
Prefetching Across a Shared Memory Tree within a

Network-on-Chip Architecture

Jamie Garside

Department of Computer Science

University of York, UK

jg@cs.york.ac.uk

Neil C. Audsley

Department of Computer Science

University of York, UK

neil.audsley@york.ac.uk

Abstract— Within Network-on-Chip architectures the sharing
of external memory by many CPUs provides a key challenge
within the design in order that memory latencies do not dominate
overall performance. Within this paper, we propose and evaluate
a stream based prefetch unit within a NoC architecture that
utilises a separate shared memory tree to provide access to
external memory from each CPU tile. The paper shows that
prefetching is an appropriate architectural technique within
NoCs, enabling better system performance.

I. INTRODUCTION

The gap between the relative performance of a CPU and its

attached memory is continually widening [1]. In the context of

Network-on-Chip (NoC) architectures with multiple CPUs and

shared external memory, these effects are magnified as external

memory accesses also involve routing latencies across a grid of

routers. In single CPU systems, caches and prefetch are typical

techniques to hide memory latencies. This paper proposes and

evaluates some prefetch techniques within a NoC architecture

using CPUs with caches enabled, accessing external memory

across a dedicated shared memory tree.

The remainder of this paper is structured as follows. Sec-

tion II will provide an overview of previous work within the

field of prefetching. Section III will describe the network-on-

chip we are using for our experiments, while V will detail the

methodology of evaluating a prefetcher within the context of

the network-on-chip. Finally, evaluations of these experiments

will be given in section V and conclusions drawn in section VI.

II. BACKGROUND AND RELATED WORK

Stream prefetching [2] makes the simple assumption that

if memory blocks at addresses n − 2, n − 1 and n have

been accessed in sequence, it is likely that the processor

will soon require block n + 1. This can be implemented

using a lookup table indexed on the last miss address for

the stream corresponding to a table row. On a cache miss,

the miss address is looked up in the table, the table updated,

and possibly the next line fetched from memory. On a cache

hit, if the cache line is tagged as prefetched, the prefetcher

is notified, which will again look up the address in the table,

update it, and issue a request for the next line. If there is no

row corresponding to a cache miss address, a different row

is picked as a replacement candidate, typically using LRU or

This work is supported in part by EU FP7 project T-CREST (288008)

round-robin selection, and filled in with the information of the

miss address.

Stream prefetching can only detect and prefetch a subset of

all possible traffic patterns, but is ideal for code prefetching.

To detect streaming data with an arbitary distance d between

each block, [3] developed a prefetcher which if blocks n− 2d

and n − d have been requested, the processor will require

blocks n and n+d in the near future. This is implemented by

a lookup table indexed by the program counter rather than the

miss address. A stride can be detected without many complex

lookups. However, for a large loop kernel with many loads,

there must be a sufficiently large table in order to store all

of this information. [4] shows that for program counter-based

approaches such as this, a table of around 256 elements is

required, any less starts to greatly harm performance.

For data accesses that are more unpredictable in terms of

stride distance differences, two main approaches have been

proposed. For every memory address causing a cache miss,

Markov prefetching [5] stores which memory addresses came

next in the reference stream and prefetches those addresses

too. This requires a large amount of storage space to encode

this table, so a generalisation of this is to instead store

the differences between the memory addresses rather than

the addresses themselves [6]. This then can provide similar

performance to a Markov prefetcher, albeit with more potential

pollution, at a fraction of the space required by the Markov

model. Other approaches either examine data fetched from

memory to find memory addresses (i.e. pointers to data in a

linked data structure) [7], [8] or require the programmer to

annotate their data structures with prefetch candidates [9].

Prefetchers such as these can be tuned on a number of

different parameters, typically on the amount of data fetched

at once (the prefetch degree), and how far ahead of the current

miss address data is fetched (the prefetch distance). Typically,

these are set at design time based upon experiments on the

access patterns the prefetcher is expecting to see.

III. SYSTEM ARCHITECTURE

This paper uses the Blueshell NoC framework [10], whose

basic architecture is shown in Figure 1(a) and 1(b). Specific

configuration of the framework for this paper includes:

• Routers: are 32-bit bi-directional. Routing is performed

by inspection of the first word for destination, with X-Y

μ0 μ1 μ2

μ4 μ5 μ6

μ8 μ9 μ10

μ12 μ13 μ14

μ3

μ7

μ11

μ15

μBluetiles Router MicroBlaze Tile

(a) Bluetiles NoC with 16 CPU Tiles

μ0 μ1 μ2 μ3 μ4 μ5 μ6 μ7

DDR

μ MicroBlaze Tile 0
Bluetree
Multiplexer

Prefetcher

(b) Bluetree Shared Memory Tree for 8 CPU Tiles

Fig. 1. Blueshell Network-on-Chip and Shared Memory Tree
Bluetiles is a Manhattan grid NoC, with arbitrated routing between CPU tiles. Each CPU tile also connects directly (via cache) to the Bluetree shared

memory (binary) tree to access external DDR. There is no interference between CPU to CPU messages across the NoC and CPU to memory transactions
across the tree. CPU tiles can be replaced with other custom accelerators or I/O to peripherals.

