
Minimising Task Migration And Priority Changes In Mode Transitions ∗

Paul Emberson and Iain Bate
Department of Computer Science

University of York
York, YO10 5DD

{paul.emberson, iain.bate}@cs.york.ac.uk

Abstract

Handling mode changes is one of the most complex and
important problems for real-time systems designers. The
challenge is to move a system from running one set of soft-
ware to another while still achieving the quality of ser-
vice guarantees necessary. There has been previous work
which concentrated on how to perform scheduling and tim-
ing analysis of mode changes. However, a common theme
of all this research is that if the system’s schedule and allo-
cation is chosen to minimise the set of differences between
modes then the mode transition problem can be performed
more easily and quickly. This paper investigates how this
can be achieved.

1 Introduction

There are many real-time applications where the set of
running tasks changes throughout the lifetime of the appli-
cation. When a system moves from one set of tasks to an-
other, it undergoes a mode change. There are typically two
incentives for doing this: a change in the mode of operation
of the system or to adapt to a change of environment. Exam-
ples of a change in mode of operation is a flight control sys-
tem which has different modes for take-off, in-flight cruis-
ing and landing [3, 11]. Other general operational modes
can be identified including: initialisation, maintenance, low
power, fault recovery and emergency [11].

Given requirements for two different modes, one of four
things can happen to a task when the system moves from
the first mode to the second: it continues running as before,
it stops running, it starts running or it continues running
but with a change to its attributes (period, deadline, etc). It
is also possible for messages to be removed from or intro-
duced into the system. This could be as a result of tasks
stopping and starting, or a task may begin to send messages
when a mode change occurs. A change to the attributes of a
task may come from a task being required to read data from
a sensor more quickly [12].

Systems can handle mode changes in different ways.
Some may wait until there is sufficient idle time to perform

∗This work is funded by the Software Engineering By Automated
Search (SEBASE) program, EPSRC Grant EP/D050618/1.

the mode change [15] without loss of service. Others may
have to give a reduced level of service or even temporarily
stop operating so that a mode change can take place.

On occasion, it is necessary to migrate a task to another
part of the system when a mode change occurs. There is
a considerable overhead to task migration, usually associ-
ated with transferring a large amount of state information
[6]. Depending on the architecture, code has to be migrated
or must be present on all nodes on which the task will run.
Mode changes should be prompt as tasks running in the new
mode may be required to complete before a deadline follow-
ing the mode change request [11].

There are also benefits in reducing the number of prior-
ity changes between modes. Ideally, each task will have a
single unique priority. Otherwise, during a mode change,
more priority levels may be needed to maintain the required
priority ordering before during and after the mode change.

The focus of this work is to configure tasks and messages
within a system in such a way that task migrations and prior-
ity changes are minimised between mode changes. Whether
a migration or priority change is required is based on anal-
ysis of the schedulability of tasks and messages before and
after the mode change.

The two following small examples will further motivate
and explain the aims of this work. To maintain simplicity
of the example, task attributes will be reduced to just the
utilisation of the task and it will be assumed that the tasks
on a processor may be scheduled if the total task utilisation
for that processor is less than 100%. More detailed analysis
will be used in later examples presented in the evaluation.

Table 1 shows the percentage utilisation requirements of
four tasks in two modes. In the transition from mode 1 to
mode 2, task A requires an increase in utilisation (e.g. from
an increase in frequency or execution time) and task D stops
running. The platform on which these tasks must run has

Task
Utilisation Allocation Allocation

Mode 1 Mode 2 Mode 1 Mode 2 Unchanged
A 60 80 P1 P1 ✓
B 40 40 P1 P2 ✗
C 50 50 P2 P2 ✓
D 50 0 P2 - ✓

Table 1. Example 1



Task
Utilisation

Mode 1 Mode 2
A 50 80
B 50 50
C 50 50
D 50 0

Table 2. Example 2

Allocation X Allocation Y

Task M 1 M 2
Alloc.

Task M 1 M 2
Alloc.

Unch. Unch.
A P1 P1 ✓ A P1 P1 ✓
B P1 P2 ✗ B P2 P2 ✓
C P2 P2 ✓ C P2 P2 ✓
D P2 - ✓ D P1 - ✓

Table 3. Solutions to example 2

two processors, P1 and P2 available. Assuming homogene-
ity of processors, so that processor labels can be swapped
without loss of generality, there is only a single possible al-
location for mode 1 that will allow all tasks to be scheduled.
Task A cannot be allocated to the same processor as tasks
C or D as this would require over 100% utilisation of the
processor. This results in task A being paired with task B
in mode 1. When the transition is made to mode 2, task B
can no longer run alongside task A and must migrate to the
other processor where capacity has become available after
task D terminated.

There are two ways in which the tasks may be allocated
to be schedulable in mode 2. Either, as shown in table 1,
with A on P1 and B and C on P2 or with A on P2 and B
and C on P1. Note that when selecting an allocation for the
second mode, the processors may no longer be considered
homogeneous since the number of migrations must be mea-
sured relative to the allocation chosen for mode 1. These
two possible solutions for mode 2 require 1 migration and 2
migrations respectively with the former being identified in
the right hand column of table 1.

A slightly modified version of the first example is shown
in table 2. In this example, all tasks have a utilisation of
50% in mode 1. This means that there are three possible
ways of grouping the tasks in the allocation of mode 1 so
that they all can be scheduled. Two of these possible solu-
tions are shown in table 3.

