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Abstract—In a number of areas, for example, sensor net-
works and systems of systems, complex networks are being used
as part of providing applications that have to be dependable
and safe. A common feature of these networks are they operate
in a de-centralised manner and are formed in an ad-hoc
manner and are often based on individual nodes that were not
originally developed specifically for the situation that they are
to be used. In addition, the nodes and their environment will
have different behaviours over time, and there will be little
knowledge during development of how they will interact. A
key challenge is therefore how to understand what behaviour
is normal from that which is abnormal so that the abnormal
behaviour can be detected, and be prevented from affecting
other parts of the system where appropriate recovery can
then be performed. In this paper we review the state of the
art in bio-inspired approaches, discuss how they can be used
for error detection as part of providing a safe dependable
sensor network, and then provide and evaluate an efficient
and effective approach to error detection.

I. Introduction
Sensornets are a prime example of the complex systems

and networks that are being deployed as part of today’s
dependable systems. Examples are being seen in healthcare
and defence as well as many other domains [1]. Sensornets
present unique challenges to developers as by their very
nature they consist of self-organising components where
the individual components feature highly complex often
adaptive designs. When combined with uncertainties in their
deployment and their operating environment we argue that
that traditional approaches to error detection are not appro-
priate as the errors (their nature and causes) can only be fully
understood at run-time and will be continuously varying.
Here we define an error to be deviation from expected
behaviour, i.e. errors, that may lead to a failure. This leads to
the following key objectives being identified, and addressed
for sensornets based on a variety of sources, which concur,
including the following well-recognised surveys [2], [3].

1) N1 - Errors need to be detectable from changes in
the system itself caused by both internal and external
effects, e.g. expected adaptions in protocols or expected
changes in the external interference sources [4].

2) N2 - Errors can occur permanently or temporary (over
both short and long durations and frequencies) [5].

3) N3 - An error is detected then the system should be
able to re-establish an acceptable homeostatic state [6].

4) N4 - Any approach proposed for handling of errors
should be achievable in the context of a sensornet

system, e.g. with highly-constrained resources [7].
Take for instance a traditional threshold-based test that

uses the number of messages that fail to be delivered as
a trigger. Without detailed knowledge of exactly how and
where the systems are to be deployed it is near impossible
to identify a threshold that is not overly conservative or
aggressive in terms of its detection. Even if one could
be identified, its value might not be suitable over a long
period of time. For example as new interference sources
are introduced the failed messages may increase and yet no
improvement in the way communications are performed is
possible. In fact tactics such as turning off nodes suspected
of being the source of errors might make things worse.

Other approaches, e.g. error detection using Markov anal-
ysis [8] and neural networks [9] would suffer from similar
issues. The obstacle facing these approaches is the identifi-
cation and maintenance of knowledge of what is considered
normal behaviour. The common feature of these approaches
is they are tuned off-line before the actual deployment of
the sensornet and the parameters remain unchanged.

An alternative option is an adaptive learning system where
over time a model of the system’s behaviour is learnt, e.g. us-
ing statistical relational learning [10], or adapted, e.g.using
feedback control approaches [11]. Again these approaches
have advantages and disadvantages. The advantages include
that less precise knowledge is needed before deployment
of the sensornet, although some basic knowledge may still
be needed, e.g. so that appropriate control parameters can
be chosen. The disadvantage of such an approach is the
lack of assurance that new errors will be adequately learnt
by the system and thus the performance of the system be
maintained. This suggests there is a need for an appropriate
compromise between statically (innate) pre-defined tactics
working in conjunction with a more adaptive system.

The classical approaches, discussed above, to error de-
tection have been applied to WSN with limited success for
the reasons that have been raised. For more details refer
to [3]. Therefore in this paper a well-established area of
work, Artificial Immune Systems (AIS), is introduced as an
alternative strategy for dealing with the likely errors. Then
in section III a survey of the work on AIS, including their
application to sensornets, is provided that gives a strong
justification as to why AIS is a suitable technology for use
in sensornets that feature as part of a wider dependable
system. Section IV provides experimental results which is
then followed by the conclusions.



II. Artificial Immune Systems

The immune system is a complex system that undertakes
a myriad of tasks. The abilities of the immune system
have helped to inspire computer scientists to build systems
that mimic, in some way, various properties of the immune
system. AIS have been defined in [12] as:

“adaptive systems, inspired by theoretical im-
munology and observed immune functions, prin-
ciples and models, which are applied to problem
solving.”

This field of research, AIS, has seen the application of
immune inspired algorithms to a wide range of problems
[13]. From a computational point of view, the immune
system has many desirable properties such as robustness,
adaptability, diversity, scalability, multiple interactions on a
variety of timescales and so on, and is thus attractive to many
in an engineering context. This has been demonstrated for
instance by work on Automated Teller Machines (ATM) [14]
where AIS has been used to provide prognostic capabilities
that have helped to increase the availability of the machines.

A recent paper [13] highlights that to date, the develop-
ment of AIS has beenscatterguni.e. many applications have
been tried without a great deal of thought. Indeed, that paper
provides a detailed overview of the many application areas
that AIS have tried, and this will not be repeated here: the
interested reader should consult that paper. The authors go
on to propose a number of properties that they feel any AIS
should have, and that these properties may help guide the
type of application they could be applied to:
• “They will exhibit homeostasis
• They will benefit from interactions betweeninnateand

adaptive immune models
• They will consist ofmultiple, interacting, communicat-

ing components
• Components can be easily and naturallydistributed
• They will be required to performlife-long learn-

ing” [13]
By homeostasis the authors mean a “steady state” type

operation, so that when errors or changes in environmental
conditions occur, systems can maintain a certain level of
operation, i.e. an acceptable equilibrium is achieved. In the
context of this paper, we argue that sensornets, given the
above criteria, are a good candidate for the application of
ideas from the area of AIS.

