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Abstract—In a number of areas, for example, sensor net- system, e.g. with highly-constrained resources [7].
works and systems of systems, complex networks are being used  Take for instance a traditional threshold-based test that
as part of providing applications that have to be dependable |;5es the number of messages that fail to be delivered as
and safe. A common feature of these networks are they operate a trigger. Without detailed knowledge of exactly how and

in a de-centralised manner and are formed in an ad-hoc here the svstems are to be deploved it is near impossible
manner and are often based on individual nodes that were not Y ployed 1t | Imp :

originally developed specifically for the situation that they are (O identify a threshold that is not overly conservative or
to be used. In addition, the nodes and their environment will ~aggressive in terms of its detection. Even if one could
have different behaviours over time, and there will be litle ~ be identified, its value might not be suitable over a long
knowledge during development of how they will interact. A period of time. For example as new interference sources
key challenge is therefore how to understand what behaviour are introduced the failed messages may increase and yet no
is normal from that which is abnormal so that the abnormal improvement in the way communications are performed is
behaviour can be detected, and be prevented fromfeecting  possible. In fact tactics such as turninfj nodes suspected

other parts of the system where appropriate recovery can ot haing the source of errors might make things worse.
then be performed. In this paper we review the state of the

art in bio-inspired approaches, discuss how they can be used ~ Other approaches, e.g. error detection using Markov anal-
for error detection as part of providing a safe dependable Ysis [8] and neural networks [9] would Ser from similar
sensor network, and then provide and evaluate an flicient  issues. The obstacle facing these approaches is the identifi

and dfective approach to error detection. cation and maintenance of knowledge of what is considered
normal behaviour. The common feature of these approaches
I. INTRODUCTION is they are tuned fline before the actual deployment of

Sensornets are a prime example of the complex systentf€ sensornet and the parameters remain unchanged.
and networks that are being deployed as part of today’s An alternative option is an adaptive learning system where
dependable systems. Examples are being seen in healthc&r¢éer time a model of the system’s behaviour is learnt, e.g. us
and defence as well as many other domains [1]. Sensornetdg statistical relational learning [10], or adapted, eiging
present unique challenges to developers as by their Ve,zeedback control approaches [11]. Again these approaches
nature they consist of self-organising components wher@ave advantages and disadvantages. The advantages include
the individual components feature highly complex oftenthat less precise knowledge is needed before deployment
adaptive designs. When combined with uncertainties in theipf the sensornet, although some basic knowledge may still
deployment and their operating environment we argue thape needed, e.g. so that appropriate control parameters can
that traditional approaches to error detection are notappr be chosen. The disadvantage of such an approach is the
priate as the errors (their nature and causes) can only lye fullack of assurance that new errors will be adequately learnt
understood at run-time and will be continuously varying.by the system and thus the performance of the system be
Here we define an error to be deviation from expectednaintained. This suggests there is a need for an appropriate
behaviour, i.e. errors, that may lead to a failure. This¢gad compromise between statically (innate) pre-defined tactic
the following key objectives being identified, and addresse Working in conjunction with a more adaptive system.
for sensornets based on a variety of sources, which concur, The classical approaches, discussed above, to error de-
including the following well-recognised surveys [2], [3].  tection have been applied to WSN with limited success for
1) N1 - Errors need to be detectable from changes inthe reasons that have been raised. For more details refer
the system itself caused by both internal and externalo [3]. Therefore in this paper a well-established area of
effects, e.g. expected adaptions in protocols or expectedork, Artificial Immune Systems (AIS), is introduced as an
changes in the external interference sources [4]. alternative strategy for dealing with the likely errors.efh
2) N2 - Errors can occur permanently or temporary (overin section Il a survey of the work on AIS, including their
both short and long durations and frequencies) [5]. application to sensornets, is provided that gives a strong
3) N3 - An error is detected then the system should bdustification as to why AIS is a suitable technology for use
able to re-establish an acceptable homeostatic state [6Jr sensornets that feature as part of a wider dependable
4) N4 - Any approach proposed for handling of errors system. Section IV provides experimental results which is
should be achievable in the context of a sensornethen followed by the conclusions.



Il. ARTIFICIAL IMMUNE SYSTEMS trigger: the general term for something that can cause an

The immune system is a complex system that undertakg§"Mune response is known aspathogen[15]. In general,
a myriad of tasks. The abilities of the immune systemWe consider the BIS to consist of two parts: the innate
have helped to inspire computer scientists to build system@nd the adaptive immune system. This is a simplification
that mimic, in some way, various properties of the immune @S there is a great deal of interaction between both parts
system. AIS have been defined in [12] as: of the immune system, but the distinction is useful for our
' ' discussion.

