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ABSTRACT
This paper describes an approach to deploying Java on low-
power, low-memory, heterogeneous multi-core systems. A
goal of the effort is to enable the use of such systems in
applications that must comply with real-time constraints,
some of which must satisfy external certification authorities,
thus the work is based on Safety Critical Java [4].

The heterogeneous multi-core system-on-a-chip considered
have specialized purpose processors that can perform partic-
ular computations quickly and with less energy consumption
than general-purpose processors. In order to allow a high
degree of parallelism, these systems use partitioned memories,
as opposed to the uniform memory access model tradition-
ally supported by symmetric multiprocessors and the Java
memory model.

The effort is a work in progress. Syntax and tool chains are
being developed and experimentation with the technologies
has begun. But the current results are considered prelimi-
nary as many planned features are not yet fully implemented
and performance optimization has not yet been completed.
Consistent with the style of multi-core development in stan-
dard edition Java, the software engineer is responsible for
orchestrating the division of labor between coprocessors.

Categories and Subject Descriptors
D.3.2 [Language Classifications]: Concurrent, distributed,
and parallel languages, Object-oriented languages, Java;
D.2.11 [Software Architectures]: Data abstraction, In-
formation hiding, Languages, Patterns; D.2.13 [Reusable
Software]: Reusable libraries, Reusable models

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
JTRES’13, October 09–11, 2013, Karlsruhe, Germany.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2166-2/13/10...$15.00.
http://dx.doi.org/10.1145/2512989.2513001

General Terms
Design, Modularity, Reliability, Standardization

Keywords
Java, Real-Time, Object Oriented Development

1. MOTIVATION
In recent years, many microprocessor vendors are deploying
multiple heterogeneous processor cores on a single chip [11],
[16]. For many applications, these heterogeneous system-
on-a-chip architectures offer superior performance and lower
power consumption than homogeneous SMP architectures
[15]. These benefits are especially valuable in battery-powered
devices such as mobile telecommunications, remote data gath-
ering, and wireless controller applications. These benefits are
also relevant to large server farms, where improved power
efficiency leads to huge savings in cooling and electric power
costs.

The rationale for bundling multiple different processor ar-
chitectures onto a single chip is to exploit the strengths of
specialized coprocessor systems. For many applications, a
specialized signal processor delivers computational results in
far less time than is required by a general purpose processor.
Furthermore, in comparison to a general purpose processor,
the specialized signal processor consumes less space on the
chip die and consumes less electric power to perform the same
computations [15]. To support optimal power management,
it is typical for such systems to allow dynamic clock and
voltage adjustments for individual coprocessors, and to allow
certain processors to be turned off entirely. When there is
work to be done, individual processors are powered up to run
at full speed. But during lulls in the workload, processors
are powered off or slowed to conserve energy. Programming
heterogeneous computer systems is especially difficult for a
variety of reasons. Among the typical challenges faced by
developers of such systems are the following:

1. In a heterogeneous environment, different processors
execute different instruction sets. Thus, the developer
is required to obtain cross compilers for each of the tar-
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geted architectures, and must manage the assortment
of binaries targeted to each relevant architecture.

2. While compilers for high-level languages like Java are
available for common general purpose processing ar-
chitectures such as ARM and MIPS, they are usually
not available for the highly specialized digital signal
processors that are often bundled with one or more gen-
eral purpose processors. Typically, the only language
available for programming the specialized digital signal
processors is C. If programmers desire to use a higher
level languages like Java, they can only use it for those
parts of the application that run on the general purpose
processors.

3. For any given application workload, deciding on the
most efficient division of labor between general purpose
processors and specialized digital coprocessors requires
an understanding of many low-level details that are
difficult to ascertain. Furthermore, the most efficient
division of labor may depend on dynamic factors, such
as how much work has already been assigned to each
of the processors. To support the ability to run the
same code on different processors at different times,
the application developer must compile the code for
each processor and must develop control logic to decide
at run time where particular computations will be
performed.

4. The effort required to carefully engineer a solution that
makes efficient use of a heterogeneous platform is highly
dependent on the platform configuration, which may
be difficult to predict. For most heterogeneous system-
on-a-chip architectures, many configuration options
exist, with different numbers of general purpose and
specialized coprocessors, different clock rates, differ-
ent memory sizes, and different interconnection speeds.
Furthermore, the configuration options may change
from year to year. Managing the distribution and evo-
lution of complex software systems across such a bewil-
dering diversity of deployment platforms is extremely
difficult without automated support to facilitate the au-
tomatic reconfiguration of software for each deployment
possibility.

