
Using Feedback Control within WSN’s to meet
Application Requirements

Mark Louis Fairbairn, Iain Bate
Department of Computer Science, University of York, York, YO10 5GH, UK

{mark.fairbairn, iain.bate}@cs.york.ac.uk

Abstract—Currently the main approach used to save power
within WSN’s is to employ reactive MAC schemes that detect
when the network is becoming busy and adapt to provide an
increase in available bandwidth. Once the traffic becomes lighter
the available bandwidth is reduced to save power. While this
works well with bursty sporadic traffic, there is a clear trade-off
between latency of response and power savings. Other problems
with this approach include hard to derive parameters along with
their poor performance in periodic sense-and-send applications
due to their reactive nature.

We propose an adaptive feedback-based scheme that adjusts
the duty cycle of the the motes to reduce the power consumed in
typical sense-and-send applications by 58.4%, while still meeting
a minimal level of service specified by the operator. Such an
adaptive scheme is necessary to minimise power consumption
as the complete network characteristics are unknown prior to
deployment, and can change during runtime. Our approach
is independent of node distribution and is also MAC layer
agnostic, unlike the current state-of-the-art, whilst consuming
less power. Our approach provides a simple method for the
application designer to modify its behaviour, whilst allowing
WSNs to operate longer and provide the same level of service as
current approaches.

I. BACKGROUND

Wireless sensor networks (WSN) are deployments of many
small, cheap, battery powered devices called nodes, which
use wireless radios to communicate with surrounding nodes.
Nodes can utilise multi-hop communications to send messages
further across the network than a single node can transmit,
with intermediaries relaying messages.

WSNs are becoming more commonly used to augment
traditional industry. The benefits of WSNs are clear as required
modifications to the existing infrastructure are low while still
providing the fine-grained information. They have been used to
monitor bridges, tunnels, buildings and pipelines with the aim
for large-scale, long-term operation [4] [10] [7]. These mon-
itoring activities involve; humidity regulation to maintain the
integrity of suspension bridges; deterioration in concrete struc-
tures by measuring crack sizes; measuring bridge movement
over time; and the pressure within pipes. Additionally WSNs
can be used to monitor natural environments, such as crop
monitoring [12], monitoring habitats [8], aquatic monitoring
[2]. These examples are all sense-and-send applications, where
data from the environment is simply measured and periodically
reported back to a specified base station.

One of the key issues with WSNs is power consumption,
as once a node’s battery is depleted, the node is effectively

dead. As the main cause of power drain is communications,
with the on-board radio consuming up to 30 times more power
than the processor [5], we should ensure that the radio should
be powered only when communications are strictly required
and turned off at all other times.

Sense-and-send applications normally derive their value
from the data itself, with the time it takes for the data to be
received at the base-station being less critical. It can be seen
in the above examples that some data could be delayed with
negligible effect. This is especially true where the parameter
being monitored does not vary rapidly or the information is to
be used for offline analysis. One such example would be the
humidity sensing within the suspension bridge, where nodes
reporting a sample every 10 minutes could be replaced with
a node reporting all 6 collected samples at once every hour.
This does not affect the ability to estimate the rise or fall
trends in the humidity, and therefore no important information
is lost. Other examples include refrigerated transports, where
temperature could be sampled every 10 seconds, but only sent
every 50 seconds. This would allow events such as the door
being left open to be detected in a reasonable amount of time.

Our solution optimises the duty cycle of a WSN network
through the use of feedback, minimising the awake time
and maximising the sleep time. This solution creates the
maximum contiguous sleep period possible, whilst respecting
the maximal message delay the application can tolerate. The
effect of this behaviour is the batching of radio messages,
which are all sent once the radio is active. Secondly the
algorithm creates the smallest transmission window required
to successfully send and relay all pending messages. This
approach minimises energy waste incurred from power cycling
the radio, maximising network lifetime. The advantage that our
solution has over others is that the feedback approach allows
it to adapt when changes in the environment occur, tolerating
changes in background noise and changes in topology. Our
solution also provides additional benefits, such as relaxed
requirements for time synchronisation, which allows further
power savings.

This work provides the following contributions:
• A MAC and Routing layer agnostic method for reducing

power consumption within sense-and-send applications.
• Strict enforcement of operator specified maximal delay,

even in the presence of external interference.
• Utilising the aforementioned delay to send readings in

batches, further reducing power consumption.



