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ABSTRACT 
The Real-Time Specification for Java is now about two 
years old.  It has been implemented, formed the basis for 
research and used in serious applications.  Some strengths 
and weaknesses are becoming clear.  This paper reviews 
the current status of the specification, outlines the 
challenges ahead and discusses areas where there is likely 
to be future design work. 

1 Introduction 
When Java emerged as a serious programming language 
in 1994, it was treated with disdain by much of the real-
time community. Although the language was interesting 
from a number of perspectives — not least the fact that it 
had an integrated concurrent object-oriented programming 
model — the whole notion of Java as a real-time 
programming language was treated with skepticism. “Java 
and Real-time” was considered by many as an oxymoron! 
The last five years has seen a dramatic turnaround in the 
community’s attitude. This has been brought about by the 
introduction of the Real-Time Specification for Java 
(RTSJ) [5,6] with its provision of real-time programming 
abstractions along with the promise of a predictable real-
time virtual machine. Now, the newly formed real-time 
Java community argues over issues such as whether no-
heap real-time threads are really necessary or whether 
real-time garbage collection combined with static analysis 
techniques can provide predictable response times in a 
hard real-time environment. There is little doubt that the 
real-time programming landscape has been irrevocably 
altered. However, there are still obstacles to be overcome 
before Java augmented by the RTSJ can challenge its 
main competitors in the real-time domain. This paper 
reviews some of the problems facing the real-time Java 
community over the next few years. The main challenges 
are in the following areas: 

Specification — to produce a consistent and 
unambiguous Real-Time Specification for Java along with 
well-defined profiles for particular real-time application 
domains; 

Implementation — to generate efficient implementations 
of real-time Java virtual machines (both open source and 
proprietary ones) for the full specification and the profiles; 

Maintaining Momentum — to stimulate evolution of the 
specification in a controlled and sustained manner to add 
new functionality and to address new architectures. 

This paper first presents a brief overview of the RTSJ and 
then considers each of the above topics in detail. 

2 Background on the RTSJ 
The RTSJ has several “guiding principles” which have 
shaped and constrained the development of the 
specification. These include requirements to 

• be backward compatible with non real-time Java 
programs, 
• support the principle of “Write Once, Run 
Anywhere” but not at the expense of predictability, 
• address current real-time system practices and allow 
future implementations to include advanced features, 
• give priority to predictable execution in all design 
trade-offs, 
• require no syntactic extensions to the Java language, 
• allow implementers flexibility. 
The requirement for no syntactic enhancements to Java 
has had a strong impact on the manner in which the real-
time facilities can be provided. In particular, all facilities 
have to be provided by an augmented virtual machine and 
a library of classes (and interfaces). 

The RTSJ enhances Java in the following areas: 

• memory management  ⎯ a complementary model 
based on the concept of memory regions [24] (called 
scoped memory areas) allow the reclamation of objects 
without the vagaries of garbage collection; 
• time values and clocks  ⎯ high resolution time values 
and a real-time clock; 
• schedulable objects and scheduling  ⎯ pre-emptive 
priority based scheduling of real-time threads and 
asynchronous event handlers all within a framework 
allowing on-line feasibility analysis; 
• asynchronous transfer of control  ⎯ extensions to the 
Java thread interrupt mechanism to allowing the 
controlled delivery and handling of asynchronous 
exceptions; 
• synchronization and resource sharing  ⎯ support for 
the well-known priority inversion avoidance algorithms; 



• physical and raw memory access  ⎯ allowing more 
control over allocation of objects in different types of 
memory and interfacing to device drivers. 
 
It should be stressed that the RTSJ is only intended to 
address the execution of real-time Java programs on a 
single processor systems. It attempts not to preclude 
execution on shared-memory multiprocessor systems but 
it has no facilities directly to control, for example, 
allocation of threads to processors.  

