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Abstract— This paper provides further evaluation of the pro-
posed hardware prefetch unit for the Blueshell NoC. This utilises
a separate shared memory tree (Bluetree) for connecting CPUs
to external memory. The tree is supplemented with a Prefetch
Unit next to external memory. Prefetching is carried out in a
streaming manner, with prefetch distance being varied between
1 and 4. Whilst previous work has suggested that prefetching is an
appropriate architectural technique within NoCs, enabling better
system performance, this paper provides further behavioural in-
sight – particularly the degree to which the bottleneck of external
DDR (single port access) eventually dominates performance.

Evaluation via traffic generators (hosted on Microblaze CPUs
in the NoC) show improvements of over 100% for certain memory
loads and prefetch distances. In all cases, prefetching is shown
to have a beneficial effect upto the point at which the memory
system is flooded by CPU requests. The evaluation is supported
by an MP3 case study, which shows improvements of around
10% for upto 4 CPU cores – performance improvement falling
as the number of CPUs increases (to 8 or 16) due to the memory
system being flooded.

I. INTRODUCTION

A key challenge is to ensure that CPUs have sufficient band-
width to external memory. However the relative performance
gap between a CPU and its attached memory is continually
widening [1]; the inclusion of multiple CPUs on a shared
bus merely exacerbates the inevitable memory bottleneck [2].
Architectures such as Network-on-Chip (NoC) [3] offer differ-
ent tradeoffs, reducing shared bus contention but introducing
latencies due to memory accesses being routed across the NoC
mesh, which may be contended. Whilst hardware prefetching
has been widely used in conventional architectures to increase
memory performance and reduce latencies [1], [4], its benefits
have not been widely researched for NoC architectures.

Whilst commodity CPU architectures often include hard-
ware prefetch to improve performance (eg. [5]), typical
NoC architectures do not typically include hardware prefetch
(eg. [6], [7], [8]). Indeed, a common assumption is that CPUs
within the NoC either do not have cache memory, or that
at run-time there are no cache misses instigating a off-chip
memory transaction1.

1That is by ensuring that all code and data needed by application threads
/ tasks running on a CPU are no larger than the cache size of the CPU. If
cache misses are permitted, the NoC must be managed to avoid contention
delays – eg. by using a TDM scheduled NoC to manage external memory
accesses [9].

In [10], [11] the Blueshell NoC is introduced. This is a con-
ventional Manhattan mesh NoC [3], incorporating a number
of interconnected CPU tiles (see Figure 1). Blueshell utilises a
separate shared memory tree (Bluetree) for connecting CPUs
to external memory to reduce contention and bottlenecks.
In [11] a Prefetch Unit is included next to external memory
(see Figure 2). This paper investigates further the performance
of hardware prefetch for NoC architectures within the context
of the Blueshell NoC, which allows prefetch to CPU cache
(which is dual-ported to avoid stalling the CPU).

The remainder of this paper is structured as follows. Sec-
tion II will provide an overview of previous work within the
field of prefetching. Section III describes the overall archi-
tecture (including NoC and memory hierarchy). Evaluation is
given in section IV, including an MP3 decoder case study
(section V) and conclusions drawn in section VI.
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Fig. 1. Blueshell Network-on-Chip with 16 CPU Tiles

II. BACKGROUND AND RELATED WORK

Prefetching is a used within CPU architectures [1] to fetch
data and/or instructions across the memory hierarchy to be
closer to the CPU. The goal is for the data / instructions
to be available just before they are needed by the CPU,
thereby improving performance. Within this paper, we confine
consideration of prefetch between off-chip memory and CPU
cache.

Hardware prefetching is implemented by monitoring mem-
ory accesses between CPU and cache, predicting the locations
of future memory accesses, then issuing appropriate prefetch
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Fig. 2. Bluetree Shared Memory Tree for 8 CPU Tiles
Each CPU tile in the Bluetiles NoC (see figure 1 also connects directly (via
cache) to the Bluetree shared memory (binary) tree to access external DDR
memory, shown above. There is no interference between CPU to CPU
messages across the NoC and CPU to memory transactions across the tree.

requests to memory to fetch those locations to cache. Stream
prefetching [4] assumes that if memory blocks at addresses
n− 2, n− 1 and n have been accessed in sequence, the CPU
will soon require block n + 1. Stream prefetching can only
detect and prefetch a subset of all possible traffic patterns, but
is ideal for code prefetching. To detect streaming data with
an arbitary distance d between each block, [12] developed
a prefetcher which if blocks n − 2d and n − d have been
requested, assumes that the CPU will require blocks n and
n+d in the near future. However, for a large loop kernel with
many loads, there must be a sufficiently large table in order
to store all of this information. [13] shows that for program
counter-based approaches such as this, a table of minimum
256 elements is required for adequate performance.

