
Rewriting History to Exploit Gain Time

G. Bernat, I. Broster and A. Burns
Department of Computer Science,

University of York
YO10 5DD, U.K.

{bernat, ianb, burns}@cs.york.ac.uk

Abstract

With modern processors and more dynamic application
requirements it is becoming increasingly difficult to produce
tight upper bounds on the worst-case execution time of real-
time tasks. As a result, at run-time, considerable spare CPU
capacity (termed gain time) becomes available that must
be usefully employed if cost effective real-time systems are
to be engineered. In this paper we introduce a scheme by
which gain time is exploited by retrospectively reassigning
execution time from a task’s own budget to the gain time
that later become available. As a result of changing the
system’s execution history, spare capacity is immediately
reallocated and hence preserved. The proposed scheme is
shown to work with fixed priority dispatching, the use of
servers to provide temporal firewalls, and other capacity
sharing approaches. Evaluations are provided via simula-
tions.

1. Introduction1

A real-time system is usually constructed as a set of
concurrent tasks which may have hard or soft deadlines.
Hard tasks have strict timing constraints, soft tasks often
have more relaxed QoS (Quality of Service) requirements.
A real-time system with this mixture of hard and aperiodic
tasks has to ensure that:

• all hard real-time tasks meet their deadlines even when
worst-case conditions are being experienced;

• all aperiodic tasks have a good response time. Here,
good should mean that the task meets its soft deadline
in most of its invocations;

1 This work is supported by the IST Programme of the European Com-
mission under project IST-2001-34820 (FIRST).

• other soft tasks exhibit good quality of output by gain-
ing access to the maximum computation time avail-
able before their soft/firm deadline.

One of the difficulties with hard real-time tasks is that a
guaranteed upper bound must be given on their execution
times. With modern processors it becomes increasingly dif-
ficult to produce these bounds without incorporating exces-
sive pessimism [8]. As a result, at run-time, a hard task may
perhaps use only 10% of its allocated CPU time. Even if
tight WCET analysis increases this value to 80% there re-
mains significant quantity of CPU resource not being used.
In a fixed priority scheme this unused resource will become
available to background (or low priority tasks). The objec-
tive of the implementation scheme described in this paper
is to effectively employ the spare capacity, or gain time [1],
generated by hard tasks not executing to their worst-case
limit. This implies using gain time at the higher priority lev-
els and where necessary preserving the gain time so that it
can be used when needed by high priority soft tasks.

This need to preserve bandwidth has been explored in
many approaches to implementing servers [14, 19, 13, 9, 4]
(some of which do address gain time reclaiming [18]).

Notably, gain time reclaiming is studied in power-aware
computing, where gain time is used to allow the proces-
sor to slow down, according to various on-line and off-line
schemes [12, 3, 20, 15]. All these approaches for making
use of gain time:

• rely on a gain-point being specifically indicated at the
end of the task execution;

• must use the gain time by the by a specific time (usu-
ally the period or deadline of the task which produced
the gain time).

The distinctive feature of the new scheme described in
this paper is that we preserve gain time by rewriting his-
tory; for example, a soft task that had executed using its
own budget is, retrospectively, deemed to have been using
a hard task’s gain time and hence its own budget is replen-
ished and it can execute further. As Section 3 will describe,



this results in a scheme where a gain point does not need
to be indicated at the end of a task execution and where the
gain time can be preserved and used over a wide interval be-
yond the deadline of the task.

The details of the proposed scheme are described in Sec-
tion 3 of this paper. Before that a brief description of the
computational model is given. This is a standard fixed pri-
ority model. Assessment by simulation is given in Section 4.
Some potential generalisation of our results are presented in
Section 5 and conclusion are provided in Section 6.

2. Task Model

We assume a fixed set of tasks2. Each task has a po-
tentially infinite number of (non-overlapping) invocations.
When referring to an execution of a task we imply a spe-
cific invocation. Some constraint on the arrival of each hard
task’s invocations will be required to bound the load on the
system and make it, at least potentially, schedulable. How-
ever strict periodic execution is not required.

