
The Real-Time Specification for Java:
Current Status and Future Work

Peter Dibble, TimeSys Corporation {peter.dibble@timesys.com}

Andy Wellings, University of York {andy@cs.york.ac.uk}

ABSTRACT
The Real-Time Specification for Java is now about two
years old. It has been implemented, formed the basis for
research and used in serious applications. Some strengths
and weaknesses are becoming clear. This paper reviews
the current status of the specification, outlines the
challenges ahead and discusses areas where there is likely
to be future design work.

1 Introduction
When Java emerged as a serious programming language
in 1994, it was treated with disdain by much of the real-
time community. Although the language was interesting
from a number of perspectives — not least the fact that it
had an integrated concurrent object-oriented programming
model — the whole notion of Java as a real-time
programming language was treated with skepticism. “Java
and Real-time” was considered by many as an oxymoron!
The last five years has seen a dramatic turnaround in the
community’s attitude. This has been brought about by the
introduction of the Real-Time Specification for Java
(RTSJ) [5,6] with its provision of real-time programming
abstractions along with the promise of a predictable real-
time virtual machine. Now, the newly formed real-time
Java community argues over issues such as whether no-
heap real-time threads are really necessary or whether
real-time garbage collection combined with static analysis
techniques can provide predictable response times in a
hard real-time environment. There is little doubt that the
real-time programming landscape has been irrevocably
altered. However, there are still obstacles to be overcome
before Java augmented by the RTSJ can challenge its
main competitors in the real-time domain. This paper
reviews some of the problems facing the real-time Java
community over the next few years. The main challenges
are in the following areas:

Specification — to produce a consistent and
unambiguous Real-Time Specification for Java along with
well-defined profiles for particular real-time application
domains;

Implementation — to generate efficient implementations
of real-time Java virtual machines (both open source and
proprietary ones) for the full specification and the profiles;

Maintaining Momentum — to stimulate evolution of the
specification in a controlled and sustained manner to add
new functionality and to address new architectures.

This paper first presents a brief overview of the RTSJ and
then considers each of the above topics in detail.

2 Background on the RTSJ
The RTSJ has several “guiding principles” which have
shaped and constrained the development of the
specification. These include requirements to

• be backward compatible with non real-time Java
programs,
• support the principle of “Write Once, Run
Anywhere” but not at the expense of predictability,
• address current real-time system practices and allow
future implementations to include advanced features,
• give priority to predictable execution in all design
trade-offs,
• require no syntactic extensions to the Java language,
• allow implementers flexibility.
The requirement for no syntactic enhancements to Java
has had a strong impact on the manner in which the real-
time facilities can be provided. In particular, all facilities
have to be provided by an augmented virtual machine and
a library of classes (and interfaces).

The RTSJ enhances Java in the following areas:

• memory management ⎯ a complementary model
based on the concept of memory regions [24] (called
scoped memory areas) allow the reclamation of objects
without the vagaries of garbage collection;
• time values and clocks ⎯ high resolution time values
and a real-time clock;
• schedulable objects and scheduling ⎯ pre-emptive
priority based scheduling of real-time threads and
asynchronous event handlers all within a framework
allowing on-line feasibility analysis;
• asynchronous transfer of control ⎯ extensions to the
Java thread interrupt mechanism to allowing the
controlled delivery and handling of asynchronous
exceptions;
• synchronization and resource sharing ⎯ support for
the well-known priority inversion avoidance algorithms;

• physical and raw memory access ⎯ allowing more
control over allocation of objects in different types of
memory and interfacing to device drivers.

It should be stressed that the RTSJ is only intended to
address the execution of real-time Java programs on a
single processor systems. It attempts not to preclude
execution on shared-memory multiprocessor systems but
it has no facilities directly to control, for example,
allocation of threads to processors.

3 Specification Challenges
A preliminary version of the RTSJ (version 0.9) was
released in June 2000 [5], and then work commenced on a
“reference implementation” (RI). Inevitably, the
development and use of the RI uncovered errors and
inconsistencies in the specification, some of which were
removed in version 1.0 [6]. However, the prototype RI did
not implement all features of the specification. As
development of the RI continued, and researchers and
other implementers began to experiment with and
implement the full specification, so further inconsistencies
and ambiguities in the 1.0 specification became apparent.
Many of these have been removed in the 1.0.1 version that
is due for release in the early part of 2004. However, some
outstanding issues (whose resolution may require more
significant changes) still need attention and are likely to
be addressed in a subsequent version. Some of the main
issues are outlined below.