The innate immune system incorporates general pathogen
defence mechanisms that have evolved over gbamline
solving” of the organism, i.e. these mechanisms are passed from

L L he parents to the fispring. These mechanisms remain
This field of research, AIS, has seen the application Oftessentially unchanged during the lifetime of an individual
immune inspired algorithms to a wide range of problem

SThe mechanisms of the adaptive immune system also de-
velop as the organism evolves, however they also have the

- . . . TR A Ability to changesomatically(i.e. during the lifetime of an
adaptability, diversity, scalability, multiple interamts on a individual through the production of new cells known as

variety of timescales and so on, and is thus attractive tq/manl)émphocytesand receptorson these cells). This results in

in an engineering context. This has been demonstrated fq e abilit o -
: X y of the adaptive immune system to recognise pre-
instance by work on Automated Teller Machines (ATM) [14] viously unseen pathogens (learning) and to remember them

where AIS has been used to provide prognostic capabilitieg, ¢,re encounters (memory). The innate and adaptive

that have helped to increase the availability of the maehine jn o ne systems typically operate oveffeient timescales.
Atre?ir:gphapetr) [13] kl['tgh“ghts that to datﬁ' tthe der\]/elopThe innate operates on a small time scale often initiating

ment o as beeacatlergun.e. many applicalions Nave g yeaction either instantly or within a matter of minutes,

been tried without a great deal of thought. Indeed, thatlpape;,vh“St the adaptive immune system operates over a longer
provides a detailed overview of the many application areage heriod, taking of the order of days to initiate a reattio
that AIS have tried, and this will not be repeated here: the, s yhe combination and interaction of both the innate
interested reader should consult that paper. The authors d adaptive immune mechanisms that provides us with an
on to propose a number of properties that they feel any Al ective immune system [16].
should have, and that these properties may help guide the |, . L
type of application they could be applied to: With respect to the ada.\ptlve immune system, lymphocytes
. “They will exhibit homeostasis are of two general types: B and T cells. Thesg c_ells have to
. They will benefit from interactions betweémnate and 90 through a selection process to ensure a minimal amount
adaptive immune models of what is known g$glf-react|V|tywhere cells of 'the host
« They will consist omultiple, interacting, communicat- attack the host: this is also known asitoimmunity The
ing components ' ' seleqtlon process in the immune system has two bas!c forms:
. Components can be easily and naturafigtributed p05|t|ve.se'le'ct|on'and negative s'elec_tlon. Positive sielec
. They will be required to performiife-long learn- selects individual immune cells with high success rate when
ing” [13] recognising a pathogen during an immune response. Suc-
8essfu| cells are cloned and B cells undergo a process known

By homeostasis the authors mean a "steady state” typ s clonal expansion where new receptors are generated, or
operation, so that when errors or changes in environmentd} P P 9 '

conditions occur, systems can maintain a certain level OFnutated In an attempt to improve recognition ability of the

operation, i.e. an acceptable equilibrium is achievedhin t O\r/fj?r” osé?]tenr;u[t%a%i]énT foecllesssreNealzgvglggﬁiﬂgﬁtsgg crt]st'l'
context of this paper, we argue that sensornets, given thg g Y P - N€d

above criteria, are a good candidate for the application o ells that do not bind any .self cell. This process 1s done
ideas from the area of AlS. efore T-cells are allowed into the lymphatic system, and

the assumption is if a cell passes this selection phase, it is
IIl. 1 MMUNE SYSTEMS AND THEIR RELATIONSHIP TO SENSORNETS only reactive with pathogen. Of course, this process is not
erfect, and self-reactive cells do make it into the lymjghat
{eystem. However, negative selection process plays a key rol
decreasing the possibility of an autoimmune reaction.[15

One of the most important events triggered by the ac-

“adaptive systems, inspired by theoretical im-
munology and observed immune functions, prin-
ciples and models, which are applied to problem

From the previous sections, the needs of an error toleran
mechanism have been established and AIS have been intrﬁf
duced. Here we explore how the two are related to deliver

a dependable system. . . ' . X i
tivation of innate immunity is the expression of what is
A. Immune Systems known asco-stimulatory moleculeshich help support the
We now briefly discuss several immune mechanisms thaprocess of recognition in the adaptive immune system.
we propose can be interpreted and applied to error detectiofihis co-stimulation can form a feedback loop that leads
in wireless sensor networks (and similar distributed, uves® to pathogen elimination [16]. Later, we will argue that
constrained computing environments). The biological im-splitting an error detection system into two functionaltsni
mune system (BIS) employs various mechanisms to combaine being responsible for error classification and the other
threats to a host that can cause an immune response tme responsible for providing context on the ability of a



adaptive immune system innate immune system

them having a dierent focus. The purpose of the adaptive
learning module is to reflect the capabilities of adaptive
| : immune system: selection, memory and learning, whereas
Adaptive feedback Context {error yes/no the purpose of context classification module is to reflect
learning loop classification ; the capabilities of innate immune system: responses to non-
| : ; | specific threats. The context classification module is clapab
e P oo ‘ of signalling whether any error detected by the adaptive

object

L Specific - Danger and learning module, in our study, could result in decreased
d damage detection . . . .
detection quality of service. This module thus provides the necessary
| . _ feedback after any adaptation occurs within the adaptive
Novel Active reaction H
error o errors learning module.
detection . . . . . .
| We will now discuss the interpretation of this architecture
- shown in Figure 2. We assume that a set of Quality of
Optimisation Service (QoS) limits is provided. Exceeding these limits
\ implies that an error negatively impacts the monitored sens
Proactive and network. We will later explain how Adaptive classification
detection and Context classifications can be implemented. For the

ease of the discussion we assume that these two types of
classification can be implemented as classiflersand Ky,
respectively.

