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ABSTRACT
There is an obvious bus bottleneck when multiple CPUs
within a Many-Core architecture share the same physical off-
chip memory (eg. DDR / DRAM). Worst-Case Execution
Time (WCET) analysis of application tasks will inevitably
include the effects of sharing the memory bus amongst CPUs;
likewise average case execution times will include effects
of individual memory accesses being slowed by interference
with other memory requests from other CPUs. One ap-
proach for mitigating this is to use a hardware prefetch to
move instructions and data from memory to the CPU cache
before a cache miss instigates a memory request. However,
in a real-time system, there is a trade-off between issuing
prefetch requests to off-chip memory and hence reducing
bandwidth available to serving CPU cache misses; and the
gain in the fact that some CPU cache misses are avoided by
the prefetch with the memory system seeing reduced mem-
ory requests.

In this paper we propose, analyse and show the implemen-
tation of a hardware prefetcher designed so that WCET of
application tasks are not affected by the run-time behaviour
of the prefetcher, i.e. it utilises spare time within the mem-
ory system to issue prefetch requests and forward them to
the appropriate CPU. As well as not affecting WCET times,
the prefetcher enables significant reduction in average case
execution times of application tasks, showing the efficacy of
the approach.

1. INTRODUCTION
To ascertain an estimate for the execution time of modern

systems utilising shared resources, each component must be
analysable and predictable. In the scope of shared memory,
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this implies two things. First, the maximum time taken
for a memory request to be serviced must be known (e.g.
through [3]), and secondly, the amount of blocking when
attempting to access the shared memory by other tasks must
be known and bounded.

Techniques do exist in order to attempt to ascertain these
figures for standard COTS memory systems [20, 10], which
typically attempt to ascertain how many memory requests
can be made by a higher-priority task in a set period and
hence the worst case blocking for a task at a given priority
level. These techniques analyse the system as a whole and
model the interactions between tasks, which soon becomes
infeasible or pessimistic as the number of possible tasks in
the system increases. This is a problem which can be solved
using a composable analysis [13], which splits the available
bandwidth to shared resources amongst the tasks which re-
quire access. Each task then only needs to be considered
within its own partition, vastly simplifying the analysis.

Each of these techniques do have their problems. While
the worst-case response time of memory can be known and
bounded, this bound must assume maximal blocking by all
other tasks, i.e. each other task must fully utilise its avail-
able memory bandwidth. This may not actually be the case
for the full life cycle of a task, and hence there may be some
“spare” bandwidth which can be used for other uses.

One useful technique for this can be prefetching. Prefetch-
ing attempts to speculatively issue requests for required mem-
ory contents ahead of time, such that they will arrive at the
processor before required. This can mask all or part of the
delay associated with accessing memory. This technique can
further complicate system analysis since the traffic generated
by the prefetcher is typically unpredictable, data fetched by
the prefetcher may displace useful cache data, or may simply
be useless information.

Given these problems, we present a novel prefetcher de-
sign, coupled with a memory arbitration scheme, which al-
lows prefetches to be dispatched, whilst still providing a
guarantee on the worst-case behaviour of a system. This
then allows the average case execution time for a task to be
improved, whilst not affecting the worst-case.

The remainder of this paper is structured as follows: Sec-
tion 2 will cover related work in the fields of prefetching and
memory arbitration. Section 3 will provide the theory of the
worst-case prefetcher. Section 4 will provide an overview of
the design of the system, while Section 5 will provide a tim-
ing analysis of the memory interconnect. Finally, Section 6
will provide an evaluation of the overall system performance,
and Section 7 will draw conclusions from this work and out-
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line future work.

2. BACKGROUND & RELATED WORK

2.1 Prefetching
Stream prefetching [17] is a technique that makes the as-

sumption that if memory addresses A, A+ 1 and A+ 2 have
been accessed, then the data at address A+3 will likely be re-
quired in the near future. This is typically implemented us-
ing a lookup table keyed on the address of the last miss. On
a cache miss, the miss address can be looked up in this table
and if it exists, the record updated and a prefetch option-
ally dispatched. If there is no corresponding row, then a new
row is added, replacing an existing row through the means
of LRU, Round Robin, or a similar replacement scheme.

Stream prefetching can only detect serial streams with a
known, fixed stride. Stride prefetching [4] can detect data
streams, as before, along with the stride between them. In
this case, if memory addresses A, A+d and A+2d have been
accessed, then the data at address A + 3d will be required
in the near future, for a constant distance d.

The implementation of such a prefetcher is similar to that
of a stream prefetcher, although the lookup table is instead
keyed on the address of the load instruction in the program
code, rather than the address loaded. This then allows for
fast detection of a stream with a given stride if there are a se-
quence of accesses with the same stride. This approach does
have its problems though; it is unsuitable for code prefetch,
since there is no program counter for a code load, and [12]
show that for program-counter based approaches such as
this, a table of around 256 entries is required to see a signif-
icant performance gain, and thus the prefetcher has a large
hardware footprint.

Other prefetching such as Markov prefetching [16] can
fetch a series of data without a predictable access pattern. In
this case, the prefetcher stores each miss address, along with
a set of the addresses accessed after said miss address, and
the probability of those addresses being accessed. This can
give good performance gains for unpredictable data streams
(i.e. iterating over a dynamically-allocated linked list), al-
though requires a huge table to store the required data. An
improvement on this approach instead stores the deltas be-
tween memory addresses [19], such that if the difference the
memory addresses of accesses A and B is d, then the next
address will be B + d′ with a probability p′, or could be
B + d′′ with a probability p′′.