3 Specification Challenges 
A preliminary version of the RTSJ (version 0.9) was 
released in June 2000 [5], and then work commenced on a 
“reference implementation” (RI). Inevitably, the 
development and use of the RI uncovered errors and 
inconsistencies in the specification, some of which were 
removed in version 1.0 [6]. However, the prototype RI did 
not implement all features of the specification. As 
development of the RI continued, and researchers and 
other implementers began to experiment with and 
implement the full specification, so further inconsistencies 
and ambiguities in the 1.0 specification became apparent.  
Many of these have been removed in the 1.0.1 version that 
is due for release in the early part of 2004. However, some 
outstanding issues (whose resolution may require more 
significant changes) still need attention and are likely to 
be addressed in a subsequent version. Some of the main 
issues are outlined below. 

3.1 Schedulable Objects 
The RTSJ has made a good attempt to generalize real-time 
activities away from real-time threads towards the notion 
of schedulable objects. In the current specification both 
real-time threads and asynchronous event handlers are 
considered schedulable objects. Unfortunately, the 
operations that can be performed on a schedulable object 
are not consistently defined. For example, a schedulable 
object can create and enter into one or more scoped 
memory areas. The methods for manipulating the resulting 
scoped memory stack can be found partly in the 
RealtimeThread class and partly in the 
AsyncEventHandler class. Ideally, all operations 
associated with schedulable objects should be defined 
either in the Schedulable interface or in the class 
defining the associated functionality. In this example, the 
methods would be better defined either in the 
Schedulable interface or in the MemoryArea class. 

3.2 Aperiodic and sporadic real-time 
threads 

Although the RTSJ supports AperiodicParameters 
and SporadicParameters they can only successfully 
be used with asynchronous event handlers. There is no 

notion of a release event for an aperiodic (or sporadic) 
real-time thread and consequently it is difficult to see how 
an implementation can detect deadline miss or cost 
overrun. The resolution of this problem is tied closely to 
the resolution of the following issue. 

3.3 The waitForNextPeriod method 
This method is defined in the RealtimeThread class. 
However, it is only applicable to real-time threads with 
periodic release parameters. Ideally, the Real-
timeThread class should contain a waitFor-
NextRelease method rather than a waitFor-
NextPeriod method. A release method would also 
be needed. For real-time threads with periodic parameters 
this method would be called by the implementation 
(although to be consistent with periodic events, any 
schedulable object would also be able to call it). This 
approach would also solve the previous problem with 
aperiodic threads, and provide a level of consistency 
between asynchronous event handlers and real-time 
threads (particularly in their approach to cost enforcement 
and deadline monitoring).  

For further discussions on scheduling issues in the 
RTSJ see Wellings et al [28]. 

3.4 Rationale Time 
Rational time is a relative time type that has an associated 
frequency. It is used to represent the rate at which certain 
events occur (for example, periodic thread execution). 
Hence a RationalTime value with, say, an interval of 
1 second and a frequency of 100, has a inter-arrival time 
of 10 milliseconds..  

RationalTime was a controversial class in version 
1.0 of the RTSJ. The reasons for making it a subclass of 
HighResolutionTime were not clear and caused 
problems elsewhere in the specification (for example, the 
idea of passing a RationalTime as a deadline is very 
strange). For these reasons, the class has been deprecated 
in version 1.0.1 of the RTSJ and alternative approaches to 
meeting the original requirements will be provided in 
version 1.1. 

4 Implementation Challenges 
One of the key and immediate challenges facing the real-
time Java community is to produce predictable and 
efficient implementations of the RTSJ. Three areas give 
particular cause for concern. 

4.1 Memory Management 
The RTSJ has established a new memory management 
model (via the introduction of memory areas) to facilitate 
more predictable memory allocation and deallocation. The 
result is that there are assignment rules that must be 



obeyed by the programmer and that, consequently, must 
be checked by the implementation. Furthermore, the 
ability to nest memory areas means that illegal nesting 
must be prohibited. Whilst it is clear that static analysis of 
programs can eliminate many of the run-time checks 
[3,26], this requires special RTSJ-aware compilers or 
tools. The availability of these, along with efficient run-
time implementations of the overall model, may well 
determine the eventual impact and take up of the RTSJ. 

4.2 Asynchronous Transfer of Control 
Introducing facilities for the management of ATC into 
Java was always going to be controversial [8]. However, 
there are undeniable real-time application requirements 
for such a facility [9]. It is a major challenge to keep the 
resulting overheads in the JVM small and predictable, and 
to ensure that code not using this facility suffers minimal 
impact. 