• Use of industrial control theory to realise the above
contributions.

The structure of the paper is as follows. Section II provides
an overview of the current approaches used to obtain power
savings within WSNs, finishing with an outline of the three
main objectives for this work. Section III specifies the problem
in detail, specifically where power is currently consumed
and for what purpose. Section IV details our solution to the
problem, how power is saved and how the feedback system
operates. Section V describes the experimental setup and the
results obtained from these. Finally section VI provides some
overall conclusions.

II. RELATED WORK

Within this section we will describe the current state-of-the
art in power savings at the radio level. this includes MAC
approaches to save transmission power and application based
approaches to batch communications. Finally a summary will
be given, with a brief outline of our proposed approach.

A. MAC Based

MAC protocols have been a popular research area in which
to reduce power consumption, attempting to place the radio in
a lower power mode (sleep / idle) as much as possible while
taking latency and bandwidth into account. MAC protocols
can be summarised into two main groups, synchronous and
asynchronous, however some hybrid approaches also exists.
Synchronous MAC protocols such as S-MAC [14] and T-MAC
[11] rely on time synchronisation between nodes to determine
a pre-negotiated time and period for node communication
(typically this is just after a SYNC beacon message). Asyn-
chronous MAC protocols such as X-MAC [6] do not require
time synchronisation. These protocols commonly use periodic
probing of the wireless channel to signal that a node wishes
to send a message. Once a neighbouring node acknowledges
the request then transmission commences. Asynchronous pro-
tocols commonly have a lower latency as transmission is on-
demand, however at the expense of power due to the periodic
listening required by neighbouring nodes.

Integrated solutions, such as Zigbee [1], not only specify
the MAC layer protocol (802.15.4) but also how the ap-
plication routing is organised. Zigbee has two main modes,
non-beacon and beaconed modes. Non-beacon mode requires
routing nodes to be mains powered and thus does not suit our
applications. Beaconed mode uses the same basic principle
seen in synchronous MAC protocols whereby timed pulses
are used to synchronise time and to define when nodes can
transmit (superframe), however Zigbee applies this concept
higher in the network stack, allowing up to 16 transmissions
within a superframe from any node. The frequency of beacons
is defined before the application commences, and is calculated
based upon the desired network bandwidth. By default the
radio is set to a 0.1% duty cycle at 250 kbit/s, equating to
15.36s between superframes.

Our approach is MAC protocol agnostic as our approach
limits the periodic probing which would otherwise consume

a large amount of energy. It is however ideal to pick a MAC
protocol that can deliver a high number of packets within a
short time period.

B. Application Based

Ramanathan et al proposed batching transmissions by
adding a packet queue below a custom routing layer [9] to
gain additional energy savings, with the sleep periods being
fixed in the range of 20ms to 12000 seconds. The authors
note that should an application only need to send data every
10 minutes, B-MAC will still turn the radio on 6000 times
during that 10 minute period. Ramanathan et al’s work also
considers the effect that this technique has upon the routing
layer, with nodes waking up slightly before the required
transmission time to enable the routing layer to stabilise. We
use a similar batching approach, however based above the
routing layer. This approach is used to constrain the time the
MAC layer is active in order to realise the power savings. Our
approach removes the need to specifically specify the amount
of batching at each node, instead it calculates the batching
from the maximal end-to-end delay specified by the designer.

Most of the current MAC level approaches aim to increase
the average throughput of the network while minimising
latency, and are all operating on the scale of milliseconds.
As identified within the introduction some applications are
tolerant to delays on the scales of minutes. This large latency
tolerance makes these MAC approaches sub-optimal due to
the constant polling performed to meet unneeded sub-second
latencies or tight time synchronisation, wasting energy. Work
by Wang et al [13] is one of the first to consider the desired
end-to-end delay, and removes the fixed polling periods by
introducing a proportional feedback mechanism to vary the
transmit times. These transmit times are based upon a desired
end-to-end packet delay and the measured Packet Reception
Rate (PRR) in the network. This work however makes a
number of expensive assumptions, primarily that the routing
topology is fixed providing a map of ‘flows’, and that the
PRR is known on all links within all flows. Our approach uses
the same notion of desired end-to-end packet delay, however
it does not make any of the other assumptions. We only
make one cheap assumption, that sense messages include the
timestamp when the readings were taken, which is common
in this type of application.