Other approaches to fetching unpredictable streams in-
volve examining the data returned from memory for poten-
tial memory addresses (e.g. checking if a returned piece of
data lies in the range of the heap or data sections, therefore
is likely to be a memory address) such as [9, 8], and other
approaches require the programmer to encode hints into the
program to be used by the prefetcher, such as [24].

Other approaches such as Feedback Directed Prefetch-
ing [25] attempt to tune the parameters of the prefetcher
at run-time based on the current behaviour of the system.
As an example, if all prefetches are arriving too late, the
prefetch distance can be increased in order to allow more
time for a prefetch to be serviced and thus reduce the like-
lihood of it being too late. If a prefetcher is currently op-
erating with high accuracy, the prefetcher can increase the
prefetch degree in order to fetch more useful data at once,
utilising the fast sequential speed of DRAM. Adaptive Stream

Detection [15] builds a histogram of the lengths of data
streams within a program. Using this information, the
prefetcher can dynamically decide the prefetch degree at
run-time.

2.2 Memory Interconnect
Many systems are starting to incorporate separate net-

works for communication traffic and memory traffic. The
Tilera TilePRO [2] processor, for example, separates each
communication type onto its own network. One rationale
behind this is to prevent memory and I/O traffic, which
must reach the memory and I/O controllers at the edge of
the device, from interfering with inter-process communica-
tions which communicate within the device. This leads to a
system with a physically separate communication network,
memory network, I/O network and cache coherence network.

MEDEA [26] is another network-on-chip system which
individually caters for the requirements of a core’s inter-
process communication and its memory access requirements.
In this architecture, the memory I/O port of the proces-
sor and a programmable I/O port for communication are
multiplexed onto the interconnect using a fair arbitration
scheme. In addition, this architecture utilises deflection-
routing, which is that every packet must be forwarded some-
where on every cycle. This can suffer from livelock and does
not make any guarantees on the latency of messages.

The Bluetree [21] network-on-chip completely separates
communication traffic and memory traffic in much the same
way as the Tilera architecture, although utilises two com-
pletely separate interconnects in order to achieve this. This
utilises a standard mesh network for communications, cou-
pled with a tree-based interconnect optimised for connecting
many processors to a single memory controller.

2.3 Timing Analysis
Two of the major approaches for ascertaining a worst-

case execution time for a given task are measurement-based
approaches (such as high watermark) and static code anal-
ysis. Tools such as Rapitime [22] and pWCET [5] attempt
to ascertain the worst-case execution time through measure-
ment of blocks of code in the system. This leads to accurate
measurement of the charactisterics of the platform, rather
than a model of the platform, although it is difficult to ver-
ify that the worst-case path has been taken and hence, the
worst-case execution time estimate may be optimistic. Ad-
ditionally, in multi-core systems, it is difficult to ensure that
the task has received the maximum amount of blocking pos-
sible from other cores in the system.

Static techniques such as aiT [14], SWEET [11] and
OTAWA [6] are static analysis based approaches. From a
model defining the timing characteristics of a given system,
this approach calculates the worst-case execution time for
basic blocks by summing the worst-case execution time of
each instruction or group of instructions. From this infor-
mation, a worst-case path can be built and thus the worst-
case execution time calculated. This is an approach which is
more likely to be able to ascertain the worst-case path for a
system, but typically requires the programmer to add anno-
tations to bound certain behaviour of the task, for example,
the iteration count for a loop and the potential values for
indirect memory accesses.

3. PREFETCHING
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Figure 1: Example of a Memory Access Stream

As noted in Section 1, utilising prefetch can both harm
and improve performance. In the ideal case, all prefetches
are required by the CPU and arrive in a timely fashion, thus
improving performance since much of the memory latency
has been removed from the program flow. In the worst case
however, none of the prefetches are required by the CPU. In
this case, cache pollution will arise, displacing useful mem-
ory blocks and thus causing extra latency to re-fetch those
useful blocks, and dispatching the useless reads to the mem-
ory controller will tie up the memory controller for a period
of time.

Stemming from these limitations, we present a novel ap-
proach to prefetching which can utilise the worst-case anal-
ysis of a system in order to allow safe prefetching without
harming the worst-case execution time of the system.

3.1 Using Hit Feedback
The first method of allowing prefetching without harm-

ing the worst-case execution time of a system is to exploit
the prefetch hit feedback. This hit feedback is used by the
processor to notify the prefetcher that prefetched data was,
in fact, useful, which typically then causes the prefetcher
to prefetch the next datum. This feedback can then be ex-
ploited in order to allow a prefetcher to operate in a safe
manner.

A task can be modelled, from the perspective of the mem-
ory subsystem, as a stream of memory accesses m1,m2, ...,
mn. These memory accesses are then separated by an amount
of computation consuming C cycles, forming a set of tuples
(m1, C1), (m2, C2), ..., (mn, Cn). A graphical representation
of this form can be seen in Figure 1. The time taken for each
of these accesses can be bounded, given a known memory re-
sponse time, then the task analysed in order to ascertain an
execution time of the task.