A task, τi is said to have a maximum execution time of
Ci, a minimum arrival interval3 of Ti and a relative dead-
line Di (relative to the arrival of any invocation of the task).
Tasks also have a priority Pi, where the Pi > Pj means that
τi has a higher priority than τj .

For a correctly specified system all tasks have their dead-
lines guaranteed by some system-wide test of schedula-
bility. Fixed priority preemptive scheduling is considered.
Therefore the most straightforward test for a fixed priority
scheme is RTA (Response Time Analysis) [11, 2], where a
worst case response time, Ri, is calculated for each task and
compared to the task’s deadline, Di [6].

To prevent any soft task (or hard task with a soft com-
ponent, or hard task with error containment) from execut-
ing for more than its allocated execution time, budget en-
forcement is assumed to be provided by the run-time sys-
tem. There are a number of server techniques that can be
used to provide this temporal firewall. The two most pop-
ular are the Deferrable Server (DS) [14] and the Sporadic
Server (SS) [19]. They have similar behaviour [4]; DS needs
a modified schedulability test (see later) and SS has the ad-
vantage that it enforces a period of separation between in-
vocations of the same task.

3. Exploiting Gain Time

The most important property of any scheme for exploit-
ing gain time is that it must be safe; in that it must still be
possible to provide scheduling guarantees to all hard tasks.
However it is not necessary to apply a (perhaps complex)

2 The term thread or task could equally have been used.
3 This is the period of a periodic task.

on-line scheduling test if a simple off-line test will allow
gain time to be reused more effectively. In other words, the
use of a single, slightly more restrictive schedulability test
can be traded against run-time efficiency.

We define gain time by noting that a typical invocation of
task τi (with worst-case execution time Ci) will only con-
sume a lesser amount of CPU time which we denote by Ei.
Gain time, gi is simply Ci − Ei. Note, due to budget en-
forcement, gi is never negative. Gain time generated at pri-
ority Pi can clearly only be used by other tasks with prior-
ity Pi or lower4; it also has a limited ‘shelf life’5. To fully
exploit the available gain time we first maximise its intrin-
sic shelf life and then look to further preserve its effective
shelf life by ‘rewriting history’.

3.1. Maximising intrinsic shelf life

Consider a typical invocation of task τi that is released
at time tri . Assume it completes at time tci . We know, for
a guaranteed system, that tci ≤ tri + Di. Indeed if RTA
was used we also know that tci ≤ tri + Ri. Gain time
(gi = Ci−Ei) is available at time tci . To be able to maximise
the time over which this gain can be used by other task, ide-
ally it would be available until the task is next released at
time tri + Ti. If one considers the RTA equations then any
lower priority task (than τi) has a maximum level of inter-
ference from τi that equates to Ci in every Ti. However it
is not the case that gi is available until tri + Ti. Gain time
cannot safely be given from τi to τj unless there is a Pj-
level busy period running from tc

i until τj uses this gain time
(which must be before tri +Ti). Otherwise, an additional in-
terference would be created. To illustrate this consider the
example in Figure 1 which shows the consequences of de-
laying the allocation of gain time until the next release of
the process.

When τk is released at time trk it suffers an immediate
interference of gi + Ci + Cj . This value (which is upper
bounded by 2Ci + Cj) is greater than the standard RTA
would predict. Task τk is said to suffer back-to-back inter-
ference from τi. It receives, in effect, interference at the end
of one invocation and the beginning of the next.

If we wish to preserve the intrinsic shelf life of the gain
time to its maximum extent (tri + Ti) then the scheduling
test has to accommodate the back-to-back interference that
can now occur. Fortunately such analysis already exists as
this is exactly the behaviour that occurs with the Deferrable
Server (DS) [14].

4 The scheduling analysis that is undertaken for fixed priority systems
correctly assumes that tasks can only suffer interference from tasks of
higher priority; if gain time were allocated to tasks with higher prior-
ity this could potentially increase the interference on some tasks which
would not be safe.