4.3 Asynchronous Event Handling 
The goal for asynchronous event handlers is to have a 
lightweight concurrency mechanism. Some 
implementations will, however, simply map an event 
handler to a real-time thread and the original motivations 
for event handlers will be lost. It is a major challenge to 
provide effective implementations which can cope with: 
heap-using and no-heap handlers, blocking and non-
blocking handlers, daemon and non-daemon handlers, 
multiple schedulers, cost enforcement and deadline 
monitoring [13,29]. 

5 Maintaining Momentum 
With the introduction of any new technology, there is a 
tension between producing a stable standard base that 
users can depend on, and providing a dynamic product 
that continues to evolve and address new application 
needs. So far, Java has caught the imagination of the user 
community, produced stable releases and maintained 
momentum for its evolution. If the RTSJ is to survive, it is 
important that it keeps pace with more general Java 
development and also that it develops its own momentum. 
This section reviews some of the major areas that may see 
future development. 

5.1 The Ravenscar Profile 
The Ravenscar1 RTSJ profile [20, 17, 18] is probably the 
most sweeping potential extension to the RTSJ, but it is 
not strictly an extension.  It uses some of the facilities of 
                                                 
1 The name is a historical reference that would be considered obscure 
outside the Ada community.  Ravenscar is a village in the north of 
England where a safety-critical subset for Ada was proposed.  That 
profile was implemented and used, and now will form part of the new 
Ada 2005 ISO standard.  Since the proposed Java subset has much in 
common with the Ravenscar profile, that name has been informally (but 
firmly) attached to it. 

the RTSJ to specify a subset of the Java platform that 
might be suitable for safety-critical applications. 

The most obvious feature of the Ravenscar Java 
proposal is that it does not permit garbage collection.  All 
threads are trivially “no-heap.”  From the safety-critical 
point of view this is predictable, and it is much easier to 
implement a JVM without garbage collection than to 
implement one that lets some tasks instantly preempt 
garbage collection, but it could motivate a huge re-work 
of standard class libraries. 

The RTSJ says nothing about the memory consumption 
of Java classes outside the RTSJ.  It doesn’t even say very 
much about memory consumption of classes in the RTSJ.  
The standard Java classes and the Java language itself are, 
however, designed to work with the garbage collector.  
Consider the Integer and String classes.  All instances of 
those classes are immutable objects.  In many cases that is 
a good property [4], but with no garbage collector 
immutable objects turn into memory leaks unless they are 
stored in scoped memory areas.   

Or consider the ease with which a Java method creates 
an object and returns a reference to that object.  In C or 
C++, the programmer would take care to track use of the 
returned object and delete it when it was no longer 
needed.  More likely, the programmer would consider the 
pattern dangerous and avoid it altogether.  In Java 
programs, garbage collection makes it safe and common.  
Without garbage collection the lifetimes of all these 
objects have to be considered, both in new applications 
and in the class libraries they use. This is, of course, the 
role of scoped memory. However, the scoped memory 
model has its limitations. Just as with standard Java it has 
been found necessary to allow interaction between the 
program and the garbage collector (via the introduction of 
“Reference” objects [22]), so it is necessary to allow 
interaction between the program and the implementation 
of scoped memory regions [7]. 

The proposed Ravenscar Java does much more than 
remove the garbage collector, but that one “simple” 
change is a far reaching. 

That said, there is serious interest in safety critical Java, 
and something like the Ravenscar profile is likely to come 
about in the next few years. Indeed, recent efforts by the 
Open Group to form a new JSR to address this area attest 
to this. 

5.2 Pluggable and Application-Level 
Schedulers 

The vast majority of real-time operating systems support 
fixed priority pre-emptive scheduling with no on-line 
feasibility analysis. However, as more and more 
computers are being embedded in engineering (and other) 
applications, there is need for more flexible scheduling. 



Broadly speaking, there are three ways to achieve flexible 
scheduling [27]: 

Pluggable schedulers — in this approach the system 
provides a framework into which different schedulers can 
be plugged. The CORBA Dynamic Scheduling [19] 
specification is an example of this approach. Kernel 
loadable schedulers also fall into this category. 