C. Summary

Current approaches for reducing the power consumed by the
radio have typically focused on MAC layer, per packet savings.
Ramanathan et al have shown that additional savings can be
achieved by batching transmissions, however they have only
performed basic experiments using fixed batch sizes, with no
regards for application-defined specifications. Wang et al use
the notion of a specified application delay, in combination with
a measured PRR, to specify a fixed transmission interval that
should meet the application requirements. This work however
requires the application to have a large amount of knowledge
about the global state, and thus would be expensive in large, or



rapidly changing environments. We aim to provide an adaptive
solution that utilises both of these approaches, along with
the additional consideration that the physical environment in
which the WSN operates is constantly changing, and as such
a given algorithm must dynamically adjust to these changes.

To address these issues with the current state-of-the-art we
derive the three main objectives for this work.
Objective 1 - Batching - Readings should be sent in batches

to reduce overheads, whilst also ensuring that
messages are delayed no longer than a limit set
by the application designer.

Objective 2 - Duty Adjustment - Awake time should be min-
imised, avoiding fixed sleep / awake periods,
allowing for changes within the environment to
be adapted to.

Objective 3 - Reaction - Network changes, such as increases
in interference, should be responded to in a fast,
but predictable manner.

Where appropriate we will benchmark our solution against
XMAC and the system proposed by Wang et al. XMAC was
chosen to compare against as it is the de-facto standard for
reducing WSN energy consumption at the MAC layer, whilst
requiring no information about the application. Wang et al’s
solution is also compared against as it is the only work
identified as utilising the end-to-end allowed delay to optimise
the network.

III. PROBLEM FORMULATION

Within this section we will describe the two main problems
behind objective 1 and 2. Figure 1 shows the most basic form
of the two main states a WSN mote may be in. When the
radio on the mote is powered off the mote is said to be in the
sleep state. For our purposes the sleep state only includes the
radio, as the processor consumes much less power than the
radio and so does not require a strict regime. When the radio
is powered the mote is said to be awake. This awake state not
only includes transmit, receive and idle (active), but all high
current states, such as the time in which the radio is powering
up and powering down (warmup and cooldown).

Sleep
Awake

Cycle Length
Fig. 1. The two modes of WSN node operation

A. Batching

Objective 1 states that readings should be sent in batches
to reduce overheads. Initially we will analyse what these
overheads are and how this approach reduces these overheads.
Objective 1 also states that a maximal allowed delay must be
specified by the application designer, the reasons for which
are also discussed in this section.

There are four main phases that a WSN encounters during
standard operation, sleep, warmup, active and cooldown. These
four phases are shown in figure 2. The most common contrib-
utor to the warmup and cooldown states are the time it takes to

actively change the power state of the radio from active to idle
[5], which whilst taking a short amount of time, still actively
consumes power whilst providing no functionality. Equation
1 shows the ratio of wasted power when in normal operation
which should be minimised by our solution where possible.

Sleep

Warmup

Active

Cooldown

Fig. 2. The four main phases of WSN mote operation

radioCycles ∗ (warmupT ime+ cooldownTime)

messagesSent ∗ activeT ime
(1)

Figure 3 shows why protocols which don’t use batching
cannot obtain the same low levels of power consumption. It
can be seen that the warmup and cooldown penalties occur
for each message, during which no transmissions occur. This
figure is representative of Wang’s solution, however XMAC
wastes more power as it repeatedly wakes to sample the radio
channel, commonly transmitting nothing.

A

Cycle Length

B C

A B C
Fig. 3. A standard sense-and-send application

To send messages in batches it is necessary to delay the
sending of messages once they have been generated. The
optimal way to implement this delay is through the notion
of a cycle length as shown in figure 3. If we assume that
the radio will be awake long enough to transmit all buffered
messages and relay others (how to meet this assumption is
explained in section IV-B2), then we can increase the cycle
length to capture the generation of more messages. As more
messages are generated within a cycle, more are buffered to
be sent in the transmission window, as seen in figure 4.