If allocation X is selected then at least one migration
is required for the tasks to also be schedulable in mode
2. However, if allocation Y is selected then it is possible
to move from mode 1 to mode 2 with no task migrations.
This illustrates the fact that, when selecting an allocation
for a particular mode, information regarding transitions to
other possible mode transitions is required to achieve min-
imal task migration. Note that there is only a single valid
task grouping for mode 2. If the allocation for mode 2 had
been selected first, then this would have lead more naturally
to using allocation Y as a solution for both modes.

The structure of this paper is as follows. Section 2 de-
scribes our model of the task allocation problem. Section 3

User Input Configuration
Object WCET Period Deadline Alloc. Priority
τ1 C1 T1 D1 A1 P1

...
...

...
...

...
...

τn Cn Tn Dn An Pn

Table 4. Attribute and configuration data for
tasks

describes previous work on mode changes and task alloca-
tion. Section 4 covers how simulated annealing can be ap-
plied to this problem. Section 5 describes three possible so-
lution methods for minimising changes between mode tran-
sitions and each of these methods is evaluated in sections 6
and 7 for two modes and then systems with a larger number
of modes. Finally, conclusions are drawn in section 8.

2 Task allocation problem

The basic task allocation problem is to find an allocation
of tasks to processors so that all tasks can be scheduled. De-
pending on the analysis used for testing schedulability, this
can also involve discovering suitable task attributes such as
priorities. For systems where tasks must communicate with
messages, an allocation of message to networks must also
be found along with suitable message attributes.

2.1 Software architecture

The model used for the software architecture is as fol-
lows. Each task or message has a set of timing properties
and timing requirements. For a task, these are worst case
execution time (WCET), period and deadline. For a mes-
sage, the timing properties and requirements are worst case
communication time (WCCT) derived from the size of the
message, period and deadline.

In addition to timing properties, the sending and receiv-
ing task must also be specified for each message.

Table 4 shows the data associated with each task. The
left hand side columns show attributes which are specified
in the requirements. The right hand two columns show the
allocation and priority which need to be found. The allo-
cations and priorities of all tasks in the system describe the
system configuration.

The input requirements for tasks and messages can be
used along with its configuration to perform scheduling
analysis which will calculate response times for tasks and
messages. If all response times are less than or equal to
the deadline for the corresponding object, then the timing
requirements for the system have been met.

2.2 Hardware architecture

The hardware architecture model is a set of processors
connected with bi-directional network links. Each link has



P1 P2 P3 P4

N1N2

N_P1 N_P2 N_P3 N_P4

Figure 1. Example hardware architecture

a communication speed and latency which determines how
long it takes to send a message over the link. All processing
nodes have a link to themselves to allow message passing
between tasks on the same processing node. These links
will usually have a much higher speed than links between
processors so that the impact of sending messages between
tasks on the same processor is much lower than sending
messages between processors. Links may join more than
two nodes. Figure 1 shows four processing nodes connected
with two network links and an additional four links for intra-
processor communication. The example hardware in figure
1 shows it is not necessary for all processors to be directly
connected to each other so the availability of networks for
message allocation is dependent upon where the sending
and receiving tasks are allocated.

3 Related Work

Much work on mode changes has concentrated on how to
schedule tasks before, during and after a mode change [12,
15, 13, 8, 11]. This either assumes a uni-processor system
or assumes that mode changes are contained within each
processor of a distributed system [8].

Task allocation and distributed scheduling are both NP-
hard problems [14]. As distributed real-time embedded sys-
tems become larger and more complex, creating an alloca-
tion manually becomes infeasible. Automatic generation
has been tackled with a range of heuristic techniques in-
cluding branch and bound [10, 9] and simulated annealing
[14, 2]. Simulated annealing is chosen here since it can
adapt to a dynamically changing cost function. The need
for this is demonstrated in section 5. Our system model is
more general and realistic than both [14] and [2] in that we
don’t assume a fixed time to send messages and allow vary-
ing processor - network topologies.

Considering multiple sets of requirements such as mul-
tiple modes when selecting a configuration adds significant
difficulty to the problem. The rest of this paper is dedi-
cated to describing and evaluating methods by which this
may be achieved. The work is an extension of that found in
[1], which considered solving task allocation problems in
the presence of changing requirements. To our knowledge,
there is no previous work which considers allocation prob-
lems in relation to minimising the cost of mode changes.

Ω = {ω0, . . . , ωN} /* Solution space */
f : Ω → [0, 1] /* Cost function */
ψ ∈ Ω /* Initial configuration */
ω∗ = ψ /* Best configuration */
ω = ψ /* Current configuration */
t = t0 /* Set initial temperature */
α = 0.99 /* Cooling factor */
do

i = 0
do

ω′ = modify config(ω)
δ = f(ω′) − f(ω)
R = random value ∈ [0, 1]

if (R < e−
δ
t ) then ω = ω′ endif

if (f(ω) ≤ f(ω∗)) then ω∗ = ω endif
i = i+ 1

until (i = M or (stopping condition))
t = αt

until (stopping condition)

Figure 2. Simulated annealing

4 Search Method

The solution method chosen makes use of the simulated
annealing meta-heuristic search technique [4]. The algo-
rithm makes small adjustments to a potential solution and
evaluates each solution for its quality. The quality measure-
ment is given in terms of a cost with the aim being to find
the solution which produces the minimal cost value. The
algorithm, as applied to the task allocation problem, is de-
scribed in figure 2. To move from one solution to another, a
randomly modified version of the existing solution is chosen
by the function modify config(). This function randomly
chooses a task or message. The function then performs a
randomly selected change. The changes are changing the
object’s run-time order (e.g. priority or slot position), or
changing the object’s allocation.