Figure 1. Immune inspired error detection - Architecture wiey

normal . Qos imis C. Problem Formulation
Ke 2 Let Q = {oy,...,0,} be a finite set of objects, whenme
object Adaptive suspicious Context error yes/no is the number of these objects (representing the behaviour

classification classification of nodes or sensors). Each classifler € {Ki, K} takes
an objecto, € Q and assigns it to a clags;. Let e(K;)
be the classification error resulting from applyikgto Q.
Adaptive Classification error is defined a¢K;) = £, wherep is the
“Riee suateoy feedback number of objects incorrectly classified. L&tK;) be the

cost of such a classification process.
Figure 2. Immune inspired error detection Let K; & K; be a classifier resulting whel; and K;

are combined according to Figure 2. L&K; « K3) and

£(Ky o K3) be the classification error and cost of this
given error to cause damage is essential for introducinglassifier, respectively. The objectives of this architet
many desirable properties such as novel error detectitsg fa with respect to error detection can be formulated as follows
positives control, reactive and proactive error detection

adaptivity to changes in external environment. minimise: e(Ky < K), £(Ky « Ko) (1)
B. Immune Inspired Architecture subject to:
As we have discussed above, the BIS is a biological pro- €(K1) > €(Kz),  €&(Ky) < €(Ky) (2

tection system that specialises in recognition and elitrona gsq 1 defines our immune inspired error detection approach
of a range of threats to a host (pathogens). For the purpos as a multiobjective optimisation problem. Note that if eith

of this paper, we focus on architectural properties of the d o
BIS and their interpretation in the scope of error detectionOf the following holds: (e(Ky) < €(K) and&(Ky) < £(K2)

rather than fflering a computational interpretation of each (i) e(Ky) > €(Kz) and¢(Ky) > £(Kp) then the inequalities

process within the BIS. We assume that these individualormulated in Eq. 2 are not satisfied. This would imply that
here is a classifier that has both lower classification error

processes can be well interpreted applying standard mchia el as lower cost. In other words. onlv classification
learning and statistical approaches, as well as other big?> W S ow St. woras, y classiiicat

inspired approaches. Our immune inspired error detectioﬁppIylng _eltherKl Or.KZ .W°U|d be necessary. .
architecture should reflect the following properties of the To achieve the QbJeCt'VeS formulated .|n Eq. 1, our goal is
BIS: to apply an adaptive strategy such that:
« Adaptivity: in response to novel error as well as to any lim e(Ky) — e(Ky) = 6 (3)
modification of known error. {0
« Context evaluation: any detected error is evaluated wittwhere t is time andé is a fixed adaptivity error. Since
respect to whether it can impact quality of service. K, reflects the detection capabilities of innate immunity
- Feedback loop: context evaluation provides a feedbackvith a negligible adaptation rate(K,) can be considered
on the success rate of adaptivity. fixed. This form of adaptivity thus implies that applying
Figure 1 provides an overview of our proposed immunean adaptive strategy results Ky with classification error
inspired architecture. It consists of two modules, each otonverging to that ofK,. The adaptivity error can either



be directly provided by the user or it can be a function ofK, with €(K5) = 0 is applied, all misclassified objects §f

cost, i.e.6 = g(¢é(K:1 « Ky)), whereg(.) is monotonically are removed, i.evc (—t; = 0).

decreasing. Let us now consider the case whefK,) > 0. If Yoy €
In the following we show how our classifier reflects Qk, (on € norm) ande®«(Kj) = 0 then the following holds:

requirements such as responsiveness, good split betwesen tr o +0x ,

positives and true negatives, ability to detect novel typles FP rate,; " (K;) = FP ratey(K) (6)

error and energyficiency. SinceQ = Q' + Qx., then:
17 .

D. Energy Cost Model ,
W | FP rate} (K;) = FP rate} (K) (7)
When evaluating energyfliciency of K; < Kj, we

assume that any sensor will work reliably, most of the time. And finally, for the final false positives rate and the final
The rationale is that error occurrence is unpredictable andetection rate, it holds that:

therefore it is necessary to analyse the running cost of the FP rate?. (K K.) = FP rate? (K 8
dominant case, i.e. the running cost of error detection in an ehis(K1 © Kp) ehis(K2) (8)
error free sensor network. det ratei (K1 < Ky) < det rate(Kz) 9)

Inspecting the architecture shown in Figure 2, it can be

seen that when classifying an object, two cases can occuraef;pcriilg':%afg :ﬂ:g KE('E:;)FI >mi(s)c|2§s),/ifyd%%riitsse t;[]get J\'/g?(la
1) K; is applied: prediction is “normal” behaviour. y 2 J