3.1 Schedulable Objects
The RTSJ has made a good attempt to generalize real-time
activities away from real-time threads towards the notion
of schedulable objects. In the current specification both
real-time threads and asynchronous event handlers are
considered schedulable objects. Unfortunately, the
operations that can be performed on a schedulable object
are not consistently defined. For example, a schedulable
object can create and enter into one or more scoped
memory areas. The methods for manipulating the resulting
scoped memory stack can be found partly in the
RealtimeThread class and partly in the
AsyncEventHandler class. Ideally, all operations
associated with schedulable objects should be defined
either in the Schedulable interface or in the class
defining the associated functionality. In this example, the
methods would be better defined either in the
Schedulable interface or in the MemoryArea class.

3.2 Aperiodic and sporadic real-time
threads

Although the RTSJ supports AperiodicParameters
and SporadicParameters they can only successfully
be used with asynchronous event handlers. There is no

notion of a release event for an aperiodic (or sporadic)
real-time thread and consequently it is difficult to see how
an implementation can detect deadline miss or cost
overrun. The resolution of this problem is tied closely to
the resolution of the following issue.

3.3 The waitForNextPeriod method
This method is defined in the RealtimeThread class.
However, it is only applicable to real-time threads with
periodic release parameters. Ideally, the Real-
timeThread class should contain a waitFor-
NextRelease method rather than a waitFor-
NextPeriod method. A release method would also
be needed. For real-time threads with periodic parameters
this method would be called by the implementation
(although to be consistent with periodic events, any
schedulable object would also be able to call it). This
approach would also solve the previous problem with
aperiodic threads, and provide a level of consistency
between asynchronous event handlers and real-time
threads (particularly in their approach to cost enforcement
and deadline monitoring).

For further discussions on scheduling issues in the
RTSJ see Wellings et al [28].

3.4 Rationale Time
Rational time is a relative time type that has an associated
frequency. It is used to represent the rate at which certain
events occur (for example, periodic thread execution).
Hence a RationalTime value with, say, an interval of
1 second and a frequency of 100, has a inter-arrival time
of 10 milliseconds..

RationalTime was a controversial class in version
1.0 of the RTSJ. The reasons for making it a subclass of
HighResolutionTime were not clear and caused
problems elsewhere in the specification (for example, the
idea of passing a RationalTime as a deadline is very
strange). For these reasons, the class has been deprecated
in version 1.0.1 of the RTSJ and alternative approaches to
meeting the original requirements will be provided in
version 1.1.

4 Implementation Challenges
One of the key and immediate challenges facing the real-
time Java community is to produce predictable and
efficient implementations of the RTSJ. Three areas give
particular cause for concern.

4.1 Memory Management
The RTSJ has established a new memory management
model (via the introduction of memory areas) to facilitate
more predictable memory allocation and deallocation. The
result is that there are assignment rules that must be

obeyed by the programmer and that, consequently, must
be checked by the implementation. Furthermore, the
ability to nest memory areas means that illegal nesting
must be prohibited. Whilst it is clear that static analysis of
programs can eliminate many of the run-time checks
[3,26], this requires special RTSJ-aware compilers or
tools. The availability of these, along with efficient run-
time implementations of the overall model, may well
determine the eventual impact and take up of the RTSJ.

4.2 Asynchronous Transfer of Control
Introducing facilities for the management of ATC into
Java was always going to be controversial [8]. However,
there are undeniable real-time application requirements
for such a facility [9]. It is a major challenge to keep the
resulting overheads in the JVM small and predictable, and
to ensure that code not using this facility suffers minimal
impact.

4.3 Asynchronous Event Handling
The goal for asynchronous event handlers is to have a
lightweight concurrency mechanism. Some
implementations will, however, simply map an event
handler to a real-time thread and the original motivations
for event handlers will be lost. It is a major challenge to
provide effective implementations which can cope with:
heap-using and no-heap handlers, blocking and non-
blocking handlers, daemon and non-daemon handlers,
multiple schedulers, cost enforcement and deadline
monitoring [13,29].