Application-defined schedulers — in this approach, the 
system notifies the application every time an event occurs 
which requires a scheduling decision to be taken. The 
application then informs the system which thread should 
execute next. The proposed extensions to real-time POSIX 
support this approach [2]. 

Implementation-defined schedulers — in this approach, 
an implementation is allowed to define alternative 
schedulers. Typically this would require the underlying 
operating system or run-time support system (virtual 
machine, in the case of Java) to be modified. Ada 95 
adopts this approach, albeit within the context of priority-
based scheduling. 

Support for new scheduling algorithms was a 
fundamental design goal of the RTSJ.  Ideally it would 
have supported new pluggable schedulers from third 
parties and end users, but in the end the goal was to let 
JVM implementers add new schedulers.  This approach 
allows the specification to depend on the scheduling 
implemented in the underlying operating system, and it 
lets the new scheduler use JVM APIs that are invisible to 
anyone but the implementer. 

Unfortunately, this capability was not tested in the RI 
implementation process, but it has been exercised since 
that time.  TimeSys has implemented several extensions 
of the PriorityScheduler class for their JTime [23] 
product. Those schedulers are an existence proof that the 
RTSJ supports a restricted form of pluggable schedulers. 

These pluggable schedulers take every advantage of the 
implementer’s control of system internals. They make 
extensive use of native methods to invoke normally 
inaccessible methods in the PriorityScheduler.  
There have even been cases where the 
PriorityScheduler had to be modified to invoke 
methods in its subclasses (a sign of poor design.) Hence, 
the specification does not provide a well-defined interface 
with which new schedulers can be easily added. 

If pluggable schedulers were not a fundamental feature 
of the RTSJ, the inelegance of the existing approach to 
pluggable schedulers could be ignored, but they are a 
central feature of the RTSJ.  Pluggable schedulers should 
allow researchers to add a scheduler without repeatedly 
inserting knowledge of that scheduler in the RTSJ class 
libraries.  In the best case, the RTSJ might support some 

types of pluggable schedulers written by third parties 
(without source code for the JVM) or end users. 

It will be hard to find a compatible way to improve the 
scheduler APIs for extension, but just as TimeSys’ 
schedulers prove it can be done, they also prove that at 
least one vendor will go to great lengths to provide 
advanced schedulers.  Researchers are also seriously 
interested in the possibilities of pluggable schedulers. 

The Scheduler APIs need to be re-thought in the light 
of experience.  Primarily this will take the form of new 
APIs for communication between the base Scheduler 
class and its subclasses, but the effort will probably spread 
to the Parameter classes. It remains an open issue as to 
whether these (or other) APIs should be made available to 
the applications programmer so that application-level 
schedulers can be defined. 

5.3 Multiple Schedulers 
The RTSJ supports multiple schedulers but falls short of 
specifying the interaction between concurrently active 
ones. Hence, the expected use case is that the application 
would choose a scheduler very early in its execution, 
make that the default, and use that scheduler exclusively 
for the body of the application’s execution. This is 
probably a viable use case, but it isn’t the only one. The 
fully expanded version of Jtime, for example, uses three 
cooperating schedulers: the priority scheduler, the high-
priority scheduler, and the CPU-reservation scheduler. 

The current RTSJ doesn’t forbid cooperating 
schedulers, but it makes little effort to provide a useful 
framework for them.  Support for multiple cooperating 
schedulers is not well-settled art and is still the subject of 
active research [12, 21, 1].  Since the right policy for 
interactions between multiple schedulers is still unknown, 
the RTSJ needs a flexible framework for multiple 
schedulers. 

TimeSys did not have to address fundamental problems 
of multiple schedulers.  All three of their schedulers are 
priority-based, and the interactions between the schedulers 
are supported by the underlying operating system.  Ideally 
a framework for cooperating schedulers would: 

• allow a thread under one scheduler to start a thread 
under another scheduler; 
• supply APIs for a policy class that manages multi-
level feasible sets where the system is partitioned in a 
flexible way among multiple schedulers; and 
• supply APIs for a policy class that selects among the 
most eligible threads from each scheduler. 