Data prefetch is more complex, as access patterns are
more unpredictable. For every memory address causing a
cache miss, Markov prefetching [14] stores which memory
addresses came next in the reference stream and prefetches
those addresses. Other approaches either examine data fetched
from memory to find memory addresses (i.e. pointers to data
in a linked data structure) [15], [16] or require the programmer
to annotate their data structures with prefetch candidates [17].

Prefetchers can be tuned on a number of different param-
eters, typically on the amount of data fetched at once (the
prefetch degree), and how far ahead of the current miss address
data is fetched (the prefetch distance). Typically, these are set
at design time based upon experiments on the access patterns
the prefetcher is expecting to see.

III. SYSTEM ARCHITECTURE OVERVIEW

This paper assumes the Blueshell NoC framework [10],
[11] – basic architecture is shown in Figure 1 and 2. Specific
configuration of the framework for this paper includes:

• Routers (Bluetiles) (figure 1):
Routers are 32-bit bi-directional with X-Y routing used
(destination is contained in the first word). We note
that the choice of routing policy does not impact upon
the research presented in this paper, since this research
focuses on the communication over Bluetree; Bluetiles is
only used for simple synchronisation.

• Shared Memory Tree (Bluetree) (figure 2):
2-to-1 multiplexors form a tree connecting CPUs to mem-
ory – CPUs are the leaves of the tree, memory being at
the root. High-bandwidth memory requests do not impact
the performance of other CPUs – there is no interference
between CPU to CPU messages across the NoC and CPU
to memory transactions across the tree. Each multiplexor
port allows 128 bits of data (corresponding to the cache
line size); with single latches at all three ports (hence 2
cycles for data to traverse the multiplexor).

• Prefetch Unit (PU) (figure 2):
Allows prefetch of external memory to the caches within
the CPU tile. Prefetching is carried out in a streaming
manner, with prefetch distance being varied between 1
and 4. See [11] for details of the PU.

• CPU Tiles [10], [11]:
CPU tiles are built using the Microblaze CPU [18]. CPU
configuration is 8kB split data and instruction caches,
and a 8kB shared scratchpad used for fast local storage.
The CPU accesses the cache via Microblaze LMB inter-
faces; cache misses being issued to external memory via
Bluetree. The CPU tile contains custom cache control
is configured to allow selective invalidation of cache
lines and to record prefetch related data on a per cache
line basis (the cache control unit also serves as the
Microblaze’s interrupt controller and provides a clock-
cycle counter facility). Cache control is accessed via
Microblaze Fast Simplex Links (FSL), utilising single-
cycle FIFOs. Further details of the cache design are given
in [10], [11].

The Blueshell NoC framework is a collection of libraries
written in Bluespec System Verilog [19]. A typical NoC is
implemented with some extra tiles to aid bootstrapping, debug
and obtaining experimental results [10]. Access to memory
mapped peripherals is supported by attaching the Bluetiles
network to an AXI [20] bus via an AXI bridge tile. Fully
working designs have already been created for the Xilinx
ML605, Xilinx VC707 and Digilent Atlys Spartan-6 board.

IV. EVALUATION

Initial evaluation was performed by using traffic generators,
as described in this section. In section V the results of an MP3
based case study are reported.

A. PU and NoC Implementation

The streaming Prefetch Unit (PU) was implemented within a
4x4 Bluetiles NoC (see section III), with each Microblaze CPU
having a connection to the shared memory tree. The PU is at
the root (see 2), hence a depth of 4 multiplexors between any
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Fig. 3. Prefetcher behaviour for a single CPU.
Speedup of 0 represents no speedup; speedup of 1 represents 100% speedup. Memory load of 100 represents maximum delay (300 cycles); 0 represents
minimum delay (ie. maximum memory load).

