
TECHNICAL PAPER: A CONTROL THEORETIC APPROACH FOR WORKFLOW MANAGEMENT. 1

A Control Theoretic Approach for Workflow
Management

Hashem Ali Ghazzawi, Iain Bate, and Leandro Soares Indrusiak
The University of York, Department of Computer Science, Deramore Lane, York, YO10 5GH, UK.

{hag, iain.bate, lsi}@cs.york.ac.uk

Abstract—This paper explores the performance of feedback
control when managing workflows in computing systems. In-
dustrial systems nowadays can consist of geographically diverse
and heterogeneous high-performance computing (HPC) clusters.
When scheduling workflows over such platforms, it is often
desired to observe a number of real-time objectives such as
meeting deadlines, reducing slacks, and increasing platform
utilisation. We apply a control theoretic approach to address
scheduling-related trade-offs of workflows that are executed
in HPC platforms. Our results show that model predictive
control-based admission controller is efficient for scheduling
periodic workflows in a homogeneous HPC cluster with respect
to minimum slacks and maximum CPU utilisation.

Index Terms—High-performance computing (HPC), real-time
systems, scheduling, quality-of-service (QoS), feedback control,
multi-input-multi-output (MIMO), admission controller (AC),
system identification, model predictive control (MPC), linear
quadratic regulator (LQR).

I. INTRODUCTION

OUR research goal is to manage the trade-off in meeting
the following two real-time objectives of a workflow

management system that is adopted in a particular industrial
organisation; (1) minimal slacks and (2) maximum CPU
utilisation, where tasks are periodically generated by end-
users. End-users often generate replacement workflows if
previous ones do not complete within a specific time-frame.
Our approach is based on carefully rejecting specific tasks
that cause the scheduling performance to degrade if admitted.
Problems can occur in various scenarios of industry. For
instance, assume there are three tasks; tasks 1 and 2 have
been generated, scheduled and are being executed in a cluster
of 2 CPUs. Task 3 has been generated but still queueing to
be admitted into the cluster. Task 3 has a higher probability
of missing its deadline if any of tasks 1 or 2 computation
time exceeds task 3’s deadline value. Thus admitting task 3
irrespective to this condition can result in an increased slack
for it, and hence increasing the slack of the rest of queueing
tasks.

Some traditional real-time scheduling approaches assume
exact knowledge of system workload and service capacity
a priori. This can cause poor (1) prediction of scheduling
performance in dynamical computing systems, (2) handling
dynamic dependencies, and (3) managing trade-offs in
multi-objective real-time optimisation [18]. This has been
the motivation for alternative approaches that analyse and
describe the aggregate behaviour of real-time systems.

We also see priority-driven scheduling policies such as
least-laxity-first (LLF) and early-deadline-first (EDF) which
are dynamic algorithms. The issue with LLF is the large
overheads due to high number of context switching caused by
laxity changes in real-time, hence EDF is more popular in the
real-time community [18]. The issue with EDF stems from
the fact that it is sometimes infeasible to guarantee sufficient
compute resources due to the cost and uncertainty in today’s
real-time systems. Our industrial workflow management
system can reach CPU overload situations and EDF’s
performance degrades in such scenarios [11].

One potential answer is the recent control theoretic approaches
which use feedback mechanism to monitor the capacity of
compute resources and quality-of-service (QoS) levels. This
way, the system forces certain actions to regulate the workload
for efficient scheduling performance with respect to agreed-on
real-time objectives. This approach enables us handling the
coupling between real-time systems components dynamically
via feedback control. This is achieved by defining performance
metrics e.g. CPU utilisation for transient response which can
be mapped to dynamic response specifications of control
systems (theory) [12]. Traditional approaches are concerned
with statically assured avoidance of undesirable effects such
as deadline misses and utilisation overload [13].

In this work, we are addressing a data-driven industrial
workflow management system [6]. The system handles
data-driven applications e.g. computational fluid dynamics
(CFD) simulations, also there is no control transfer from
a preceding task to the next. The workflow management
system experiences poor scheduling performance with respect
to the real-time objectives specified at the beginning of this
section. The system consists of static scheduling based on
first-come-first-served (FCFS) policy which makes missing
deadlines inevitable due to the lack of dynamic (pre-emption)
actions allowing higher priority workflows (with respect to
deadline or resource requirements) to execute first.