The ToucHMore project explores the use of Java as an en-
abling technology to support the development of portable
and scalable software applications to run on the GENEPY
platform [9]. The project has completed specification and
investigation phases and is currently progressing through
implementation. The first version of the toolchain would
mature by the end of 2013. And a full validation of the
toolchain over the target application is due by Q1 2014.

The GENEPY architecture is the result of a collaborative
research effort by CSEM (Centre Suisse d’Electronique et de
Microtechnique) and CEA-LETI (Laboratoire d’Electonique
des Technologies de l’Information of the Commissariat a
l’Energie Atomique et aux Energies Alternatives). GENEPY
is an experimental massively parallel architecture designed
to support research on power management and performance.

GENEPY is structured as a two-dimensional mesh of con-
nected clusters. Each cluster consists of control processor(s),

signal processor(s), memory, sensors, actuators, and inter-
connection network as presented in Figure 1.

Figure 1: GENEPY Platform architecture

Each cluster is by design simple enough to be implemented as
a complete system on a chip (SoC). The ToucHMore project
focuses on two particular types of GENEPY clusters, SMEP
and icySMEP. The key characteristics of each are detailed in
Table 1. The icyflex2, icyflex4, and Mephisto processors use
specially designed instruction sets optimized for low-power
operation.

Cluster
type

Control Processing Data storage

icySMEP icyflex2 2 icyflex4
16KB (control)
+ 256KB shared
(control+processing)

SMEP
Mips
R3000

2 Mephisto

32KB (control)
+ 128KB shared
(control+processing)
+ 2 x 16KB
(processing)

Table 1: GENEPY SoC cluster types

This paper focuses on deployment of Java on low-power het-
erogeneous processors. The emphasis on the severe memory
and power constraints of common low-power heterogeneous
systems differentiates the ToucHMore work from all related
research efforts.

2. THE TOUCHMORE SOLUTION
This section provides a description of the approach we adopt
in ToucHMore. The solution is based on a model description
of the platform, the application and of the deployment of the
application on this platform. Several constructs based on
Java annotations have been defined to declare the possible
parallelism and offloading points. The deployment diagram
is used to configure the runtime that will monitor the plat-
form and decide the optimal dispatching of the work on the
different clusters and DSPs.

2.1 Model-Based Development
The ToucHMore model-based development approach uses
three interconnecting models: a target platform model, an ap-
plication model and a deployment model. A target platform
model describes a specific heterogeneous multicore platform
and is used to generate an XML representation of the plat-
form for use by the ToucHMore runtime. An application
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model describes the application structure and behaviour and
is used to generate the Java code. A deployment model
describes the deployment of the application to the target
platform.

Using separate models allows different deployments to be
defined for an application targeting a specific target platform.
To generate the XML and Java code, a specific deployment
model must be selected. The deployment model is used
to generate an XML representation of the mapping of the
application to the target platform and also ToucHMore an-
notations within the Java code. These identify Java methods
that can be offloaded and/or parallelised and execution char-
acteristics. The generated XML is also used to generate the
necessary build information for the application.

Figure 2 provides an overview of the use of the models to
generate the XML and Java code.

Figure 2: Java Code and XML Generators

Target Platform Model. A target platform model describes
a specific heterogeneous multicore platform. SysML is used
to model a heterogeneous multicore platform using method-
ology described in [10]. SysML blocks characterize a set of
abstract hardware types for a heterogeneous multicore plat-
form. These include SysML value properties corresponding
to the hardware properties of the abstract hardware type.
SysML blocks representing concrete hardware types are de-
fined using the SysML blocks representing abstract hardware
types when developing a target platform model.

A target platform model describes the hierarchical structure
of the heterogeneous multicore platform down as far as the
processor cores that execute an application. The hierarchical
structure allows individual (instance) processor cores and
clusters to be given specific values for hardware properties.
Communication connections between hardware elements are
also modelled providing information on the communication
mechanisms available and their performance.

Figure 3 provides an example of part of the target platform
model for GENEPY.