III. I mmune Systems and their Relationship to Sensornets

From the previous sections, the needs of an error tolerance
mechanism have been established and AIS have been intro-
duced. Here we explore how the two are related to deliver
a dependable system.
A. Immune Systems

We now briefly discuss several immune mechanisms that
we propose can be interpreted and applied to error detection
in wireless sensor networks (and similar distributed, resource
constrained computing environments). The biological im-
mune system (BIS) employs various mechanisms to combat
threats to a host that can cause an immune response to

trigger: the general term for something that can cause an
immune response is known as apathogen[15]. In general,
we consider the BIS to consist of two parts: the innate
and the adaptive immune system. This is a simplification
as there is a great deal of interaction between both parts
of the immune system, but the distinction is useful for our
discussion.

The innate immune system incorporates general pathogen
defence mechanisms that have evolved over thegermline
of the organism, i.e. these mechanisms are passed from
the parents to the offspring. These mechanisms remain
essentially unchanged during the lifetime of an individual.
The mechanisms of the adaptive immune system also de-
velop as the organism evolves, however they also have the
ability to changesomatically(i.e. during the lifetime of an
individual through the production of new cells known as
lymphocytesand receptorson these cells). This results in
the ability of the adaptive immune system to recognise pre-
viously unseen pathogens (learning) and to remember them
for future encounters (memory). The innate and adaptive
immune systems typically operate over different timescales.
The innate operates on a small time scale often initiating
a reaction either instantly or within a matter of minutes,
whilst the adaptive immune system operates over a longer
time period, taking of the order of days to initiate a reaction.
It is the combination and interaction of both the innate
and adaptive immune mechanisms that provides us with an
effective immune system [16].

With respect to the adaptive immune system, lymphocytes
are of two general types: B and T cells. These cells have to
go through a selection process to ensure a minimal amount
of what is known asself-reactivitywhere cells of the host
attack the host: this is also known asautoimmunity. The
selection process in the immune system has two basic forms:
positive selection and negative selection. Positive selection
selects individual immune cells with high success rate when
recognising a pathogen during an immune response. Suc-
cessful cells are cloned and B cells undergo a process known
as clonal expansion where new receptors are generated, or
mutated in an attempt to improve recognition ability of the
overall system [12]. T cells are also cloned, but do not
undergo any mutation process. Negative selection selects T-
cells that do not bind any self cell. This process is done
before T-cells are allowed into the lymphatic system, and
the assumption is if a cell passes this selection phase, it is
only reactive with pathogen. Of course, this process is not
perfect, and self-reactive cells do make it into the lymphatic
system. However, negative selection process plays a key role
in decreasing the possibility of an autoimmune reaction [15].

One of the most important events triggered by the ac-
tivation of innate immunity is the expression of what is
known asco-stimulatory moleculeswhich help support the
process of recognition in the adaptive immune system.
This co-stimulation can form a feedback loop that leads
to pathogen elimination [16]. Later, we will argue that
splitting an error detection system into two functional units,
one being responsible for error classification and the other
one responsible for providing context on the ability of a
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given error to cause damage is essential for introducing
many desirable properties such as novel error detection, false
positives control, reactive and proactive error detectionor
adaptivity to changes in external environment.

B. Immune Inspired Architecture

As we have discussed above, the BIS is a biological pro-
tection system that specialises in recognition and elimination
of a range of threats to a host (pathogens). For the purposes
of this paper, we focus on architectural properties of the
BIS and their interpretation in the scope of error detection,
rather than offering a computational interpretation of each
process within the BIS. We assume that these individual
processes can be well interpreted applying standard machine
learning and statistical approaches, as well as other bio-
inspired approaches. Our immune inspired error detection
architecture should reflect the following properties of the
BIS:
• Adaptivity: in response to novel error as well as to any

modification of known error.
• Context evaluation: any detected error is evaluated with

respect to whether it can impact quality of service.
• Feedback loop: context evaluation provides a feedback

on the success rate of adaptivity.
Figure 1 provides an overview of our proposed immune

inspired architecture. It consists of two modules, each of

them having a different focus. The purpose of the adaptive
learning module is to reflect the capabilities of adaptive
immune system: selection, memory and learning, whereas
the purpose of context classification module is to reflect
the capabilities of innate immune system: responses to non-
specific threats. The context classification module is capable
of signalling whether any error detected by the adaptive
learning module, in our study, could result in decreased
quality of service. This module thus provides the necessary
feedback after any adaptation occurs within the adaptive
learning module.

We will now discuss the interpretation of this architecture
shown in Figure 2. We assume that a set of Quality of
Service (QoS) limits is provided. Exceeding these limits
implies that an error negatively impacts the monitored sensor
network. We will later explain how Adaptive classification
and Context classifications can be implemented. For the
ease of the discussion we assume that these two types of
classification can be implemented as classifiersK1 and K2,
respectively.
C. Problem Formulation

Let Ω = {o1, ...,on} be a finite set of objects, wheren
is the number of these objects (representing the behaviour
of nodes or sensors). Each classifierKi ∈ {K1,K2} takes
an objectoh ∈ Ω and assigns it to a classC j . Let ǫ(Ki)
be the classification error resulting from applyingKi to Ω.
Classification error is defined asǫ(Ki) =

p
n , where p is the

number of objects incorrectly classified. Letξ(Ki) be the
cost of such a classification process.

Let K1 ↔ K2 be a classifier resulting whenK1 and K2
are combined according to Figure 2. Letǫ(K1 ↔ K2) and
ξ(K1 ↔ K2) be the classification error and cost of this
classifier, respectively. The objectives of this architecture
with respect to error detection can be formulated as follows:

minimise: ǫ(K1↔ K2), ξ(K1↔ K2) (1)

subject to:

ǫ(K1) > ǫ(K2), ξ(K1) < ξ(K2) (2)

Eq. 1 defines our immune inspired error detection approach
as a multiobjective optimisation problem. Note that if either
of the following holds: (i)ǫ(K1) ≤ ǫ(K2) andξ(K1) < ξ(K2)
or (ii) ǫ(K1) > ǫ(K2) andξ(K1) ≥ ξ(K2) then the inequalities
formulated in Eq. 2 are not satisfied. This would imply that
there is a classifier that has both lower classification error
as well as lower cost. In other words, only classification
applying eitherK1 or K2 would be necessary.