5 Maintaining Momentum
With the introduction of any new technology, there is a
tension between producing a stable standard base that
users can depend on, and providing a dynamic product
that continues to evolve and address new application
needs. So far, Java has caught the imagination of the user
community, produced stable releases and maintained
momentum for its evolution. If the RTSJ is to survive, it is
important that it keeps pace with more general Java
development and also that it develops its own momentum.
This section reviews some of the major areas that may see
future development.

5.1 The Ravenscar Profile
The Ravenscar1 RTSJ profile [20, 17, 18] is probably the
most sweeping potential extension to the RTSJ, but it is
not strictly an extension. It uses some of the facilities of

1 The name is a historical reference that would be considered obscure
outside the Ada community. Ravenscar is a village in the north of
England where a safety-critical subset for Ada was proposed. That
profile was implemented and used, and now will form part of the new
Ada 2005 ISO standard. Since the proposed Java subset has much in
common with the Ravenscar profile, that name has been informally (but
firmly) attached to it.

the RTSJ to specify a subset of the Java platform that
might be suitable for safety-critical applications.

The most obvious feature of the Ravenscar Java
proposal is that it does not permit garbage collection. All
threads are trivially “no-heap.” From the safety-critical
point of view this is predictable, and it is much easier to
implement a JVM without garbage collection than to
implement one that lets some tasks instantly preempt
garbage collection, but it could motivate a huge re-work
of standard class libraries.

The RTSJ says nothing about the memory consumption
of Java classes outside the RTSJ. It doesn’t even say very
much about memory consumption of classes in the RTSJ.
The standard Java classes and the Java language itself are,
however, designed to work with the garbage collector.
Consider the Integer and String classes. All instances of
those classes are immutable objects. In many cases that is
a good property [4], but with no garbage collector
immutable objects turn into memory leaks unless they are
stored in scoped memory areas.

Or consider the ease with which a Java method creates
an object and returns a reference to that object. In C or
C++, the programmer would take care to track use of the
returned object and delete it when it was no longer
needed. More likely, the programmer would consider the
pattern dangerous and avoid it altogether. In Java
programs, garbage collection makes it safe and common.
Without garbage collection the lifetimes of all these
objects have to be considered, both in new applications
and in the class libraries they use. This is, of course, the
role of scoped memory. However, the scoped memory
model has its limitations. Just as with standard Java it has
been found necessary to allow interaction between the
program and the garbage collector (via the introduction of
“Reference” objects [22]), so it is necessary to allow
interaction between the program and the implementation
of scoped memory regions [7].

The proposed Ravenscar Java does much more than
remove the garbage collector, but that one “simple”
change is a far reaching.

That said, there is serious interest in safety critical Java,
and something like the Ravenscar profile is likely to come
about in the next few years. Indeed, recent efforts by the
Open Group to form a new JSR to address this area attest
to this.

5.2 Pluggable and Application-Level
Schedulers

The vast majority of real-time operating systems support
fixed priority pre-emptive scheduling with no on-line
feasibility analysis. However, as more and more
computers are being embedded in engineering (and other)
applications, there is need for more flexible scheduling.

Broadly speaking, there are three ways to achieve flexible
scheduling [27]:

Pluggable schedulers — in this approach the system
provides a framework into which different schedulers can
be plugged. The CORBA Dynamic Scheduling [19]
specification is an example of this approach. Kernel
loadable schedulers also fall into this category.

Application-defined schedulers — in this approach, the
system notifies the application every time an event occurs
which requires a scheduling decision to be taken. The
application then informs the system which thread should
execute next. The proposed extensions to real-time POSIX
support this approach [2].

Implementation-defined schedulers — in this approach,
an implementation is allowed to define alternative
schedulers. Typically this would require the underlying
operating system or run-time support system (virtual
machine, in the case of Java) to be modified. Ada 95
adopts this approach, albeit within the context of priority-
based scheduling.

Support for new scheduling algorithms was a
fundamental design goal of the RTSJ. Ideally it would
have supported new pluggable schedulers from third
parties and end users, but in the end the goal was to let
JVM implementers add new schedulers. This approach
allows the specification to depend on the scheduling
implemented in the underlying operating system, and it
lets the new scheduler use JVM APIs that are invisible to
anyone but the implementer.