The deployment model is used to generate a XML repre-
sentation of the target platform for use by the ToucHMore
runtime.

ibd [block] Genepy Chip

«block»
GENEPY SoC

nocif1 : GenepyNI

nocif2 : GenepyNI

00 :
Router

01 :
Router

10 :
Router

11 :
Router

SMEP 00 : SMEP cluster

NI

SMEP 01 : SMEP cluster

NI

SMEP 10 : SMEP cluster

NI

SMEP 11 : SMEP cluster

NI

IcySMEP 11 : icySMEP cluster

values
IsClusterClockGatable : boolean =False
IsClusterClockScalable : boolean = True
IsClusterTemperatureMonitorable : boolean = True
IsClusterVoltageGatable : boolean = False
IsClusterVoltageScalable : boolean = False

NI

Figure 3: GENEPY system on chip model

Application Model. UML is used to model the application.
Class modelling is used to model the structure of a Java
application. Java specific information is modelled using the
stereotypes and tag definitions provided by a Java profile.
The dynamic behaviour of a Java application is either mod-
elled using State Models or Java code is included within
the model. Information related to the parallelisation of op-
erations is modelled using stereotypes and tag definitions
provided by the ToucHMore profile.

Deployment Model. A deployment model describes the
mapping of elements (elements can be operations, classes or
packages) of an application model to processor core types or
instances. It defines which processor core types or instances
the generated Java code will be deployed on. A deployment
model has a dependency on one application model and one
platform model. It contains a set of deployment maps. Each
deployment map connects n elements of the application model
to m processor core types or instances in the target platform
model. A deployment map indicates that the n elements of
the application will be deployed on each of the m processor
core types or instances. For an operation a deployment map
can also specify execution characteristics (minimise power,
energy or temperature, worst case execution time and quality
of service) and whether it can be offloaded and/or parallelised.
Specific stereotypes and tag definitions are provided in the
ToucHMore profile to support the deployment modelling.

2.2 Safety-Critical Java Subset
Considering the constraints of the GENEPY platform, most
specifically the memory size constraints, we decided to rely
on a minimal subset of the Java platform based on Safety
Critical Java Technology (SCJ) [4].

Safety-Critical Java (SCJ) technology, based on the Real-
Time Specification for Java (RTSJ) [7], has been designed to
address the general needs of adapting Java technology for use
in safety-critical applications. As Java has matured, it has
become increasingly desirable to leverage Java technology
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within applications that require not only predictable perfor-
mance and behavior, but also high reliability. The adopted
execution model consists of deploying one SCJ virtual ma-
chine on each cluster that uses Java.

SCJ has a number of advantages:

• No garbage collection. Scoped memory replaces the
Java heap for all temporary memory allocation. The
absence of garbage collection makes the runtime smaller
and simplifies the potential memory sharing between
control CPU and DSPs.

• Real-time execution model. SCJ supports real-time
scheduling with full threading and synchronization ca-
pabilities in level-2 SCJ applications.

• Hardware support. SCJ supports the possibility to di-
rectly access hardware memory and program interrupt
handlers. These capabilities are especially useful in the
programming of the GENEPY platform’s network-on-
the-chip services.

• Compatible with a static compilation model. It was
difficult to consider the fully dynamic just-in-time com-
pilation traditionally used in Java for the four differ-
ent kinds of hardware architectures that comprise the
GENEPY platform. On the other hand, byte code
interpretation would not be efficient enough. A static
compilation of Java bytecode into C language and then
machine code allows for efficient code generation ahead
of time. Atego Perc Pico technology has been used
with adaptation of the virtual machine runtime.

2.3 @Offload Annotation
When considering Java execution on heterogeneous system,
one of the most closely related previous efforts is the Hera-
JVM project [24]. This effort targeted the Cell processor
architecture, the high-peformance heterogeneous computer
that is the heart of the original Sony PlayStation. Unlike
ToucHMore, Power conservation was not a focus for the Hera-
JVM effort, and the Cell Processor platform had enough
memory to deploy full Java on both the main controller
(a PowerPC) and on each of the system’s six digital signal
processing accelerating cores. Also, the Hera-JVM project
did not endeavor to support compliance with real-time con-
straints or certification by government oversight agencies. Of
particular interest is the performance improvement that was
reported. By off-loading certain computations to digital co-
processors, speedups of up to 13 fold over the speed of doing
the full computations on the main control processor were
demonstrated on certain benchmarks. ToucHMore intends
to demonstrate similar performance gains, once the full tool
chain is implemented and integrated.

In ToucHMore, a Java annotation named @Offload has been
defined in order to identify Java code that may be offloaded
to hardware accelerators. This annotation is similar to the
notion of codelet defined by OpenHMPP [8].

The principle is that the @Offload annotation does not
change the semantics. It just changes the runtime behaviour.
So a compiler can safely ignore the @Offload annotation if it
doesn’t support it or if no hardware accelerator is available.