To achieve the objectives formulated in Eq. 1, our goal is
to apply an adaptive strategy such that:

lim
t→∞
ǫ(K1) − ǫ(K2) = δ (3)

where t is time and δ is a fixed adaptivity error. Since
K2 reflects the detection capabilities of innate immunity
with a negligible adaptation rate,ǫ(K2) can be considered
fixed. This form of adaptivity thus implies that applying
an adaptive strategy results inK1 with classification error
converging to that ofK2. The adaptivity error can either



be directly provided by the user or it can be a function of
cost, i.e.δ = g(ξ(K1 ↔ K2)), whereg(.) is monotonically
decreasing.

In the following we show how our classifier reflects
requirements such as responsiveness, good split between true
positives and true negatives, ability to detect novel typesof
error and energy efficiency.

D. Energy Cost Model

When evaluating energy efficiency of K1 ↔ K2, we
assume that any sensor will work reliably, most of the time.
The rationale is that error occurrence is unpredictable and
therefore it is necessary to analyse the running cost of the
dominant case, i.e. the running cost of error detection in an
error free sensor network.

Inspecting the architecture shown in Figure 2, it can be
seen that when classifying an object, two cases can occur:

1) K1 is applied: prediction is “normal” behaviour.
2) K1 is applied: prediction is “suspicious”. ThenK2 is ap-

plied. If prediction ofK2 is an “error” then the object in
consideration is classified as erroneous. Subsequently,
a new adaptive strategy can be computed and applied.

The application of the later classification stageK2 is
conditional upon the outcome ofK1 classification. In an
error free sensor network, the energy cost model can be
formulated as follows:

ξ(K1↔ K2) = ξ(K1) + ǫ0(K1) · (ξ(K2) + ξadapt) (4)

where ǫ0(K1) is the rate at which normal behaviour is
mistakenly predicted to be an error andξadapt is the cost
related to computing and applying a new adaptive strategy.
Notice that sinceξ(K1) < ξ(K2), the rateǫ0(K1) controls the
frequency at which the costlierK2 is being applied.

E. False Positives Control

Let us now discuss the effects of our architecture on false
positives control. Considering a classc ∈ {norm,mis}, let
det. rateΩc (Ki) be the detection rate and letFP rateΩc (Ki) be
the false positives rate resulting when classifierKi is applied
to classify the objectsΩ. These two measures are defined
as follows:

det. rateΩc (Ki) =
tc
nc

FP rateΩc (Ki) =
¬tc
¬tc + tc

(5)

wherenc is the number of objects inΩ belonging to the class
c, tc is the number of objects correctly predicted to belong
to c and¬tc is the number of objects incorrectly predicted
to belong toc.

Let us first assume thatǫ(K2) = 0. With respect to the
error classmis, after each classification stage the following
holds:

1) K1 is applied to Ω: det. rateΩmis(K1) = a and
FP rateΩmis(K1) = b

2) K2 is applied toΩ′ = Ω − ΩK1: det. rateΩ
′

mis(K1 ↔

K2) = a and FP rateΩ
′

mis(K1↔ K2) = 0
wherea,b ∈ R, 0 ≤ a,b ≤ 1 andΩK1 are the objects that
were predicted to represent normal behaviour in the first
stage. The final FP rate equals 0 due to the fact that after

K2 with ǫ(K2) = 0 is applied, all misclassified objects inΩ′

are removed, i.e.∀c (¬tc = 0).
Let us now consider the case whenǫ(K2) > 0. If ∀oh ∈

ΩK1 (oh ∈ norm) andǫΩK1 (K2) = 0 then the following holds:

FP rate
Ω′+ΩK1
mis (K2) = FP rateΩ

′

mis(K2) (6)

SinceΩ = Ω′ + ΩK1, then:

FP rateΩmis(K2) = FP rateΩ
′

mis(K2) (7)

And finally, for the final false positives rate and the final
detection rate, it holds that:

FP rateΩmis(K1↔ K2) = FP rateΩmis(K2) (8)

det. rateΩmis(K1↔ K2) ≤ det. rateΩmis(K1) (9)

Applying K2 with ǫ(K2) > 0 may decrease the final
detection rate, sinceK2 can misclassify objects that were
correctly predicted byK1 to belong to the classmis.

If ∃oh ∈ ΩK1 (oh ∈ mis) andoh can be correctly classified
by K2 then in order to keep the final FP rate unchanged, the
false positives rate ofK2 has to be adjusted as follows:

FP rateΩ
′

mis(K2) =
△¬tmis

△¬tmis+ α · tmis
(10)

Solving this equation for△¬tmis yields:

△¬tmis =
α · tmis · FP rateΩ

′

mis(K2)

1− FP rateΩ
′

mis(K2)
(11)

whereα ∈ R, 0 ≤ α ≤ 1 andα · tmis is the decreased number
of objects correctly classified as error, i.e.α reflects the fact
that some objects that have errors could not enter the second
phase of classification. (tmis − △¬tmis) is the adjustment
that is necessary in order to keep the outcome of Eq. 10
constant. A special case happens whenFP rateΩ

′

mis(K2) = 0,
in which caseFP rateΩmis(K1↔ K2) is independent from the
classification capability ofK1.

With respect to the above said, one option for achieving
false positives control is that the outcome ofK1 classification
is Ω′ ⊂ Ω such thatFP rateΩ

′

mis(K2) = 0. This implies that
ΩK1 contains all objects representing normal behaviour that
K2 would misclassify. WhetherK1 can deliver such an effect
is one of the goals of our experimental analysis.