Demand

Queue

Hit

Queue

B
lu

e
tre

e

Demand Miss

Calculator

Hit Calculator

Stream Buffers
Prefetch

Mem Queue

Demand

Mem Queue

MemoryM
u
x

Incoming

Squash Filter

Outgoing

Squash Filter

Output

Queue

Fig. 2. Architecture of the Prefetch Unit

routing then performed. Within the Bluetiles framework

there are a number of potential routing policies that can

be chosen – we note that the exact choice does not impact

upon the research presented in this paper.

• Shared Memory Tree: 2-to-1 multiplexors are used, con-

necting all CPU tiles at the leaves of the tree and the

memory at the root. High-bandwidth memory requests

do not impact the performance of other CPUs – there

is no interference between CPU to CPU messages across

the NoC and CPU to memory transactions across the tree.

• CPU Tiles: Microblaze CPU tiles are used, with 8kB of

local storage, 8kB split data and instruction caches, and

a 8kB shared scratchpad used for fast local storage. The

CPU interfaces to the shared memory tree via Microblaze

FSL links (single cycle FIFOs), allowing cache misses to

be issued to external memory via the shared tree. Custom

cache control is configured to allow selective invalidation

of cache lines and to record prefetch related data on a per

cache line basis.

A. Prefetch Unit (PU)

This paper proposes a streaming Prefetch Unit (PU) at the

root of the shared memory tree (see Figure 1(b)) to snoop

all memory transactions to ascertain trends in the pattern of

memory fetches, and overall load of main memory. The PU is

variable lookahead, in that it can be configured to distance 1,

2 or 4.

The architecture of the PU is illustrated in Figure 2:

• Stream Buffer: 8 per connected CPU. They store last

address accessed and validity of the stream. Each stream

buffer is circular.

• Prefetch Buffer: 32 entry circular buffer containing all

prefetches currently issued to memory (ie. pending).

• Squash Buffer: 32 entry circular buffer containing all

pending requests from CPUs that should be coalesced

with an outstanding prefetch.

Both the Prefetch and Squash buffers are shared, but have

single cycle access eliminating contention issues.

The operation of the PU is described in Listing 1. Addi-

tionally we note the following:

a) Cache Miss: if the address is not in the Prefetch

Buffer, a memory request is issued and a prefetch of the next

memory location (plus distance D) instigated. If the address

is already being fetched (ie. in the Prefetch Buffer), an entry

is made in the Squash Buffer and the request discarded. The

cache marks the returned memory packet as prefetched by

asserting a flag within the cache entry.

b) Cache Hit: on a cache hit of an address marked

prefetched the PU is informed so that it knows the prefetch was

useful using a special Bluetree packet sent automatically from

the cache, so can instigate the next prefetch for this stream.

c) Potential Race Condition: a demand miss (i.e. a block

required by the CPU) could arrive for a prefetched block which

is currently being delivered to the CPU via the shared memory

tree. Hence, on a completed prefetch, the corresponding line in

the prefetch buffer is set as recent rather than invalid. If a line

is found in the prefetch buffer which is marked as recent, the

memory request can be discarded, since the recent prefetch

will fulfill the demand miss. In order to avoid hazards, any

line in the prefetch buffer which is marked recent can be

overwritten by new prefetches, or overwritten if there is a

On incoming memory r e q u e s t :
i f (r e q u e s t a d d r e s s i n p r e f e t c h b u f f e r) :

add r e q u e s t a d d r e s s t o s q u a s h b u f f e r
d i s c a r d r e q u e s t

e l s e :
i s s u e r e q u e s t a d d r e s s t o memory
i f (r e q u e s t a d d r e s s −D i n s t r e a m b u f f e r s) :

i s s u e r e q u e s t a d d r e s s +D t o memory
u p d a t e s t r e a m b u f f e r s

e l s e
add r e q u e s t a d d r e s s t o s t r e a m b u f f e r s

On incoming h i t n o t i f i c a t i o n :
i f (h i t a d d r e s s i n s t r e a m b u f f e r s)

i s s u e h i t a d d r e s s +D t o memory
u p d a t e s t r e a m b u f f e r s

On r e t u r n i n g memory r e q u e s t :
i f (r e t u r n a d d r e s s i n s q u a s h b u f f e r)

send r e t u r n p a c k e t t o cpu as s t a n d a r d r e a d
e l s e

send r e t u r n p a c k e t t o cpu as p r e f e t c h

Listing 1. Pseudocode describing the operation PU (distance D).

write to that memory line.