Figure 4 illustrates the threading behavior for off-loaded
execution. The control thread blocks until the off-loaded
computation is completed. In many cases, the control CPU
will perform a context switch to allow another thread to run
while the first awaits completion of its off-loaded computation.
Not shown in this illustration is support for parallel execu-
tion of the off-loaded work. In some cases, the off-loaded
computation is performed in parallel on multiple DSPs. This
is discussed in Section 2.4.

Figure 4: Offload code execution

A number of restrictions are required for off-loaded methods.
These restrictions simplify the run-time model and its imple-
mentation. The simplifications were necessary in part due
to the severe memory constraints on the GENEPY platform.
The basic principle is that an off-loaded function should
behave as if it is equivalent to a pure function. We also
ensure that the execution will be possible on the hardware
accelerator which does not necessarily have access to the host
memory or to the Java runtime. Off-loaded methods fully
respect the Java memory model.

An method annotated with @Offload is required to:

• be static

• not refer to any global variables (static fields)

• have a fixed number of arguments

• only have primitive type or array of primitive type
arguments which are assumed to be non aliased

• not make dynamic memory allocation

• not use synchronization

• not throw or catch exceptions

• not be recursive

• not call an @Offload method

• only call methods that respect the same restrictions

The @Offload annotation has id and target attributes. The
id attribute associates a globally unique integer identity
with the method. This identity is used by the ToucHMore
runtime. The unique identity is automatically generated from
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the model. The target attribute identifies the possible off-
loading targets for this method. This guides the compilation
process, assuring that versions of the method are compiled
for each of the signal processors on which the method may
be expected to execute.

We also defined three additional annotations: @In, @Out,
and @InOut to qualify the array parameters of @Offload-
annotated methods. These annotations allow the optimiza-
tion of data copying at method invocation and return. @In
array arguments are only copied on invocation, and @Out

array arguments are only copied on return from the @Offload
method. Primitive type parameters are passed by copy and
can only be @In parameters. Figure 5 presents the definition
of these annotations.

@Target({ElementType.METHOD})
public @interface Offload {

public String[] targets() default {};
int id() default 0;

}

@Target({ElementType.PARAMETER})
public @interface In {}
@Target({ElementType.PARAMETER})
public @interface Out {}
@Target({ElementType.PARAMETER})
public @interface InOut {}

Figure 5: @Offload annotation definition.

2.4 @Parallel Annotation
There are a number of existing approaches to parallelism
in the Java language. Aside from explicit threads, Java 7
introduced the fork-join framework [20] which provides a
way of decomposing large amounts of work into concurrently
executing sub-jobs, the results of which are automatically
collected together. The purpose of this framework is to
help the programmer to make use of all available processing
resources. The general format of a fork-join algorithm in the
Java 7 fork-join framework is as follows:

if (my portion of the work is small enough)

do the work directly

else

split my work into two pieces

invoke the two pieces and wait for the results

Fork-join jobs can be evaluated by a thread pool from the
Executor framework in order to bound the actual number of
threads that are used, but as can be seen from the structure
of the algorithm the number of created jobs is dependent on
the input data.

In addition to this, the imminent release of Java 8 will include
a wide range of constructs for fine-grained parallel program-
ming [18]. The Collections package has been augmented with
parallel collections (i.e. the ParallelArray class) that sup-
port operations from functional programming such as map
and filter. Also, the classes of the java.util.streams pack-
age allow the definitions of data streams for lazy evaluation
of parallel collections.

Outside of the official Java frameworks, there are a number of
existing approaches for providing Java programmers with fine-
grained parallelism. For example, JOMP [14] and Pyjama
[17] both provide OpenMP-like directives for Java. JOMP is
the first known project to have done a Java implementation
similar to OpenMP [5]. JOMP consists of a pre-compiler that
parses Java source code with special directives and generates
parallel Java source with calls to a run-time library. This
project is not open source and is no longer maintained.

JaMP (OpenMP/Java) [2] is another Java implementation of
OpenMP. JaMP supports the full OpenMP 2.0 specification
and some aspects of OpenMP 3.0. JaMP is an open source
project and is much more actively maintained than JOMP.
JaMP depends on full Java.

Jconqurr [3] is a multi-core programming toolkit for Java
composed of a set of Java annotations that describe what can
be parallelized in a Java program. It supports parallelization
of loops, a fork/join pattern, a pipeline pattern with multiple
pipeline stages, and a divide-and-conquer pattern. Jconqurr
is an open source project. The technology is still under
development. Figure 6 demonstrates the Jconqurr syntax.

@ParallelFor
public static void main(String[] args) {
int n = 1000;
float[] arr = new float[n;
Directives.forLoop();
for (int i = 0; i < n; i++) {
arr[i] = ...