5 This is the length of time during which the gain time can be used by
other tasks before it becomes stale—unusable.



PSfrag replacements

τi

τj

τk

giEi Ci

Cj

TiTi

time

interference
1
2
3
4

Gain Time

Gain Point

tr
i

tr
j

tr
k

tc
i

interference

Figure 1. Assigning Gain Time Later Creates a
Double Hit

A deferrable server is a simple server mechanism which
has a capacity that is replenished to the maximum budget at
fixed, periodic times. This server has recently been evalu-
ated [4] and shown to perform well over a wide range of
application characteristics. The RTA scheduling equation
is modified [4] to the following form to accommodate de-
ferrable behaviour:

w = Ci +
∑

j∈hp(i)

⌈

w + Tj − Cj

Tj

⌉

Cj (1)

where Tj and Cj refer to server period and budget and hp(i)
is the set of tasks with higher priority than task τi.

In the general task model in use in this formulation we
note that budget enforcement is required because soft activ-
ities have either unbounded arrival patterns or unbounded
execution time requirements. We note that the use of De-
ferrable Servers is an adequate means of achieving this en-
forcement. We are therefore able to combine budget en-
forcement and gain time reallocation efficiently by the use
of the DS scheme. Thus we assume the use of DS in the rest
of this paper.

However, as noted by Saewong et al. [16], “The budget
cannot be saved for future use, which means that any un-
claimed budget left from the previous replenishment is al-
ways thrown away at the next replenishment.” Our aim is to
prevent this capacity from being thrown away.

3.2. Capacity Sharing

With the above scheme gain time is available for ‘reuse’
from the time that the task finishes (tc

i ) until the comple-
tion of the task’s period (tri + Ti). During this time any task
of a lower priority that is running, can request extra capac-
ity from any higher priority task with gain available. This
is achieved using the capacity sharing algorithm [7, 5] that
has recently been investigated.

Capacity sharing is an effective means of reclaiming gain
time. However one limitation is that the gain time shelf-life

is limited by the time that the end of the task execution oc-
curs (the gain point at tci ). If the gain point is close to the pe-
riod of the server then the availability of the gain time is far
less than if the task finishes its execution early in the server
period.

Additionally, it is not always possible to determine the
time of the gain point, for example if a deferrable server is
managing the load caused by an aperiodic task. In this sit-
uation, the earliest time that the gain point can occur is at
the server period, in which case no gain time can be re-
claimed, even though there is unused capacity available at
time tri + Ti.

The scheme explained in Section 3.3 is complementary
to capacity sharing and can be used both with and without
capacity sharing in effect. This method provides a way of
exploiting any gain time that is still available at time tr

i +Ti

that would otherwise be lost when the server is replenished.
We do this by rewriting history.

3.3. Rewriting history

As discussed in the introduction, our aim is to keep the
gain time generated at priority Pi as a resource to be used
at priority levels close to Pi rather than let the generated
CPU capacity be used at low or background priority. We
accomplish this by assigning the maximum extra capacity
to the task with priority Pi − 1. The maximum is bounded
by the amount of execution time this task has already con-
sumed (in its current invocation). So if task τj with prior-
ity Pi − 1 has executed for ej then some, or all, of this CPU
time is retrospectively assumed to be taken from the bud-
get of τi rather than τj . This leaves τj executing for longer
if it desires. If it does not then it will have more gain time
to pass on when it completes, and in doing so, it propagates
the shelf-life of the original gain time beyond the period of
the original task.

The proposed history rewriting (HisReWri) scheme is
defined in terms of the following steps:

1. At the start of a task’s (τi) invocation (tri ), it is given a
budget, bi, equal to its worst case execution time Ci.

2. During execution, the amount of CPU time used from
the task’s budget is monitored, we denote this as ei; if
ei becomes equal to bi then the task is suspended (or
alternatively, if background scheduling is also used,
the task’s priority is dropped to background). This is
normal deferrable server behaviour.

3*. At the completion of the task (at time tc
i ) a first gain

point is encountered; the gain time is calculated, gi :=
bi − ei. This gain time is now available for other tasks
to request up to the end of the task’s period . This is
the same as capacity sharing.



4. At the end of the task’s period (tr
i + Ti), the gain time

still available is noted: g∗

i . Here, a second gain point
is apparent and history rewriting is possible.