. S Lo L C . correctly predicted by, to belong to the clasmis
2) Kj is applied: prediction is “suspicious”. Théf is ap- . e
plied. If prediction ofKj is an “error” then the object in If Jon € L, (on € Mig) andoy can be correctly classified

consideration is classified as erroneous. Subsequentlc?g; Kz the_r;. in ord(ter té)Kkehep t?eglnaldFP traée unfcf?f’;mggd, the
a new adaptive strategy can be computed and applied. S€ posilives rate ofz has o be adjusted as 1oflows.
The application of the later classification sta@e is FP rate (Ko) = A-tmis (10)
conditional upon the outcome df; classification. In an s A=tmis + @ - this
error free sensor network, the energy cost model can bgolving this equation fon—tmis yields:

formulated as follows:
@ - tmis- FP rate (Kp)
§(K1 & Kp) = €(Ka) + 0(K1) - (£(K2) + €adap)  (4) A=tmis = 1 FP rate? (K,)

where e(Ky) is the rate at which normal behaviour is \hereq e R 0<a <1 anda - tys is the decreased number
mistakenly predicted to be an error afighap is the cost ot ohiects correctly classified as error, iereflects the fact
related to computing and applying a new adaptive strategyat some objects that have errors could not enter the second
Notice that sinc& (K1) < £(K»), the rateeo(K1) controls the phase of classification.t,{s — A-tmis) iS the adjustment
frequency at which the costli€; is being applied. that is necessary in order to keep the outcome of Eq. 10
E. False Positives Control constant. A special case happens wikdh ratq?]’is(Kz) =0,

Let us now discuss thetects of our architecture on false in which caserP ratq?ﬂs(Kl > Kp) is independent from the

e P ; lassification capability oK.
ositives control. Considering a classe {norm mig}, let class . . .
Set rate2(K;) be the detectior? rate and [EP rate(K;) be With respect to the above said, one option for achieving
the false positives rate resulting when classiKeis applied false positives control is that the outcomekafclassification

to classify the object€. These two measures are defined!S € ¢ € such thatFP ratei(Kz) = 0. This implies that
Qg, contains all objects representing normal behaviour that

(11)

as follows: K, would misclassify. WhetheK; can deliver such anfiect
det ratel}(K;) = L FP rate?(K;) = e (5) is one of the goals of our experimental analysis.
Ne —te +1c Additionally, in order to stimulate energyffeiency K,

must remove fronf2 a large number of objects representing

wheren. is the number of objects if2 belonging to the class . . )
< ) ging normal behaviour, i.e]Q’| < |Q|. Let us now discuss the

c, tc is the number of objects correctly predicted to belong. = ' | ) "
to ¢ and -t is the number of objects incorrectly predicted MPlications of the above discussed form of false positives
to belong toc control on the design of adaptive error detection systems.

Let us first assume thai(K,) = 0. With respect to the F- Adaptivity
error clasamis after each classification stage the following Taking Egs. 8 and 11 into consideration it can be

holds: seen that the final false positives rate is independent of
1) Ky is applied toQ:  det ratef,(K;) = a and FP rate (Ki). Given thatk; should exhibit a large degree
FP ratq%iS(Kl) =b of adaptivity, this fact simplifies the way to a suitable
2) K, is applied toQ’ = Q - Qk,: det rate? (K; «  adaptive strategy. Let us now formulate the implications of
Kz) = aand FP ratel (K, & Kz) =0 this fact:

wherea,b e R 0 < ab <1 andQy, are the objects that Adaptive strategy: since the final false positives rate is
were predicted to represent normal behaviour in the firssolely determined byK,, the applied adaptive strategy is
stage. The final FP rate equals 0 due to the fact that afteallowed to increasd=P rate’, (K1). This increase however
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Figure 5. Feature setf, f,: An example
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Adaptation  Minimise

feature sets so that the requirements formulated in Eq. 2
can be fulfilled. Afeaturein the context of sensor networks

Figure 3. Immune inspired error detection - adaptation .
is understood to be a performance measure that allows for an

adaptive immune : innate immune efficient reasoning about whether a node (sensor) has errors
Ko system system or works normally. Let us demonstrate how this can be done
object | § Qos limits on a simple example where the goal is to Qetect whether a
” kKZ node X timely forwards data packets; see Figure 5.
Active Let us contrast two approaches that can be applied for
no suspicious_—] clselioion ror’ this task: (a) nodé\ can overhear the data fiie betweenX
K, andB and thus detect whether data packet forwarding is not
Adaptive update error yesino being delayed by or (b) both nodeA and nodeB compute

energy efficient ; rules

classification

inter-arrival delay statistic; the statistic computed Byis
sent over two-hops té and then compared with the statistic
computed byA. Let us denote feature sets computed through
overhearing and over two hops ds and f;, respectively.
Figure 4. Immune inspired error detection - novel error deact Observe that ifX does not forwardStat, then this node

is classified as having errors, since there is no interalrriv
information received byA within a predefined time limit

must stay time bounded, since any increase-tff, nega- which we denotewin. size

normal

tively impacts the total cost as formulated in Eq. 4. Let us suppose there is a mappifigthat maps feature
Ky . . e set f, to fy:
-tis is the number of objects incorrectly classified Ky O fSi I (15)
as belonging to classis Note thatey(K;) can be expressed T2 1
as: K where s and d, s < d, is the dimensionality of feature
oK) = “lmis (12) set f, and f;, respectively. Note that for the features and
M o delaying errors shown in Figure 5 = 1 andd = 2. In

the case off;, d = 2 since two features (that may have an
Ydentical definition) are computed, each by &alient node.
In general,fld = f1(A) U f1(B), where f1(A) and fi(B) is the

f, feature set applied byA and B, respectively.Stat is a
numerical instance ofy(B).