IV. IMPLEMENTATION

The streaming Prefetch Unit (PU) (see section III-A) was

implemented within a 4x4 Bluetiles NoC (see section III),

with each CPU having a connection to the shared memory

tree. The PU is at the root (see 1(b)), hence a depth of 4

multiplexors between any CPU and the PU, and a further

multiplexor between PU and DDR (not illustrated in 1(b)).

The target for the implementation was a Xilinx Virtex-7 FPGA

attached to DDR3-800 external memory, utilising the standard

Xilinx DDR3 controller [11]. The CPUs are configured to run

at 50MHz1, and are synthesized onto the physical hardware.

In terms of timing and latencies, we note:

• Shared Memory Tree Multiplexor: Bluetree uses a buffer

for both input and output, hence the cost of crossing a

multiplexor is 2 cycles. Note that the multiplexor between

PU and DDR crosses a clock domain, with total cost ≈15

clock cycles.

• PU: cost of crossing is 2 cycles.

• DDR: clocked at 100MHz, with a ≈ 10 cycle setup and

transfer time for a memory transaction.

Therefore, the total latency for a memory transaction from

CPU to PU and return is 20 cycles (including crossing the

PU), between PU and DDR and return is ≈ 40 cycles. Hence

total time is ≈ 60 cycles.

V. EVALUATION

The Prefetch Unit (PU) was evaluated via CPUs executing a

traffic generator fetching from addresses N , N+1, N+2 etc in

sequence, waiting between accesses in order to simulate vary-

ing memory traffic load. Delays between successive memory

requests from the CPU were set at 300, with memory speed

and load measured at the PU. Then separate experiments were

1We note that this is a tool-imposed restriction, and is being improved for
future work. This low speed is not an issue for this work, since a set of CPUs
can still saturate the available memory controller bandwidth.

performed for each delay from 300 down to 0 cycles (step 3

cycles). Zero-delay stresses the memory controller as much as

possible. With a delay of 300 the time spent in the delay loop

will grow much larger than that for memory requests, and as

such the speedup will tend to zero. The number of enabled

CPUs were also varied (between 1 and 15); together with the

prefetch distance.

For each experiment, two metrics are recorded:

• Normalised Execution Time: representing the potential

speedup of prefetching. This is the ratio of the amount

of execution time achieved by the CPU when the PU is

active to that when the PU is bypassed (ie. a conventional

system without a PU). A normalised execution time of 1

represents no speedup, 2 represents 100% speedup, and

<1 represents a performance penalty.

• Memory Load: representing the proportion of time that

there was an outstanding memory request (assuming

the PU is bypassed, representing a conventional system

without a PU). In general, as the delay is lowered, the

memory load will increase.

A. 1-Lookahead PU with 16 CPUs

An upwards curve can be seen in figure 3(b). As delay

between successive traffic requests increases, the memory load

decreases due to the delays. As this delay increases further,

the amount of time spent accessing memory eventually is

dominated by the delay until the speedup tends to zero.

Also, PU speedup tends to zero as the memory becomes

highly loaded, as prefetches have lower priority than memory

requests demanded by the CPU (ie. cache misses). If the

memory is highly loaded, the prefetches will not be dispatched

in a timely manner and thus will coalesce in almost all cases.

Finally, if the memory is so highly loaded that prefetches

simply cannot be dispatched fast enough, stale prefetches will

be served out of the prefetch queue.

B. 1-Lookahead PU with 8 CPUs

An upwards curve is seen in figure 3(a), similar to the results

for 16 CPUs, although with a higher total speedup factor

due to fewer CPUs sharing memory bandwidth. Comparing

between 8 and 16 CPUs at 80% load point, the former has

20% of available bandwidth between 8 CPUs; the latter shares

it between 16 CPUs.

C. Varying Lookahead PU with 4 CPUs

Figure 4 shows the best fit curves for prefetch distances

1,2 and 4-ahead. As the memory utilisation increases, the

performance of a 1-lookahead PU falls quickly – this does

not happen with 2-lookahead and 4-lookahead PUs since as

the delay between memory accesses decreases, the next word

will be required faster, leading to a coalesced prefetch for

the next line. If instead a prefetch is issued for two words

ahead, this coalesce does not occur, since the line now being

prefetched is further ahead of the memory access stream.

