m RJ +Δ= . Note, the additional COMR  term 

arises because there could be a delay of at most COMR  
between the timer being read (i.e. time t on line 3 of 
Algorithm 2) and the message being queued (line 7), yet 
the next instance of the message may be queued at time 

Δ−+ mTt . The longest possible delay between the event 
triggering the sending of an instance of message m on the 
source network and its processing by the communications 
task being permitted is SRC

k
SRC
k RJ +  (i.e. the same as the 

maximum delay between the initiating event and the 
reception of the corresponding message instance at the 
gateway). This is the case because processing of an 
instance of message m can only ever be delayed if it 
arrives less than mkT  after the kth previous instance. 

Hence processing of message instances with the maximum 
delay SRC

k
SRC
k RJ +  is unconstrained by the NJR policy, 

and processing of instances which are received after a 
delay of yRJ SRC

k
SRC
k −+  is only constrained (not 

permitted) for at most an interval of time y. The NJR 
policy therefore adds nothing to the worst-case delay with 
which gatewayed messages are queued onto the destination 
network. Recall that with immediate forwarding, such 
messages need to be considered as having jitter of 

Δ++= SRC
m

SRC
m

DEST
m RJJ . Instead with the NJR Policy, 

they can, in the worst-case, be considered as having been 
subject to a fixed delay of COM

SRC
m

SRC
m RRJ −+ , before 

being queued with a period of mT  and a queuing jitter of 
COM

DEST
m RJ +Δ= . We note that while there may be little 

if any difference in the overall worst-case end-to-end 
response time for a single gatewayed message, compared 
to an immediate forwarding policy, there can be significant 
differences in the response times of lower priority 
messages, including other gatewayed messages. This is 
because the elimination of the majority of the queuing 
jitter reduces the number of instances of messages that can 
be queued onto the destination network in a short interval 
of time. 
B. Jitter reduction policy experiments 

We conducted some simple experiments to 
demonstrate the jitter reduction that occurs with the NJR 
policy.  
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Figure 1: Overall delay in queuing messages onto the destination 

network 

The results of one of these experiments is shown in 
Figure 1. This experiment is based on a typical 125Kbit/s 
body electronics network configuration generated by 
NETCARBENCH [18] with 145 messages. We selected 
the lowest priority message with a period of 200ms, as an 
example of a gatewayed message. This message has a 
worst-case response time of just under 140ms. The period 
( COMT ) of the communications task was set to 6ms and its 
worst-case response time ( COMR ) to 3ms, giving a value 
for Δ  of 9ms. 

The bottom line in Figure 1 shows the delay from the 
initiating event for each message instance to the time at 
which it was queued on the destination network, assuming 



an immediate forwarding policy. The middle line shows 
the same delay using the NJR policy. The top line shows 
the bound on this time (147.5ms in this case). It is notable 
that the delay is far more consistent with the NJR policy. 

It is noticeable in Figure 1 that there is a transient 
behaviour for the first 300 or so message instances, this 
happens as the observed delay since the initiating event 
increases up to a maximum value. The small overshoot 
evident at around 300 is due to using Δ−+ mTt  as the 
next permitted queuing time when the communications 
task has not actually exhibited a delay as long as Δ . 

100

120

140

160

180

200

220

240

260

280

300

0 100 200 300 400 500 600 700 800 900
Instance

G
ap

Queuing interval (no jitter reduction)

Queuing interval (jitter reduction)
Constraint with jitter reduction

 
Figure 2: Time between queuing message instances (with / without jitter 

reduction) 

Figure 2 shows the time interval between queuing two 
instances of the same message on the destination network 
with and without jitter reduction. Figure 2 illustrates how 
the NJR policy ensures that the queuing of 2≥k  instances 
of message m can only take place in an interval whose 
length is at least mCOMm TkRT )2( −+−Δ−  (i.e. 
respecting the period mT  and queuing jitter 

COM
DEST
m RJ +Δ=  of the message on the destination 

network) This constraint is shown as a horizontal line on 
the graph. 

III. SUMMARY AND CONCLUSIONS 
The simple traffic shaping policy Non-blocking Jitter 

Reduction (NJR) introduced in this paper significantly 
reduces the amount of queuing jitter on gatewayed 
messages forwarded onto a destination network. The 
policy is particularly suited to CAN for the following 
reasons: 
o It does not require the use of global time. The source 

and destination networks can be unsynchronised. 
o It does not require the precise time-stamping of when 

messages are received. Instead only access to a local 
free-running timer is needed. 

o The gatewaying of messages can be performed by a 
single, simple periodic task that does not block, and 
can therefore be implemented on a single stack 
operating system (e.g. OSEK BCC1). 

The approach can easily be adapted to cater for clock 
drifts by simply assuming a slightly smaller period on the 
destination network, thus ensuring that the long term rate 
at which messages are gatewayed onto that network does 
not fall below the rate at which they arrive from the source 

network. We note that the NJR policy could also be 
applied to messages forwarded onto other types of 
network. 
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