Let Ki(f;) be classifierK; applying featuresf; to reason
about errors. Since we aim at fulfilling the requirements
formulated in Eq. 2, we are looking for a feature space
transformation such that:

In order to apply the above formulated adaptive strateg
we are limited by the fact that only the objects@ and
their class prediction b, can be used as a feedback for
updating the decision rules &f;.

The dfects of this form of adaptation are illustrated
in Figure 3. Since we assume thEb has a negligible
adaptation rate, any adaptation is done by improvitg
classification, more formally:

minimise: €' (13) " Definition (v1,y2)-transformationis a mapping® : f;

subject to: fld such that the following holds:
PP rateiom(Ky) < a4 e(Ka(@(12) - e(Ka(f2) = 71 (16)
wherey is a cost parameter, i.e. a well bounded fraction £(Ko(F2)) — £(Ko(@(F)) = 72 7)

of objects that have errors should end upiR,. Note that
Q| = ﬂtg}s+ trf]}s. On Figure 3,Q’| is the area to the right wherey,,y, € R".
of Ky (or K after adaptation). . .
1 ( 1 ptation) A (v1,v2)-transformation, when provided a feature set
G. Feature Sets f,, returnsf; that induces a higher classification error and
A challenge when implementing our immune inspireda lower cost. Notice that(Ki(fi1)) as well ase(Ky(f1))

architecture shown in Figure 2 is to design two distinctare a function ofwin. size This is due to the fact that



the frequency at which a statistic originating at ndgles  such thatvVo, € € (Ky(fi)[on] = error). At last, let
received byA influences the costStat has to be sent more I = TIj_; U (o, Ko(f2)[on]), i.e. T is the set of objects
often) as well as the classification error assumed that th#éhat were subject td<, classification including their class
statistic is averaged ovavin. size Notice that for a given membership as predicted b. T is a basis of feedback
@ to check whether Egs. 16 and 17 are fulfilled may requirefrom K, to Kj.
an experimental analysis. SinceK; and K, work over diferent feature spaces and
Assuming &(Ky(f1)) and &(Ky(f,)) are dominated by anyK; adaptation can only benefit froim, Eq. 3 becomes:
communication costs, these two costs can be expressed as

H Q T _ Q0 —
llows: lim (K} (f2)) - €*(Ka(f2) = 6 (20)
E(K1(f1)) = 2- (&7 x(Stat) + Erx(Stat)) (18) where K{‘(fl) denotes classifieK; over feature spacéd;
applying Ty for adaptation. In practical terms, we would
£(Ka(f2)) = k- érx(Data) (19) ke to see thate'i(Ky(f2)) converge toe*(Kx(f)) within
where é7x(Stat) and £rx(Stat) is the communication cost & regsonakile number of steps, i.e. we would like to see
of sending and receivingtat, respectively, andrx(Data) i < c;ce Z*. Convergence results are going to be another

is the cost of overhearing a data packeta. The fixed goal of our experimental anal_ysi_s. Nc_)te that classiferis
constant 2 in Eq. 18 reflects the fact tHtat must hop based on user provided QoS I|m|ts_. Since they.do not change
twice to reachA. We assume that data packets need to be ONC€ defined by the user, we omit a superscript in the case
overheard in order to detect an erroneous node. of Ka. .
The experimental results in [17], [18] show that consider-I. Novel Error Detection
ing data packet dropping and data packet delaying errors, it To understand how to detect novel error detection, let
is possible to construct g4, y,)-transformation that fulfils us consider the architecture shown in Figure 4. In this
the conditions stated in Egs. 16 and 17. Those results argrchitecture any object is first classified Ky(fy), i.e. this
based on energy consumption models of several wirelesdassifier applies the same feature seiasThe only task
devices including TI CC2420. of this classifier is to decide whether this object is novel,
Mapping a data set into a higher dimensional space.e. whether this or a similar object has not been seen in the
has been successfully applied in several other areas, mosast. The classification then proceeds as follows:
notably, in databases where such a mapping is used tol) If the object is novel, then it is classified {(f>).
facilitate nearest neighbour searches [19]. In our case, a2) If the object is not novel then cascading classification

(v1, y2)-transformation is a tool for finding a feature gt by Ki(f;) and Ky(fy) is done. In this caseli(f1) is
with more favourable energy cost and classification error  expected to contain a rule capable of class prediction
trade-df than f,. Unlike in [19], such a transformation is with respect to this object.

limited by the fact that each feature fpmust be observable, Ko takes inspiration from the role of negative selection
i.e. it can be directly computed taking as input states andh the BIS. The purpose of negative selection is to produce
events observable locally by any node. immune cells capable of detecting any non-self cells, i.e.
As mentioned before, applying thresholds can lead taells that are not building blocks of the host. Sinke
either overly conservative or aggressive detection patter can only classify objects already seen in the past, any
To circumvent this problem, we apply mappifigto project  novel object is directly sent t&,. Algorithm 1 is a formal
any threshold based features (and the related QoS limitg)escription of the architecture shown in Figure 4.
into a feature space of a higher dimension. This adds thg. Summary

necessary flexibility and results in a detection system that \ys giscussed how several basic properties can be achieved
can recognise a larger set of error types, however, only®rro 4 \ving an immune inspired architecture. Let us now sum-
that violate any QoS limit would trigger a reaction. Observeyarise our findings:
that projecting threshold based features applyiigalso | Energy dficiency is determined by the capability Kf
allows the detection system to become more specific, i.e. 5 classify normal behaviour and in doing so objective
error types that would violate a single predefined threshold N4 is achieved.
can possibly match fierent decision rules ;. , . Final false positives rate is determined Ky.