A B C

Cycle Length

A B C
Fig. 4. Batched sense-and-send application

One important side-effect to consider when buffering mes-
sages, is the increase in time between the message being
generated and the time at which they arrive at the base node,
the message delay. The more messages are buffered, the more
message delay occurs. It is important to put an upper bound on
the message delay, based on equation 1 it can be clearly seen
that the optimal number of message to send in a batch tends to
infinity. This would in turn cause the delay to tend to infinity,
rendering any application effectively useless as the messages
would most likely never arrive. The application’s worst case



delay can be calculated using equation 2. This assumes queued
messages are sent in arbitrary order.

worstCaseDelay = cycleLength− cooldownTime (2)

This delay must always be lower than the operator specified
delay (as required by Objective 1), which is the maximum
delay the application can tolerate. This maximum delay is
typically the time after which the message data is too old
to be of value, e.g. warning us of fire an hour late is probably
pointless.

B. Duty Adjustment

Objective 2 is the reduction in awake time. As mentioned
in section IV-B1 it was assumed that the radio remains awake
long enough to transmit all buffered messages and relay others.
This section will explain how we can meet this assumption
whilst still ensuring that the awake time is minimised to meet
the objective.

Taking the four phases as shown in figure 2 and omitting
the sleep phase gives us equation 3. This is the total time,
including warmup and cooldown, required for the awake
period.

awakeT ime = warmup+ active+ cooldown (3)

To assess what the major contributors to the awakeT ime are
we expand the three components in equation 4 that contribute
to awakeT ime. Each individual factor is expanded below.

warmup = radioOn+ routing +max(clockDrift) (4)

The warmup time for the node, as shown in equation 4, is
the time it takes for the radio to transition to the awake state,
the time for the routing layer to stabilise (depending on the
routing algorithm), and also most importantly waiting for the
maximal clock drift of all nodes. The clock drift wait is subtle,
but is crucial to reliably communicate with the sink as the
network needs all available routing nodes to be online. When
all available routing nodes are online there is maximal chance
of transmission success, as all nodes that may be required to
relay the message are online.

The active time shown in equation 5 is an interleaving
between sending the messages that this node has buffered,
and forwarding messages for others. This active time allows
for all messages to traverse as many hops as required to reach
the sink node, in the worst case this may be the entire width
of the network.

active = sendMessges+ relayMessages (5)

These timings are difficult to derive as equation 5 can be
further decomposed into equation 6 where tx and rx are the
times to send and receive messages, c is the computation time
and PRR is the packet reception ratio.

transmit =
#send(tx+ c)

PRR
+

#relay(rx+ tx+ c)

PRR
(6)

It can be seen that transmit relies heavily on the PRR,
which is a factor of the environmental noise, which changes

constantly. Transmit also relies heavily on #relay, which
is a product of the routing algorithm, with dynamic routing
algorithms like AODV having a non-static #relay.

The final factor is shown in equation 7.

cooldown = radioOff (7)

C. Reaction

Objective 3 states that we need to react to changes in the
environment. This requires monitoring of external variables
and feeding these back into the system so that it can react
appropriately. For our scenario there are a small number of
additional requirements that must also be met.

Firstly we wish to minimise the number of times the
target value is exceeded. Exceeding the target value correlates
with exceeding the target delay, which in our scenario is
the application invalidating its specification. This requirement
rules out a typical conditional statement which just consists
of two rules, one for below and one for above the target
value. From this we can deduce that the difference between
the current value and the target value must be used to control
the algorithm.

Secondly we wish for the algorithm to react in a fast
but stable manner. Fast reaction is needed so that changes
in the environment can be adapted to in the shortest time
possible. Stability is required as fast changes commonly lead
to oscillations in output value as oscillations may lead to
exceeding the target value. Ideally any parameters used to
control the algorithm should work in a wide range of scenarios,
removing the need for the algorithm to be trained for each
scenario.

The most common form of feedback controller which meets
these criteria are PID controllers, which are used in more than
95% of all industrial control problems [3]. PID controllers are
advantageous due to their simple operation and the lack of
prior information required about the problem. PID controllers
focus around the notion of distance (the error) to the target
value (the setpoint) and using these values to calculate its
output.

IV. PROPOSED SOLUTION

A. Basic Strategy

Our solution can be summarised by figure 5. Two PID con-
trollers modify the awakeLength and the cycleLength of the
motes, with the reference value being the slack target and the
maximum delay accordingly. The defintions and advantages
for using these values and not the ones from section III are
given in sections IV-B1 and IV-B2.