(a) 1 Lookahead (b) 2 Lookahead (c) 4 Lookahead

Fig. 4. Prefetcher behaviour for four CPUs.
Speedup of 0 represents no speedup; speedup of 1 represents 100% speedup. Memory load of 100 represents maximum delay (300 cycles); 0 represents
minimum delay (ie. maximum memory load).

CPU and the PU, and a further multiplexor between PU and
DDR (not illustrated in 2). The target for the implementation
was a Xilinx Virtex-7 FPGA attached to DDR3-800 external
memory, allowing CPUs within the NoC to run at 50MHz.
When implemented, this prefetch unit consumes around 2400
slices and 7100 LUTs of the FPGA fabric for a 16-processor
prefetcher. For the most part, the high slice utilisation is
simply for storing data, such as the input/output FIFOs and
squash buffer storage, which in total utilise around 4200 slice
registers.

In terms of timing and latencies, we note [11]:

• Shared Memory Tree Multiplexor: Bluetree uses a buffer
for both input and output, hence the cost of crossing a
multiplexor is 2 cycles. Note that the multiplexor between
PU and DDR crosses a clock domain, with total cost ≈15
clock cycles.

• PU: cost of crossing is 2 cycles.
• DDR: clocked at 100MHz, with a ≈ 10 cycle setup and

transfer time for a memory transaction.

Therefore, the total latency for a memory transaction from
CPU to PU and return is 20 cycles (including crossing the
PU), between PU and DDR and return is ≈ 40 cycles. Hence
total time is ≈ 60 cycles.

B. Traffic Generation and Experimental Parameters

The Prefetch Unit (PU) was initially evaluated via CPUs
executing a traffic generator fetching from addresses N , N+1,
N + 2 etc in sequence, waiting in between accesses in order
to simulate varying memory loads. Thus each fetch generates
a load of a cache line (16 bytes) from memory. Note that a
“burst” traffic generator (issuing a number of memory requests
as fast as possible, then pausing) produces similar results and
have been omitted for brevity.

Experimental parameters:
• Number of CPUs: 1, 4, 8 or 16 (this maintains a fully

connected tree).
• Prefetch distance: 1, 2, or 4.
• Delay between successive memory accesses by CPU: 0-

300 cycles in steps of 3 (as the loop body takes three
cycles).

Note that 0 delay cycles places maximum load on the memory
tree; at 300 delay cycles, the time spent in the delay loop will
eventually dwarf the time spent accessing memory, with the
overall speedup tending to zero.

C. Experimental Metrics

For each experiment the following were measured:
• Speedup: representing the speedup from enabling the

prefetcher. A speedup of zero represents no speedup (i.e.



performance was identical with the prefetcher enabled
and bypassed). A speedup of one represents a 100%
speedup (i.e. performance with the prefetcher enabled
was double that with the prefetcher bypassed). Negative
speedups represent a performance penalty.

• Memory Load: equivalent to the delay which is inserted
between memory accesses. A memory load of zero is
no delay, which is effectively the maximum possible
memory load for that system. A memory load of 300
is the maximum delay, which was the minimum memory
load measured.

• Number of Prefetches: the number of cache lines which
were prefetched at that memory load. In ideal cases, this
should be constant for all parameters.

• Number of Squashes: the number of prefetches that were
squashed (coalesced with an outstanding demand miss).
In ideal cases, this should remain at zero.

D. Single CPU

The overall shape of the behaviour of the prefetcher with
a single CPU can be seen in Figure 3. These graphs show
the results for the 1, 2 and 4 lookahead variants. The graphs
show that as the memory load increases, as do the potential
performance gains from enabling a prefetcher. Note that the
speedup tends to zero as the delay increases (and thus memory
load decreases). If the speedup is measured only for the parts
of the traffic generator that access memory (i.e. the delay loop
is not profiled), the speedup is effectively constant.

Within Figure 3(a) we note the speedup flattening (at a load
of about 5), and becoming noisy. This can be explained by
the “squashes” line in the graph, that is, around this point, the
prefetches are not being completed by the time that the traffic
generator requests that data from memory. In real terms, this
equates to around 16% of actual memory load for a single
CPU. This figure is low as the routing time from the CPU
to the memory controller and back again dominates the time
taken to access DRAM from the DRAM controller.