Even though, we demonstrated that for a certain type | adaptivity is a matter of feedback betwe&n and K,
of error, finding a suitabl@ might be straightforward, for where any adaptation is only based 8 c Q. Any
other error types it can prove_challengln_g. Th!s means yhat adaptive strategy applied 16, is allowed to increase
the success of our approach is closely tied with our ability  55e positives rate of this classifier at the cost of

to fir]d @ for any expected error and this has to fulfil the increased energy cost. The adaptivity allows objectives
requirements of Egs. 16 and 17 to become a useful feature N1 and N2 to be achieved.

set transformation. . Novel error detection is done by evaluating whether any

H. Adaptivity Revisited user defined QoS limits are violated. The accumulative
Let Q c Q such that for arbitranyi, j: @ # Q; and result of such an evaluatidn is used to adapi;. As
Q = Ui Q. Let Ki(f))[on] be the label of 0, € O as such objectiveN3 can be achieved as the system can

predicted by Kl(fj) Let QI' c O be a set of Objects then be tailored so that all partS meet the QOS target.



Algorithm 1 Immune inspired error detection. data communication. The channel frequency was set to 2.4

Require: Set of objectq); c Q GHz. The transmission rate was set to 54 biwWe used
1: procedure DETECT ERROR the two-ray signal propagation model [22]. Antenna and
2: if i==1thenTIj <0 signal propagation properties were set so that the regultin
3: else radio radius equals 100 meters.
4: [ Ty K, classification was done using a decision tree classifier.
5: end if To decide whether a node within the decision tree should
6: for h:=1— || do be further split (impurity measure), we used the infornmatio
7: suspicious— false gain measure. As the decision tree classifier is a well-known
8: if Ko(f1)[on] == novelthen suspicious— true algorithm, we omit its discussion. We refer the interested
9: else reader to [23]. We used the decision tree implementation
10: if Ki(f1)[on] == error then suspiciouse—  rom the Rapidminer tool [24]. _
true For the purpose of our experimental evaluation we con-
11: end if sidertwo error typesdata packet dropping (qualitative error)
12- end if and data packet delaying (quantitative error). For the data
13: if suspicious== true then packet dropping, the erroneous n_ode drops__a given data
” Tj T U (On, Ka(f2)[0n]) packet randomly and ynlformly with probability.10 For
15: ifl K (fl)[o 1 T error then error detected the data packet delaying, the erroneous node delays the
) 23 12/150] == — forwarding of a given data packet randomly and uniformly
i? endei?d if with probability Q3 by a fixed delay amount 2@s For each

error type and normal behaviour, there were 20 simulation
18:  end for - _ runs with a diferent simulation seed done. The simulation
19: _COMPUTE7I1<1. ) » Cla§S|f|erK1 computation  time was 4 hours.
using e.g. a decision tree algorithm There were 236 nodes randomly chosen to execute data
20: end procedure packet dropping or delaying erroneous. Our intention was
to modelrandom error occurrencesassuming an uniform
error distribution in the network. As it is hard to predict
IV. EXPERIMENTAL ANALYSIS the routing of data packets, many of the 236 nodes could
. . . . not originate errors as there were no data packets to be
In this section we show preliminary experimental resultsg,yarded by them. In our case, about 20-30 erroneous nodes
on the feasibility of Algorithm 1. were concurrently active.
A. Experimental Setup In order to simplify our experiments, we only considered
The experimental setup is similar to that used in [18]. We20 nodes with the highest amount of dataffica For each
consider a network with 1718 nodes. The network topologyof the 20 nodes we split its vector set into two sets: training
is based on a snapshot from the movement prescribed b3nd test. A node’s vector set comprises numerical instances
the Random waypoint movement model [20]. The physicalof f; and f.. The size of training set and test set is 1500 and
area size was 3,000x 3,000m. 500 vectors, respectively. Both sets are obtained by random
We modelled data tfic as Constant bit rate (CBR), i.e. Stratified sampling. Training set constitutes the in@ubf
there was a constant delay when injecting data packets. Thgur immune inspired architecture, whereas test3gtis
constant delay in our experiments was 2 seconds (injectioHsed to monitor progress after each roundraining set
rate of 0.5 packgs); the packet size was 68 bytes. CBR dataQ is further split into€; that constitutes the input at each
packet sources correspond to e.g. sensors that transmnit théound.
measurements in predefined constant intervals. The applied features are listed in Appendix. The features
In our simulations we used 50 concurrent data connecbelonging to f; are more complex than in the example
tions. The connection length was 7 hops. In order to represhown in Fig. 5. The reason is that our simulation setup
sent a dynamically changing system, we allowed connectionallows for multiple connections running over each node.
to expire. An expired connection was replaced by anotheNote that the duration of monitoring when applyirig can
connection starting at a new random source node. Eacbe, depending on data ffi@ pattern or expected number and
connection was scheduled to exist 15 to 20 minutes. Theeverity of errors, shorter thamin. size For simplicity, in
exact connection duration was computedrasry 4, where  our simulations we assume that this monitoring period is
7 is the minimum duration time of a connectiaog,a random equal towin. size
number from the uniform distribution [@] andA the desired Assuming thatf; and f, computation costs are dominated
variance of the connection duration. In our experiments, wdy communications costs, these feature sets fulfil the requi
usedr = 15 minand A = 5 min. ment of a ¢4, y2)-transformation for anyvin. sizewhere the
We used the JISBWANS network simulator [21] with cost of transmittingStat over two hops becomes cheaper
the AODV routing protocol and the default settings providedthan computation of watchdog featurés Sincewin. size
by JiISTSWANS. We used the IEEE 802.11 MAC protocol. is a sampling period fofy, €?(K1(f;)) increases awin. size
The RTS-CTS-DATA-ACK handshake was enabled for allincreases; see [17]. It is straightforward to couple thegne