B. Realisation

The most basic form of PID controller is a simple pro-
portional controller where the error is directly multiplied by a
constant factor (P value), with the result being set as the output
value. An integral component can be used which looks at the
cumulative error over time, adjusting the output accordingly,
and a derivative component may also be used, which looks at



A B C

A B C
Delay
Cycle Length

Awake Time

Slack

Cycle
Controller

Max(Delay)

Awake
Controller

Target Slack

Fig. 5. The standard WSN node cycle and the PID controllers

the the rate of change in the error over time. The full formula
is given in equation 9, where Kp, Ki and Kd are the P, I and
D values respectively. How these controllers are used within
our algorithm will be described in the next section.

e(t) = setpoint− value(t) (8)

output = Kpe(t) +Ki

∫ t

0

e(t) dt+Kd
d

dt
e(t) (9)

1) Batching: One solution could be to use the notion of
worst case delay as mentioned previously, however getting
an accurate reading for the cooldownTime to calculate the
delay would require constant monitoring of all the nodes.
An alternative approach is to directly measure the delay
experienced by the packets arriving at the operator node.
This requires the message generation time to be included
within the message and comparing these to the sink node on
arrival. Fortunately most sense-and-send applications already
include the time at which the reading was taken, requiring no
additional information to be included within the message. This
gives equation 10 as the applications message delay.

applicationDelay = max
∀messages

delay(message) (10)

An advantage our batching approach has is the need to only
warmup once per batch, allowing this wasted overhead to
affect our solution less than others (we only incur the warmup
penalty once per X messages). This can be further reduced
through the use of basic time synchronisation, as clock drift
is a contributing factor to the one remaining warmup time.

From this section the following requirements can be de-
duced. Minimisation of wasted power (equation 1) is achieved
by increasing the number of messages sent per batch, which
in turn is done by increasing the cycle length. This must be
done whilst ensuring that the delay (which will be directly
measured at run-time) will not exceed the operator specified
limit.

2) Duty Adjustment: Instead of attempting to compute
the factors in the equations previously presented we use a
similar direct measurement technique as in section IV-B1, and

alternatively measure the amount of free time (slack) in the
awake period. This changes equation 3 to the following.

awakeT ime = busy + slack + radioOff (11)

Obtaining a measurement for the slack is simple once a small
observation has been made, the end of the busy period can
be determined by the arrival time of the last message. As
we already define the start of the awake time, the length
of the busy period can then be calculated. If we assume the
radioOff time is negligible then we can also easily compute
the length of the slack as shown in equation 12.

slack = awakeEnd− time(lastReceivedMessage) (12)

This is more clearly demonstrated in figure 6. As long
as this slack is sufficiently large to allow for variations in
the number of packets being sent, but reasonably small such
that little time is wasted, we can reduce the awake time to
another optimisation problem. We wish to minimise the awake
time whilst allowing all packets to be sent. This is done by
monitoring the slack and ensuring that it never reaches zero.

A B C

Last Message Time

A B C A

Slack

Awake End
Fig. 6. Awake, sleep and slack timings

C. Summary

Taking the goals from the end of sections IV-B1 and IV-B2
we can derive the setup for the two PID controllers, shown in
table I. These controllers allow us to meet objectives 1 and
2 respectively. If both the cycle length and the awake length
were independent of each other then all that needs to be done
is to tune the PID values, however these two factors are not
independent.

TABLE I
PID LOOPS

Output Setpoint Input

Cycle Length Target Delay Current Application Delay

Awake Length Target Slack Current Slack

An issue arises as the output of the cycleLength affects the
result of the awakeLength, as shown in equation 13. This
can more clearly be seen in figure 5, as an increase/decrease
in the cycleLength must either cause the awakeLength
to increase/decrease accordingly or the sleepLength to in-
crease/decrease. It is important to consider the interaction
between these variables, as section IV-B1 shows an increase
in sleepLength creates an increase in batch size, which in
turn reduces slack.

cycleLength = sleepLength+ awakeLength (13)