Our contribution in this work is threefold. First, we implement
a classical modelling approach in control theory, known as
System Identification, for modelling the scheduling behaviour
of the industrial workflow management system. Second,
we adopt this identified model as the system (plant) model
for implementing a model predictive control (MPC-)based
admission controller (AC) to support real-time scheduling.

TECHNICAL PAPER: A CONTROL THEORETIC APPROACH FOR WORKFLOW MANAGEMENT. 2

The possibility of adopting MPC to support AC is suggested
in [13]. Third, we evaluate both our modelling approach and
results significance towards meeting our research goal.

The paper has the following structure; Section II includes
related work in the realm of control theoretic approaches
in real-time scheduling. Section III includes the modelling
approach we adopted in this work. Section IV shows the
experimental results and their evaluations. Finally, there are
conclusions and future work in Section V.

The following are the key terms used in this paper:
• Workflow: It has the following structure; when a task

depends on (an)other task(s), they form a job (e.g. CFD
simulation), and when a job depends on (an)other job(s)
they form a (Data or Design) workflow. Hence, a task
is the lowest level of granularity for our notion of
workflows.

• Data/Design: They are the two types of workflows that
end-users submit into the industrial workflow manage-
ment system. They have different real-time scheduling
attributes such as computation time and release rate.

• Slack: The difference between a task’s deadline and its
completion time.

• Cluster CPU Utilisation: The collective average of time
each CPU spends executing a task in the cluster.

• Simulation Framework: It includes representative work-
flow generation and scheduling of jobs that mimic the
ones of the industrial workflow management system.

• Control Objectives: Minimise tasks’ slacks, and max-
imise cluster CPU utilisation.

• System Inputs: The workflow tasks computation time
values of the two workflow types, Data and Design.

• Control Variables: They include both the monitored
system outputs of the simulation framework (slacks &
cluster CPU utilisation), and the QoS levels (desired
slacks & cluster CPU utilisation) defined by the end-user.

• Control Outputs: CDataMPC and CDesignMPC are the
task’s optimal computation times for the two workflow
types, the two values are generated by the MPC. They
can also be known as the manipulated variables.

• Control Framework: It includes both a mathematical
representation of our simulation framework, Plant Model,
and the proposed MPC-based AC framework.

• Optimisation Constraints: They include the schedula-
bility bound and maximum/minimum values for control
outputs.

II. RELATED WORK

A classical control algorithm known as proportional-
integral-derivative (PID) control has been used in uni-
processor real-time systems to reduce deadline miss ratio
[11]. PID is a basic mechanism to achieve control objectives
in real-time systems. However when common characteristics
arise such as large time delays, non-linearity, high-order
dynamics, or multi-core cases, PID lacks performance
improvement as it is linear and in particular symmetric [5].

MPC is an advanced method for controlling real-time
dynamic systems, it is popular in industries that heavily rely
on process control - a survey of MPC applications in industry
is provided by [15]. In the literature, it has been advocated
for controlling systems that exhibit non-linear behaviour
and contain multi-input-multi-output (MIMO) structure. A
survey of feedback control in software services is compiled
by [2]. Most, if not all, computing systems exhibit non-linear
behaviour [7], and the industrial workflow management
system has a MIMO structure since both the number of
system inputs and outputs exceeds one.

Lu chose MPC for his work in minimising the difference
between the desired CPU utilisation values of m processors
(set-points) and the actual values monitored with time
[13]. The control variable was periodicity, which controls the
release rate of jobs. For control tasks, there are two approaches
for controlling CPU utilisation, either by manipulating the
task release rates (e.g. [13]), or computation times [8],
our approach is based on the latter for tasks admission.
Controlling the workflow release rate is undesired in the
industrial workflow management system as the distribution
of submitting jobs into high-performance computing (HPC)
clusters is and will not be controlled. Lu’s method in
controlling the periodicity of jobs can also be seen in other
related work such as [16].