Unfortunately, this capability was not tested in the RI
implementation process, but it has been exercised since
that time. TimeSys has implemented several extensions
of the PriorityScheduler class for their JTime [23]
product. Those schedulers are an existence proof that the
RTSJ supports a restricted form of pluggable schedulers.

These pluggable schedulers take every advantage of the
implementer’s control of system internals. They make
extensive use of native methods to invoke normally
inaccessible methods in the PriorityScheduler.
There have even been cases where the
PriorityScheduler had to be modified to invoke
methods in its subclasses (a sign of poor design.) Hence,
the specification does not provide a well-defined interface
with which new schedulers can be easily added.

If pluggable schedulers were not a fundamental feature
of the RTSJ, the inelegance of the existing approach to
pluggable schedulers could be ignored, but they are a
central feature of the RTSJ. Pluggable schedulers should
allow researchers to add a scheduler without repeatedly
inserting knowledge of that scheduler in the RTSJ class
libraries. In the best case, the RTSJ might support some

types of pluggable schedulers written by third parties
(without source code for the JVM) or end users.

It will be hard to find a compatible way to improve the
scheduler APIs for extension, but just as TimeSys’
schedulers prove it can be done, they also prove that at
least one vendor will go to great lengths to provide
advanced schedulers. Researchers are also seriously
interested in the possibilities of pluggable schedulers.

The Scheduler APIs need to be re-thought in the light
of experience. Primarily this will take the form of new
APIs for communication between the base Scheduler
class and its subclasses, but the effort will probably spread
to the Parameter classes. It remains an open issue as to
whether these (or other) APIs should be made available to
the applications programmer so that application-level
schedulers can be defined.

5.3 Multiple Schedulers
The RTSJ supports multiple schedulers but falls short of
specifying the interaction between concurrently active
ones. Hence, the expected use case is that the application
would choose a scheduler very early in its execution,
make that the default, and use that scheduler exclusively
for the body of the application’s execution. This is
probably a viable use case, but it isn’t the only one. The
fully expanded version of Jtime, for example, uses three
cooperating schedulers: the priority scheduler, the high-
priority scheduler, and the CPU-reservation scheduler.

The current RTSJ doesn’t forbid cooperating
schedulers, but it makes little effort to provide a useful
framework for them. Support for multiple cooperating
schedulers is not well-settled art and is still the subject of
active research [12, 21, 1]. Since the right policy for
interactions between multiple schedulers is still unknown,
the RTSJ needs a flexible framework for multiple
schedulers.

TimeSys did not have to address fundamental problems
of multiple schedulers. All three of their schedulers are
priority-based, and the interactions between the schedulers
are supported by the underlying operating system. Ideally
a framework for cooperating schedulers would:

• allow a thread under one scheduler to start a thread
under another scheduler;
• supply APIs for a policy class that manages multi-
level feasible sets where the system is partitioned in a
flexible way among multiple schedulers; and
• supply APIs for a policy class that selects among the
most eligible threads from each scheduler.

5.4 Cost Enforcement and Blocking
This area may be one of the most published shortcomings
of the RTSJ. Cost enforcement is critical to many real-

time systems, and it is designed into the RTSJ as an
optional feature. Unfortunately, the reference
implementation did not choose to implement this feature
and the specification was published with that aspect
untested. With more years to consider cost enforcement,
and the help of an implementation effort that includes cost
enforcement [25], the specification’s treatment of cost
enforcement has been improved [28]. RTSJ version 1.0
was clear enough that it has been possible to get to a
workable definition by interpreting the specification, but
some areas will require extensions to the APIs that cannot
be called “minor changes.” For example, cost
enforcement for sporadic real-time threads [28] needs
further consideration.

Blocking is another area where the RTSJ is under
specified. Currently, there is no notion of the time a
schedulable object is blocked when accessing resources.
This is needed for all forms of feasibility analysis. The
solution to this problem could be as simple as introducing
a blocking time term in the release parameters, or it could
involve adding much more detailed information about all
the resources used by each schedulable object.