The cost function used takes a weighted mean of cost
function components. Each component is normalised to re-
turn a value between 0 and 1 so that the overall cost value
is also in the range [0, 1]. The set of components currently
being used to find the solution to a single problem are de-
scribed below. Not all of these are required to solve task al-
location problems, but previous work has shown them to be
useful heuristics for improving search efficiency and effec-
tiveness. For example, schedulable object sensitivity helps
improve the search as it distinguishes between two solutions
where each has the same number of unschedulable tasks.
More details and formulae for calculating these components
are given in [1].

• Unreachable tasks - dependent tasks allocated to un-
connected processors

• Unschedulable tasks/messages - proportion of
tasks/messages which miss their deadline.



• Invalid input/output allocations - objects allocated
such that they can’t receive/send data as their allocated
scheduler is not connected to the scheduler where the
incoming/outgoing data resides.

• Invalid arrangements - proportion of objects for which
scheduling analysis could not be performed. This is
usually due to a circular dependency, e.g. the schedule
ordering dictating that task B runs before task A where
as the precedence order should be task A before B.

• Unschedulable system - binary valued function which
indicates whether all objects are schedulable.

• Schedulable object sensitivity - calculates a value
based on how much execution times must in-
crease/decrease for the system to become unschedu-
lable/schedulable.

• Load balancing - calculates the variance of utilisation
of the processors.

• Dependent schedulable object grouping - a metric for
measuring whether tasks/messages which are depen-
dent upon each other are allocated to the same proces-
sor/network.

• Separated dependent tasks - calculates whether tasks
which are adjacent to each other in a transaction are
allocated to the same processor.

• Over utilised schedulers - penalises any allocations
where a scheduler is over 100% utilised.

Many of the components are based on results from schedul-
ing analysis. However, the method is independent of the
scheduling model. All that is required is that the model can
be analysed to produce worst case response times for the
schedulable objects. For example, dual priority multipro-
cessor scheduling with support for aperiodic tasks could be
used.

The cost function f is calculated from the scalar product
of a vector of the cost function components and a weight-
ings vector.

g = (g1, . . . , gn)T (1)

w = (w1, . . . , wn)T where wi ∈ R ∀ i (2)

f =
g ·w∑n

1 wi
(3)

4.1 Components To Measure Changes

Since the aim of the methods described in this paper is to
minimise migrations and priority changes between modes,
cost function components are needed which measure how
many changes there are between two configurations. It is
assumed the system has a unique mode before and after the
change. There are four such cost components which will

be described in detail: task allocation changes, message al-
location changes, task priority changes and message prior-
ity changes. Separate components are defined for tasks and
messages so that the importance of minimising change may
be weighted differently.

It is assumed that there is a current configuration and a
baseline configuration for which the changes between them
can be measured. Since these may be for two separate
modes, it is possible that not all objects will exist in both
configurations. Therefore, change is only measured for ob-
jects present in both configurations.

T , M , P , N is the set of tasks, messages, processors and
networks in the current configuration respectively. T ′, M ′,
P ′, N ′ are the equivalent sets for the baseline configuration.

The components to measure task allocation changes
(gtac) and message allocation changes (gmac) are as fol-
lows:

gtac =
#{i ∈ (T ∩ T ′) : Ai �= A′

i}
#(T ∩ T ′)

(4)

gmac =
#{i ∈ (M ∩ M ′) : Ai �= A′

i}
#(M ∩ M ′)

(5)

where Ai is the current allocation of the object and A′
i is the

allocation in the baseline configuration.
There are two factors which prevent a priority change

metric based on directly comparing priority values of equiv-
alent objects. The assigned priority values may be different
between two configurations with very few differences be-
tween priority order. For example, two sets of tasks with the
same priority order but different numbering schemes should
be considered equivalent as one can easily be remapped to
the other. Priority comparisons only make sense for objects
allocated to the same scheduler. Therefore priority compar-
isons are only made between objects which are common to
a particular scheduler in both configurations. Note that this
differs to the formulae given in [1].

The priority difference metric is based on Spearman’s
rank correlation coefficient. This requires the two sets of
objects for the old and new configurations to be ranked in
priority order.

Let X and Y be sets of schedulable objects. For each
object i ∈ (X ∩ Y ), RX(i) is the rank of object i in X and
RY (i) is the rank of the same object in Y . The basis of the
priority comparison metric is

n = #(X ∩ Y ) (6)

p(X, Y ) =
3

n(n2 − 1)

∑

i∈(X∩Y )

(RX(i) − RY (i))2 (7)

For a given scheduler, s, let O(s) be the set of objects
on that scheduler in the current configuration and O′(s) be
the equivalent set in the baseline configuration. The compo-
nents for task priority changes (gtpc) and message priority



changes (gmpc) are

gtpc =
1

#(P ∩ P ′)

∑

s∈(P∩P ′)

p(O(s), O′(s)) (8)

gmpc =
1

#(N ∩ N ′)

∑

s∈(N∩N ′)

p(O(s), O′(s)) (9)

4.2 Component Weightings

When setting weightings for cost components, alloca-
tion changes should be weighted more highly than priority
changes. Since priority change costs only come into effect
when allocations are the same, penalising priority changes
too highly will block moves which decrease allocation dif-
ferences but increase the priority change cost value. Sub-
sequent moves may then be able to decrease the priority
ordering differences.