In the context of real-time multi-objective optimisation,
there is the linear quadratic regulator (LQR) method. LQR
method captures the dynamics of a system by a set of
linear differential equations that can be derived via System
Identification [10] e.g. the work of [4]. Diao chose LQR
control algorithm in optimising CPU and memory utilisations
of an Apache server via controlling the maximum number
of requests made to the server, and the duration of keeping
a request alive or queueing to be served [4]. However,
it is not desired in the industrial workflow management
system to force a “cap” on admitting tasks in the case of
receiving one with a high priority but exceeds the maximum
number of tasks specified by the controller. Our proposed
AC dynamically admits/rejects tasks by following a certain
admission logic using specified optimal tasks’ computation
time values that are computed in real-time via MPC with
respect to the control objectives. This way, as long as tasks
are admitted, the workflow management system behaves
satisfactorily. MPC differs from LQR by allowing explicit
optimisation constraints on both the system and control
outputs [14].

III. MODELLING

In computing systems, performance trade-offs exist such
as reducing slacks while maintaining high resource utilisation
[13]. Computing systems are considered non-linear, where
non-linearities arise if the control objective is optimisation
e.g. load balancing [7]. For instance, low deadline misses do
not necessarily imply low CPU utilisation, or if we enforce a
low number of jobs into a multi-processor platform, it does

TECHNICAL PAPER: A CONTROL THEORETIC APPROACH FOR WORKFLOW MANAGEMENT. 3

not guarantee low deadline misses. In control theory these
variables can be addressed as exogenous - meaning that they
are independent of each other [10], which can be true for
CPU utilisation and slacks.

Control theory relies on linear difference equations that
capture the dynamics of the controlled system. A traditional
modelling approach associates first-principles model of
the industrial workflow management system. For example,
Newton’s laws are widely implemented in characterising
mechanical systems. We lack such laws for computing
systems, we primarily have queueing relationships etc. [7].

Using first-principles approach for our non-linear MIMO
system is not only complicated, but also requires detailed
knowledge of the system’s dynamics especially the low-level
design of the HPC servers [4]. We adopt a black-box approach
that requires less details of the system dynamics as capturing
them in industry can be expensive cost- and time-wise.
This approach is called System Identification (or Parameter
Estimation), it requires monitoring the inputs & outputs of the
system we wish to control [10]. We used Matlab modelling
environment, Simulink [14], for constructing our simulation
framework - Figure 1 is a block representation.

Fig. 1. Block representation of the simulation framework.

The Workflow Generator block consists of two sub-generators
- one for each workflow type. There are two wait-queues - one
for each sub-generater. Workflows then queue according to
FCFS scheduling policy in a single run-queue to be executed
in the HPC cluster.

A. Workflow Generator

We conducted ethnographic studies with end-users of the
industrial workflow management system and collected the
characteristics of workflow generation and scheduling be-
haviours. We mentioned in Section I that tasks form the lowest
level of granularity of our notion of workflows. Each job
consists of 10 tasks, each task is characterised by the following
attributes:

• Taski is the ith tasks’ order, where 1 ≤ i ≤ 10. There
exists a dependency in the tasks-level preventing the
execution of a task before its predecessor.

• Ci is the ith task’s computation time.
• Di is the ith task’s deadline.
• Ti is the ith task release rate.

The workflows task model is summarised in Table I.

Type C (hours) D (hours) T (hours)
Data 4.0-6.0 or 12.0-15.0 C+20.0% 4.0
Design 4.0-6.0 C+20.0% 0.8

TABLE I
TASK MODEL OF GENERATED JOBS.

We further elaborate our notion of deadline, D, using the
terms depicted in Figure 2.

Fig. 2. Block representation of our notion of deadlines.

The deadline for all tasks (of different jobs) is set to
be the computation (execution) time multiplied by an
arbitrary value of 1.2 chosen for this work (that has no
particular significant attribute). In other words, the deadline
of individual tasks is equal to their individual computation
time plus 20%. The arrows indicate the following: when the
actual completion time occurs before Di, we have a positive
slack, D

′

i, otherwise negative, D
′′

i .