5. Loop until g∗

i is all allocated (g∗

i = 0) or there are no
more lower priority tasks:

• consider task with next lowest priority (τj),

• let m be the minimum of τj execution time (ej)
and g∗i ,

• assign ej := ej − m,

• assign g∗

i := g∗i − m,

• if m > 0 where necessary, resume task τj or
raise priority of τj to Pj (if dropped to back-
ground)

• repeat if g∗

i > 0

Stage 3* is capacity sharing and is optional. If a gain-
point can be identified then use of capacity sharing can in-
crease the effectiveness of gain time reclaiming. (It is also
possible to apply history rewriting at the first gain point
rather than the second, although it appears to be more ad-
vantageous to apply capacity sharing at the first gain point
when the first gain point can be identified.)

The effect of reducing the value of ej is to allocate it
extra budget, as the task is now assumed to have executed
m from another budget. If it had exhausted its budget and
hence was assigned the background priority it has its prior-
ity raised back to it usual level. The algorithm reduces ej

rather than increase bj to ensure than the same execution
time quantity is not allocated more than once. Hence ej al-
ways indicates the amount of CPU time τj has consumed
from its own budget. When the Deferrable Server replen-
ishes its budget it does this by setting ej to zero.

Note, gain time is always assigned to tasks with later
completion times, and hence it is being preserved beyond
the period of the generating task. As time progresses the
gain time will either be used or it will eventually propagate
to lower and lower priorities. The shelf-life of the gain time
is prolonged, but this cannot, of course, be done indefinitely.
On some occasions the active invocation of τj will not have
executed and hence it cannot receive increased budget. At
other times τj will have completed; in which case the new
budget will not be used but passed on when the end of the
period of τj is reached.

3.4. Example

Before a more formal analysis of the scheme two ex-
amples will be given. We assume in the following, a gain
point only at the period of the server, tr

i , thus capacity shar-
ing (stage 3) is not applicable. In both examples, the first

PSfrag replacements

τi

τj

τk

gi

Ei

Ci
Cj

Ti

time
interference

1 2 3

4

Gain Time

Gain Point
tr
i

tr
j

tr
k

tc
i

(a) Before History Rewriting. τi has 2 units of gain time to share.

PSfrag replacements

τi

τj

τk

gi

Ei

Ci
Cj

Ti

time

interference

1

2 2 2

3
4

Gain Time

Gain Point

tr
i

tr
j

tr
k
tc
i

(b) After History Rewriting. τi is considered to have used two units
of time that were really used by τj . Thus, τj still has 2 units of bud-
get to use after the gain point.

Figure 2. Example of rewriting history where gain
is assigned to a task that executed between tr

i and
tr
i + Ti. Server budgets are bi = 3, bi = 4.

invocation of task τi only executes for 1 unit of its allo-
cated 3; τj benefits by using the gain of 2 units to execute
for 6 (rather than 4) units of time.

It is clear, by inspection, that in the first example of his-
tory rewriting, shown in Figure 2, no lower priority task will
suffer more interference when the gain time has been redis-
tributed than the double hit scenario explored in Section 3.1.
Note that we only need to consider the effects after the gain
point: rewriting history is done at the gain point and it can-
not cause a deadline miss in the past.

However, the second example, shown in Figure 3, re-
quires a more formal treatment. In this example, the 2 units
of gain time from τi are retrospectively assigned to τj even
though τj executed before τi was released.

Theorem 1. No task that is deemed schedulable by the De-
ferrable Server scheduling test will miss its deadline when
the HisReWri scheme is applied.

Proof. Consider the situations where gain time g is passed
at time tci from τi with priority Pi to task τj with priority
Pj . Note gain time is always passed to lower priority tasks
and hence Pj < Pi.
Clearly all tasks with priority above Pi are unaffected by
this transfer. Moreover any task with priority above Pj but
below (or equal) to Pi will experience at most a reduced
level of interference and hence will continue to be schedu-
lable.



PSfrag replacements

τi

τj

τk

gi

Ei

Ci
Cj

Ti

time
interference

1 2 3

4

Gain Time

Gain Point
tr
i

tr
j

tr
k
tc
i

(a) Before History Rewriting. τi has 2 units of gain time to share.