TABLE II
EXAMPLE APPLICATION PARAMETERS

Simulation Time 1 hour

Data Generation Rate 1 every 10 seconds

Maximal Data Delay 50 seconds

Time To Transmit 2 milliseconds

X-MAC Sleep Time 800 milliseconds

X-MAC Awake Time 6 milliseconds

To negate this issue as much as possible, we want changes
to the cycle length to have minimum impact on the amount
of slack. Therefore the awakeLength, not the sleepLength,
must be controlled by the secondary PID loop as shown in
table I. This ensures that the awakeLength remains stationary
as the cycleLength increases, ensuring the slack also remains
stationary. This has the side-effect that the sleepLength
now increases with the cycleLength. One final considera-
tion remains however, the cycleLength controller must not
overpower the awakeLength controller. If this is not the
case, and the awakeLength stays fixed whilst cycleLength
increases quickly, the slack will rapidly be reduced to zero.
Once slack reaches zero the packet delay incurs a penalty of
at least one whole sleepLength, causing sudden variations in
the cycleLength controller due to the vast change in input.

V. EXPERIMENTS AND RESULTS

In this section, we present an analysis of our approach
compared against a standard X-MAC implementation and the
system proposed by Wang et al. As part of the analysis we
consider how well our approach meets the three objectives set
out in section II-C.

To perform the analysis we developed a typical sense-
and send application, with each node periodically sending
sensor readings to a singular sink node. For the simulated
deployments these readings are simply random as they do not
impact on the results of this work. Table II gives the default
parameters of the experimental application and the underlying
communication parameters. For X-MAC the optimal values
identified within the literature for a data rate of 0.1 packets
per second were chosen [6], with Wang’s approach needing no
additional configuration. As with any simulators it is important
to accurately model all behaviour that may affect the results,
in this case the simulator needs to accurately represent the
time the radio is alive. This is done by using measurements
from real motes [9] for the radio transition times and the time it
takes for a packet to be successfully transmitted. Brownfield et
al [5] note that radio transitions take a non-negligible amount
of time (4.47ms on average) and power (3.38mA) which are
also modelled within the simulator.

A. Batching

The first experiment provides validation that the batched
approach, as identified by Objective 1, reduces the number
radio cycles and thus power. Our approach was tested with

operator specified application delays in the range 0-100 sec-
onds, in increments of 1 second, with the resultant awake
time being recorded. This same procedure was also applied
to Wangs solution. As the operator specified delay does not
affect the behaviour of the X-MAC algorithm it was only run
once.

Experiments were conducted using the custom simulator so
that a large range of delays could be evaluated. The simulator
was set to count the number of radio transitions that occurred,
along with the cumulative time spent with the radio active
within the simulated hour. These counts were then combined
with the energy consumptions mentioned previously to obtain
a realistic estimate of the power consumption.

All three systems were run with the standard application
parameters, with the PRR at 1.0. Both X-MAC and Wang’s
approach needed no configuration, however in our system the
PID values for the cycle and the awake period need to be set.
From preliminary experiments these were set to 0.06 across
the board as this provides satisfactory behaviour.

0 20 40 60 80 100

0

20

40

60

80

100

Specified Delay (s)

C
yc

le
L

en
gt

h
(s

)

Our Solution
Wang et al

X-MAC

Fig. 7. The cycle length of the mote as the allowed delay increases

The results from the experiment are shown in figure 7. This
figure shows the resulting cycle length that each of the three
algorithms had for each of the 100 experiments. For the results
each algorithm was given time for the cycle length to settle
before the value was recorded. This settle time will be looked
at in more detail within section V-B. In figure 7 it can be seen
that our solution is near the optimal value for lower cycle
lengths (cycle length == maximal delay), however at larger
values the cycle length needs to reduce to accommodate the
larger batches of messages. Wang et al’s solution has near
optimal cycle length for the entire range of results, which if
ignoring batching would be the best solution. X-MAC does
not adapt to the application specified delay and periodically
probes the radio at a constant 800ms for all delay values.

Without batching, solutions with their cycle length closest to
the maximal delay would be optimal, however further savings
can be realised by batching transmissions. Figure 8 shows the
proportion of cycle length that each of the three algorithms



TABLE III
RESULTS OF TYPICAL RUN, PRR 1.0

X-MAC Wang Feedback
Loop

Radio Transitions 8932 720 144

Total Time In Transition 39.30s 3.17s 0.63s

Time Per Tx Period 6ms 3ms 11ms

Total Tx Time 26.80s 1.08s 0.864s

Total Expense 66.10s 4.25s 1.494s

Total Power 0.291mAh 0.124mAh 0.121mAh

spends with the radio active. As our solution has a fixed
amount of waste slack it is inefficient for small batch sizes
(<4 messages per batch). However it can be seen that as the
specified delay increases, the waste slack becomes insignifi-
cant compared to the savings obtained from not cycling the
radio. This is due to the increase in batch size as the delay has
increased. This is clearly shown when the delay is set to 98
seconds, as our solution is asleep for 77.9% longer than Wangs
approach which remains fairly linear at high delay values. X-
MAC remains linear across the board due to its fixed cycle
length.