Additionally, in order to stimulate energy efficiency K1
must remove fromΩ a large number of objects representing
normal behaviour, i.e.|Ω′| ≪ |Ω|. Let us now discuss the
implications of the above discussed form of false positives
control on the design of adaptive error detection systems.
F. Adaptivity

Taking Eqs. 8 and 11 into consideration it can be
seen that the final false positives rate is independent of
FP rateΩmis(K1). Given thatK1 should exhibit a large degree
of adaptivity, this fact simplifies the way to a suitable
adaptive strategy. Let us now formulate the implications of
this fact:

Adaptive strategy: since the final false positives rate is
solely determined byK2, the applied adaptive strategy is
allowed to increaseFP rateΩmis(K1). This increase however
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must stay time bounded, since any increase in¬tK1
mis nega-

tively impacts the total cost as formulated in Eq. 4.

¬tK1
mis is the number of objects incorrectly classified byK1

as belonging to classmis. Note thatǫ0(K1) can be expressed
as:

ǫ0(K1) =
¬tK1

mis

nnorm
(12)

In order to apply the above formulated adaptive strategy
we are limited by the fact that only the objects inΩ′ and
their class prediction byK2 can be used as a feedback for
updating the decision rules ofK1.

The effects of this form of adaptation are illustrated
in Figure 3. Since we assume thatK2 has a negligible
adaptation rate, any adaptation is done by improvingK1
classification, more formally:

minimise: |Ω′| (13)

subject to:
FP rateΩnorm(K1) ≤ γ (14)

where γ is a cost parameter, i.e. a well bounded fraction
of objects that have errors should end up inΩK1. Note that
|Ω′| = ¬tK1

mis+ tK1
mis. On Figure 3,|Ω′| is the area to the right

of K1 (or K′1 after adaptation).
G. Feature Sets

A challenge when implementing our immune inspired
architecture shown in Figure 2 is to design two distinct

Overhear

A X B

(a) f2: Overhearing

Stat Stat

A X B

(b) f1: Stat sent over 2
hops

Figure 5. Feature setsf1, f2: An example

feature sets so that the requirements formulated in Eq. 2
can be fulfilled. Afeaturein the context of sensor networks
is understood to be a performance measure that allows for an
efficient reasoning about whether a node (sensor) has errors
or works normally. Let us demonstrate how this can be done
on a simple example where the goal is to detect whether a
nodeX timely forwards data packets; see Figure 5.

Let us contrast two approaches that can be applied for
this task: (a) nodeA can overhear the data traffic betweenX
andB and thus detect whether data packet forwarding is not
being delayed byX or (b) both nodeA and nodeB compute
inter-arrival delay statistic; the statistic computed byB is
sent over two-hops toA and then compared with the statistic
computed byA. Let us denote feature sets computed through
overhearing and over two hops asf2 and f1, respectively.
Observe that ifX does not forwardStat, then this node
is classified as having errors, since there is no inter-arrival
information received byA within a predefined time limit
which we denotewin. size.

Let us suppose there is a mappingΦ that maps feature
set f2 to f1:

Φ : f s
2 7→ f d

1 (15)

where s and d, s ≤ d, is the dimensionality of feature
set f2 and f1, respectively. Note that for the features and
delaying errors shown in Figure 5,s = 1 and d = 2. In
the case off1, d = 2 since two features (that may have an
identical definition) are computed, each by a different node.
In general,f d

1 = f1(A)∪ f1(B), where f1(A) and f1(B) is the
f1 feature set applied byA and B, respectively.Stat is a
numerical instance off1(B).

Let Ki( fi) be classifierKi applying featuresfi to reason
about errors. Since we aim at fulfilling the requirements
formulated in Eq. 2, we are looking for a feature space
transformation such that:

Definition (γ1, γ2)-transformationis a mappingΦ : f s
2 7→

f d
1 such that the following holds:

ǫ(K1(Φ( f2))) − ǫ(K2( f2)) = γ1 (16)

ξ(K2( f2)) − ξ(K1(Φ( f2))) = γ2 (17)

whereγ1, γ2 ∈ R+.

A (γ1, γ2)-transformation, when provided a feature set
f2, returns f1 that induces a higher classification error and
a lower cost. Notice thatξ(K1( f1)) as well asǫ(K1( f1))
are a function ofwin. size. This is due to the fact that



the frequency at which a statistic originating at nodeB is
received byA influences the cost (Stat has to be sent more
often) as well as the classification error assumed that the
statistic is averaged overwin. size. Notice that for a given
Φ to check whether Eqs. 16 and 17 are fulfilled may require
an experimental analysis.

Assuming ξ(K1( f1)) and ξ(K2( f2)) are dominated by
communication costs, these two costs can be expressed as
follows:

ξ(K1( f1)) = 2 · (ξT X(Stat) + ξRX(Stat)) (18)

ξ(K2( f2)) = k · ξRX(Data) (19)

where ξT X(Stat) and ξRX(Stat) is the communication cost
of sending and receivingStat, respectively, andξRX(Data)
is the cost of overhearing a data packetData. The fixed
constant 2 in Eq. 18 reflects the fact thatStat must hop
twice to reachA. We assume thatk data packets need to be
overheard in order to detect an erroneous node.

The experimental results in [17], [18] show that consider-
ing data packet dropping and data packet delaying errors, it
is possible to construct a (γ1, γ2)-transformation that fulfils
the conditions stated in Eqs. 16 and 17. Those results are
based on energy consumption models of several wireless
devices including TI CC2420.

Mapping a data set into a higher dimensional space
has been successfully applied in several other areas, most
notably, in databases where such a mapping is used to
facilitate nearest neighbour searches [19]. In our case, a
(γ1, γ2)-transformation is a tool for finding a feature setf1
with more favourable energy cost and classification error
trade-off than f2. Unlike in [19], such a transformation is
limited by the fact that each feature inf1 must be observable,
i.e. it can be directly computed taking as input states and
events observable locally by any node.