PSfrag replacements

τi

τj

τk

gi

Ei

Ci
Cj

Ti

time
interference

1

22 2

2 3
4

Gain Time

Gain Point

tr
i

tr
j

tr
k
tc
i

(b) After History Rewriting. τi is considered to have used two units
of time that were really used by τj even though τj executed before
τi was released.

Figure 3. Example of rewriting history where gain
is assigned to a task that executed before tr

i .
Server budgets are bi = 3, bi = 4.

Now consider a task (τk) that suffers interference from τi

and τj . As g is passed from τi to τj , τj executed for at least
g in its current invocation. The critical instance for τk must
either be before or after τj so executed. These two cases are
considered separately.
If the critical instance is before then there is a Pk-level busy
period that includes the execution of τk, the execution of τj ,
the execution of τi (which is no greater then Ci − g) and
then extra execution of τj (which is g). Clearly g is just be-
ing transferred from τi to τj , and hence τk will suffer no in-
crease in interference.
If the critical instance is after the main execution part of τj

then the maximum interference that τj can impose on τk is
when there is a back-to-back execution in which g occurs
just before the completion of one invocation of τj and Cj

occurs as τj is released again. But the DS schedulability test
accounts for a back-to-back interference of Cj followed by
another Cj . As g < Cj it follows that the transfer of gain
time is no worse than that already accounted for.

4. Evaluation

Before considering, by simulation, the effectiveness of
the proposed scheme, we consider the overheads of imple-
mentation. One of the motivations for the proposal is that
it can be incorporated efficiently into a run-time system (or
RTOS). Note that if a Deferrable Server is already in use
then no new run-time data need be collected as execution
times are already been monitored. All that is required is that
at fixed times (at the end of a task’s period; which coincides

with the task’s next release for periodic tasks) a simple real-
location of budgets occurs. The overhead in doing this (see
the scheme description given earlier) is small and can in-
deed be extracted from the gain time itself so that there is
no new term that needs to be incorporated into the schedul-
ing test. If there is insufficient gain time to execute the gain
time allocation algorithm then it simply does not happen.

It is possible to envisage other history rewriting
schemes that may perform better for certain applica-
tions but which have higher overheads. We contend that
a very simple scheme (always allocate to the next pri-
ority level) is straightforward and robust and likely to
be an effective scheme for a wide range of applica-
tions.

To evaluate the use of history rewriting as a gain time re-
claiming mechanism, we consider two metrics. Firstly, we
evaluate how much gain time can actually be reclaimed by
this mechanism, by measuring the increase in utilisation.
Secondly, we compare how effective gain time reclaiming
is at reducing the response times of aperiodic activities.

Both of these metrics together are needed to assess the
effectiveness of history rewriting; neither of them alone
is useful. To understand this consider alternative schemes.
Background scheduling (lowering a priority to background
when a server is exhausted), for example will always be
able to ‘reclaim’ 100% of gain time, however the time taken
for this gain time to become available means that response
times are large. On the other hand, scheduling aperiodic ac-
tivities before hard tasks will result in very short response
times, but does not easily allow much gain time to be re-
claimed.

4.1. Quantity of Gain Time Reclaimed

To evaluate how much gain time can be reclaimed, a
small set of 6 tasks is simulated, consisting of 3 hard tasks
(which execute for a random time which is less than their
budget) and three soft tasks. The specific soft tasks used for
this section are unbounded, i.e. they will use any bandwidth
that they are allowed to use.

This soft tasks in the set are motivated by the use of
imprecise computation models [17], such as anytime algo-
rithms [10]. Anytime provides a useful scheme for integrat-
ing complex and unbounded calculations into real-time sys-
tems. We may describe an anytime algorithm as one which
may be interrupted at any time to give an answer. If the al-
gorithm is left to run for longer then a more accurate re-
sult is returned. Anytime algorithms are frequently used
for exploring large search spaces and in artificial intelli-
gence. Many complex calculations/algorithms are amenable
for transformation to an anytime algorithm structure [21]. In
the following, an anytime process is termed an unbounded
task.



The priority ordering of the hard (H) and unbounded (U)
tasks is such that they are interleaved (highest priority first):
HUHUHU. Thus, any spare bandwidth unused by a hard
task could potentially be reclaimed by any subsequent un-
bounded task. Deferrable servers are used to limit the band-
width used by each task.