We take the normalised value of the slacks for our results,
NormSlacki = Slacki/Di. The reason behind this is to
show (1) what task has missed its deadline, and (2) how far
is it from its deadline - this can be positive, zero, or negative
values. If we apply the deadline-scheduling utilisation bound
equation, 1, for periodic tasks, the CPU utilisation required is
larger than 1 causing CPU over-utilisation.

U =

i∑
n

Ci

Ti
≤ 1 (1)

Due to the static scheduling behaviour implemented in the
industrial workflow management system, there is no dynamic
way for scheduling tasks with respect to varying (1) slacks,
and (2) CPU utilisation. Our simulation framework captures
the scheduling issues arising in the industrial workflow man-
agement system. Issues include:

1) Continuous increase in deadline misses and hence in
slacks due to admitting tasks without the awareness
of increased queueing time in the case of CPU over-
utilisation.

2) Cluster CPU under-utilisation due to the static schedul-
ing lacking pre-emption actions with respect to deadline
and/or resource utilisation priority.

TECHNICAL PAPER: A CONTROL THEORETIC APPROACH FOR WORKFLOW MANAGEMENT. 4

Our control framework, see Figure 3, supports scheduling via
its MPC-based AC approach.

Fig. 3. Block representation of the control framework. The scheduling and
execution behaviours are replaced with a Plant Model.

The MPC captures the workflow generation and scheduling
characteristics via a set of linear difference equations ob-
tained via System Identification approach. MPC maps the
control objectives and QoS levels in a real-time multi-objective
optimisation problem when computing the control outputs.
This problem includes the control objectives as well as the
optimisation constraints. The control outputs are then passed
to the AC which uses them for its admission duty.

B. Admission Control (AC)

It is part of the proposed control framework for the in-
dustrial workflow management system. It admits tasks after
receiving data from the following blocks:

1) Workflow Generator: CiData & CiDesign.
2) MPC: Optimal computation times, CDataMPC &

CDesignMPC . These values are computed in real-time
via the MPC and are optimal with respect to the control
objectives and the optimisation constraints.

The AC deals with the two workflow types in parallel, in
other words it receives workflows from the sub-generators’
wait-queues simultaneously. It only compares CiData &
CiDesign with CDataMPC & CDesignMPC respectively in
real-time. The MPC is tuned to generate control outputs
supporting the admission logic. If any task satisfies the AC
logic (of its workflow type) then it is admitted into the
single run-queue. If not, then that particular task is believed
to degrade the scheduling performance with respect to the
control objectives.

Handling rejected tasks is not present in this work. Currently
in the industrial workflow management system when a
particular task causes the scheduling performance to degrade,
the system administrator manually kills the whole workflow
that contains this task. This is a serious flaw in the current
system. However, it is part of our research in the future to
design a mechanism that allows re-admission of rejected tasks
in an optimal manner with respect to the control objectives.

The logic chosen for admitting Data tasks is: If
CiData ≥ CDataMPC Then admit TaskiData Else reject
TaskiData. This is due to the fact that end-users of the
industrial workflow management system are satisfied with
the scheduling performance of Data workflows in the current
system. It was intuitive to admit as many generated Data tasks
to increase the CPU utilisation. However, Data slacks have
an impact on the slacks of their Design peers since they are
sharing the same cluster, hence admission is restricted unless
control objectives are met. The logic chosen for admitting
Design tasks is: If CiDesign ≤ CDesignMPC Then admit
TaskiDesign Else reject TaskiDesign. This is due to the fact
that end-users are experiencing high slack values associated
with scheduling Design workflows in the current system.

C. Plant Model via System Identification

We have implemented a widely known System Identification
technique called non-linear autoregressive exogenous (NARX)
[10] for capturing the impact of the Workflow Generator on
scheduling and execution of workflows. We implemented
NARX correlation functions in our monitored system inputs
and outputs. This has allowed us identifying this impact in
the form of a set of transfer (system) functions in terms
of complex frequency-domain representation of linear time-
invariant systems. Therefore, in the control framework, Figure
3, we added these transfer functions as the Plant Model block.

An argument can be made here regarding the time-variant
nature of the simulation framework. However literature
of control theory supports linear time-invariant difference
equations [7] [10]. We used System Identification toolbox
from [14] to convert the monitored data from the simulation
framework into a linear mathematical representation
(preferably frequency-domain) that is compatible with
control theory. More information can be found in [7]. The
accuracy of our identified transfer functions have been tested
against the monitored system inputs and outputs via a process
called “Model Validation”.