Assuming that a prior prefetch has already fetched a mem-
ory address mpf ahead of time, the fetch for mpf will be
removed from the memory access stream. Rather than re-
moving this access from the stream, a different access can be
dispatched when the access for mpf would previously have
been dispatched. This retains the previous behaviour of the
memory stream, but allows a prefetch to be dispatched. A
graphical representation of this can be seen in the second
half of Figure 1; here, the access for m2 has been prefetched
ahead of time, and hence replaced with a prefetch.

This approach makes two assumptions: firstly, the ac-
cess time to a memory location must be uniform, which
can be achieved using a closed-page memory access policy
(that is, a precharge is issued after access, rather than spec-
ulatively leaving the bank open for further accesses) [23].
Secondly, this currently assumes a single task per processor
with no preemption. This approach can scale to multiple
tasks with preemption; any memory fetches associated with

cache-related preemption delays will form part of the refer-
ence stream, as normal, and the prefetcher need not mea-
sure the computation time between memory accesses Cx,
instead the CPU can notify the prefetcher when a memory
line would be fetched; the time Cx is merely an abstraction
to demonstrate the prefetcher’s concept.

3.2 Initial Prefetch
The theory in Section 3.1 assumes that a prefetch has al-

ready been delivered to a given processor. Delivering this
initial prefetch can be performed in one of two ways, de-
pending upon the characteristics of the target system:

3.2.1 Explicit Reservation
The prefetcher can be explicitly allocated a memory band-

width budget within the chosen arbitration scheme. This al-
lows for simpler analysis of the prefetcher’s behaviour, since
the amount of interference that the prefetcher can cause to
other tasks is bounded and fixed. This does have problems
inherent to other arbitration schemes though, such as that
the prefetcher may not utilise all of its bandwidth budget,
consuming resources which could be allocated to other tasks.

The bandwidth reserved to the prefetcher can then be
used in the standard worst-case analysis. This allows for
guarantees to be given to the prefetcher, at the cost of worst-
case system performance.

3.2.2 Slack Stealing
The prefetcher can utilise any “spare” time within the sys-

tem. As noted in Section 1, many arbitration schemes assign
a memory quota to a task statically, which a task may not
saturate during its whole life-cycle. In cases like this, the
prefetch can “steal” this free time that the other tasks are
not using. This is a more dynamic approach, although will
make the behaviour of the prefetch more difficult to guaran-
tee, without harming the worst-case analysis of the system.

4. SYSTEM DESIGN
In order to support worst-case aware prefetching in hard-

ware, a hardware implementation of a prefetcher implement-
ing the concepts outlined in Section 3 has been implemented
using Bluespec System Verilog and successfully implemented
on a 16-core system utilising the Blueshell Network-on-
Chip [21]. In addition, the Bluetree multiplexers have been
extended to include an arbitration scheme suitable for ensur-
ing bandwidth guarantees to shared memory. This hardware
implementation is clocked at 100MHz, connected to a DDR3
memory clocked at 200MHz.

4.1 Interconnect Design
A standard Bluetree multiplexer is simply a 2-into-1 mul-

tiplexer with an configurable static priority favouring one
of the inputs. There is no rate limiting; a requestor which
requests every cycle will simply block any lower priority re-
questors from being able to access memory, leading to a lack
of composability in the platform.

In order to make the Bluetree system composable and
timing predictable, an arbitration scheme has been built into
each multiplexer. This scheme defines a blocking factor m,
defined to be the period over which a single low-priority
packet can take priority over a high-priority packet. In more
logical terms, this scheme implies that a low-priority packet
can be blocked by at most m−1 high-priority packets before
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Figure 2: Internals of a Bluetree Multiplexer

being allowed service. Conversely, a high-priority packet
can be blocked by a single low-priority packet in the worst
case. In the case of the 2-to-1 multiplexers used, the “high-
priority” side is the left-hand side of the multiplexer, with
the “low-priority” side being the right-hand side, although
this behaviour is configurable.

The multiplexer comprises an input buffer for each side,
which are then multiplexed onto an output wire using an
arbiter as described above. These input buffers support si-
multaneous read and write, that is, an input packet can be
written into them on the same cycle that one is consumed
by the arbiter. The downwards path is a simple demulti-
plexer, fed by a single input register. The downwards path
is defined to be non-blocking, and as such, packets must be
handled as soon as they become available. For this reason,
no arbitration is required on the downwards path. A block
diagram of this can be seen in Figure 2.

Given this arbitration scheme, timing guarantees can be
ascertained for memory transactions, since the amount of
blocking is known and bounded. A full analysis of this block-
ing system can be found in Section 5.

This distributed arbitration approach was chosen to at-
tempt to work around the scalability problems inherent in
monolithic arbiters. Typical arbiters demultiplex the mem-
ory stream into a number of virtual channels, then perform
arbitration over these virtual channels and multiplex the
output back onto the connection to memory. As the required
number of virtual channels increase, so does the complexity
of these multiplexers/demultiplexers, and thus the size in-
creases and the possible maximum frequency decreases [7].

In order to support prefetch without harming the worst
case, a mechanism to notify the prefetcher of available sys-
tem slack is required, and that the prefetcher can therefore
dispatch a prefetch.