}
}

Figure 6: Jconqurr parallel for loop.

The Parallel Java Library [6] is an API-based way to describe
parallel execution. It supports shared memory, distributed
memory, and hybrid systems. Shared memory programming
adopts the parallelization approach of OpenMP and dis-
tributed parallel programming is inspired by MPI Message
Passing Interface). A strength of this approach is that the
parallel Java application is pure Java. A weakness is the vol-
ume of code required to describe common parallel execution
flows, as illustrated in Figure 7.

public static void main(String[] args) {
final int n=10000;
new ParallelTeam().execute(new ParallelRegion() {
public void run() throws Exception {
execute (0, n, new IntegerForLoop() {
public void run(int first, int last) {
for (int i = first; i <= last; i++) {
...

}
}

});
}

})
}

Figure 7: Parallel Java Library parallel for loop

Deterministic Parallel Java (DPJ) [1] is a prototype of a
Java programming language extension which adds a parallel
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construct that guarantees a deterministic behaviour. This
extension forms a type system that can ensure determinism
by construction. The language adds fork/join parallelism
with foreach and cobegin keywords. It also adds the notion
of memory regions with the use of parametric classes. It
analyses the effects of methods to ensure that concurrent
read/writes occur in disjoint memory regions. A sample of
the special syntaxes is shown in Figure 8.

public static void main(String[] args) {
final int n=10000;
new ParallelTeam().execute(new ParallelRegion() {
public void run() throws Exception {
execute (0, n, new IntegerForLoop() {
public void run(int first, int last) {
for (int i = first; i <= last; i++) {
...

}
}

});
}

})
}

Figure 8: Deterministic Parallel Java parallel for
loop

Ateji PX is another extension of the Java programming
language for parallel computing that targets both shared
and distributed systems. It supports task parallelism, data
parallelism, message passing, and data flow. The Ategi
company that created these language extensions has ceased
operations and the technology is not distributed in open
source. An example of the Ategi syntax is shown in Figure 9.

public static void main(String[] args) {
int n = 1000;
float[] arr = new float[n];
for || (int i = 0; i < n; i++) {
arr[i] = ...

}
}

Figure 9: Ateji PX parallel for loop

The presented approaches are important developments in the
field of Java parallel programming, but they display some
significant limitations when the embedded or safety-critical
domains are considered.

• As used in this paper, the term variability describes
the reality that the characteristics of particular process-
ing cores are not constant. Clock rates for individual
processors in a heterogeneous system may vary due to
manufacturing inconsistencies, transient processor over-
heating considerations, and electric power conservation.
Variability is a major concern in the embedded domain,
and this is not currently accounted for in the existing
Java frameworks.

• Existing Java frameworks generally assume a shared
memory model. This is reasonable in the desktop
server, cluster, or supercomputer space for which they
are designed, but frequently are unimplementable in

embedded systems which rarely demonstrate a global
shared memory space.

• The amount of parallelism that is actually deployed can
be difficult to analyse in the general fork-join algorithm
presented above as it is dynamic and depends on the
input data of each run.

• The fork-join framework makes use of work-stealing,
which is a very difficult technique to analyse for de-
termining the worst-case response time of a piece of
code [22]. This means that such systems are less appli-
cable to code which must be certified.

• The frameworks of Java 7 and 8 are quite large and com-
plex when considered for embedded use. The code base
increases memory requirements, but more importantly
it also increases testing and certification requirements.

The ToucHMore project aims to address these concerns.

2.4.1 The ToucHMore parallel model
The ToucHMore project is creating a variability-aware frame-
work for the programming of embedded and safety critical
systems in Java. Because of the target domain the project
uses Safety-Critical Java (SCJ) [19]. The choice of SCJ
places a range of important restrictions on the designed
parallelisation framework:

• Memory use is strictly controlled in SCJ. New object
instances are created in specific allocation contexts, each
of which is specified with hard limits on its maximum
size. Overflowing any allocation context results in a
runtime exception.

• Garbage collection may not be present in an SCJ sys-
tem, meaning that memory is only reclaimed when an
allocation context is exited.

• These points imply that the programmer must be able
to analyse any library or framework they use and stati-
cally analyse the total number of allocations made.

Consequently, the parallel computation model in ToucHMore
is described as follows:

• An annotation, @Parallel, is used by the program-
mer to mark methods that are considered for parallel
execution.

• When @Parallel is applied to a method, every invoca-
tion of that method may result in multiple concurrent
invocations of the method at runtime.