The tasks and servers are listed in Table 1. There is one
task per server. Ci and Ti refer to the server budget and pe-
riod. Ui = Ci/Ti is the maximum utilisation contribution of
the server. The budgets of each server are selected such that
the system is schedulable, where schedulable means that the
worst case response time, Ri, calculated from equation (1),
guarantees that the full server budget for each server is guar-
anteed to be available before the next period of the server.

Task Server Parameters
Ci Ti Ui Ri

H0 100 1000 0.1 100
U1 150 1200 0.125 350
H2 250 1400 0.1786 750
U3 450 2600 0.1731 1950
H4 550 4500 0.1222 4250
U5 700 8000 0.0875 8000

Table 1. Processes and Server Parameters

In the simulations, if the hard (H) tasks consume their
worst case execution time (equal to the server budget) then
we would expect to see the utilisation of each task to be
equal to the server utilisation from Table 1. This forms an
upper bound on the maximum utilisation that any reclaim-
ing algorithm can achieve without resorting to background
scheduling. It is 0.79 for this task set.

Note that in these experiments we do not make use of
background scheduling, because any gain achieved here
would be entirely dependent on the utilisation of the sys-
tem including any low priority tasks that are not budgeted.
Therefore, we do not consider any possible gain from back-
ground work, aiming instead to fully utilise server budgets.

The execution times of the hard tasks in the simulations
are set to follow a uniform (rectangular) distribution be-
tween 5 and Ci/2. This is a reasonable assumption for even
moderately complex tasks. The unbounded tasks still con-
tinue to use all available CPU time. Thus, if we use no re-
claiming of any sort, then the utilisation of this simulation
forms a lower limit which any reclaiming algorithm can be
compared against. This is 0.49 in this task set.

Using history re-writing (alone, with no capacity shar-
ing), simulation results appear in Table 2. Naturally, the
simulations also confirm that no hard deadlines are missed.

The results indicate that the history rewriting mecha-
nism is capable of reclaiming a high percentage of avail-

Ei = Ci (No Gain Time Available) U = 0.79
Ei = rand(5, Ci

2 ) but no reclaiming U = 0.49
Utilisation available for reclaiming 0.79− 0.49 = 0.30
Utilisation with history rewriting on U = 0.77
Utilisation Reclaimed 0.77− 0.49 = 0.28
Fraction Reclaimed 0.28/0.30 = 93%

Table 2. Quantity of Gain Time

able gain time. Therefore we regard history rewriting as a
useful mechanism.

In comparison with capacity sharing and background
scheduling, we note that in this system, both schemes to-
gether would be able to reclaim 100% of gain time. How-
ever, the ‘quality’ of the gain time (how early it becomes
available) is considered in Section 4.2.

Although we make no claim that this task set is repre-
sentative of any system, similar results have been observed
with other task sets.

4.2. Effect on Response Times

The second set of simulations concerns the problem of
reducing response times for aperiodic tasks. A system sim-
ilar to that of Section 4.1 is considered, except that the un-
bounded tasks (U) are replaced by aperiodic tasks (A) which
use 5 units of computation time every invocation. The server
parameters are not altered, therefore there may be many in-
vocations of an aperiodic task to one server period.

The aperiodic tasks are released randomly using a Pois-
son distribution of arrivals. The average bandwidth for the
aperiodic tasks is set to be 1.4 times the available bandwidth
of the respective servers. This factor is so that there is suf-
ficient unused bandwidth from the hard tasks for all aperi-
odic tasks to be scheduled. Thus the system represented is
experiencing an overload situation for its aperiodic tasks;
the scheduling algorithm and budgeting mechanism must
ensure that all hard tasks continue to meet their deadlines
whilst providing the best possible service to the aperiodic
tasks.

A number of experiments with combinations of history
rewriting and capacity sharing were performed. Results ap-
pear in Table 3. For completeness, we consider the effect
of applying history rewriting at both the first (1) and sec-
ond (2) gain points noted in Section 3.3. Capacity sharing
can only occur at the first gain point. For servers with ape-
riodic processes, only one gain point exists and is at always
at the period.