0 20 40 60 80 100

0

0.2

0.4

0.6

0.8

Specified Delay (s)

A
w

ak
e

Ti
m

e
/

C
yc

le
L

en
gt

h
(%

) Our Solution
Wang et al

X-MAC

Fig. 8. Proportion of time consumed for radio communications

Table III shows the detailed results of this experiment
when the maximal allowed delay is 50s. It is clear that X-
MAC, even when tuned to the stated optimal values, still
undergoes a large number of transitions. X-MAC also spends
a large amount of time sampling the channel to check if other
nodes wish to transmit, leading to a total of 66.1 seconds
in high-current mode (radio active or in transition). Wang’s
solution performs much better due to its carefully scheduled
transmissions, however transitions still dominate the majority
of the high-current consumption. Our feedback approach only
performs a small number of transitions, spending the majority
of high-current consumption transmitting messages, clearly
demonstrating that it meets Objective 1.

B. Duty Adjustment and Reaction Rate

The second experiment demonstrates how all three algo-
rithms cope with variations within the environment, more
specifically variations in the PRR. Applications were tested
within the simulator due to the accurate control over the PRR
that this allows. The application setup is the same as outlined
in table II, with the target delay set to 50 seconds. The PRR
changes numerous times during each trial, once at t = 15 to
a PRR of 50%, at t = 30 to a PRR of 33%, at t = 45 to a
PRR of 100% and at t = 60 to a PRR of 33%.

The message delay will be measured instead of the number
of lost packets, due to active acknowledgement of received
readings. As messages are actively acknowledged upon re-
ceipt, retransmission is repeated until all messages are received
by the sink node. This retransmission of packets causes delay
to occur, which should force the network to react in order
to keep this delay below the application specified limit. This
adaptive behaviour should satisfy Objective 2.

0 20 40 60 80

0

1

2

3

4

5

Simulation Time

Pa
ra

m
et

er
V

al
ue

(s
ec

on
ds

)
Awake Length
Packet Slack

Fig. 9. Variations in cycle length due to changes in PRR

Figure 9 shows the response that the awake controller from
our solution has when small and large changes in the PRR
occur. It can be seen that sudden decreases in the PRR causes
a drop in packet slack, which causes the awake length to be
increased. Only when very large PRR changes occur does
the slack reach zero, at which point the packets miss the
transmission window. When packets miss the transmission
window this causes large packet delays to occur. This can
be more easily seen in Figure 10. Figure 9 is not directly
comparable to Wang’s solution as their awake length is fixed
which in turn restricts the packet slack.

Figure 10 shows how this dynamic behaviour effects Ob-
jective 3, the ability for the system to react to changes in
the environment. Figure 10 demonstrates that in the majority
of scenarios the cycle length remains constant, meeting the
objective. However in extreme circumstances, should packets
miss their transmission window, the packet delay incurs a
penalty. This sudden increase in packet delay correctly causes



0 20 40 60 80

45

50

55

60

Simulation Time

Pa
ra

m
et

er
V

al
ue

(s
ec

on
ds

)
Cycle Length
Packet Delay

Fig. 10. Variations in cycle length due to changes in PRR

the cycle length to decrease, compensating until the slack can
be restored.

Wang’s approach can be seen in Figure 11. This shows
that this solution also manages to adjust the message delay to
meet the application requirements, however it always allows
the packet delay to exceed the application limit should the
PRR reduce. Even with relatively small changes in PRR,
such as at t = 15, Wang’s solution allows the application
limit to be exceeded by 15 seconds, whereas our solution
exceeds it by 1.45ms. Even in the case where the variation in
PRR is too extreme for our solution to keep the delay under
control it returns to acceptable levels in 75% less time than
the alternative.