As mentioned before, applying thresholds can lead to
either overly conservative or aggressive detection pattern.
To circumvent this problem, we apply mappingΦ to project
any threshold based features (and the related QoS limits)
into a feature space of a higher dimension. This adds the
necessary flexibility and results in a detection system that
can recognise a larger set of error types, however, only errors
that violate any QoS limit would trigger a reaction. Observe
that projecting threshold based features applyingΦ also
allows the detection system to become more specific, i.e.
error types that would violate a single predefined threshold
can possibly match different decision rules ofK1.

Even though, we demonstrated that for a certain type
of error, finding a suitableΦ might be straightforward, for
other error types it can prove challenging. This means that
the success of our approach is closely tied with our ability
to find Φ for any expected error and this has to fulfil the
requirements of Eqs. 16 and 17 to become a useful feature
set transformation.
H. Adaptivity Revisited

Let Ωi ⊂ Ω such that for arbitraryi, j: Ωi , Ω j and
Ω =

⋃
i Ωi . Let Ki( f j)[oh] be the label of oh ∈ Ωi as

predicted by Ki( f j). Let Ω′i ⊆ Ωi be a set of objects

such that∀oh ∈ Ω
′
i (K1( f1)[oh] = error). At last, let

Γi = Γi−1 ∪ (oh,K2( f2)[oh]), i.e. Γi is the set of objects
that were subject toK2 classification including their class
membership as predicted byK2. Γi is a basis of feedback
from K2 to K1.

Since K1 and K2 work over different feature spaces and
any K1 adaptation can only benefit fromΓi , Eq. 3 becomes:

lim
i→∞
ǫΩ(KΓi

1 ( f1)) − ǫΩ(K2( f2)) = δ (20)

where KΓi

1 ( f1) denotes classifierK1 over feature spacef1
applying Γi for adaptation. In practical terms, we would
like to see thatǫΓi (K1( f1)) converge toǫΩ(K2( f2)) within
a reasonable number of steps, i.e. we would like to see
i < c; c ∈ Z+. Convergence results are going to be another
goal of our experimental analysis. Note that classifierK2 is
based on user provided QoS limits. Since they do not change
once defined by the user, we omit a superscript in the case
of K2.
I. Novel Error Detection

To understand how to detect novel error detection, let
us consider the architecture shown in Figure 4. In this
architecture any object is first classified byK0( f1), i.e. this
classifier applies the same feature set asK1. The only task
of this classifier is to decide whether this object is novel,
i.e. whether this or a similar object has not been seen in the
past. The classification then proceeds as follows:

1) If the object is novel, then it is classified byK2( f2).
2) If the object is not novel then cascading classification

by K1( f1) and K2( f2) is done. In this case,K1( f1) is
expected to contain a rule capable of class prediction
with respect to this object.

K0 takes inspiration from the role of negative selection
in the BIS. The purpose of negative selection is to produce
immune cells capable of detecting any non-self cells, i.e.
cells that are not building blocks of the host. SinceK1
can only classify objects already seen in the past, any
novel object is directly sent toK2. Algorithm 1 is a formal
description of the architecture shown in Figure 4.
J. Summary

We discussed how several basic properties can be achieved
applying an immune inspired architecture. Let us now sum-
marise our findings:
• Energy efficiency is determined by the capability ofK1

to classify normal behaviour and in doing so objective
N4 is achieved.

• Final false positives rate is determined byK2.
• Adaptivity is a matter of feedback betweenK1 andK2,

where any adaptation is only based onΩ′ ⊂ Ω. Any
adaptive strategy applied toK1 is allowed to increase
false positives rate of this classifier at the cost of
increased energy cost. The adaptivity allows objectives
N1 andN2 to be achieved.

• Novel error detection is done by evaluating whether any
user defined QoS limits are violated. The accumulative
result of such an evaluationΓi is used to adaptK1. As
such objectiveN3 can be achieved as the system can
then be tailored so that all parts meet the QoS target.



Algorithm 1 Immune inspired error detection.
Require: Set of objectsΩi ⊂ Ω

1: procedure DETECT ERROR
2: if i == 1 then Γi ← ∅

3: else
4: Γi ← Γi−1

5: end if
6: for h := 1→ |Ωi | do
7: suspicious← f alse
8: if K0( f1)[oh] == novel then suspicious← true
9: else

10: if K1( f1)[oh] == error then suspicious←
true

11: end if
12: end if
13: if suspicious== true then
14: Γi ← Γi ∪ (oh,K2( f2)[oh])
15: if K2( f2)[oh] == error then error detected
16: end if
17: end if
18: end for
19: COMPUTE K1 (Γi) ⊲ ClassifierK1 computation

using e.g. a decision tree algorithm
20: end procedure

IV. Experimental Analysis

In this section we show preliminary experimental results
on the feasibility of Algorithm 1.

A. Experimental Setup

The experimental setup is similar to that used in [18]. We
consider a network with 1718 nodes. The network topology
is based on a snapshot from the movement prescribed by
the Random waypoint movement model [20]. The physical
area size was 3,000m× 3,000m.

We modelled data traffic as Constant bit rate (CBR), i.e.
there was a constant delay when injecting data packets. This
constant delay in our experiments was 2 seconds (injection
rate of 0.5 packet/s); the packet size was 68 bytes. CBR data
packet sources correspond to e.g. sensors that transmit their
measurements in predefined constant intervals.

In our simulations we used 50 concurrent data connec-
tions. The connection length was 7 hops. In order to repre-
sent a dynamically changing system, we allowed connections
to expire. An expired connection was replaced by another
connection starting at a new random source node. Each
connection was scheduled to exist 15 to 20 minutes. The
exact connection duration was computed asτ + rUλ, where
τ is the minimum duration time of a connection,rU a random
number from the uniform distribution [0,1] andλ the desired
variance of the connection duration. In our experiments, we
usedτ = 15 min andλ = 5 min.