Model Validation: The Plant Model has to pass through
validation test(s) before implementing it in our MPC design.
Thus we evaluate how accurate does the Plant Model match
the dynamics of the simulation framework, see Figure 1.
In the literature and control theory we can see widely used
metrics for assessing accuracy. There are (1) root-mean-square
error (RMSE), (2) R2, refer to equation 2, which computes
the variability explained by the Plant Model quantifying
its accuracy, and (3) correlation coefficient between the
monitored data and the residuals [7].

R2 = 1− var(y − ŷ)

var(y)
(2)

In equation 2, the variance of system outputs, y(k), is var(y),
and ŷ is the estimated value of the system outputs. R2 ranges
from 0 to 1; zero means the model does not work, any better,
than just taking the mean value of y to estimate y(k). In

TECHNICAL PAPER: A CONTROL THEORETIC APPROACH FOR WORKFLOW MANAGEMENT. 5

general, we look for models with R2 ≥ 0.8 [7]. The identified
model has an accuracy of 82.71%.

Despite these metrics’ popularity, they can be misleading. For
instance, Hellerstein argues in his book that a very large R2

can be obtained if monitored system inputs and outputs are
clustered around extreme values, not necessarily reflecting on
great accuracy. More information can be found in [7]. It is
argued there that for validating mathematical representations
of non-linear MIMO systems, residual analysis appeal more.
Residuals represent the portion of validation that is not
explained by the Plant Model [14]. Our residual analysis
have produced plots that indicate the identified model fits
within the 95% confidence interval. In other words, a good
model should have a residual autocorrelation function within
the confidence interval, indicating that the residuals are
uncorrelated [14].

D. Model Predictive Control (MPC)

In control theoretic terms, the simulation framework is
a non-linear MIMO system. Thus we require a control
approach that generalises directly to such system structures.
The simulation framework is also non-square, meaning it
has an unequal number of control variables and outputs, and
several industrial applications experience such conditions
[14]. After conducting prediction and optimisation, the MPC
block computes its control outputs and feeds them to the AC
in order for the latter to apply its admission logic.

Prediction and Optimisation:
MPC features support for the simulation framework with its
general form, see equation 3.

Sy(k) =

P∑
i=1

ny∑
j=1

[
wy

j [rj(k + i)− yj(k + i)]
]2

(3)

P Prediction horizon = 10, which is the default value
in MPC toolbox of [14].

ny Number of system (plant) outputs = 3.
wy

j Weight for system outputs yj . We chose the values
[1, 0.5, 1] for the outputs [y1, y2, y3] respectively.
The reason for wy

1 is to make the control framework
robust with ensuring maximum possible cluster CPU
utilisation. The reason for wy

2 stems from the fact,
mentioned in Section III-B, that end-users of the
industrial workflow management system are satisfied
with the current scheduling performance of Data
tasks. We reduced the MPC robustness for wy

2 i.e.
Data tasks while enforced a high wy

3 i.e. Design tasks
which suffer scheduling issues e.g. high positive
slack values.

rj QoS level for each system output. We chose the
values [1, 15, 15] for the outputs [y1, y2, y3] respec-
tively. This means that the desired utilisation value
is 1 (i.e. 100%), and the limit of the normalised
slack for both types of jobs is 15 hours. This reflects
the desired values by end-users where they expect
simulation jobs to complete in 1-2 working days.

rj(k + 1) − yj(k + 1) is the predicted deviation at
future instant k+1.

k Current sample interval.

The controller predicts how much each system output, yj ,
deviates from its QoS level, rj , within the prediction horizon,
P . The prediction horizon refers to the number of control
cycles over which the control outputs (CDataMPC and
CDesignMPC) are to be optimised with respect to the control
objectives. MPC multiplies each deviation by each system
output’s weight, wy

j , and computes the weighted sum of
squared deviations, Sy(k).