model introduced in Eq. 4 with energy consumption model
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of a wireless device in order to get a quantitative estimate

win. size= 100s

see [18].

s . 0
The average class distribution for the top 20 nodes was ;¢ o

as follows: i)win. size= 100s resulted in 291% vectors to

represent data packet dropping or data packet delaying an@h rate?l (k;  K,) 44.62:0.28 73.820.42 86.00.65

i) win. size= 50s resulted in 284% vectors to represent
data packet dropping or data packet delaying.

QoS limits that we applied are; 0.5% for data
packet dropping and, = 2.6ms for data packet delaying.

6] 5.00:0.00 37.450.61 68.182.08 126.184.06 189.554.68

If observed data dropping or data delaying exceeds durin
the monitoring periodj; or g, respectively, thelk, assigns
class “error” to the classified object. QoS limiig, g, can

be in general set to any value (being physically possible)
however, sinceqs;, g, partition the set of objects, it is
necessary to choos®g, g, so that none of the partitions is
empty. Should the choice af;, gy result in a single non-
empty partition,K, will assign each incoming object the
same class.

B. Experiments

Experiment 1]Q,| = 5, |Qj| = 25,2 < i < 30. EachQ; is
a result of stratified sampling applied & The experiment
was done applyingvin. sizeset to either 50s or 100s. The

44.36:0.06 15.980.59 14.02:0.38 11.6@0.11 10.220.35

46.34:0.01 75.580.44 87.5%#0.67 87.7%0.05 89.660.24

det rate? (K2)  99.94:0.06 99.94:0.06 99.940.06 99.940.06 99.940.06
86.020.12 88.080.32

FP rat .T(Kl) 62.0742.08 23.0%:2.54 18.0%1.98 11.5%1.27 11.641.70
FP rate?(K2) 3.53:0.54 3.530.54 3.530.54 3.530.54 3.530.54
FP(K2, Ky & Kz) 2.570.00 2.340.13 2.0%0.17 2.920.07 2.550.35
eé’T(Kl) 47.67:0.51 8.940.99 6.140.68 4.5@0.50 4.560.13

win. size= 50s

g iy]] 5.00+0.00 36.7@0.85 67.8@:0.97 130.2@0.46 192.780.63
S 37.89:1.25 15.330.57 11.720.09 9.540.22 8.86:0.30

det rat .T(Kl) 43.08:0.50 86.06:1.22 84.720.36 90.4@0.83 92.24-0.40
det rate? (Kz)  99.02:0.04 99.020.04 99.020.04 99.020.04 99.02:0.04
det rate‘r}"TS(Kl o Kjy) 41.14:0.45 83.1@1.33 81.860.47 88.4@20.82 90.450.37
FP ratqﬂf(Kl) 56.35:2.90 20.941.75 14.521.21 9.950.58 8.880.46
FP rate?(K2) 4.01+0.21 4.0%0.21 4.0%:0.21 4.0%0.21 4.0%0.21
FP(K2, Ky & Kz)  2.03:0.30 2.480.04 2.520.00 3.1%0.12 2.640.07
eg’T(Kl) 36.76:2.35 8.520.64 6.430.52 3.840.16 3.4320.12

Table |
EXPERIMENT 1: PERFORMANCE OF K1 <> Kj.

rationale of this experiment was to show the performances 49%. This means tha; could adapt to the two types of
of Ky < Kz upon start up. This experiment assumes that arrror that we consider and only a small fraction of objects

error is present from the first moment.

Experiment 2:1Q;] = 150+ 2 + 2 where 150 objects
represent normal behaviour, 2 represent data droppingserro
and 2 represent data delaying errdfy] = 2, 2 <i < 30,

representing normal behaviour is incorrectly misclassifie
This also implies that we achieved our adaptivity objective
to decrease the size 6f ; see Eqs. 13 and 14. This coincides

with increasing det ratenQ;S(Kl) as adaptivity positively

where 1 objects represents data dropping errors and 1 sbjeginpacts classification performance Kf.

represents data delaying errors. We contrast this withhanot
sub-experiment witht,| set to 75@2+2. Objects are chosen
randomly fromQ. win. sizeis set to 100s. The rationale of
this experiment is to show the performancekaf< K, after

a large number of objects representing normal behavio
were part of the process, i.e. in this case the network wa
running normally and after a certain time period an erro
emerged.