For our work allocation changes are weighted in a ratio
of 3 to 1 compared to priority changes. The task and mes-
sage schedulability tests are weighted twice as highly as the
penalties for allocation changes.

5 Solution Methods

In the absence of previous approaches to minimising
changes in mode transitions, three approaches to the prob-
lem have been identified for consideration. All make use
of the simulated annealing algorithm previously described.
Following the descriptions of all three methods, more de-
tailed analysis of each one is given.

Each of the methods will be described in terms of chang-
ing from mode M1 to mode M2. Extensions of the methods
to cope with systems with more than two modes will be
considered later in section 7.

Sequential Method. The sequential method finds a solu-
tion for M1 without any consideration for M2. It then tries
to find a solution for M2 using the solution found for M1

as a starting point and in addition to finding a valid schedu-
lable solution for M2, attempts to minimise the number of
changes between the solutions.

Simultaneous Method. The simultaneous method at-
tempts to simultaneously find a solution for both modes.
The design space is over the configurations of all tasks and
messages in both systems. This forms a so-called super-
configuration for both systems. Tasks or messages which
are in both systems are therefore configured identically. If
a suitable super-configuration can be found that meets re-
quirements for both modes then a suitable configuration for
each mode can be extracted which have zero changes ac-
cording to the metrics defined in equations (4), (5), (8), (9).

If the super-configuration is only valid for a single mode,
say M1, then the same second step as the sequential method
can be applied to generate a configuration for M2. It is pos-
sible to weight the search in favour of finding a feasible

solution for one of the modes when searching for the super-
configuration.

Parallel Method. The third method, like the simultane-
ous method, tries to find a configuration for both modes at
the same time. However, a separate configuration for each
mode is maintained in separate searches. In order for the
differences between the two configuration to be minimised
each search periodically writes its current best solution and
reads the current best solution of the other mode. Each
search tries to find a valid solution for its mode while trying
to minimise differences from the current best found for the
alternate mode. Every time either search finds a new best
solution, the baseline configuration for comparison of the
other search changes. Whilst the changing of the current
best in one search does not change the current best solu-
tion in the other, it does change the cost recorded against
it. Therefore it may soon become worse that other solutions
found which are more similar to that of the other search,
hence causing the two solutions to converge.

The dynamically changing landscape for the quality of
solutions are a particular feature of this method that make
it appropriate for a meta-heuristic search which is able to
revisit solutions which may have once been rejected. If such
solutions had been bounded in a standard branch and bound
style algorithm, this would not be possible.

If there are differences between the solutions found after
both searches complete, then a second step can also be run
for the parallel method. For example, the solution found
for M1 can be used as a starting point to find a solution for
M2. It is possible that this may produce a solution for M2

with fewer differences than that found by the search for M2.
The benefit gained from running this second step is likely to
depend on how long the first parallel search is run for.

Each of these methods will now be analysed in more de-
tail using small examples which can be analysed manually.

5.1 Sequential Method

The earlier examples and their solutions shown in tables
1, 2 and 3 show that the success of this method may depend
on the order in which the configurations are generated. For
the example in table 1, both modes only have a single pos-
sible grouping under which all all objects are schedulable.
In this case, the method would be expected to achieve the
optimal result of a single allocation change regardless of
whether mode 1 or mode 2 is generated first. However, in
the example shown in table 2, mode 1 has multiple solutions
under which all objects are schedulable. If allocation X for
mode 1 from table 3 was generated then it would be im-
possible to achieve the optimal solution in the second step.
Disregarding other discriminating factors for choosing be-
tween solutions in mode 1, the method would only achieve
the optimal result on occasions where the randomness in
the search algorithm chose allocation Y. This indicates that



benefit can be gained from generating a number of initial
solutions if this method is used. If mode 2 was generated
first, then as in the first example, there is only a single pos-
sible feasible grouping. When mode 1 is generated using
this solution from mode 2 as a baseline, it would be ex-
pected that the method would obtain the optimal result on
every occasion.

These observations imply that, when using this method,
initial solutions should be generated for both modes in the
first step with the second step attempting to minimise the
changes in the transition to the alternative mode. Since the
quality of the achievable final solution is dependent upon
the solution used for the baseline, it is likely to be benefi-
cial to generate multiple baselines for both modes and then
attempt to move to the alternate mode. The sequence of
modes which is likely to obtain the best solution is that of
handling the mode with fewer feasible solutions within the
design space first. In general, there is no way to know which
mode this is and hence all sequences must be tried. There
may be situations where this can be estimated. For exam-
ple, if two modes are of similar size in terms of tasks and
messages but one has significantly higher utilisation.

5.2 Simultaneous Method

The first step of this method is to produce a super-
configuration which contains configuration details for all
tasks and messages in both modes.

The cost function f , previously described in equation (3)
is replaced with the following:

F =
W1f(µ1) + · · · + WNf(µN )

∑N
i=1 Wi

(10)

where N is the number of modes. µi represents the require-
ments of mode i with the super configuration applied. The
weightings W1, . . . , WN can be used to weight the impor-
tance of each mode.