5.5 Recycling Collections
Programmers who use the RTSJ soon discover that
immortal memory is “viral.” Objects placed in immortal
memory tend to pull every associated object into immortal
memory with them. This isn’t a feature of the
implementation. The force driving developers to locate
all objects in immortal (or any single memory area) is
convenience. References from immortal memory to
scoped memory are illegal under the RTSJ assignment
rules. References from scoped memory to immortal are
legal, but the constraint to one-way references is
sufficiently inconvenient that developers avoid the pain by
putting whole families of objects in immortal.

This viral effect causes objects that should have limited
lifetimes to be allocated in immortal memory. One
solution to this problem is to extend the RTSJ to support
weak scoped references (as already mentioned in Section
4.1), thereby allowing controlled references from
immortal memory to scoped memory.

The other solution is to address the memory leak
problem and to support a variation of a fixed block
allocator that RTSJ users often call recycling lists. These
keep a pool of pre-allocated objects in a memory area.
The application gets them from the recycling list, uses
them, and then returns them. There are some interesting
problems. For instance, the JVM initializes objects when
they are constructed and runs finalizers (if any) when
objects are freed. Objects that live in a recycling list are
constructed before they are placed in the list and might
run finalizers if the list is ever freed. This is a minor issue
for objects from some classes, but others classes might be

impossible to recycle; for example, Thread objects are
intended to go from construction to start() to
termination. They can only be started once.

There is a rudimentary ancestor of the recycling list in
RTSJ Platform Programming [13]. Recycling lists are not
advanced computer science, but since everyone is
implementing a version of the facility, it is time the
specification standardized it.

5.6 Scoped Memory Subclasses
There is much demand for extensions to the scoped
memory classes. Unfortunately, useful extensions here
require help from the JVM. There are probably as many
ideas for useful new scoped memory classes as there are
RTSJ users. For instance:

• A reference-counting scope that allows an object’s
space to be reclaimed when there are no references to it,
even though the scoped memory is still in use.
• A storage scope that can retain objects when its
reference count goes to zero.
• A scope that permits malloc- and free-like operations
The RTSJ could approach the need for more types of
scoped memory by adding some new scoped memory
classes, or it could update the memory area specification
so subclasses have a way to control the operation of the
base classes.

Of course, static analysis techniques might allow some
objects to be created on the stack and, therefore, obviate
the need for explicit scoped memory coding [3, 26]. If this
can be sufficiently generalized, and if real-time garbage
collection becomes more efficient and accepted, one of
the major features of the RTSJ may need deletion, or it
might live on as a feature that is heavily used, but not by
programmers.

5.7 Multiprocessor and Distributed
Systems

The RTSJ ignores issues related to all types of multi-
processor systems. JSR 50 [15] is addressing the
distributed systems but progress has been slow and results
are few [30]. However, there may be room for a
comparatively unsophisticated approximation to
distributed real-time Java under the RTSJ. Support for
real-time processing on SMP and NUMA platforms is not
addressed by the RTSJ or another JSR, but a fair number
of RTSJ users are running it on SMP systems. Perhaps
the scheduling techniques that make this work without
real-time anomalies should be added to the specification.

5.8 Multiple Clocks
The 1.0.1 version of the RTSJ clarifies the treatment of
multiple clocks under the RTSJ, but it does not specify the

behavior of any clocks other than the default real-time
clock. It is probably inappropriate to require any other
clocks, but it would be beneficial to define the APIs and
behaviors of several additional clocks.

A consumed CPU time clock would be particularly
useful. It is an anomaly that the RTSJ programmer can
request that a cost overrun handler can be released when a
schedulable object consumes more CPU time than in its
stated budget; yet the programmer cannot determine how
much CPU time the schedulable object has currently
consumed. A consumed CPU time clock would also
augment the processing group facilities of the RTSJ and
allow more flexible bandwidth preserving algorithms to
be implemented, including sporadic servers.

5.9 Multiple Criticalities
The RTSJ includes an ImportanceParameters class,
but does not specify the behavior of a scheduler that
employs them. Importance could be used to order queues
within priority, they could be combined with data from
release parameters to select the least harmful set of
deadlines to miss in case of overload, and there are
probably endless other requirements for this two-
dimensional class of scheduling parameters. It would be
productive to specify at least one scheduler that could use
ImportanceParameters.