• These invocations are identical, but their parameters
may vary. Normal parameters are copied to all invoca-
tions. Array parameters may be passed in their entirety,
but more commonly they will be passed as sub-arrays
(termed chunks) with different invocations receiving
different chunks.
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• At the point of the method invocation, the invoking
thread is suspended and a set of threads spawned to
execute the concurrent invocations of the method. For
clarity, these threads are called threadlets.

• The ToucHMore runtime is queried to determine how
many threadlets should be used (and therefore how
many chunks array parameters are split into). This
number can be specified by the programmer from the
SysML system model (see Section 2.1) or left to the
runtime to decide.

• The invoking thread remains suspended until all the
threadlets have completed and the results of the work
have been aggregated (un-chunked). This is an im-
plied barrier synchronisation on the completion of the
method.

Work-stealing is not used. Work is balanced by the variability-
aware runtime at the point of invocation but once execution
has started it is not redistributed. This is not optimal in
the average case, but it allows a much tighter bound on the
worst-case response time of an operation.

Any methods annotated with @Parallel must also be anno-
tated with @Offload (see section 2.3), meaning that threadlets
may be executed on other locations of the architecture.
Shared memory is neither required nor assumed, but will be
used if present to reduce communication overhead.

Method parameters. Due to the fact that any methods
annotated with @Parallel must also be annotated with
@Offload, @Parallel methods are subject to the restric-
tions of @Offload. This means that parameters must be
primitive types, or arrays thereof and annotated as either
@In parameters or @Out.

Most parallel methods operate on large arrays of data. In
systems without shared memory, it is usually optimal to
split arrays into chunks and pass only the chunks to each
threadlet to minimise data movement rather than passing the
entire array to each threadlet. To do this with @Parallel,
the @In and @Out annotations can take an integer parameter
chunkSize. This is used for array parameters and describes
the smallest amount of each array which is required for one
exeuction of the threadlet.

When the threadlet is called, its chunked array parameters
will all contain the same number of chunks, but if their
chunkSizes are different then the lengths will therefore be
different. Examine the following threadlet:

@Parallel
@Offload{targets = {"Linux-x86"}}
public void threeAverage(@In(chunkSize = 3) int[]

input, @Out(chunkSize = 1) int[] output) {
for(int i = 0; i < output.length; i++) {
output[i] = (input[i*3] + input[i*3 + 1] + input[

i*3 + 2]) / 3;
}

}

The chunksizes of the two parameters are different, but the
programmer can assume that for every chunk of input there
is a corresponding chunk of output.

The number of chunks may vary between different invocations
at runtime, and is adjusted by the variability-aware runtime
according to runtime parameters. For example, if the runtime
is offloading a parallel operation to two remote DSPs, it may
choose to pass a larger volume of data to the DSP which
is cooler, or which due to design-time variability is slightly
faster or has a lower power usage than the other. For more
information on this see section 2.5.

Because array parameters are chunked, this means the pro-
grammer should check the length method on the array pa-
rameter inside a threadlet rather than assuming the length
of the array. This cannot be checked by the compiler. By
using length, code will operate correctly with and without
the @Parallel annotation, only its non-functional behaviour
will change.

Dealing with the return values of threadlets can be problem-
atic. Due to the fact that the programmer may not know how
many threadlets will be spawned, there will be an unknown
number of return values to process, which makes it difficult to
allocate storage beforehand. To solve this, the programmer
can attach a reduction method to a parallel method. If the
parallel method’s return type is X, the reduction method’s
return type is also X and it takes one argument of type
X[] (an array of X). If the parallel method spawns more
than one threadlet, the reduction method will be called by
the runtime with the argument array containing the return
types of each threadlet. Reduction methods are attached
to a parallel method by adding the name of the reduction
method to the string parameter reduction of the @Parallel
annotation.

An example of the @Parallel annotation used to perform a
parallel sum of a large array of data is shown in Figure 10. If
this is executed without @Parallel the code is normal Java
and will operate as expected. If executed with @Parallel, the
runtime will spawn a set of threadlets which will each receive
a variability-adjusted size of the input array. Each threadlet
will sum its array in parallel, and then the reduction method
aggregates the totals. The chunkSize is set to 1 because this
is the smallest amount of input that sumVector requires to
operate correctly.

Limitations of this model. The presented model is de-
signed to be small, predictable, and analysable. Conse-
quentially it does not allow the same rich parallel constructs
available in the Java 8 concurrency framework. Instead it
is designed to be a first step that achieves variability-aware,
low-overhead concurrency in an embedded domain.