To begin analysing this method, weightings for the
modes will be assumed to be the same. It is simple to see
that this method should always successfully solve the prob-
lem in table 2 since there exists a single configuration for
both modes 1 and 2 for which all tasks are schedulable.

Less clear is the fact that it will also successfully find an
optimal solution to the problem given in table 1. There is
no one single configuration that can schedule both modes so
the search should find a solution which minimises the num-
ber of unschedulable tasks over both modes. The search
may conceivably produce one of two solutions. If it chooses
to schedule all tasks under mode 1, then only task B will be
unschedulable in mode 2. Alternatively, it may configure
tasks A, B and C to be schedulable in mode 2. With this
configuration, these tasks will also be schedulable in mode
1, leaving only D unschedulable in mode 1 wherever it is
allocated. The super-configuration can then be used as a

Task
Utilisation

Mode 1 Mode 2
A 60 80
B 40 40
C 5 5
D 5 5
E 80 0

Table 5. Example 3

Allocation W Allocation X

Task M 1 M 2
Alloc.

Task M 1 M 2
Alloc.

Unch. Unch.
A P1 P1 ✓ A P1 P1 ✓
B P1 P2 ✗ B P1 P2 ✗
C P2 P2 ✓ C P2 P1 ✗
D P2 P2 ✓ D P2 P2 ✓
E P2 - ✓ E P2 - ✓

Allocation Y Allocation Z
A P1 P1 ✓ A P1 P1 ✓
B P1 P2 ✗ B P1 P2 ✗
C P2 P2 ✓ C P2 P1 ✗
D P2 P1 ✗ D P2 P1 ✗
E P2 - ✓ E P2 - ✓

Table 6. Solutions to example 3

baseline for the mode which it does not solve to work from.
If either of the two solutions are found, a feasible solution
can be found for the other mode with a single allocation
change.

The task sets in table 5 give an example where this
method may be less successful. There is no single configu-
ration where both modes can be scheduled.

A solution is given, called allocation W, in table 6 which
shows how the modes can be scheduled with a single task
migration. However, if any of the mode 2 allocations in ta-
ble 6 are taken and applied to mode 1 all of tasks A, B, C
and D will be schedulable leaving a single unschedulable
task, E. If other differentiating metrics such as sensitivity
analysis or load balancing are ignored then any of the mode
2 allocations from X, Y and Z will be considered equivalent
to W but do not allow a transition to mode 1 with only a
single migration. There is only a single schedulable con-
figuration for mode 1. On some occasions the search will
output this configuration, which when applied to mode 2,
also leaves only a single task, B, unschedulable. If this is
the case then the second step of the method should be able
to find the mode 2 allocation in allocation W which requires
only a single migration. This indicates that for example 3, it
would be better to concentrate on producing a schedulable
solution for mode 1 rather than mode 2 in the initial step. If
the weighting for mode 1 is higher than for mode 2 then un-
schedulable tasks in mode 1 will be penalised more heavily
than in mode 2 and the method should always produce an
initial configuration which allows transition to mode 2 with
minimal changes.

Therefore, in the general case it is necessary to run
the initial step to find the super-configuration multiple
times with each mode weighted higher on different runs.
This should produce a schedulable solution to the highly



weighted mode so the second step finds a configuration for
the lower weighted mode. However, by considering both
modes in the initial step, the initial configurations produced
should allow transitions to take place with fewer changes
than the sequential method. Note that the sequential method
is a specific case of this method where the lower weighted
mode is given a weighting of 0.

In terms of processing required, this method is more ex-
pensive than the first. When no single super-configuration
can solve both modes, the search must be run several times
with each mode weighted highest. This is the same number
of searches as the first method, but in the second method a
cost function evaluation must be performed on each mode
rather than just a single one as in the sequential method.

5.3 Parallel Method

The final method searches for independent solutions to
both modes while exchanging information so that the solu-
tions converge. This method should find solutions which
minimise the number of migrations for all of the previous 3
small examples. For example, if the search for a solution to
mode 2 initially picks a configuration which does not allow
the transition from mode 1 with a single migration, it will
subsequently be pulled towards the correct solution, once
the search for a mode 1 solution has found the only feasible
solution.

In the general case, with limited time to find the initial
configuration, the number of differences indicated between
the two best solutions may in fact be pessimistic and could
quickly be reduced with the use of a second step. This can
easily be seen by considering the example of finding config-
urations for two identical modes. If run for a limited amount
of time, each search may find a valid solution which dif-
fers from the other. However, with the knowledge that both
modes are the same, either of the configurations produced
is valid for the other mode with no changes. Therefore,
the number of differences reported when both of the par-
allel searches terminate is an upper bound on the number
of changes required. A second step should be taken where
each of the configurations produced is used as a baseline to
find a configuration for the other mode. However, a bene-
fit of this method is that if it is run for sufficient time, it is
expected that it will find a good solution without a need for
subsequent searches to be run.

A benefit of this method is that the weightings between
task / message and allocation / priority changes are con-
sidered in the first step. This allows, for example, initial
configurations to be produced which are tuned to preferring
the minimisation of message changes to task changes. The
previous methods can only do this in the second step and
this may not be compatible with the baseline that has been
produced in the first step.

6 Two Mode Evaluations

All the discussions so far are abstract of particular
scheduling and timing analysis. For the purposes of the
evaluation, the scheduling approach assumed is fixed pri-
ority scheduling and the analysis is performed using the dy-
namic offset approach described in [7]. The method could
potentially be adapted to other scheduling schemes, such as
EDF.