We also note that as the delay decreases, the amount of free

memory load for prefetches decreases due to overall memory

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
o
rm

a
lis

e
d
 E

x
e
c
u
ti
o
n
 T

im
e

Memory Load

(a) 8 processors

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 0.4 0.5 0.6 0.7 0.8 0.9 1

N
o
rm

a
lis

e
d
 E

x
e
c
u
ti
o
n
 T

im
e

Memory Load

(b) 16 processors

Fig. 3. Plots of speedup against memory load for varying processor counts.

 0.5

 1

 1.5

 2

 2.5

 3

 0 0.2 0.4 0.6 0.8 1

N
o

rm
a

lis
e

d
 E

x
e

c
u

ti
o

n
 T

im
e

Memory Load

1 Lookahead Fit
2 Lookahead Fit
4 Lookahead Fit

Fig. 4. Best fit curves for 4 Processors with multiple distances

load increasing. This leads to prefetches being dispatched later

as standard memory packets take priority – hence they are

more likely to coalesce with a demand miss.

VI. CONCLUSIONS AND FUTURE WORK

Standard prefetch techniques, to an extent, can work on a

multi-core system such as a NoC, masking a proportion of

the increasing memory and bus latencies. This is particularly

relevant as NoC sizes scale. We observed that larger prefetch

distances can yield better results as the memory load increases.

However, keeping the distance high does not always gain the

best performance – eg. if the stream is short, or if unneeded

prefetches are generated at the end of a stream (up to the

prefetch distance).

Current work is extending the Prefetch Unit described with

existing adaptive prefetch approaches. Srinath et al [12] pro-

pose a scheme which adapts the parameters of the prefetcher

its current characteristics, i.e. the timeliness and accuracy of

prefetches. Since the prefetcher in this system has global in-

formation about the memory load, it could adjust the prefetch

distance based upon this load, since further prefetches are

more likely to generate a hit, and shorter prefetches are

likely to be shadowed due to the dispatch delay. Equally,

at extremely high memory loads, the prefetcher should be

disabled entirely, since it tends to only damage performance.

Such global information will help develop a PU with increased

effectiveness for NoC.

REFERENCES

[1] J. Hennessy and D. Patterson, Computer Architecture : A Quantitative

Approach, 4th ed. Morgan Kaufmann, 2006.
[2] N. Jouppi, “Improving direct-mapped cache performance by the

addition of a small fully-associative cache and prefetch buffers,” in
[1990] Proceedings. The 17th Annual International Symposium on

Computer Architecture. IEEE Comput. Soc. Press, 1990, pp. 364–373.
[3] J.-L. Baer and T.-F. Chen, “An effective on-chip preloading scheme

to reduce data access penalty,” in Proceedings of the 1991 ACM/IEEE

conference on Supercomputing - Supercomputing ’91. New York, New
York, USA: ACM Press, 1991, pp. 176–186.

[4] J. W. C. Fu, J. H. Patel, and B. L. Janssens, “Stride directed prefetching
in scalar processors,” ACM SIGMICRO Newsletter, vol. 23, no. 1-2,
pp. 102–110, Dec. 1992.

[5] D. Joseph and D. Grunwald, “Prefetching using Markov predictors,” in
Proceedings of the 24th annual international symposium on Computer

architecture - ISCA ’97. New York, New York, USA: ACM Press,
1997, pp. 252–263.

[6] K. Nesbit and J. Smith, “Data Cache Prefetching Using a Global
History Buffer,” in 10th International Symposium on High Performance

Computer Architecture (HPCA’04). IEEE, 2004, pp. 96–96.
[7] R. Cooksey, S. Jourdan, and D. Grunwald, “A stateless, content-directed

data prefetching mechanism,” ACM SIGPLAN Notices, vol. 37, no. 10,
p. 279, Oct. 2002.

[8] J. Collins, S. S. Sair, B. Calder, and D. M. Tullsen, “Pointer Cache
Assisted Prefetching,” in Proceedings of the 35th annual ACM/IEEE

international symposium on Microarchitecture, 2002, pp. 62–73.
[9] A. Roth and G. Sohi, “Effective jump-pointer prefetching for linked

data structures,” in Proceedings of the 26th International Symposium

on Computer Architecture (Cat. No.99CB36367). IEEE Comput. Soc.
Press, 1999, pp. 111–121.

[10] G. Plumbridge, J. Whitham, and N. Audsley, “Blueshell : A Platform
for Rapid Prototyping of Multiprocessor NoCs and Accelerators.” Uni-
versity of York, 2013, p. To Appear.

[11] Xilinx, “7 Series FPGAs Memory Interface Solutions,” 2011.
[12] S. Srinath, O. Mutlu, H. Kim, and Y. N. Patt, “Feedback Directed

Prefetching: Improving the Performance and Bandwidth-Efficiency of
Hardware Prefetchers,” 2007 IEEE 13th International Symposium on

High Performance Computer Architecture, pp. 63–74, 2007.