As can be seen in figures 3(b) and 3(c), this effect can
be alleviated by increasing the prefetch distance. This causes
the prefetch for an address to be (effectively) issued earlier,
hence there is a longer period of time between the prefetch
being issued and required. This then reduces a likelihood of a
squash, since the deadline for the prefetch to be completed is
now further in the future.

E. Four CPUs

The graphs for 2 (not shown) and 4 CPUs (in Figure 4) are
almost identical to those for a single CPU, albeit the “plateau”
occurs at a slightly lower memory utilisation. Again, this
plateau corresponds to an increasing number of “squashes”,
indicating that prefetches are not being issued fast enough.

Recall from section IV-D that this plateau occurred at
around 16% of “real” memory utilisation for a single CPU.
For memory utilisation <16% there is sufficient spare time
where the memory is not being utilised, with memory requests
originating from different CPUs easily interleaved. This effect

can still be seen in Figure 4 – despite there being a number of
squashes, there is sufficient time, either in the hold-off interval
or the transit time for another task’s access, to handle memory
requests from other CPUs (so that the graph follows the same
shape as shown in section IV-D).

F. Eight/Sixteen CPUs
The graphs for 8 (Figure 5) and 16 (Figure 6) CPUs

show the effects of loading the memory tree so that there
is insufficient time to support the interleaving mentioned in
section IV-E. The first half of these graphs show an increase
in performance (similar to other graphs for 1 or 4 CPUs),
although the falloff for 8 and 16 CPUs is seen between loads
10 and 20, respectively. This peak is typically paired with a
high number of “squashes”, as before.

This effect damages performance since a prefetch is coa-
lesced with its demand miss almost at the same time that the
prefetch was issued. This means that performance degrades
to the point where the prefetcher is effectively not doing
anything, it may simply save one or two cycles at a maximum.

G. Further Observations – Tree Priority Encoding
The Bluetree multiplexor has a fixed priority encoding – ie.

requests from one port are always prioritised, assuming the
requests arrive in the same clock cycle. This could cause a
CPU to be locked out of memory. However, if the prioritised
CPU makes a memory request, there is at least one free cycle
whilst the upstream memory replies (to the issuing CPU), so
the “non-priority” processor can issue a request.

There is a case where a processor emitting constant writes
can lock the bus if a write is issued every cycle. This is
unlikely for a couple of cases. First, given a cache lookup
time, each instruction fetch is not single-cycle, thus a write
cannot occur every cycle. Secondly, writing to sequential
memory locations requires subsequent instructions to update
the address and loop back. This can be avoided using loop
unrolling, but this only alters the burst length; N addresses
from N registers could be written before the values in these
registers must be updated again, thus freeing the bus. Further
experiments in the Bluetree platform which capture statistics
such as “most utilised port” support this hypothesis.

H. Further Observations – Higher Workloads
For higher workloads, as the memory load increases the

number of prefetches begins to decline. This is due to the ef-
fective priority encoding between demand misses and prefetch
accesses. At higher workloads, the memory becomes fully
utilised with demand misses, with prefetches getting issued
too late to have an effect on performance – ie. the prefetch is
dispatched after the demand miss for the same line. Because
it is late, it is not marked as a prefetched within the cache,
hence there is no feedback from the cache when the line is
used. In effect, on the next demand miss, the prefetcher must
re-train, leading to a reduction in the number of prefetched
lines, and as such worse performance.

A side effect of this can be seen at the right-hand side of
figure 6(a). At high load prefetches are dispatched too late –
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Fig. 5. Prefetcher behaviour for eight CPUs.
Speedup of 0 represents no speedup; speedup of 1 represents 100% speedup. Memory load of 100 represents maximum delay (300 cycles); 0 represents
minimum delay (ie. maximum memory load).

(a) 1 Lookahead (b) 2 Lookahead (c) 4 Lookahead

Fig. 6. Prefetcher behaviour for sixteen CPUs.
Speedup of 0 represents no speedup; speedup of 1 represents 100% speedup. Memory load of 100 represents maximum delay (300 cycles); 0 represents
minimum delay (ie. maximum memory load).

these prefetches have no effect, since the demand miss for that
line has already happened, and thus the prefetch ties up the
memory for a full cycle with an ineffective access, leading to
a performance degredation as there is contention from other
demand misses for that time slice.