In order to streamline the experiments, we decided t
apply a simplified model for deciding whether an object is
novel. We mark all objects i®2; as novel, i.e. they are all
sent directly toK,. The objects belonging t@;,i > 1 are
assumed to be not novel therefore being semttorhis was
necessary in order to investigate théeets of adaptivity in
isolation.

Performance evaluation ok; < K, was done with
respect tod, |Ii|, detection rate and FP rate including
partial results forK; and K,. Additionally, we consider
FP(Kz, Ky « Ky) = FP rate2 (K,) - FP ratel (K;  Ky).
For each of these measures, we compute 95% confiden
intervals.

C. Experimental Results

r

Observe thatFP rate?(K;) remains high after all 30
rounds are completed. This is inline with our adaptive
strategy introduced in Section IlI-F, where we state that
FP rate? (K;) does not impactFP rate2 (Ki « Ky).

Wherefore, other than energyfieiency there is no need to

Sptimise for this performance measudet rate? (K; «
K>) is lower thandet ratef%TS(Kl). This is inline with Eqg. 9.

The results for FP(Ky, Ky < Kjy) indicate that

P rate2 (Ky < Kp) is lower than FP ratel (K»).
This decrease is statistically significant and suggests tha
FP ratel, (Kz) > FP ratel (K»), i.e. the objects i)’ are
simpler to classify than the objects . As discussed in
Section IlI-E, this means that a portion of objects represen
ing normal behaviour thaK, would misclassify ended up
in QKl-

At last notice thats which benchmarks the adaptive
process in terms of classification error, decreased hi/434
and 2903% for win. sizeset to 100s and 50s, respectively.

J@e impact ofwin. sizeon ¢ is statistically significant. This

IS expected asvin. sizeis effectively the sampling period
for f;.
The experimental results for Experiment 2 are reported

The experimental results for Experiment 1 are reported irin Table Il. The results are similar to the results reported

Table I. It can be seen that after 30 rounjdisg| compared
to .301Q30| is 2597% and 2610% for win. sizeset to 100s
and 50s, respectivelygT(Kl) decreased fowin. size= 100s
from 47.67% to 450% andwin. size= 50s from 3676% to

for Experiment 1. It can be however seen that for the sub-
experiment with|Q,| = 750+ 2 + 2, séZT(Kl) increases from
2.10% to 254%, which can be in absolute terms considered
a very low misclassification rate. Comparireé‘T(Kl) for
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APPENDIX
Definitions of features belonging tq &nd %

Letss, St ..., Sis St1, St2, -0 S D€ the path betwees, and
sy determined by a routing protocol, whesgis the source
node, s is the destination node. Let connection be defined
as a tupleen = (sg, &) Let petsyx and petsx be the number
of data packets sent and received$yn a time window of
the sizewin. size respectively.
f; features:

1) Out-of-order packet index: Number of DATA packets

that were received by out of order.
#0OO
Al =
win. size

where #0 is the number of data packet received
out-of-order. 0 is incremented, if nodes receives
on the connectioncn a data packetp; such that
seq numbefp;) — 1 # seq numbe(p;-1), where

3)

4)

5)

6)

by s. The delay was computed separatéty each
connectionand then a master average was computed.

Yhcomnectavg delayn

#connect

whereavg delay, is the average delay for data packets
belonging to the connection defined as:

5% delayn(pja. Pj)
petsgy

wherepctg) is the number of data packets received by
s on the connectiortn. delayn(pj+1, P;) is the delay
between the data packefs., and p; transported by
the connectioren.
Interarrival packet delay variance index 1: Variance
of delay between DATA packets received By The
variance was computed separately éaich connection
and then a master average was computed.

feomnectavg var delay,

#connect
where avg_var delay, is the variance of the delay
for data packets belonging to the connectmm It is
defined as:
5P (delayn(pj.1. pj) ~ avg_delayy)®

pctg, — 1
Interarrival packet delay index 2: Average delay
between DATA packets received Iy

_ 2™ delay(pye, py)
pCtskx

wheredelay(p;.1, p;) is the delay between any two data
subsequent packefs., and p; received bys.
Interarrival packet delay variance index 2: Variance
of delay between DATA packets received gy

pcrszx(dda)(pm, p;) — Ag)?
pctkx -1

A =

Az =

5 =

fo features:

Forwarding index (watchdog): Ratio of data packets
sent froms to s.1, TXs and then subsequently for-
warded tos. 2, T X,

T XSH.
TXs

The data packets that hagg; as the destination node
are excluded from this statistic.

B; =

seq numbe(p;) is the sequence number of the data 7) processing delay:Time delay that a data packet accu-

packetp;. This assumes that the connection source uses

an incremental (or similar easily predictable) scheme
for computing seq numbe(p;). If more than 1 con-
nection is running oves then average value fok; is
computed.

Interarrival packet delay index 1: Average delay
between data packefs and pj.1 sequentially received

2)

mulates ats; before being forwarded teg,».
TheT delay,,

pctsrx

The data packets that hagg; as the destination node
are excluded from this statistic.

By =