0 20 40 60 80

20

40

60

80

Simulation Time

Pa
ra

m
et

er
V

al
ue

(s
ec

on
ds

)

Cycle Length
Packet Delay

Fig. 11. Variations in cycle length of Wang’s solution due to changes in
PRR

X-MAC performed well, with the maximum packet delay
being maintained in the sub-second range in all PRR scenarios.
This is mainly due to the rapid probing that X-MAC performs,
which consumes much power as shown in the previous section.

VI. CONCLUSIONS

From section V-A it can be seen that in all scenarios our
solution performs with much less power than typical MAC
schemes, and with less power consumption than that proposed
by Wang et al when the batch sizes are 4 or greater. Our
solution also relaxes a number of restrictions that Wang’s
approach requires, primarily we do not impose a restriction
over which MAC layer and Routing layer protocols may be
used with our solution. It has been demonstrated in Section
V-B that in addition to these benefits our protocol provides
strict control over the specified packet delay, ensuring that
under normal circumstances it does not exceeded the specified
limit. It has also been shown that should extreme changes in
the environment occur that cause the limit to be exceeded, our
solution returns to acceptable levels of delay faster than the
other state-of-the-art approaches.

REFERENCES

[1] Zigbee specification. Technical Report 053474r06, Zigbee Alliance,
2006.

[2] C. Alippi, R. Camplani, C. Galperti, and M. Roveri. A robust, adaptive,
solar-powered WSN framework for aquatic environmental monitoring.
Sensors Journal, 11(1):45–55, 2011.

[3] K. Astrom and R. Murray. Feedback systems: an introduction for
scientists and engineers. Princeton University Press, 2008.

[4] P. Bennett, I. Stoianov, P. Fidler, C. Maksimovic, C. Middleton, N. Gra-
ham, K. Soga, and N. Hoult. Wireless sensor networks: creating’smart
infrastructure’. In Institution of Civil Engineers. Civil engineering,
volume 162, pages 136–143, 2009.

[5] M. Brownfield, A. Fayez, T. Nelson, and N. Davis. Cross-layer wireless
sensor network radio power management. In Wireless Communications
and Networking Conference, volume 2, pages 1160–1165, 2006.

[6] M. Buettner, G. Yee, E. Anderson, and R. Han. X-MAC: A short
preamble MAC protocol for duty-cycled wireless sensor networks. In
4th international conference on Embedded networked sensor systems,
pages 307–320, 2006.

[7] M. Ceriotti, L. Mottola, G. Picco, A. Murphy, S. Guna, M. Corra,
M. Pozzi, D. Zonta, and P. Zanon. Monitoring heritage buildings
with wireless sensor networks: The Torre Aquila deployment. In 2009
International Conference on Information Processing in Sensor Networks,
pages 277–288, 2009.

[8] J. Polastre, R. Szewczyk, A. Mainwaring, D. Culler, and J. Anderson.
Analysis of wireless sensor networks for habitat monitoring. Wireless
sensor networks, pages 399–423, 2004.

[9] N. Ramanathan, M. Yarvis, J. Chhabra, N. Kushalnagar, L. Krishna-
murthy, and D. Estrin. A stream-oriented power management protocol
for low duty cycle sensor network applications. In 2nd IEEE Workshop
on Embedded Networked Sensors, pages 53–61, 2005.

[10] F. Stajano, N. Hoult, I. Wassell, P. Bennett, C. Middleton, and K. Soga.
Smart bridges, smart tunnels: Transforming wireless sensor networks
from research prototypes into robust engineering infrastructure. Ad Hoc
Networks, 8(8):872–888, 2010.

[11] T. Van Dam and K. Langendoen. An adaptive energy-efficient MAC
protocol for wireless sensor networks. In 1st International Conference
on Embedded networked sensor systems, pages 171–180, 2003.

[12] S. Vijayakumar and J. Rosario. Preliminary design for crop monitoring
involving water and fertilizer conservation using wireless sensor net-
works. In 3rd International Conference on Communication Software
and Networks, pages 662–666, 2011.

[13] X. Wang, X. Wang, G. Xing, and Y. Yao. Dynamic duty cycle control
for end-to-end delay guarantees in wireless sensor networks. In 18th
International Workshop on Quality of Service, pages 1–9, 2010.

[14] W. Ye, J. Heidemann, and D. Estrin. An energy-efficient MAC protocol
for wireless sensor networks. In 21st Annual Joint Conference of the
IEEE Computer and Communications Societies, volume 3, pages 1567–
1576, 2002.