There are related scheduling mechanisms that the RTSJ
does not touch. For instance ARINC 651 and its
associated standards ARINC 653 (APEX) and ARINC
659 [11] support the notations of partitions and processes
within a partition. Scheduling divides each interval of
time into quanta that are then allocated to partitions. Each
process is executable only within the time allocated to its
owning partition (using priority-based scheduling). This
simple mechanism effectively isolates the CPU
consumption of software components. This prevents
overload in a component from degrading the entire system
and makes integration and testing of complex systems
comparatively simple. Of course, the tradeoff is the
potential increase in release jitter and more complex
feasibility analysis.

Java is already considering the notion of an isolate [16]
where more than one application can share access to the
same JVM. There has been some work that is taking this
approach and integrating it into Ravenscar-Java [10].
Here, processing group parameters define the scheduling
at the application level, and the RTSJ priority scheduler is
used to schedule within applications. It would be
interesting to generalize this and, for example, include an
optional ARINC 653 scheduler in the RTSJ.

5.10 Alternative Interrupt Handling Models
The RTSJ handles external events such as signals and
hardware interrupts by raising happenings. Happenings

can be associated with asynchronous events and thus
interrupt handlers become asynchronous event handlers.
Whilst this provides the flexibility to schedule interrupt
handlers in competition with other activities, some
consider the approach too expensive.

It is hard to implement the flexibility provided by the
RTSJ approach without sacrificing performance. An
asynchronous event handler can increment a counter,
release a lock, fire another event, or anything else that can
be coded under RTSJ. However, other approaches exist
that can perform operations like these directly and much
more efficiently than firing an asynchronous event that
starts an asynchronous event handler that performs the
actions. This is not to suggest that the current mechanism
for handling happenings should be removed, but some
additional mechanism that could do a few simple things
very efficiently would benefit the more performance-
oriented developers. For example, Ada allows the
equivalent of a synchronized method to be called directly
in response to an external happening.

6 Conclusions
This paper has reviewed the current status of the RTSJ,
outlined the challenges it faces and proposed some areas
for future work. Many of the extensions have ambitious
goals; some would make interesting research projects.
Since the Java Community Process [14] governs the
evolution of the RTSJ, it will deliberate and will weight
compatibility heavily when considering extensions, but
derivative works and non-standard extensions to the RTSJ
are not so constrained.

Acknowledgements
The authors gratefully acknowledge the many discussions
held with the other primary authors of the Version 1.0.1
RTSJ in particular, Rudy Belliardi, Ben Brosgol, and
David Holmes. Those discussions have led to some of the
ideas expressed in this paper.

References
[1] Abeni, L. and Buttazzo, G., “Hierarchical QoS

Management for Time Sensitive Applications”,
Proceedings of the IEEE Real-Time Technology and
Applications Symposium, 2001.

[2] Aldea Rivas, M., and González Harbour, M., “POSIX-
Compatible Application-Defined Scheduling in
MaRTE OS”, Proceedings of 14th Euromicro
Conference on Real-Time Systems, Vienna, Austria,
IEEE Computer Society Press, pp. 67-75, 2002.

[3] Beebee W., and Rinard, Martin, “An Implementation
of Scoped Memory for Real-Time Java”, Proceedings
of Embedded Software, First International Workshop,
EMSOFT 2001, Tahoe City, California October 2001.

[4] Bloch, J., Effective Java Programming Language
Guide, Addison Wesley, 2001.

[5] Bollella, G., Brosgol, B., Dibble, P., Furr, S., Gosling,
J., Hardin, D., and Turnbull, M., The Real-Time
Specification for Java (version 0.9), Addison Wesley,
2000.

[6] Bollella, G., Brosgol, B., Dibble, P., Furr, S., Gosling,
J., Hardin, D., Turnbull, M., and Belliardi, R., The
Real-Time Specification for Java (1.0)(2001),
available from www.rtj.org.

[7] Borg, A. and Wellings, A.J., “Reference Objects for
RTSJ Memory Areas”, On the Move to Meaningful
Internet Systems 2003: Workshop on Java
Technologies for Real-Time and Embedded Systems,
LNCS, volume 2889, pp 397-340}, Springer, 2003.