It can be noted that if a low-priority packet is not blocked
by any high priority packets, then it is effectively being dis-
patched as a work-conserving access. Similarly, if m high-
priority packets can be dispatched without being blocked
by a low-priority packet, then the mth packet is being dis-
patched in work-conserving mode. In these cases, it is pos-
sible to dispatch a “prefetch slot” instead. These are empty
packets which take the place of an access that would have
been dispatched if the multiplexer was fully loaded. These
“prefetch slots” can then be filled in by the prefetcher.

In addition to dispatching prefetch slots, the multiplexers
have also been designed to include a “squash detector”. This

Demand 
Queue

Slot/Hit 
Queue

Bluetree

Prefetch 
Calculator

Stream 
Buffers

Prefetch 
Buffer

Outstanding 
Prefetches

Incoming 
Squash Filter

PF 
QueuePF Merger

Demand Mem 
Queue

M
ux

Outgoing 
Squash Filter

Output 
Queue

Mem

Figure 3: Block diagram of the prefetcher

works on an identical concept to the squash detector within
the prefetcher; if there is a prefetch travelling down through
a multiplexer towards a processor, and the multiplexer also
has a read request for the same memory address, then the
prefetch is transformed into a read response to fulfill the
outstanding read. In addition, this will cause a prefetch
hit request to be relayed up to the prefetcher. This allows
prefetches to be coaleasced with their reads anywhere in the
tree, reducing the number of redundant prefetches and thus
reducing the amount of traffic on the tree.

4.2 Prefetcher Design
The implemented prefetcher is a simple stream prefetcher,

designed to be placed in-between the memory tree for clients
and main memory. Its location at the top of the tree allows
it to snoop all memory accesses, and ascertain the state of
main memory (i.e. how much bandwidth is available to it).
The prefetcher is designed to operate using prefetch “slots”
as described in Section 4.1. These are empty packets sent
from the memory tree to the prefetcher which can be filled
in. This allows the tree to be able to notify the prefetcher
of slack time, as described in 3.2, which can then be used
for a prefetch without harming the overall WCET.

In addition, from Section 3.1, a prefetch hit can then
cause another prefetch to be dispatched without harming
the WCET of the system, since the hit request takes the
place of a “standard” memory request. This allows both
prefetch hits and prefetch slots to become placeholders for
standard prefetches.

If there are no available prefetch slots, then the prefetch
slot is abandoned without being filled, and hence only incurs
a single cycle penalty.

The architecture of the prefetcher is shown in Figure 3
and described below.

• Demand Queue: Packets are demultiplexed into one
of two queues depending upon their type. Demand
misses (i.e. cache misses) are split from prefetch hit
notifications and slots, as the two are processed differ-
ently.
• Hit/Slot Queue: Stores prefetch hits and prefetch“slots”

from the tree. Since a prefetch hit can be treated as a
slot, it enters the same queue.
• Prefetch Calculator: takes information from the input

queues, and using the stream buffers, decides whether
to dispatch a prefetch.

WCET Preserving Hardware Prefetch for Many-Core Real-Time Systems

196 RTNS 2014



μ0 μ1 μ2 μ3 μ4 μ5 μ6 μ7

DDR

μ Microblaze Tile 0 Bluetree
Multiplexer

Prefetcher

P$ Prefetch 
Cache

P$ P$P$ P$P$ P$P$ P$

Figure 4: Block Diagram of Bluetree for Eight Processors

• Stream Buffers store the currently existing stream data.
This stores a table for each CPU, storing the last ad-
dressed fetched, and if the stream is valid.

• Demand Mem Queue: Stores memory requests which
have not been coaleasced with a prefetch and therefore
need to be dispatched to memory.

• Prefetch Buffer: Stores outstanding prefetches, ready
to be inserted into a prefetch slot.

• PF Merger: Takes slots from the Hit/Slot queue and
merges them with a prefetch. It also then inserts an
entry into the dispatched prefetches table, so that the
prefetch can be coaleasced with a demand miss for the
same line.

• PF Queue: Finally stores merged prefetches, ready to
be dispatched to memory.

• Mux: multiplexes the demand miss queue and the
prefetch request queue onto memory.

• Incoming/Outgoing Squash Filters are used in con-
junction with the dispatched prefetches table, and are
used to coaleasce prefetches with their demand misses.
When a prefetch is dispatched, the prefetcher adds a
row to this table to denote the outstanding prefetch.
The incoming squash filter checks this table, and if
a record exists for the current request, will discard
the request and mark the table row as “squashed”.
The outgoing squash filter checks the prefetch’s ad-
dress against the relevant table row, and if the row
is marked as “squashed”, will return the prefetch as a
demand read rather than a prefetch.

4.3 System Integration
The prefetcher described in Section 4.2 has been coupled

to a 16-core Microblaze system, with the Microblaze pro-
cessors connected to memory via the Bluetree multiplexers
described in Section 4.1. Each multiplexer is a 2-to-1 mul-
tiplexer, hence the integrated system requires 15 multiplex-
ers. In addition, each multiplexer has been configured with
m = 4, hence a low-priority can be blocked by three high-
priority packets before being allowed service. This number
was chosen simply to explore the behaviour of the prefetcher
on a non-uniform system.