We used the JiST/SWANS network simulator [21] with
the AODV routing protocol and the default settings provided
by JiST/SWANS. We used the IEEE 802.11 MAC protocol.
The RTS-CTS-DATA-ACK handshake was enabled for all

data communication. The channel frequency was set to 2.4
GHz. The transmission rate was set to 54 Mbit/s. We used
the two-ray signal propagation model [22]. Antenna and
signal propagation properties were set so that the resulting
radio radius equals 100 meters.

K1 classification was done using a decision tree classifier.
To decide whether a node within the decision tree should
be further split (impurity measure), we used the information
gain measure. As the decision tree classifier is a well-known
algorithm, we omit its discussion. We refer the interested
reader to [23]. We used the decision tree implementation
from the Rapidminer tool [24].

For the purpose of our experimental evaluation we con-
sidertwo error types: data packet dropping (qualitative error)
and data packet delaying (quantitative error). For the data
packet dropping, the erroneous node drops a given data
packet randomly and uniformly with probability 0.1. For
the data packet delaying, the erroneous node delays the
forwarding of a given data packet randomly and uniformly
with probability 0.3 by a fixed delay amount 20ms. For each
error type and normal behaviour, there were 20 simulation
runs with a different simulation seed done. The simulation
time was 4 hours.

There were 236 nodes randomly chosen to execute data
packet dropping or delaying erroneous. Our intention was
to model random error occurrences, assuming an uniform
error distribution in the network. As it is hard to predict
the routing of data packets, many of the 236 nodes could
not originate errors as there were no data packets to be
forwarded by them. In our case, about 20-30 erroneous nodes
were concurrently active.

In order to simplify our experiments, we only considered
20 nodes with the highest amount of data traffic. For each
of the 20 nodes we split its vector set into two sets: training
and test. A node’s vector set comprises numerical instances
of f1 and f2. The size of training set and test set is 1500 and
500 vectors, respectively. Both sets are obtained by random
stratified sampling. Training set constitutes the inputΩ of
our immune inspired architecture, whereas test setΩT is
used to monitor progress after each roundi. Training set
Ω is further split intoΩi that constitutes the input at each
round.

The applied features are listed in Appendix. The features
belonging to f1 are more complex than in the example
shown in Fig. 5. The reason is that our simulation setup
allows for multiple connections running over each node.
Note that the duration of monitoring when applyingf2 can
be, depending on data traffic pattern or expected number and
severity of errors, shorter thanwin. size. For simplicity, in
our simulations we assume that this monitoring period is
equal towin. size.

Assuming thatf1 and f2 computation costs are dominated
by communications costs, these feature sets fulfil the require-
ment of a (γ1, γ2)-transformation for anywin. sizewhere the
cost of transmittingStat over two hops becomes cheaper
than computation of watchdog featuresf2. Sincewin. size
is a sampling period forf1, ǫΩ(K1( f1)) increases aswin. size
increases; see [17]. It is straightforward to couple the energy



model introduced in Eq. 4 with energy consumption model
of a wireless device in order to get a quantitative estimate;
see [18].

The average class distribution for the top 20 nodes was
as follows: i)win. size= 100s resulted in 29.01% vectors to
represent data packet dropping or data packet delaying and
ii) win. size= 50s resulted in 28.94% vectors to represent
data packet dropping or data packet delaying.

QoS limits that we applied areq1 = 0.5% for data
packet dropping andq2 = 2.6ms for data packet delaying.
If observed data dropping or data delaying exceeds during
the monitoring periodq1 or q2, respectively, thenK2 assigns
class “error” to the classified object. QoS limitsq1,q2 can
be in general set to any value (being physically possible),
however, sinceq1,q2 partition the set of objects, it is
necessary to chooseq1,q2 so that none of the partitions is
empty. Should the choice ofq1,q2 result in a single non-
empty partition,K2 will assign each incoming object the
same class.

B. Experiments

Experiment 1:|Ω1| = 5, |Ωi | = 25,2 ≤ i ≤ 30. EachΩi is
a result of stratified sampling applied toΩ. The experiment
was done applyingwin. sizeset to either 50s or 100s. The
rationale of this experiment was to show the performance
of K1↔ K2 upon start up. This experiment assumes that an
error is present from the first moment.

Experiment 2: |Ω1| = 150+ 2 + 2 where 150 objects
represent normal behaviour, 2 represent data dropping errors
and 2 represent data delaying errors.|Ωi | = 2, 2 ≤ i ≤ 30,
where 1 objects represents data dropping errors and 1 objects
represents data delaying errors. We contrast this with another
sub-experiment with|Ω1| set to 750+2+2. Objects are chosen
randomly fromΩ. win. sizeis set to 100s. The rationale of
this experiment is to show the performance ofK1↔ K2 after
a large number of objects representing normal behaviour
were part of the process, i.e. in this case the network was
running normally and after a certain time period an error
emerged.

In order to streamline the experiments, we decided to
apply a simplified model for deciding whether an object is
novel. We mark all objects inΩ1 as novel, i.e. they are all
sent directly toK2. The objects belonging toΩi , i > 1 are
assumed to be not novel therefore being sent toK1. This was
necessary in order to investigate the effects of adaptivity in
isolation.

Performance evaluation ofK1 ↔ K2 was done with
respect toδ, |Γi |, detection rate and FP rate including
partial results forK1 and K2. Additionally, we consider
FP(K2,K1↔ K2) = FP rateΩ

T

mis(K2)−FP rateΩ
T

mis(K1↔ K2).
For each of these measures, we compute 95% confidence
intervals.