Unlike other concurrency frameworks, threadlets cannot self-
suspend or directly communicate. Algorithms which rely
on barrier synchronizations therefore cannot be deployed
in a single parallel loop and must instead use two separate
parallel methods and use the implied barrier that occurs
when a parallel method completes.
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@Parallel{reduction = "sumReduction"}
@Offload{targets = {"MIPS_R3000"}}
public int sumVector(@In(chunkSize = 1) int[]

input) {
int total = 0;
for(int i : input) {
total = total + i;

}
return total;

}

private int sumReduction(int[] vals) {
int total = 0;
for(int i : vals) {
total = total + i;

}
return total;

}

public void main(void) {
//Create the input array
int[] input = ...

//Call the parallel method
int total = sumVector(input);

}

Figure 10: An example of the @Parallel annotation.

2.4.2 Implementation strategy
The @Parallel annotation is implemented using the ASM
bytecode transformation framework [13] in the same manner
as @Offload (see section 2.3). Class files are first transformed
to process the @Parallel annotation, and then to process
the @Offload annotation. This is shown in figure 11.

Java source javac .class files @parallel

@offload.class filesPerc PicoC source

gcc
Final

executable

Figure 11: The bytecode transformation flow

The parallel annotation uses an application-wide static thread
pool to spawn the threadlets of the parallel method. Cur-
rently there is no standard thread pool in SCJ so the frame-
work includes an implementation of one. The thread pool uses
instances of javax.safetycritical.ManagedThread, which
is part of the SCJ level 2. The size of the thread pool is fixed
and set at mission initialisation time. It can serve threadlets
to multiple concurrent parallel invocations.

After construction, the thread pool is issued requests through
the following method:

ThreadPool.forkAndJoin(Runnable[] work)

Work is added to the thread pool by passing an array of
instances of Runnable. This is all transpartent to the pro-
grammer however, as the bytecode transformation inserts

the thread pool and transforms the bytecode to use it. The
transformation process is as follows:

1. The application’s main method is modified to create a
global instance of ThreadPool for use by the parallel
methods. This is placed in immortal memory.

2. For each @Parallel annotated method m:

(a) Rename m to _m_Threadlet. Note that its
@Offload annotation is preserved.

(b) Create a replacement method called m which:

• Calls the ToucHMore runtime to determine
the number of threadlets to use, n.

• Splits the input parameters of the parallel
method into n sub-arrays.

• Creates an array of n Runnables to call
_m_Threadlet, passing the sub-arrays to each.

• Passes the Runnables to the thread pool.

• Collects the outputs of the Runnables into
their output arrays.

After this transformation the threadlet method is still anno-
tated with @Offload, which is then processed according to
the processing described in section 2.3.

2.5 Details of Run-Time Support
The runtime developed in ToucHMore is responsible for mon-
itoring the platform and allocating the workload efficiently.

Due to the advancement in CMOS technology, the sub-65
nm cores are increasingly affected by the phenomenon called
’intra-die’1 process variation, which impacts the overall per-
formance of the architecture. So it has become necessary to
compensate or tolerate this variability effect, which can be
done on different levels, from circuit level (i.e. gate level) go-
ing the way up to system level (i.e. architecture level). And a
variability-tolerant platform is assumed not only to monitor
variations in nominal operating characteristics (such as clock
frequency or power consumption), but also to compensate
them in such a way that achieves performance maximization
or power consumption reduction.

As the variability factor can lead to suboptimal or inefficient
task allocation at runtime, the need to develop variability-
tolerant applications has risen. However, writing such ap-
plications has proven challenging and has required excessive
time and effort from programmers. And here comes the need
for an innovative approach for variability compensation from
a high-level model of the target hardware platform. Starting
from a high-level model of the target platform, the abstrac-
tion or description of the platform should necessarily be
detailed enough to capture information relevant for the run-
time manager2 to make task allocations. Variability-relevant
information is annotated in the model as properties, e.g.
clock frequency and power consumption. These quantities

1Also referred to as ’within-die’ or ’core-to-core’.
2The terms ’runtime manager’, ’runtime library’ and ’runtime
engine’ bear the same meaning and are used interchangeably
through the text.
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are obtained from the post-manufacturing characterization,
thus taking process variability into account.

This customization information is passed to the runtime li-
brary to be accessed by a state-of-the-art probabilistic policy
to make variability-aware allocation decisions at runtime.
Hence it becomes possible to mitigate the impact of uncer-
tainties due to the intra-die process variation [21]. The aim
is to have variability-aware task allocations toward achieving
performance gains and power optimization.