5.4 Cost Enforcement and Blocking 
This area may be one of the most published shortcomings 
of the RTSJ.  Cost enforcement is critical to many real-



time systems, and it is designed into the RTSJ as an 
optional feature.  Unfortunately, the reference 
implementation did not choose to implement this feature 
and the specification was published with that aspect 
untested.  With more years to consider cost enforcement, 
and the help of an implementation effort that includes cost 
enforcement [25], the specification’s treatment of cost 
enforcement has been improved [28].  RTSJ version 1.0 
was clear enough that it has been possible to get to a 
workable definition by interpreting the specification, but 
some areas will require extensions to the APIs that cannot 
be called “minor changes.”  For example, cost 
enforcement for sporadic real-time threads [28] needs 
further consideration. 

Blocking is another area where the RTSJ is under 
specified. Currently, there is no notion of the time a 
schedulable object is blocked when accessing resources. 
This is needed for all forms of feasibility analysis. The 
solution to this problem could be as simple as introducing 
a blocking time term in the release parameters, or it could 
involve adding much more detailed information about all 
the resources used by each schedulable object. 

5.5 Recycling Collections 
Programmers who use the RTSJ soon discover that 
immortal memory is “viral.”  Objects placed in immortal 
memory tend to pull every associated object into immortal 
memory with them.  This isn’t a feature of the 
implementation.  The force driving developers to locate 
all objects in immortal (or any single memory area) is 
convenience. References from immortal memory to 
scoped memory are illegal under the RTSJ assignment 
rules.  References from scoped memory to immortal are 
legal, but the constraint to one-way references is 
sufficiently inconvenient that developers avoid the pain by 
putting whole families of objects in immortal. 

This viral effect causes objects that should have limited 
lifetimes to be allocated in immortal memory.  One 
solution to this problem is to extend the RTSJ to support 
weak scoped references (as already mentioned in Section 
4.1), thereby allowing controlled references from 
immortal memory to scoped memory.  

The other solution is to address the memory leak 
problem and to support a variation of a fixed block 
allocator that RTSJ users often call recycling lists.  These 
keep a pool of pre-allocated objects in a memory area.  
The application gets them from the recycling list, uses 
them, and then returns them. There are some interesting 
problems.  For instance, the JVM initializes objects when 
they are constructed and runs finalizers (if any) when 
objects are freed.  Objects that live in a recycling list are 
constructed before they are placed in the list and might 
run finalizers if the list is ever freed.  This is a minor issue 
for objects from some classes, but others classes might be 

impossible to recycle; for example,  Thread objects are 
intended to go from construction to start() to 
termination.  They can only be started once. 

There is a rudimentary ancestor of the recycling list in 
RTSJ Platform Programming [13]. Recycling lists are not 
advanced computer science, but since everyone is 
implementing a version of the facility, it is time the 
specification standardized it. 

5.6 Scoped Memory Subclasses 
There is much demand for extensions to the scoped 
memory classes.  Unfortunately, useful extensions here 
require help from the JVM.  There are probably as many 
ideas for useful new scoped memory classes as there are 
RTSJ users.  For instance: 

• A reference-counting scope that allows an object’s 
space to be reclaimed when there are no references to it, 
even though the scoped memory is still in use. 
• A storage scope that can retain objects when its 
reference count goes to zero. 
• A scope that permits malloc- and free-like operations 
The RTSJ could approach the need for more types of 
scoped memory by adding some new scoped memory 
classes, or it could update the memory area specification 
so subclasses have a way to control the operation of the 
base classes. 

Of course, static analysis techniques might allow some 
objects to be created on the stack and, therefore, obviate 
the need for explicit scoped memory coding [3, 26]. If this 
can be sufficiently generalized, and if real-time garbage 
collection becomes more efficient and accepted, one of 
the major features of the RTSJ may need deletion, or it 
might live on as a feature that is heavily used, but not by 
programmers. 