C. Experimental Results

The experimental results for Experiment 1 are reported in
Table I. It can be seen that after 30 rounds,|Γ30| compared
to
∑

30 |Ω30| is 25.97% and 26.40% for win. sizeset to 100s
and 50s, respectively.ǫΩ

T

0 (K1) decreased forwin. size= 100s
from 47.67% to 4.50% andwin. size= 50s from 36.76% to

i 1 5 10 20 30
∑

i |Ωi | 5 105 230 480 730
win. size= 100s

|Γi | 5.00±0.00 37.45±0.61 68.10±2.08 126.10±4.06 189.55±4.68
δ 44.36±0.06 15.98±0.59 14.02±0.38 11.60±0.11 10.22±0.35

det. rateΩ
T

mis(K1) 46.34±0.01 75.58±0.44 87.57±0.67 87.75±0.05 89.66±0.24

det. rateΩ
T

mis(K2) 99.94±0.06 99.94±0.06 99.94±0.06 99.94±0.06 99.94±0.06

det. rateΩ
T

mis(K1 ↔ K2) 44.62±0.28 73.83±0.42 86.07±0.65 86.02±0.12 88.08±0.32

FP rateΩ
T

mis(K1) 62.07±2.08 23.01±2.54 18.01±1.98 11.51±1.27 11.64±1.70

FP rateΩ
T

mis(K2) 3.53±0.54 3.53±0.54 3.53±0.54 3.53±0.54 3.53±0.54
FP(K2,K1 ↔ K2) 2.57±0.00 2.37±0.13 2.01±0.17 2.92±0.07 2.55±0.35

ǫΩ
T

0 (K1) 47.67±0.51 8.94±0.99 6.14±0.68 4.50±0.50 4.50±0.13
win. size= 50s

|Γi | 5.00±0.00 36.70±0.85 67.80±0.97 130.20±0.46 192.75±0.63
δ 37.89±1.25 15.33±0.57 11.72±0.09 9.57±0.22 8.86±0.30

det. rateΩ
T

mis(K1) 43.08±0.50 86.06±1.22 84.72±0.36 90.40±0.83 92.24±0.40

det. rateΩ
T

mis(K2) 99.02±0.04 99.02±0.04 99.02±0.04 99.02±0.04 99.02±0.04

det. rateΩ
T

mis(K1 ↔ K2) 41.14±0.45 83.10±1.33 81.86±0.47 88.40±0.82 90.45±0.37

FP rateΩ
T

mis(K1) 56.35±2.90 20.94±1.75 14.52±1.21 9.95±0.58 8.88±0.46

FP rateΩ
T

mis(K2) 4.01±0.21 4.01±0.21 4.01±0.21 4.01±0.21 4.01±0.21
FP(K2,K1 ↔ K2) 2.03±0.30 2.48±0.04 2.59±0.00 3.11±0.12 2.64±0.07

ǫΩ
T

0 (K1) 36.76±2.35 8.59±0.64 6.43±0.52 3.84±0.16 3.49±0.12

Table I
Experiment 1: performance of K1 ↔ K2.

3.49%. This means thatK1 could adapt to the two types of
error that we consider and only a small fraction of objects
representing normal behaviour is incorrectly misclassified.
This also implies that we achieved our adaptivity objective
to decrease the size ofΩ′; see Eqs. 13 and 14. This coincides
with increasing det. rateΩ

T

mis(K1) as adaptivity positively
impacts classification performance ofK1.

Observe thatFP rateΩ
T

mis(K1) remains high after all 30
rounds are completed. This is inline with our adaptive
strategy introduced in Section III-F, where we state that
FP rateΩ

T

mis(K1) does not impactFP rateΩ
T

mis(K1 ↔ K2).
Therefore, other than energy efficiency there is no need to
optimise for this performance measure.det. rateΩ

T

mis(K1 ↔

K2) is lower thandet. rateΩ
T

mis(K1). This is inline with Eq. 9.
The results for FP(K2,K1 ↔ K2) indicate that

FP rateΩ
T

mis(K1 ↔ K2) is lower than FP rateΩ
T

mis(K2).
This decrease is statistically significant and suggests that
FP rateΩmis(K2) > FP rateΩ

′

mis(K2), i.e. the objects inΩ′ are
simpler to classify than the objects inΩ. As discussed in
Section III-E, this means that a portion of objects represent-
ing normal behaviour thatK2 would misclassify ended up
in ΩK1.

At last notice thatδ which benchmarks the adaptive
process in terms of classification error, decreased by 34.14%
and 29.03% for win. sizeset to 100s and 50s, respectively.
The impact ofwin. sizeon δ is statistically significant. This
is expected aswin. size is effectively the sampling period
for f1.

The experimental results for Experiment 2 are reported
in Table II. The results are similar to the results reported
for Experiment 1. It can be however seen that for the sub-
experiment with|Ω1| = 750+ 2+ 2, ǫΩ

T

0 (K1) increases from
2.10% to 2.54%, which can be in absolute terms considered
a very low misclassification rate. ComparingǫΩ

T

0 (K1) for



i 1 5 10 20 30
|Ω1| = 150+ 2+ 2

∑
i |Ωi | 154 162 172 192 212
|Γi | 154.00±0.00 159.00±0.22 165.05±0.89 177.40±1.26 187.55±1.05
δ 20.89±0.23 16.15±0.14 15.33±0.47 13.77±0.40 12.23±0.28

det. rateΩ
T

mis(K1) 91.78±0.42 92.52±0.64 89.23±0.28 90.18±1.96 88.21±2.12

det. rateΩ
T

mis(K2) 99.84±0.11 99.84±0.11 99.84±0.11 99.84±0.11 99.84±0.11

det. rateΩ
T

mis(K1 ↔ K2) 89.53±1.05 89.88±1.09 86.76±0.74 87.82±2.20 86.08±2.26

FP rateΩ
T

mis(K1) 18.60±0.29 13.82±0.16 12.51±0.90 13.29±1.04 13.42±0.61

FP rateΩ
T

mis(K2) 3.60±0.09 3.60±0.09 3.60±0.09 3.60±0.09 3.60±0.09
FP(K2,K1 ↔ K2) 2.46±0.32 2.64±0.42 2.86±0.20 2.67±0.20 2.68±0.20