A range of examples were taken to evaluate the different
approaches. In the first stage of the evaluation, small ex-
amples are used to build an understanding of the methods
when applied to a simple two mode system. Then, an inves-
tigation is performed of the effectiveness and scalability of
the methods for more complex examples.

6.1 Simple Two Mode Systems

Experiment with the three small examples described ear-
lier were used to confirm that the behaviour of each method
was in accordance with the analysis. To achieve the cor-
rect utilisations, all tasks were given a period of 100 and a
worst case execution time equal to that of the appropriate
utilisation values in tables 1, 2 and 5.

For the sequential method, 10 baselines were produced
for each example, 5 for each mode considered. For each
baseline, a subsequent search was performed to produce the
mode transition to the other mode, attempting to minimise
changes in allocation. For example 1, the optimal solution
of a single change was found in all 10 cases. For exam-
ple 2, the optimal solution was found in all but one case.
As expected, this occurred when mode 1 was used to pro-
duce the baseline. The fact that the non-optimal solution
only occurred once was better than predicted in the analy-
sis. For example 3, the optimal solution was found in all
cases. Again, this is better than expected. This is due to
the fact that other aspects of the cost function such as the
sensitivity metric are intended to increase flexibility in the
solution and seem to coincide with finding a baseline solu-
tion which allows minimal change.

The simultaneous method also produced 10 baselines for
each example. In this case 5 were produced with one mode
weighted higher and 5 with the other. The more highly
weighted mode was weighted 3 times higher than the lower.
For example 1, optimal results were achieved every time
when mode 1 was weighted higher and never when mode
2 was given preference. An optimal solution of no changes
was achieved for every baseline in example 2. The results
for example 3 were as for mode 1, with optimal results only
being achieved when mode 1 was given the higher weight-
ing.

The parallel method does not have a preference between
modes in its initial search. Therefore, the experiment was
conducted 10 times for each example. The optimal solution



Mode Tasks Messages Avg Utilisation
Deps1 24 22 72.5
Deps2 24 25 72.5
Pedro1 35 0 66.56
Pedro2 35 0 64.24

Table 7. 2 mode example task sets

was found in all cases. No second step was required for the
parallel method for these small examples.

6.2 Larger Two Mode Systems

Two further two mode examples were considered. The
first one, labelled as Deps in table 7 contained messages and
hence task dependencies. The hardware platform contained
4 processors, split into two clusters of two processors so
communication was possible between clusters.

The same experimental was followed as in the previous
examples. For the sequential method, from the 10 trials run,
the best solution found achieved the following values for the
change metrics: 0.04167, 0.04375, 0.00000, 0.04040 from
equations (4), (5), (8) and (9) respectively. Simply summing
these values gives a change score of 0.12582. The average
total change score was 0.6815 showing that many runs of
the sequential method were not near the best score.

The simultaneous method was the best performing
method for this example. It found a solution with no
changes at all on 9 of the 10 trials. On the other trial,
it actually failed to find a feasible solution for the high-
est weighted mode within the limited number of moves al-
lowed. It is more difficult for this method to find a schedu-
lable solution for the higher weighted mode than for the se-
quential method in the same amount of time. This is be-
cause it is trying to solve more than one problem at a time.

The parallel method found the optimal solution of no
changes on 3 of the 10 trials. The average change score
was 0.10433, showing it to be better and more consistent
than the first method.

These results show the simultaneous method’s strength
in being able to find the optimal solution when it is pos-
sible to find a single super-configuration for both modes.
The parallel method always found a schedulable solution
and was much better at minimising changes compared to
the first method. It did not find the optimal solution as reli-
ably as the simultaneous method.

The second example, labelled Pedro in table 7, was
taken from an example given in [8]. This example was
designed for mode changes taking place within processors
only. Therefore, it was known that this example could be
solved with no allocation changes. There are also no depen-
dencies in the example which means that optimal priority
orderings can be found using deadline monotonic priority
ordering [5]. Using deadline monotonic priority ordering
for each mode achieves a priority change measurement of
0.326368. All methods were able to obtain solutions with 0

allocation changes and fewer priority changes than this.
The sequential method found a solution with no alloca-

tion changes in 3 of 10 trials. Of these the best priority
change score was 0.207173. The average total change score,
including trials which used allocation changes, was 0.2768.

The simultaneous method failed to find a schedulable so-
lution in the first step for all occasions when mode 2 was
weighted more highly. It found solutions with no allocation
changes for 4 of the remaining 5 trials. Of these, the small-
est priority change measurement was 0.175291. The aver-
age total change score for the successful trials was 0.2214.

The parallel method failed to find a schedulable solution
for one of the modes on two occasions. For the successful
solutions, 6 of the 8 cases found configurations with no al-
location changes. The smallest priority change score was
0.131818. The average total change score for the successful
trials was 0.1949.

6.3 Computation and Time

The number of search moves used and time required
varies between problems. The major factors in how much
time it takes to find a solution are the length of each cost
function evaluation and the number of moves required. The
former depends on the complexity of the task attributes and
the size of the problem. A large number of factors affect the
latter including the task utilisation, size of problem, topol-
ogy of hardware platform, etc. A timed trial was run on
the Deps example for a million search moves which is eas-
ily sufficient to solve a problem of its complexity. The trial
was run on an AMD Athlon 64 Dual Core 4400+ and took
15 minutes to complete.