In addition, as noted in Section 3, prefetching directly
into the cache of the target processor may cause the worst-
case execution time of a task to increase. For this reason,
prefetches are instead delivered into a next-level cache. This
“prefetch cache” need only be small, since the granularity of
prefetches is so small, and need only be simple, hence is
implemented as a simple direct-mapped cache.

Since each processor only has eight stream buffers, each
of which can be used to fetch four words from memory, it
makes sense that this cache need only be of size 32 bytes.
In reality, this has been implemented as a 512 byte cache in
order to alleviate problems arising from cache locality (i.e.
fetches from different prefetch streams occupying the same
cache lines). An example of this system design for an eight-
processor system can be found in Figure 4.

5. WORST-CASE BEHAVIOUR OF THE
BLUETREE MEMORY TREE

For the analysis of a Bluetree multiplexer, we assume the
same design decisions as used in Section 4, that is, that there
is a single input register on each channel, which supports
simultaneous read and write. In addition, the downwards
path can never block. We also assume a blocking factor of
m, such that a low-priority packet can be blocked by at most
m− 1 high-priority packets, and conversely, a high-priority
packet can only be blocked by a single low-priority packet.
Finally, we assume that the worst-case response time of a
memory transaction is bounded from the time at which it
enters the memory controller (i.e. is accepted from the top
of the tree) and is represented using tmem.

We also assume that the clients in the system are multi-
issue. Whilst simple CPUs often can only have one out-
standing memory request at any time (i.e. the CPU is effec-
tively stalled until the memory request has been serviced),
commercial CPUs can have a number of memory requests
(specifically a maximum number of writes and a maximum
number of reads) outstanding at any time. For example a
quad-core Intel Xenon X3520 (Nehalem) [18] allows a total
of 32 outstanding read and 16 write requests from all cores;
whilst a single core can generate upto 10 concurrent read
requests. Therefore within this paper, when analysing the
worst-case performance of the memory system, we assume
a memory request can be issue by each CPU on each clock
cycle – which is pessimistic when compared to actual CPUs
(including Nehalem), but assuming only one outstanding re-
quest at a time would be optimistic and lead to erroneous
analysis and system behaviour.

First, we present an analysis of a single multiplexer in
isolation, then extend this to provide a model to ascertain
the amount of blocking that can occur on a tree of connected
multiplexers.

5.1 Single Multiplexer
The behaviour of a single multiplexer can be easily pre-

dicted for a given blocking factor. The number of times
that a packet may be blocked, B can be ascertained using
Equation (1).

Bup =

{
1 High Priority path

m− 1 Low Priority Path
(1)

From this, the worst-case blocking can be ascertained us-
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ing the following equation:

tup = (Bup + 1)× tmem (2)

This situation will occur when a packet experiences its
worst-case blocking at the multiplexer as described in Equa-
tion (1). In addition to this, since we assume that a multi-
plexer’s input buffers support simultaneous read and write,
a packet must wait for the packet which preceeded it to be
fully serviced, hence the additional tmem delay.

After being serviced, a request must then travel back down
the tree again. Since we make the assumption that a down-
wards packet cannot be blocked, and that crossing a multi-
plexer will take a single cycle, this delay, tdown is simply 1.
The delay for a memory request crossing a single multiplexer
is then as in Equation (3).

tmux = tup + tmem + tdown (3)

That is, the blocking experienced on the upwards path,
plus the time taken to service the memory request and a
single cycle to be returned back to the requestor.

5.2 Multiple Multiplexers
As a set of multiplexers are connected into a tree, the

analysis is complicated by the fact that multiplexers can
now block full subtrees. Assuming that the subtree is expe-
riencing worst-case conditions, that is, that all of the buffers
in the sub-tree are already full, no packets will be relayed
within the subtree. Since no packets are relayed within the
subtree, none of the blocking counters will be updated; the
subtree is effectively stalled.

The worst-case blocking can occur for a packet when all
multiplexers are blocking the path to memory. In this case,
the packet will experience a large amount of blocking before
being able to be relayed beyond the first level of multiplex-
ers. As it progresses up the tree, it will experience further
blocking as the multiplexers it still has to cross relay more
packets.

This blocking significantly complicates the analysis in or-
der to ascertain a tight bound. In order to perform this
analysis then, we define three piecewise functions. We also
initially assume that each block is for a single cycle, in order
to simplify the definition of Cl. This can later be expanded
to support full memory transactions by simply multiplying
through by tmem. Finally, we define a priority path, P . This
encodes the path from a processor to the root of the tree,
and the sides of the multiplexers the processor is connected
to (L/R). For example, P = {L} defines a system with a
single multiplexer, where the processor is connected to the
left-hand side of the multiplexer. P = {L,R,R} defines a
system with three levels of multiplexers, where processor is
connected to the right-hand side of the bottom multiplexer,
which in turn is connected to the right-hand side of the next
multiplexer, which finally then connects to the left-hand side
the of root multiplexer. We finally then define P (l), which
is the connection side for level l > 0.

• CPl (t): The current internal cycle for the multiplexer
at level l in relation to the current global time t, given
a priority path P .
• BPl (t): Specifies whether the input to the multiplexer

at level l given a prioriry path P will be blocked in
cycle t.

• B̂Pl (t): Specifies whether a multiplexer at level l will
be blocked by those multiplexers above it at time t,
given a priority path P .