The results indicate that the combination of capacity
sharing and history rewriting enable gain time to be re-
claimed earlier than capacity sharing (or indeed history
rewriting) alone.



τ Average Response Time
DS H(1) H(2) CS CS&H(2)

A1 ∞ 88.0 88.0 21.53 8.0
A3 ∞ 21.8 21.2 18.18 14.6
A5 ∞ 49.9 49.9 45.37 43.1

Key

DS Deferrable server only
H History Rewriting on
CS Capacity Sharing on
(1) Gain point at task completion
(2) Gain point at server period

Table 3. Response Times of Aperiodic Processes

In these experiments, the effect was most noticeable for
high priority tasks, indicating that capacity is being pre-
served at higher priorities.

5. Discussion of Possible Extensions

The scheme described in this paper links history rewrit-
ing with the Deferrable Server. This has a number of ad-
vantages that have already been discussed. It is logical to
link gain time reallocation with real-time systems that have
a mixture of hard and soft activities. For these systems,
budget control (temporal firewalling) is essential. However
there are other budget control schemes. The Sporadic Server
(SS) [19], for example, has the advantage that it enforces
separation (for sporadic tasks) and is incorporated into the
POSIX standard. History rewriting can be be used with Spo-
radic Servers in two different ways:

• with no change to the run-time protocol described
here, but the use of the DS schedulability test; or

• with some modification to the run-time protocol and
the use of the SS schedulability test.

The SS test can theoretically guarantee task sets with
higher utilization than the DS test, but it has a higher run-
time overhead. To rewrite history and keep with the SS
test requires more information to be maintained at run-time.
Gain time cannot be reallocated to a task until a period of
time has elapsed after that task has executed. Whilst it is
possible to develop such a protocol, we currently believe
that the overheads are likely to be too high and hence we
advocate the first approach identified above. However this
is still the topic of further study.

6. Conclusions

Although it is not possible to define a single abstract real-
time application, it is clear that many domains will gener-
ate systems that combine hard and soft activities—such sys-

tems may be considered mixed criticality. These combina-
tions will sometimes be of quite independent activities, but
they may also involve quite integrated hard and soft compu-
tations within the same application module. Another com-
mon characteristic of these systems, particularly when they
execute on modern hardware, will be that the hard com-
ponents will rarely (if ever) execute up to their worst-case
upper bound. And hence it is crucial for the effective en-
gineering of such real-time applications that gain time re-
leased by the system’s hard tasks is used constructively by
the system’s soft tasks. To achieve this requires algorithms
within the soft tasks for exploiting gain time, and proto-
cols within the run-time system for maximising the amount
of gain time that can be made available. This paper has de-
scribed a scheme for addressing the second of these chal-
lenges.

The proposed protocol identifies those tasks that did ex-
ecute when a hard task was dormant (not executing up to its
maximum allocation) and retrospectively assigns their ex-
ecution time to the hard task. In this way gain time is re-
allocated and exploited at priority levels close to those that
actually generated the gain time. By always assigning the
gain time to tasks that have yet to reach the end of their pe-
riod, the bandwidth of the gain time to extended—it has a
prolonged shelf life. As execution time is retrospectively re-
allocated we describe the protocol as history rewriting (His-
ReWri).

The use of history rewriting is orthogonal to other pro-
tocols that have been proposed to maximise spare capac-
ity and to share out server capacity. Taken together these
schemes now provide the application/system programmer
with an effective and comprehensive means of structuring
mixed criticality real-time system. However a multi-server
scheme still has a number of free parameters to fix for the
quality of behaviour desired for a specific application. This
optimisation problem remains an open research question,
and will be the subject of further study.

References

[1] N. C. Audsley, A. Burns, R. I. Davis, and A. J. Wellings. In-
tegrating Best-Effort and Fixed Priority Scheduling. In Pro-
ceedings IFAC/IFIP Workshop on Real-Time Programming,
Lake Constance, Germany., 1994.

[2] N. C. Audsley, A. Burns, M. Richardson, K. Tindell, and
A. J. Wellings. Applying new scheduling theory to static pri-
ority pre-emptive scheduling. Software Engineering Journal,
8(5):284–292, 1993.