MPC applies equation 3 to each system output (y1, y2, y3),
see Figure 3, simultaneously. The sum iterations are equal to
the number of system outputs, ny . Each system output and its
associated QoS level and weight are used in their particular
iteration. For instance, at the second sum iteration, the MPC
deals with y2, r2, and wy

2 . The MPC parameter values, in
equation 3, are specified in Matlab environment via the MPC
toolbox [14] with respect to the QoS levels, control variables
and objectives.

A Quadratic Programming (QP) solver [17], which is
part of MPC, deals with the optimisation problem including
a quadratic objective, see equation 4.

J(∆u, ε) =

p−1∑
i=0

[y(k + i+ 1|k)− r(k + i+ 1)]
T
.

Q [y(k + i+ 1|k)− r(k + i+ 1)] +

∆u(k + i|k)TR∆u(k + i|k) + [u(k + i|k)−
utarget(k + i)]TRu[u(k + i|k)− utarget(k + i)] + ρeε

2

(4)

This optimal control approach deals with the optimisation
problem by minimising J , the quadratic cost function. ε is
the slack variable (within MPC computational tasks). Q is
an ny by ny matrix for the system outputs states, where ny
is the number of the system outputs. Ru is an nu by nu
matrix for the system inputs states, where nu is the number
of the system inputs. All of these matrices are positive semi-
definite and diagonal with the square of the weights, wy

j .
u(k) is the signal the MPC adjusts in order to achieve its
objectives, the MPC maps this value to its control outputs
(CDataMPC and CDesignMPC). ∆u(k + i|k) is the control
signal computed at time instant k + 1 based on the informa-
tion available at time k; it follows an optimisation sequence
u(k) = u(k − 1) + ∆u(k|k − 1).

TECHNICAL PAPER: A CONTROL THEORETIC APPROACH FOR WORKFLOW MANAGEMENT. 6

IV. EXPERIMENTAL RESULTS

In this section, we investigate performance comparisons
between the proposed control framework against (simulation
framework of) the industrial workflow management system
with respect to the control objectives. Statistical tests were
carried out signifying our results.

All of the simulations were of 200 hours period, this value was
chosen to represent a week worth of jobs submission, queueing
and execution of the industrial workflow management system.
The set-points used in these simulations were [1, 15, 15],
which are the QoS levels, rj . The cluster sizes tested in
this work include 10, 36, 50, and 100 homogenous CPUs.
Please note that the control framework will be referred to as
closed-loop (CL), and the simulation framework as open-loop
(OL). This indicates the presence/absence of feedback control.

The following experiments were carried out; each experiment
consists of three hypotheses signifying the results with respect
to cluster CPU utilisation, Data slacks, and Design slacks
respectively.

1) First-come-first-served (FCFS) vs. early-deadline-
first (EDF) scheduling. The former is the scheduling
policy adopted in the industrial workflow management
system, and it is static. This experiment investigates
the benefits obtained from only adopting a dynamic
scheduling policy, known as EDF. The reason for testing
EDF is twofold: (1) EDF is widely used in the real-time
community, and (2) it is a dynamic scheduling policy
that can serve the industrial workflow management sys-
tem in scheduling jobs into the HPC platform.

2) Closed-loop system (with FCFS scheduling) vs. open-
loop. Exploring the benefits for the industrial workflow
management systems from only adopting the proposed
control framework without changing the current schedul-
ing policy.

3) Closed-loop system (with EDF scheduling) vs.
open-loop. Exploring the benefits from adopting both
the proposed control framework and EDF scheduling.

A. Experiment 1: First-Come-First-Served (FCFS) vs. Early-
Deadline-First (EDF) Scheduling Policies

In the context of this experiment, we raise three hypotheses:

Hypothesis 1.1 There is no significant difference in
maximising cluster CPU utilisation in the industrial workflow
management system when adopting EDF scheduling policy
instead of FCFS.

Table II shows the statistical summary for different test
cases for cluster CPU utilisation. Note that F refers to FCFS
scheduling and E for EDF. Also, the numbers next to each
scheduling policy refers to the number of CPUs used for each
test case.