The definitions of these functions are provided below:

CPl (t) =





0 t = 0

CPl (t− 1) B̂Pl (t− 1)

CPl (t− 1) + 1 !B̂Pl (t− 1)

(4)

BPl (t) =





True CPl (t) mod m = 0 ∧ P (l) = L

False CPl (t) mod m = 0 ∧ P (l) = R

False CPl (t) mod m 6= 0 ∧ P (l) = L

True CPl (t) mod m 6= 0 ∧ P (l) = R

(5)

B̂Pl (t) =





False l = 1

True BPl−1(t)

B̂Pl−1(t) !BPl−1(t)

(6)

That is, the multiplexer cycle will only advance if the mul-
tiplexer was not blocked by anything above it. Due to the
definition of B̂P (t), the top level multiplexer (at l = 1) can
never block. Additionally, the high-priority path will be
blocked if it has admitted m− 1 packets already, due to the
mod function.

The worst-case blocking can then be ascertained using the
B̂P (t) function. We define the LPl (t) function, which defines
how far a packet, starting at level l has travelled at time t
on a priority path P .

Ll(t) =





l t = 0

Ll(t− 1) BHPl (t)

Ll(t− 1)− 1 !BHPl (t)

(7)

That is, a packet begins at level l, and can only progress
upwards if no multiplexer at a level above the current level
blocks it. The worst-case blocking time is then

tmem ×
∞

min
t=0

t : Ll(t) = 0 (8)

The worst-case blocking is calculated by finding the t for
which a packet has reached the top of the tree, and is then
multiplied by the worst-case memory delay. Example figures
for the number of blocks while transiting the tree for varying
blocking factors can be found in Table 1. Given that the
worst-case blocking has now been calculated, the worst-case
response time of memory can simply be ascertained using
the result of Equations (8) and that of the downwards path,
which is simply the number of levels l. The worst case is
thus:

(tmem ×
∞

min
t=0

t : Ll(t) = 0) + l (9)

That is, the worst case blocking on the tree, plus the
time to clear the packet which was dispatched when a given
packet was admitted, plus the processing for a given packet
and finally the path back down the tree.

6. EVALUATION
The combination of the prefetcher with the memory tree

has been built and evaluated using two different benchmark
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Proc. Index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
m = 2 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30
m = 3 15 18 24 32 29 33 47 60 30 36 48 63 57 66 93 120
m = 4 11 16 26 39 28 44 71 114 32 48 76 116 84 132 212 340
m = 5 10 17 27 50 33 58 102 195 40 65 105 200 130 230 405 780

Table 1: Worst-Case blocking across a 16-core tree, measured in number of blocks.

strategies. Firstly, synthetic traffic generators were used.
These issue a memory request to adjacent cache lines, with a
configurable delay between each memory access. This delay
is configurable between 0 and 1500 cycles, in increments of 3
cycles. This granularity is due to the fact that the delay loop
takes three cycles to execute. This loop will repeat over 1024
cache lines, then report the execution time. This is repeated
20 times and the average taken with the prefetcher disabled,
then another 20 times with the prefetcher enabled.

Secondly, a subset of the TACLeBench suite of bench-
marks are used [1]. These are a suite of benchmarks deesigned
to benchmark WCET analysis tools, but chosen since there
are no external library dependencies, and no external stim-
ulus (or randomness) is used. This is beneficial for these
experiments, since the timing behaviour of the benchmarks
should be identical on each run, and hence the effect of the
prefetcher on the benchmark can be demonstrated.

In addition, two hardware configurations are used. First,
a set of synthetic systems have been built, each of which con-
tains a single processor and fifteen hardware traffic genera-
tors to simulate the system in “full load” conditions. These
traffic generators simply request from address zero on every
cycle for which their output queue is not full, and hence will
cause all buffers on their path to memory to be always full.
Additionally, since they only fetch from address zero, no
prefetches will ever be dispatched for the traffic generators.
Each different system contains the processor in a different
location, thus the timing behaviour for processors in differ-
ent locations on a fully loaded tree can be ascertained, given
the different blocking factors as seen in Table 1.

Since the benchmarks used are single path and do not
take any input from the outside world, this hardware plat-
form can be used as a measurement-based approach in or-
der to evaluate the worst-case behaviour of the system. In
addition, by enabling the prefetcher in these systems, it is
possible to demonstrate that the prefetcher does not cause
a detriment to performance in worst-case conditions.

A system has also been built using sixteen Microblaze
processors. This is a system which can show the timing
behaviour on a system which only contains real-world traffic
patterns. In this case, the tree should not be fully loaded at
any point.

6.1 Traffic Generators
Figure 5 shows three example runs of the traffic gen-

erators for the processors at indices 1, 6 and 15, in the
“full load”configuration with the prefetcher enabled and dis-
abled. These three graphs show how the performance of the
prefetcher changes as the amount of available bandwidth
changes.

Figure 5a shows the behaviour of the traffic generator to
a system with a processor at index 1 (i.e. a priority path
of {HP,HP,HP,LP} from the root of the tree). For the
“prefetch off” line, a series of “steps” can be seen. These are
due to the blocking introduced at the lowest level of the tree,

and thus all accesses within a given period of each other will
experience an identical delay.