In addition to the implemented annotations described in this
paper, the project has also defined an annotation named
@Energy which is under active development. This annotation
will be used by the programmer to specify to what extent
an operation’s performance can be impacted by optimiza-
tions aimed to reduce energy use (or temperature). The
intent of the annotation is to provide a model-driven, code-
independent way to inform the runtime how aggressively
it should apply energy/power/temperature-aware policies
to different parts of the designed system. The annotation
supports deadline and qos (Quality of Service) parameters
that are used as inputs to the defined optimizations. The
project is currently investigating the use of frequency/voltage
scaling (DVFS) and workload to core allocation, but many
other potential policies are being considered. Many state of
the art policies concerning joint variability and energy opti-
mization require some performance constraint information
in order to achieve the best trade off between energy and
performance [23] and the use of such an annotation can assist
the programmer in the investigation of this trade off.

3. EXPERIMENTAL RESULTS
As most of the components of the ToucHMore tool chain
are still under development, experimental results to date are
very limited.

The runtime algorithms used for workload distribution be-
tween coprocessors have been evaluated with experimental
simulation of a matrix multiplication kernel as a benchmark
- using three different configuration sets: i) Homogeneous,
where all cores are equal; ii) Quasi-homogeneous where cores
are grouped into two frequency classes; and iii) Fully het-
erogeneous, where all cores are different. These cases are
representative of variability scenarios. In the first, we assume
the platform is homogeneously degraded. In the second, the
degradation is localized while in the third, the degradation is
randomly distributed across the cores. Note that frequency
values are normalized with respect to the maximum frequency.
Results reported in Table 2 for probabilistic rank frequency
and in Table 3 for rank power.

Results show that the percentages of workload allocated to
each processor depend on the speed or power differences
between the processors. In the case of probabilistic frequency
policy, to each core a probability of allocation is associated
which is proportional to the speed difference among the
cores, to achieve overall execution time equalization [12]. We
report in the third column the weighted frequency values
that account for the distance from the controller or master
core. We opted for not weighting the power values, however,

Homogeneous

Norm. Freq.
Weighted
Values

Allocation
Percentage

Slave Core 1 0.95 1 34.34%
Slave Core 2 0.95 1 34.08%
Slave Core 3 0.95 0.9 31.58%

Quasi-Homogeneous

Norm. Freq.
Weighted
Values

Allocation
Percentage

Slave Core 1 1.00 1.05 35.66%
Slave Core 2 0.95 1.00 33.69%
Slave Core 3 0.95 0.90 30.65%

Fully Heterogeneous

Norm. Freq.
Weighted
Values

Allocation
Percentage

Slave Core 1 0.95 1.00 34.00%
Slave Core 2 0.90 0.95 33.03%
Slave Core 3 1.00 0.95 32.97%

Table 2: Results about allocation of matrix multi-
plication threads on the MIPS cores in GENEPY
platform simulator using the Probabilistic Rank Fre-
quency policy.

Homogeneous
Power Value (mW) Allocation Percentage

Slave Core 1 15 33.79%
Slave Core 2 15 33.17%
Slave Core 3 15 32.86%

Quasi-Homogeneous
Power Value (mW) Allocation Percentage

Slave Core 1 13 33.79%
Slave Core 2 15 32.37%
Slave Core 3 13 33.84%

Fully heterogeneous
Power Value (mW) Allocation Percentage

Slave Core 1 15 32.05%
Slave Core 2 13 34.77%
Slave Core 3 14 33.18%

Table 3: Results about allocation of matrix multipli-
cation threads on the MIPS cores in GENEPY plat-
form simulator using the Probabilistic Rank Power
policy.
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due to the relatively negligible power consumption of the
network on chip routers.

4. CONCLUSION
The unique needs of low-power heterogeneous computer sys-
tems require non-traditional Java approaches in order to
optimize performance and power consumption. The SCJ
Java subset, in combination with specially designed annota-
tions and static code transformation capabilities based on
the use of the ASM tool chain, is sufficiently general to serve
as the basis for deploying Java on such systems.

Further work is required to evaluate the benefits of Java in
such configurations. Ongoing research focuses on evaluat-
ing the performance and power management characteristics
of Java applications running on low-power heterogeneous
computer systems in comparison with similar applications
written in C and C++. An additional aspect of the ongoing
research is to evaluate the maintainability and code reuse
benefits of the ToucHMore restrictive style of Java applica-
tion code in comparison with the maintainability and code
reuse benefits of C and C++ code on similar deployment
platforms.
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