[3] H. Aydin, P. Mejı́a-Alvarez, D. Mossé, and R. Melhem.
Dynamic and aggressive scheduling techniques for power-
aware real-time systems. In Proceedings of the 22nd IEEE
Real-Time Systems Symposium (RTSS’01). IEEE Computer
Society, 2001.



[4] G. Bernat and A. Burns. New results on fixed priority ape-
riodic servers. In 20th IEEE Real-Time Systems Symposium,
Phoenix. USA, Dec 1999.

[5] G. Bernat and A. Burns. Multiple servers and capacity shar-
ing for implementing flexible scheduling. Real-Time Systems
Journal, 22:49–75, 2002.

[6] A. Burns and A. J. Wellings. Engineering a hard real-time
system: From theory to practice. Software-Practice and Ex-
perience, 25(7):705–26, 1995.

[7] M. Caccamo, G. Buttazzo, and L. Sha. Capacity sharing for
overrun control. In Proceedings 21st IEEE Real-Time Sys-
tems Symposium, 2000.

[8] A. Colin and S. M. Petters. Experimental evaluation of code
properties for WCET analysis. In Proceedings of the 24th
IEEE International Real-Time Systems Symposium, Cancun,
Mexico, December 3–5 2003.

[9] R. I. Davis and A. J. Wellings. Dual priority scheduling.
In Proceedings 16th IEEE Real-Time Systems Symposium,
pages 100–109, 1995.

[10] T. Dean and M. Boddy. An analysis of time dependent plan-
ning. In Proceedings of the Seventh National Conference on
Artificial Intelligence, pages 49–54, 1988.

[11] M. Joseph and P. Pandya. Finding response times in a real-
time system. BCS Computer Journal, 29(5):390–395, 1986.

[12] C. M. Krishna and Y.-H. Lee. Voltage-clock-scaling adaptive
scheduling techniques for low power in hard real-time sys-
tems. In Proceedings of the Sixth IEEE Real Time Technol-
ogy and Applications Symposium (RTAS 2000). IEEE Com-
puter Society, 2000.

[13] J. P. Lehoczky and S. Ramos-Thuel. An optimal algorithm
for scheduling soft-aperiodic tasks fixed-priority preemptive
systems. In Proceedings 13th IEEE Real-Time Systems Sym-
posium, pages 110–123, 1992.

[14] J. P. Lehoczky, L. Sha, and J. K. Strosnider. Enhanced ape-
riodic responsiveness in a hard real-time environment. In
Proceedings 8th IEEE Real-Time Systems Symposium, pages
261–270, 1987.

[15] P. Pillai and K. G. Shin. Real-time dynamic voltage scal-
ing for low-power embedded operating systems. In Proceed-
ings of the eighteenth ACM symposium on Operating systems
principles, pages 89–102, Banff, Canada, 2001. ACM, ACM
Press.

[16] S. Saewong, R. Rajkumar, J. P. Lehoczky, and M. H. Klein.
Analysis of hierarchical fixed-priority scheduling. In Pro-
ceedings of the 14th Euromicro Conference on Real-time
Systems, pages 173–181, Vienna, Austria, June 2002. Com-
puter Society, IEEE.

[17] W. K. Shih, J. W. S. Liu, and J. Y. Chung. Algorithms for
scheduling imprecise computations with timing constraints.
In Proceedings 10th IEEE Real-Time Systems Symposium,
1989.

[18] B. Sprunt, J. Lehoczky, and L. Sha. Exploiting unused pe-
riodic time for aperiodic service using the extended prior-
ity exchange algorithm. In Proceedings 9th IEEE Real-Time
Systems Symposium, pages 251–258, 1988.

[19] B. Sprunt, L. Sha, and J. P. Lehoczky. Aperiodic task
scheduling for hard real-time systems. Real-Time Systems,
1:27–69, 1989.

[20] D. Zhu, R. Melhem, and B. Childers. Scheduling with dy-
namic voltage/speed adjustment using slack reclamation in
multi-processor real-time systems. IEEE Transactions on
Parallel and Distributed Systems, 14(7):686—700, 2003.

[21] S. Zilberstein. Operational Rationality through compilation
of anytime algorithms. PhD thesis, Computer Science Divi-
sion, University of California, 1993.