ǫΩ
T

0 (K1) 2.35±0.16 2.78±0.15 3.23±0.48 4.13±0.69 4.67±0.46
|Ω1| = 750+ 2+ 2

∑
i |Ωi | 754 762 772 792 812
|Γi | 754.00±0.00 759.50±0.06 765.70±0.30 777.35±0.59 788.60±0.73
δ 20.74±1.13 17.66±1.49 15.26±1.76 13.63±0.99 12.58±0.53

det. rateΩ
T

mis(K1) 97.70±0.25 97.10±0.33 96.90±0.20 96.40±0.24 96.94±0.08

det. rateΩ
T

mis(K2) 99.85±0.02 99.85±0.02 99.85±0.02 99.85±0.02 99.85±0.02

det. rateΩ
T

mis(K1 ↔ K2) 94.85±0.33 94.39±1.00 94.51±0.05 94.19±0.32 94.82±0.05

FP rateΩ
T

mis(K1) 16.46±2.22 11.43±3.05 10.34±3.17 8.43±1.22 8.58±0.57

FP rateΩ
T

mis(K2) 3.60±0.09 3.60±0.09 3.60±0.09 3.60±0.09 3.60±0.09
FP(K2,K1 ↔ K2) 1.10±0.53 2.14±0.08 2.35±0.10 2.16±0.22 2.22±0.25

ǫΩ
T

0 (K1) 2.10±0.29 2.11±0.40 2.32±0.37 2.32±0.34 2.54±0.24

Table II
Experiment 2: performance of K1 ↔ K2.

the two sub-experiments, it can be seen that the presence of
normal behaviour helps improve energy efficiency of K1↔

K2.

V. Conclusion

We introduced and evaluated an adaptive approach to
error detection. Our architecture reflects basic components
of the biological immune system. We argued that our
architecture can address several key challenges of error
detection systems: adaptivity, false positives control and
energy efficiency. Our approach to adaptivity is based on a
feedback loop between two classifiers, one representing the
capability of innate immune system whereas the other one
representing the capability of adaptive immune system. In
order to achieve flexibility, we project any applied threshold
features onto another feature set having a higher dimension.

We did experimental performance analysis comprising
two distinct scenarios. The goal of the first scenario was
to estimate performance of our adaptive detection approach
when errors occur at network start-up, whereas the goal of
the other scenario was to estimate performance when an
error occurs after the network was running error free over a
longer time period. The common goal of these two scenarios
was to show whether our adaptive strategy can be exploited
to improve the classification capability of our detection
architecture without sacrificing false positives control and
with a limited impact on energy efficiency.

The advantage of our approach is that it maps the various
objectives onto different modules of our architecture. This
makes it easier to tune in isolation with respect to error
detection rate, false positives rate, energy efficiency and
adaptivity rate.
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Appendix

Definitions of features belonging to f1 and f2
Let ss, s1, ..., si , si+1, si+2, ..., sd be the path betweenss and

sd determined by a routing protocol, wheress is the source
node,sd is the destination node. Let connection be defined
as a tuplecn= (ss, sd). Let pctsT X andpctsRX be the number
of data packets sent and received bysi in a time window of
the sizewin. size, respectively.
f1 features:
1) Out-of-order packet index: Number of DATA packets

that were received bysi out of order.

A1 =
#OO

win. size
where #OO is the number of data packet received
out-of-order. #OO is incremented, if nodesi receives
on the connectioncn a data packetp j such that
seq. number(p j) − 1 , seq. number(p j−1), where
seq. number(p j) is the sequence number of the data
packetp j . This assumes that the connection source uses
an incremental (or similar easily predictable) scheme
for computing seq. number(p j). If more than 1 con-
nection is running oversi then average value forA1 is
computed.

2) Interarrival packet delay index 1: Average delay
between data packetsp j and p j+1 sequentially received

by si . The delay was computed separatelyfor each
connectionand then a master average was computed.

A2 =

∑#connect
cn=1 avg delaycn

#connect
whereavg delaycn is the average delay for data packets
belonging to the connectionc defined as:

∑pctscn
RX

j=1 delaycn(p j+1, p j)

pctscn
RX

wherepctscn
RX is the number of data packets received by

si on the connectioncn. delaycn(p j+1, p j) is the delay
between the data packetsp j+1 and p j transported by
the connectioncn.

3) Interarrival packet delay variance index 1: Variance
of delay between DATA packets received bysi . The
variance was computed separately foreach connection
and then a master average was computed.

A3 =

∑#connect
cn=1 avg var delaycn

#connect
where avg var delaycn is the variance of the delay
for data packets belonging to the connectioncn. It is
defined as:

∑pctscn
RX

j=1 (delaycn(p j+1, p j) − avg delaycn)2

pctscRX− 1

4) Interarrival packet delay index 2: Average delay
between DATA packets received bysi .

A4 =

∑pctsRX

j=1 delay(p j+1, p j)

pctsRX

wheredelay(p j+1, p j) is the delay between any two data
subsequent packetsp j+1 and p j received bysi .

5) Interarrival packet delay variance index 2: Variance
of delay between DATA packets received bysi .

A5 =

∑pctsRX

j=1 (delay( p j+1, p j) − A4)2

pctsRX− 1

f2 features:
6) Forwarding index (watchdog): Ratio of data packets

sent from si to si+1, T Xsi and then subsequently for-
warded tosi+2, T Xsi+1.

B1 =
T Xsi+1

T Xsi

The data packets that havesi+1 as the destination node
are excluded from this statistic.

7) Processing delay:Time delay that a data packet accu-
mulates atsi+1 before being forwarded tosi+2.

B2 =

∑pctsT X

p=1 delaysi+1

pctsT X

The data packets that havesi+1 as the destination node
are excluded from this statistic.