5.7 Multiprocessor and Distributed 
Systems 

The RTSJ ignores issues related to all types of multi-
processor systems.  JSR 50 [15] is addressing the 
distributed systems but progress has been slow and results 
are few [30].  However, there may be room for a 
comparatively unsophisticated approximation to 
distributed real-time Java under the RTSJ.  Support for 
real-time processing on SMP and NUMA platforms is not 
addressed by the RTSJ or another JSR, but a fair number 
of RTSJ users are running it on SMP systems.  Perhaps 
the scheduling techniques that make this work without 
real-time anomalies should be added to the specification. 

5.8 Multiple Clocks 
The 1.0.1 version of the RTSJ clarifies the treatment of 
multiple clocks under the RTSJ, but it does not specify the 



behavior of any clocks other than the default real-time 
clock.  It is probably inappropriate to require any other 
clocks, but it would be beneficial to define the APIs and 
behaviors of several additional clocks. 

A consumed CPU time clock would be particularly 
useful. It is an anomaly that the RTSJ programmer can 
request that a cost overrun handler can be released when a 
schedulable object consumes more CPU time than in its 
stated budget; yet the programmer cannot determine how 
much CPU time the schedulable object has currently 
consumed.  A consumed CPU time clock would also 
augment the processing group facilities of the RTSJ and 
allow more flexible bandwidth preserving algorithms to 
be implemented, including sporadic servers. 

5.9 Multiple Criticalities 
The RTSJ includes an ImportanceParameters class, 
but does not specify the behavior of a scheduler that 
employs them.  Importance could be used to order queues 
within priority, they could be combined with data from 
release parameters to select the least harmful set of 
deadlines to miss in case of overload, and there are 
probably endless other requirements for this two-
dimensional class of scheduling parameters.  It would be 
productive to specify at least one scheduler that could use 
ImportanceParameters. 

There are related scheduling mechanisms that the RTSJ 
does not touch.  For instance ARINC 651 and its 
associated standards ARINC 653 (APEX) and ARINC 
659 [11] support the notations of partitions and processes 
within a partition. Scheduling divides each interval of 
time into quanta that are then allocated to partitions.  Each 
process is executable only within the time allocated to its 
owning partition (using priority-based scheduling). This 
simple mechanism effectively isolates the CPU 
consumption of software components.  This prevents 
overload in a component from degrading the entire system 
and makes integration and testing of complex systems 
comparatively simple.  Of course, the tradeoff is the 
potential increase in release jitter and more complex 
feasibility analysis. 

Java is already considering the notion of an isolate [16] 
where more than one application can share access to the 
same JVM. There has been some work that is taking this 
approach and integrating it into Ravenscar-Java [10]. 
Here, processing group parameters define the scheduling 
at the application level, and the RTSJ priority scheduler is 
used to schedule within applications. It would be 
interesting to generalize this and, for example, include an 
optional ARINC 653 scheduler in the RTSJ. 

5.10 Alternative Interrupt Handling Models 
The RTSJ handles external events such as signals and 
hardware interrupts by raising happenings.  Happenings 

can be associated with asynchronous events and thus 
interrupt handlers become asynchronous event handlers.  
Whilst this provides the flexibility to schedule interrupt 
handlers in competition with other activities, some 
consider the approach too expensive. 

It is hard to implement the flexibility provided by the 
RTSJ approach without sacrificing performance.  An 
asynchronous event handler can increment a counter, 
release a lock, fire another event, or anything else that can 
be coded under RTSJ. However, other approaches exist 
that can perform operations like these directly and much 
more efficiently than firing an asynchronous event that 
starts an asynchronous event handler that performs the 
actions.  This is not to suggest that the current mechanism 
for handling happenings should be removed, but some 
additional mechanism that could do a few simple things 
very efficiently would benefit the more performance-
oriented developers.  For example, Ada allows the 
equivalent of a synchronized method to be called directly 
in response to an external happening. 

6 Conclusions 
This paper has reviewed the current status of the RTSJ, 
outlined the challenges it faces and proposed some areas 
for future work. Many of the extensions have ambitious 
goals; some would make interesting research projects. 
Since the Java Community Process [14] governs the 
evolution of the RTSJ, it will deliberate and will weight 
compatibility heavily when considering extensions, but 
derivative works and non-standard extensions to the RTSJ 
are not so constrained.  
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