V. CASE STUDY

To demonstrate the performance of the PU on a real work-
load, the Helix fixed-point MP3 decoder [21] was ported to
the Blueshell platform. This section describes the performance
of the PU for this real workload.

A. Helix MP3 Decoder

The Helix decoder [21] has a lightweight footprint and
minimal hardware requirements. It relies upon the memory
allocation components of libc (which can be replaced if
required) and a number of external math routines. Its com-
putation is fixed point, removing the need for a hardware
floating-point unit. When compiled, its memory requirements
are around 40kB of data memory.

The Helix implementation was customised to parallelise
the workload by placing the input data in main memory,
then splitting the data between CPUs in a divide-and-conquer
strategy. Of course, this strategy is not perfect for MP3. The
specification of the codec allows “spare” data from each frame
to contribute to a reservoir for use in subsequent frames [22].

By starting in the middle of the data, this reservioir will be
empty and as such, a couple of frames will be discarded as it
refills. For this reason, a real decoder should overlap the work
done by each CPU so that this difference does not exist. This
issue was ignored for a proof of concept, however as it has
no effect on results.

Fig. 7. A plot of the speedups from the Helix MP3 Decoder [21]
Speedup of 0 represents no speedup; speedup of 1 represents 100% speedup.



B. Results

Results are shown in figure 7. This shows the speedup,
represented in the same way as in section IV and for identical
system parameters (i.e. 1, 2, 4, 8 and 16 processors with a
stride of 1, 2 and 4). The speedup is derived over the whole
execution time of the decoder (including setup/teardown) on
a 45-second 128kbps audio file.

The MP3 decoder is, in effect, a memory bound application;
all CPUs must parse a section of the audio data in an incre-
mental fashion, which is ideal for detection by a prefetcher.
This also means that the workload is very sensitive to memory
bottlenecks. For these reasons, prefetch for MP3 decoding
should be effective for high memory utilisations.

The graphs (figure 7) for one, two and four CPUs show
a good speedup of around 10%. In addition, the changing
prefetch distance can improve performance. This is due to
sections of the MP3 file being copied into internal buffers
using the memcpy function, hence the memory utilisation
in these sections is the highest it can be; memcpy can be
implemented in around 4-5 machine instructions. The reason
for the speedups from an increased stride are hence the same as
in section IV. There are also other similar speedups throughout
from rapid access to memory buffers.

The graphs for eight CPUs, however, show a very steep
drop-off into performance degradation. The reason for this is
very similar to the reasons outlined in IV-F. An MP3 decoder,
of course, has a high number of reads from successive memory
locations, implying a large number of cache misses and hence
a large number of memory reads, but in addition has a large
number of writes of both intermediate data and output data.
This latency of intermediate buffers is normally alleviated
using a cache, but since Blueshell’s cache uses a write-through
design, these must all be also committed to memory, causing
even more memory load.

These reads and writes end up driving the effective memory
utilisation to 100% for most memory-heavy regions, blocking
prefetches from being correctly dispatched from the PU. This
leads to the same case as outlined in section IV-F, where
prefetches simply cannot be dispatched in time, and thus end
up fetching data which has already been fetched by a demand
miss, tying up the memory controller further and leading to a
performance degredation.

VI. CONCLUSIONS AND FUTURE WORK

Standard prefetch techniques can work on a multi-core sys-
tem such as a NoC, masking some of the increasing memory
and bus latencies. This is particularly relevant as NoC sizes
scale. We observed that larger prefetch distances can yield
better results as the memory load increases. However, keeping
the distance high does not always gain the best performance
– eg. if the stream is short, or if unneeded prefetches are
generated at the end of a stream (up to the prefetch distance).

Evaluation via traffic generators (hosted on Microblaze
CPUs in the NoC) show improvements of over 100% for
certain memory loads and prefetch distances. In all cases,
prefetching is shown to have a beneficial effect upto the point

at which the memory system is flooded by CPU requests.
The evaluation is supported by an MP3 case study, which
shows improvements of around 10% for upto 4 CPU cores
– performance improvement falling as the number of CPUs
increases (to 8 or 16) due to the memory system being flooded
(ie. the external DDR).
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