[8] Brosgol, B., and Wellings, A.J., “A Comparison of
Asynchronous Transfer of Control Features in Ada
and the Real-Time Specification for Java”, Reliable
Software Technologies – Ada Europe, volume 265,
Lecture Notes in Computer Science, pp 113-128,
Springer-Verlag, 2003.

[9] Burns, A. and Wellings, A.J., Real-Time Systems and
Programming Languages, 3rd Edition, 2001, Addison
Wesley.

[10] Cai, H, and Wellings, A.J., “A Real-Time Isolate
Specification for Ravenscar-Java”, Proceedings of the
Seventh International IEEE Symposium on Object-
Oriented Real-Time Distributed Computing, ISORC
2004.

[11] Carpenter K.H.T, Driscoll K., and Carciofini J.,
“ARINC 659 Scheduling: Problem Definition”,
Proceedings of IEEE Real-Time Systems Symposium,
pp 165–169, 1994.

[12] Deng, Z. and Liu, J. W.-S. , "Scheduling Real-Time
Applications in an Open Environment," Proceedings
of the IEEE Real-Time Systems Symposium, IEEE
Computer Society Press, pp 308-319, 1997.

[13] Dibble, P., Real-Time Java Platform Programming,
Prentice Hall, 2001.

[14] Java Community Process, Home Page,
<http://www.jcp.org>.

[15] Java Community Process, JSR 50, “Distributed Real-
Time Specification”, http://www.jcp.org/jsr/detail/
50.jsp, 2000.

[16] Java Community Process, JSR121, “JSR 121:
Application Isolation API Specification”,
http://www.jcp.org/jsr/detail/121.jsp, 2001.

[17] Kwon J., Wellings, A.J., and King, S., “Assessment
of the Java Programming Language for Use in High

Integrity Systems”, University of York Computer
Science Technical Report 2002341, 2002.

[18] Kwon J., Wellings, A.J., and King, S., “Ravenscar-
Java: A High Integrity Profile for Real-Time Java”,
Proceedings of the Joint ACM Java Grande - ISCOPE
2002 Conference pp 131-140, 2002.

[19] OMG, “Real-time Corba 2.0 Dynamic Scheduling
Specification”, OMG Document orbos/ 01-08-34,
2001.

[20] Puschner, P., and Wellings, A.J., “A Profile for High
Integrity Real-Time Java Programs”, Proceedings of
the 4th IEEE Symposium on Object-Oriented Real-
Time Distributed Computing, ISORC, pp 15-22,
2001.

[21] Regehr, J. and Stankovic, J.A., “HLS: A Framework
for Composing Soft Real-Time Schedulers,
Proceedings of the IEEE Real-Time Systems
Symposium, pp 3-14, 2001.

[22] Sun Microsystems, “The Reference Object API for
Sun JDK 1.3”, available at http://java.sun.com/j2se
/1.3/docs/guide/refobs.

[23] TimeSys, JTime, http://www.timesys.com/index.cfm?bdy=
java_bdy.cfm.

[24] Tofte M. and Talpin, J., “Region-based Memory
Management”, Information and Computation, 132(2)
pp 109-167, 1997.

[25] The OVM Project, http:www.ovmj.org.

[26] Salcianu, A., and Rinard, M., “Pointer and Escape
Analysis for Multithreaded Programs”, ACM
SIGPLAN Notices, 36.7, pages 12–23, 2001.

[27] Wellings, A.J., Concurrent and Real-Time Pro-
gramming in Java, Wiley, 2004.

[28] Wellings, A.J., Bollella, G, Dibble, P, and Holmes,
D., “Cost Enforcement and Deadline Monitoring in
the Real-Time Specification for Java”, Proceedings of
the Seventh International IEEE Symposium on
Object-Oriented Real-Time Distributed Computing,
ISORC 2004.

[29] Wellings, A.J. and Burns, A., “Asynchronous Event
Handling and Real-time Threads in the Real-Time
Specification for Java”, Proceedings of the 8th IEEE
Real-Time and Embedded Technology and
Applications Symposium, pp 81-8, 2002.

[30] Wellings, A.J., Clark, R., Jenson, D. and Wells, D.,
“A Framework for Integrating the Real-Time
Specification for Java and Java’s Remote Method
Invocation”, Proceedings of the Fifth International
IEEE Symposium on Object-Oriented Real-time
Distributed Computing ISORC 2002.