The result with the prefetcher enabled can be seen to be
a smoother line. This is because, up until a delay factor of
around 100, a prefetch can be successfully dispatched and
delivered into the processor’s target cache before it is re-
quired. In this case, the blocking while waiting for a mem-
ory access to complete is effectively zero, since all memory
accesses have been completed ahead of time, and thus the
execution time is just the time taken to execute the delay
loop.

For a blocking factor under 100 however, the results begin
to level off. This is because prefetches start to be coaleased
with their demand misses, and hence “squashes” occur.

Figure 5b shows the same behaviour for index 6 (i.e.
{HP,LP,LP,HP}). Like the processor at index 1, this
shows an improvement which begins to level off. Of note is
the fact that the “prefetch on” line begins to show “stepping”
too. This is for a similar reason to why the“prefetch off” line
shows steps, although is to do with the amount of blocking
that hit feedback and prefetch slots will experience, since
these messages are not handled specially. Figure 5c then
shows the case where there is not enough available band-
width to be able to dispatch a prefetch. In this case, no
slots are generated, thus no prefetches can be dispatched and
no prefetch hits can be generated. It can further be noted
that even in these systems which do not have much mem-
ory bandwidth for prefetching, that the prefetcher can either
improve performance or achieve identical performance, but
never cause a task to perform worse.

Figure 5b shows some spikes in the prefetch on stream
(at around 430 and 320). Recall from Section 4 that the
prefetcher and multiplexers are able to coaleasce prefetches
and demand accesses for the same addresses, preventing de-
mand accesses from being issued immediately after their
prefetch. It is not possible in all cases to coaleasce these
accesses (e.g. when a demand access is relayed up from one
multiplexer in the same cycle that the prefetch enters the
same multiplexer to be relayed down). In this case, not all
prefetches can be coaleasced, causing a slight performance
detriment.

Figure 6 shows similar traces for the traffic generators,
but on the system with sixteen processors, each running the
traffic generator with identical settings. In these systems,
the tasks will experience less blocking throughout the tree,
and many more prefetch slots can be dispatched. Again,
Figures 6a, 6b and 6c show the behaviour for the processors
at indices 1, 6 and 15, respectively.

The stepping effect can still be seen in Figure 6b, but to a
lesser degree. This is because there is still contention in the
system and thus there will still be some blocking evident.
The smaller blocking therefore still exists due to blocking
further up the tree. This effect is still extremely evident in
Figure 5c, which will experience the most blocking out of all
of the processors. This graph also shows the spikes seen in
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Figure 5: Plots of prefetch on/off for varying processor indices, for one processor and fifteen hardware traffic generators.
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Figure 6: Plots of prefetch on/off for varying processor indices, for the system with sixteen processors.

Figure 5b. This is for the same reason; not all prefetches
can be coaleasced to their demand misses.

The lower amount of blocking in the real-world system
does allow more prefetch slots to be dispatched, however.
Here, similar traffic patterns are still evident; the prefetcher
can fully fulfill all prefetches until a point, where prefetches
start coaleascing in the tree and causing squashes. This is
evident with a delay factor of around 50 for indices 1 and
6, and across the whole range for the processor at index 15.
Additionally, the processor at index 15 still exhibits a point
at which there is no more available bandwidth for prefetches
to be dispatched at a delay factor of around 20.

Another thing of note is that the total speedup is not
as great in the combined system as it is in the “full load”
system. This is simply due to the reduced system load, and
thus memory requests will complete faster with both the
prefetcher enabled and disabled. This means that there is
less latency for the prefetcher to potentially mask.

6.2 TACLeBench
In addition to the synthetic traffic generators above, the

prefetcher was also tested using more real-world benchmarks.
These benchmarks were taken from the TACLeBench set of
benchmarks [1]. These are a set of benchmarks designed
for comparing worst-case execution time evaluation tools,
although the lack of any external libraries or external re-
sources also makes them ideal for evaluating systems such
as this.

A number of the benchmarks, listed below, were used and
evaluated in the same way as the traffic generators, as listed
in Section 6.1, that is, they were first evaluated on the “full
load” system, then on a system with sixteen processors. In
the case of the sixteen-processor system, the same bench-
mark was replicated multiple times onto each processor. All
data (i.e. code, data, heap and BSS) was stored in global

memory, with the exception of stack which was placed into
local storage.

This set of benchmarks was chosen for the their behaviour
when interacting with main memory. They are typically
streaming applications, accessing a sufficient amount of mem-
ory for real evaluation. In addition, their streaming na-
ture makes them ideal for evaluating a streaming prefetcher,
which should be able to capture their streams and speed up
their execution.

• crc: Cyclic Redundancy Check over 20kB of data.
• basicmath small : Math test routines. Contains large

software floating point emulation.
• rijndael decoder : AES decryption of a 32kB file. Con-

tains large straight-line decryption routines.
• audiobeam: Beam forming algorithm.
• gsm decode: Decoding of 0.5kB of GSM data.
• h264dec ldecode macroblock : Decoding a single h264

macroblock.
• anagram: Computing anagrams over a 9kB dictionary.
• sha: SHA hashing of 32kB of data.

Figure 7 shows the results of these benchmarks when run
on the “full load” system (i.e. a single processor with 15
hardware traffic generators), with the single processor in
varying processor slots in each system. Each bar denotes
the processor at different indices, with the left bar being
index 0 and the right being index 15. Here, speedups of 0-
50% can be observed, depending upon the behaviour of the
benchmark in use.