The generation of baselines for both the sequential and
parallel methods were able to take advantage of the dual
core processor and so could find both baselines in 15 min-
utes. At this stage the parallel method has also attempted to
minimise change. However, the sequential method is likely
to find a feasible solution in fewer than one million moves.

For the simultaneous method, each baseline takes twice
as much computation time since at each search step both
modes are evaluated. This was tested and did indeed take 30
minutes. It is accepted that the software could be redesigned
to run the cost function evaluation for each system in a sep-
arate thread. On a dual core processor this would take ap-
proximately 15 minutes (ignoring overheads) but only one
baseline would have been produced. This makes the simul-
taneous method the most expensive unless it finds a zero
change solution in its first run.

7 Extensions to several modes

Most multi-moded systems have more than two modes.
For these methods to be more widely applicable, their suit-
ability for systems with more than two modes must be con-
sidered and evaluated.



A system with N modes has N(N − 1)/2 distinct pairs
of modes. Therefore, the number of mode transitions that
must be dealt with increases quadratically with the number
of modes. In most systems, only a subset of these transitions
will take place.

To extend the first method, sequences of modes must be
considered. A mode is chosen from which to create a base-
line. The configuration for the next mode in the sequence
is then generated by minimising differences from this base-
line. Subsequent solutions use existing configurations as
baselines for modes from which a transition might take
place. Since the quality of the solution has been shown to be
dependent upon the chosen sequence of modes, ideally all
N ! sequences should be attempted. This soon becomes in-
feasible for moderately complex systems where each search
may take significant time. When combined with other defi-
ciencies in the sequential method, it does not seem suitable
for handling systems with several modes.

The simultaneous method has similar problems to the se-
quential one in that it is necessary to select a mode to priori-
tise and then use this as a baseline to move to other modes.
The method is again dependent upon the sequence in which
modes are given the highest weighting. Each search in the
sequence requires N times more computation power than
that of the sequential method.

Where this method has been shown to be successful is
in the specific case where there exists a single configura-
tion which is feasible for all modes. When this situation
exists, it can be found by weighting all modes equally and
this method is more reliable at generating this optimal so-
lution than either of the other two methods. Therefore, it is
recommended that this method be used first to see if it can
find such a solution.

The parallel method has the advantage that it can attempt
to minimise all transitions at the same time without hav-
ing to consider a sequence of modes. It was stated earlier
that this method can benefit from using each of the config-
urations created from the parallel search as a baselines and
performing a sequence of searches to find configurations for
other modes. With an N mode system, this once again be-
comes infeasible.

The initial parallel search finds solutions which are both
feasible for all modes and minimises changes. Our aim is
to show that sufficiently high quality solutions can be found
using a single parallel search. The number of searches run-
ning increases linearly with the number of modes. However,
it is possible that each search will need to be run for more it-
erations as the number of modes and problem size increase.

7.1 3 Mode Example

The first multi-mode experiment used 3 randomly gener-
ated modes. Each mode was created by taking a random
delta from an original randomly generated system. The

Mode Tasks Messages Avg Utilisation
M1 25 20 65.22
M2 29 23 70.5
M3 28 17 71.7

Table 8. 3 mode example

M1 ↔ M2 M1 ↔ M3 M2 ↔ M3 Result
Low 0 0 0 0
High 1.25 1.0 1.5446 3.7946
Exp 1 0.0625 0.0667 0 0.1292
Exp 2 0.0625 0.6667 0 0.0625
Exp 3 0.6875 0 0.1429 0.1429

Table 9. 3 mode transition costs

delta involved exchanging approximately 20% of the tasks
for new tasks and increasing task execution times between
10% and 50%. Messages could also be added. The num-
bers of tasks and messages in each mode is outlined in table
8. The hardware platform had 5 processors and the task at-
tributes resulted in an average processor utilisation of 78%.

The first stage of the evaluation was to apply the simulta-
neous method to attempt to discover a single configuration
for all modes. All modes were given equal weighting. The
configuration produced was not a valid solution for mode
M2 but was for M1 and M3. This means it is possible
to transition between modes M1 and M3 with no changes.
However, whether this configuration is useful, will depend
on the transitions required and other modes in the system.

Three experiments were conducted, each of which as-
sumed different mode transitions were required by the sys-
tem. The first, Exp 1, allowed any mode to move to any
other mode. The second experiment, Exp 2 tried to reduce
the size of changes for the sequence M1 ↔ M2 ↔ M3.
The final experiment, Exp 3 looked at the sequence M2 ↔
M3 ↔ M1. All experiments used the parallel method run-
ning all 3 searches together. The experiments differed in the
information exchanged between the parallel searches. For
a particular mode, the solution only tried to converge to-
wards those for modes which were relevant for the required
mode transitions. The results of the experiments are given
in table 9. Each value is the sum of the task and message
allocation change metrics and so has a maximum value of
2. To get an estimate of a lower bound, test were performed
where only the two modes in the transition were considered.
These values are in the row labelled Low. For this particular
case, all pairs could be handled with no changes. A solution
for each mode was also found completely independently of
other modes. The differences between mode configurations
based on these solutions are in the row labelled High. The
Low and High values can be used to judge the quality of
solutions found in the experiments.

The experiments performed reasonably as expected with
the change for transitions relevant to an experiment being
smaller than the irrelevant ones. However, it can be seen
that the results from the first experiment are actually as good
as or better than the values for the other two experiments.