Test Case Min. 1st Q Med. 3rd Q Max.
F10 0.00 0.82 0.89 0.92 0.94
E10 0.00 0.82 0.89 0.92 0.94
F36 0.00 0.33 0.45 0.50 0.54
E36 0.00 0.33 0.44 0.50 0.55
F50 0.00 0.27 0.33 0.37 0.40
E50 0.00 0.26 0.33 0.37 0.39
F100 0.00 0.14 0.18 0.19 0.20
E100 0.00 0.14 0.18 0.19 0.20

TABLE II
STATISTICAL SUMMARY FOR CLUSTER CPU UTILISATION OF HYPOTHESIS

1.1.

The FCFS/EDF test cases have almost the same performance
with respect to cluster CPU utilisation. However, one-way
analysis of variance (ANOVA) test was carried out to
statistically demonstrate the difference between the two
scheduling policies, Table III summarises the test.

Test Case Mean Square F-statistic p-value
10 CPUs 0.01 0.42 0.52
36 CPUs 0.06 3.95 0.05
50 CPUs 0.02 2.54 0.11
100 CPUs 0.01 2.33 0.13

TABLE III
ONE-WAY ANOVA FOR CLUSTER CPU UTILISATION OF HYPOTHESIS 1.1.

The p-values for all of the test cases were ≥ 0.05. Thus,
the null hypothesis is not rejected and therefore with respect
to cluster CPU utilisation, there is no significant difference
for the industrial workflow management system whether to
adopt a dynamic scheduling policy or remain with the current
static policy. This is counter-intuitive since EDF is meant to
increase CPU utilisation to its maximum. However, due to
the high release rate of Data and Design jobs, the cluster
CPU utilisation is not affected significantly.

Hypothesis 1.2 There is no significant difference in
minimising normalised Data slacks in the industrial workflow
management system when adopting EDF scheduling policy
instead of FCFS.

Table IV shows the statistical summary for different
test cases for normalised Data slacks.

Test Case Min. 1st Q Med. 3rd Q Max.
F10 -0.33 0.24 4.58 6.69 12.54
E10 -0.33 0.49 2.00 3.27 7.06
F36 -0.44 -0.10 0.04 0.63 3.50
E36 -0.44 -0.11 0.04 0.43 1.47
F50 -0.44 -0.10 0.00 -0.13 2.25
E50 -0.44 -0.11 -0.03 0.04 0.83
F100 -0.44 -0.33 -0.10 0.00 0.21
E100 -0.44 -0.33 -0.10 0.00 0.21

TABLE IV
STATISTICAL SUMMARY FOR NORMALISED DATA SLACKS OF HYPOTHESIS

1.2.

We notice that some results overlap especially when
comparing in the 100-CPUs case. This means that different
scheduling policies perform differently in smaller cluster

TECHNICAL PAPER: A CONTROL THEORETIC APPROACH FOR WORKFLOW MANAGEMENT. 7

sizes. The p-values for the first three cases (10, 36, and 50
CPUs) were found to be < 0.05 except for the 100-CPUs
case where it was larger. Thus, the null hypothesis is rejected
for relatively smaller cluster sizes. We conclude that adopting
a dynamic scheduling policy in small cluster sizes (up to 50
CPUs) will significantly reduce the normalised Data slacks.
However, for the industrial workflow management system,
there is a number of HPC clusters that currently exceed 100
CPUs.

Hypothesis 1.3 There is no significant difference in
minimising normalised Design slacks in the industrial
workflow management system when adopting EDF scheduling
policy instead of FCFS.

Table V shows the statistical summary for different test
cases for normalised Design slacks.

Test Case Min. 1st Q Med. 3rd Q Max.
F10 0.57 8.06 14.13 20.71 34.42
E10 1.29 8.75 14.42 20.67 26.13
F36 -0.22 7.07 12.67 18.04 29.71
E36 -1.48e-16 6.38 9.71 13.88 18.04
F50 -0.22 6.50 12.63 17.74 29.71
E50 -1.48e-16 6.38 9.71 13.88 18.04
F100 -0.22 6.50 12.67 18.78 29.71
E100 -1.48e-16 6.38 9.71 13.38 18.04

TABLE V
STATISTICAL SUMMARY FOR NORMALISED DESIGN SLACKS OF

HYPOTHESIS 1.3.