Many of the smaller benchmarks operating on a stream of
data, such as the crc and sha benchmarks yield a speedup
between 0% and 40%. The reasoning for this is twofold;
firstly, the code for these benchmarks is reasonably small and
so can fit entirely into the instruction cache. This allows the
prefetcher to be able to operate solely on the data without
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Figure 7: TACLeBench Results for one processor/fifteen hardware traffic generators.
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Figure 8: TACLeBench Results for the same task on sixteen processors.

any interference from code prefetches. In addition, there is
enough computation for each cache line such that there is
sufficient time to dispatch a prefetch.

basicmath small and rijndael decoder are examples where
code prefetch is extremely effective. basicmath small con-
tains a math routine of size 2kB, for example, which the
prefetcher can fetch the entirety of accurately. rijndael decoder
contains a 8kB block of straight-line code, which can again
be accurately prefetched. The speedup for these benchmarks
then depends upon the delay after which a prefetch slot can
be generated, compared to the delay for which the bench-
mark would have to dispatch the read manually.

Other benchmarks show different levels of performance.
audiobeam yields a speedup of 10-20% with the prefetcher
enabled, simply because it operates on a stream of data,
and that the computation time on this data is sufficiently
long that a prefetch can be dispatched within the compu-
tation time. gsm decode also operates on a stream of data,
although the computation on this data is so long that the
prefetcher cannot make a decent impact. There are some
large decoding routines which can be prefetched though.

Another interesting note is the performance of the proces-
sors at indices 7, 11, 13 and 15. On many of the graphs, these
processors show no performance increase with the prefetcher
enabled. This is, in part, due to the slots mechanism men-
tioned earlier. These processors are in a position such that
they are on the low-priority side of their first multiplexer.
Due to the large amount of blocking that these cores ex-
hibit, this means that it is likely that the processor will be
requesting the next required data before a prefetch slot has
been dispatched. On other cores, it is more likely that a
prefetch slot has been dispatched before the next datum is
requested.

It should also be noted that even in these “full load” sys-
tems, the presence of the prefetcher does not cause a detri-
ment to system performance; typically it can prefetch useful

data, or is not able to fetch any data due to the load on the
memory tree.

The aforementioned benchmarks were also run on the six-
teen processor system, all executing the same benchmark.
The results of this can be found in Figure 8. Again, each
bar refers to which processor index is being evaluated, with
the left bar being processor index 0 (i.e. the highest prior-
ity), and the right being processor index 15 (i.e. the lowest
priority).

The benchmarks yield speedups in this system too. All
benchmarks tend to exhibit an upwards trend, with the
lower priority tasks benefiting more from the prefetcher be-
ing enabled. This is because with the prefetcher disabled,
these tasks will experience some blocking in line with that in
Table 1, but not as much as in the synthetic traffic genera-
tor systems. In most cases, the higher-priority tasks will not
experience much blocking, and thus there is not as much la-
tency for the prefetcher to hide. The low-priority tasks will
still experience a good amount of blocking however, hence
there being more latency to potentially be hidden.

The crc and basicmath small benchmarks yield a good
performance improvement, for example. This is due to simi-
lar behaviour to before; the prefetcher can easily prefetch
across the whole stream of data, and as mentioned, the
lower-priority tasks are favoured since there is more latency
to be hidden. basicmath small yields a performance degre-
dation on cores 1 and 2. Given the behaviour of other cores,
this is likely because prefetches get dispatched just before
the processor dispatches a demand access for those lines,
although fails to coaleasce the prefetch and demand access,
since there are still some cases for which this cannot happen.

For some tasks, such as audiobeam and h264dec ldecode,
their computation dominates over the memory delays that
they experience. This effect is even more apparent in this
system, again, due to the lower delay when communicat-
ing with memory. In the rijndael decoder and gsm decode
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benchmarks, the execution time is actually increased. This
effect is due to two things when compared with the traffic
generators; first, the time between requests is small (in the
case of straight-line code, it will be once every four cycles),
and there is more contention over the amount of prefetches
available. This leads to a situation where a prefetch may
be dispatched too late, which ties up the memory controller
with a useless access and thus causes a decrease in the average-
case execution time. It is of note, however, that this slower
execution time is still faster than those observed in the syn-
thetic “full load” systems discussed previously.

7. CONCLUSIONS & FURTHER WORK
In this paper, we have presented and evaluated a novel

method of prefetching within the context of real-time em-
bedded systems, using a system of prefetch feedback “slots”.
These slots can then take the place of standard memory
requests in conventional response-time analysis, allowing a
safe method of prefetch that can be utilised within existing
response-time analysis frameworks.

This method can yield speedups of up to 50%, depend-
ing upon the current traffic patterns of the tasks in the
system without causing a detriment to the worst-case ex-
ecution time of a system, which can subsequently be used
to begin to hide the increasing memory delays present in
modern multi-core embedded systems.

There are numerous avenues for future work for this sys-
tem. Our approach has so far only been evaluated using the
distributed multiplexer “turns-based” system. This system
could, however, be integrated into standard TDM, round-
robin, CCSP, or other fair arbitration schemes. Conversely,
this approach has only concerned itself with a simple stream
prefetcher. Again, it is valid and possible to extend this ap-
proach to operate with a different method of prefetching.
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