Mode Tasks Messages Avg Utilisation
M1 27 16 85.17
M2 28 10 87.95
M3 24 17 76.8
M4 30 12 88.38

Table 10. 4 mode example
M1 ↔ M2 M1 ↔ M3 M1 ↔ M4

Low 0 0 0.0476
High 1.333 1.2889 1.2321
Exp 1 0.1667 0.1667 0.1905
Exp 2 0.2778 0.5889 0.7738
Exp 3 0.6111 0.2667 0.0952

M2 ↔ M3 M2 ↔ M4 M3 ↔ M4 Result
Low 0 0 0.04761 0.0952
High 1.0417 1.0191 1.0952 7.01
Exp 1 0.0625 0.1905 0.2381 1.0149
Exp 2 0.0625 0.3333 0.1905 0.5308
Exp 3 0.0625 0.5238 0.3810 0.5387

Table 11. 4 mode transition costs

7.2 4 Mode Example

A 4 mode example is given in table 10. Each mode was
similar in size in terms of tasks and messages as the 3 mode
example. The hardware platform had 7 processors. The
average utilisation per processor was higher than the 3 mode
example despite the extra processors.

The results from the 4 mode experiment are given in ta-
ble 11. Once again, separate pairs of modes were used to get
a lower bound approximation and solutions with no attempt
to minimise change gave high values for comparison. The
behaviour for Exp 2 and Exp 3 were as expected. Exp 1 still
outperformed the other experiments over their highlighted
transitions though not now on each individual transition.

In both the 3 and 4 mode case, a parallel search for
all modes performed well in comparison to searches only
considering particular transitions. There is obviously some
benefit in trying to minimise changes between transitions
even if they won’t occur in the system. However as the
number of modes and differences between modes increases,
trying to minimise all transitions is more difficult. It may be
the case that all transitions should be considered but more
importance should be given to those which are actually rel-
evant to the system.

8 Conclusion

Three methods have been given for finding feasible solu-
tions to task allocation and scheduling problems whilst min-
imising configuration differences between modes. These
were a method which looks at each mode in a sequence,
a method which tries to find a single configuration for all
modes and a method which uses parallel communicating
searches with a search dedicated to each mode. All perform
better than finding independent solutions for each mode.

It is recommended that the simultaneously feasible con-
figuration method be tried first. If this fails, then the parallel
method proposed gives a good balance between effective-
ness and scalability. It is able to find optimal or close to

optimal solutions in a reasonable amount of time. It scales
better than the other methods as the number of modes in-
creases.

References

[1] I. Bate and P. Emberson. Incorporating scenarios and heuris-
tics to improve flexibility in real-time embedded systems. In
Proceedings of 12th IEEE Real-Time and Embedded Tech-
nology and Applications Symposium, pages 221–230, 2006.

[2] J. Beck and D. Siewiorek. Simulated annealing applied to
multicomputer task allocation and processor specification.
In Proceedings of the 8th IEEE Symposium on Parallel and
Distributed Processing, pages 232–239, 1996.

[3] G. Fohler. Realizing changes of operational modes with pre
run-time scheduled hard real-time systems. In Proceedings
of Second International Workshop on Responsive Computer
Systems, 1992.

[4] S. Kirkpatrick, C. Gelatt, and M. Vecchi. Optimization by
simulated annealing. Science, 220(4598):671–680, 1983.

[5] J. Leung and M. Merrill. A note on preemptive scheduling
of periodic, real-time tasks. Information Processing Letters,
11(3), November 1980.

[6] D. Milojicic, F. Douglis, Y. Paindaveine, R. Wheeler, and
S. Zhou. Process migration. ACM Computing Surveys,
32(3):241–299, 2000.

[7] J. Palencia and M. G. Harbour. Schedulability analysis for
tasks with static and dynamic offsets. In Proceedings of the
IEEE Real-Time Systems Symposium, pages 26–37, 1998.

[8] P. Pedro. Scheduling of Mode Changes in Flexible Real-
Time Distributed Systems. PhD thesis, Department of Com-
puter Scheduling, University of York, 1999.

[9] D.-T. Peng, K. Shin, and T. Abdelzaher. Assignment and
scheduling communicating periodic tasks in distributed real-
time systems. Software Engineering, 23(12):745–758, 1997.

[10] K. Ramamritham. Allocation and scheduling of precedence-
related periodic tasks. IEEE Transactions on Parallel and
Distributed Systems, 6(4):412–420, 1995.

[11] J. Real and A. Crespo. Mode change protocols for real-time
systems: A survey and a new proposal. Real-Time Systems,
26(2):161–197, 2004.

[12] L. Sha, R. Rajkumar, J. Lehoczky, and K. Ramam-
ritham. Mode change protocols for priority-driven preemp-
tive scheduling. Technical Report UM-CS-1989-060, Uni-
versity of Massachusetts, 1989.

[13] Y. Shin, D. Kim, and K. Choi. Schedulability-driven perfor-
mance analysis of multiple mode embedded real-time sys-
tems. In Design Automation Conference, pages 495–500,
2000.

[14] K. Tindell, A. Burns, and A. Wellings. Allocating hard real-
time tasks: An NP-hard problem made easy. Real-Time Sys-
tems, 4(2):145–165, 1992.

[15] K. Tindell, A. Burns, and A. Wellings. Mode changes in
priority pre-emptively scheduled systems. In IEEE Real-
Time Systems Symposium, pages 100–109, 1992.