The p-values for the cases (36, 50, and 100 CPUs) were <
0.05 and for the 10-CPUs case it was larger. Thus, the null
hypothesis is rejected for relatively larger cluster sizes. We
can conclude that adopting a dynamic scheduling policy in
larger cluster sizes (above 10 CPUs) will significantly reduce
the normalised Design slacks. This conclusion is fruitful in
the industrial workflow management system as HPC clusters
contain high number of CPUs.

Table VI summarises the benefits the industrial workflow
management system can obtain from only changing the
scheduling policy from being static into dynamic. Note that a
‘X’ in the table indicates a significant advantage in adopting
EDF, and a ‘7’ indicates no significant difference between
the two scheduling policies.

Metrics FCFS vs. EDF
Cluster CPU Utilisation 7.
Normalised Data Slacks (hrs) Xsmall cluster sizes. 7100 CPUs.
Normalised Design Slacks (hrs) Xhigh cluster sizes. 710 CPUs.

TABLE VI
EXPERIMENT 1 RESULTS SUMMARY.

B. Experiment 2: Closed-loop (with FCFS) vs. Open-loop

In the context of this experiment, we raise three hypotheses:

Hypothesis 2.1 There is no significant difference in
maximising cluster CPU utilisation in the industrial workflow
management system when adopting the proposed control
framework.

Table VII shows the statistical summary for different
test cases for cluster CPU utilisation.

Test Case Min. 1st Q Med. 3rd Q Max.
CL10 0.00 0.54 0.76 0.80 0.83
OL10 0.00 0.82 0.89 0.92 0.94
CL36 0.00 0.29 0.45 0.50 0.54
OL36 0.00 0.33 0.45 0.50 0.54
CL50 0.00 0.26 0.34 0.37 0.40
OL50 0.00 0.27 0.33 0.37 0.40
CL100 0.00 0.14 0.18 0.19 0.20
OL100 0.00 0.14 0.18 0.19 0.20

TABLE VII
STATISTICAL SUMMARY FOR CLUSTER CPU UTILISATION OF HYPOTHESIS

2.1.

There are different performances between the two systems at
smaller cluster sizes, and as we increase the number of CPUs,
they almost share the same results. In fact, the table suggests
that at smaller cluster sizes, the OL system enjoys higher
cluster CPU utilisation than the CL system. The p-values for
all the CPU cases are = 0.05, therefore the null hypothesis
is not rejected, meaning that there is no preference between
the two systems with respect to maximising cluster CPU
utilisation. This is fundamentally due to the AC actions of
rejecting tasks periodically in order to reduce the normalised
Data and Design slacks, hence the low utilisation. For
instance, let us examine the 10-CPUs case, see Figure 4.

Fig. 4. Cluster CPU under-utilisation for CL-FCFS with 10 CPUs.

At the beginning of the simulation, the AC drops tasks in low
number (< 20 tasks) indicating the lower CPU utilisation as
opposed to its OL peer where the system does not have any

TECHNICAL PAPER: A CONTROL THEORETIC APPROACH FOR WORKFLOW MANAGEMENT. 8

AC present. Later on, the AC no longer rejects any tasks, but
tasks start to queue up as their number increase due to their
periodic generation. We can notice from the graph that at the
20th hour, the average wait/queueing time starts to increase
resulting in low cluster CPU utilisation in the CL system.
Around the 80th hour we notice the following:

• Higher number of rejected tasks: 80-90.
• Higher normalised slacks.

Towards the end of the simulation, the AC maintains a
rejection rate of 30 tasks per 10 hours. This explains the
cluster CPU utilisation of the CL system matching its OL peer
due to (1) periodic task rejections, and (2) increased queueing
time. Hence, this has resulted in no significant difference
between the two systems with respect to maximising cluster
CPU utilisation.

Hypothesis 2.2 There is no significant difference in
minimising normalised Data slacks in the industrial workflow
management system when adopting the proposed control
framework.

Table VIII shows the statistical summary for different
test cases for normalised Data slacks.

Test Case Min. 1st Q Med. 3rd Q Max.
CL10 -0.33 0.44 3.72 4.26 15.58
OL10 -0.33 0.24 4.58 6.69 12.54
CL36 -0.44 -0.10 0.03 0.61 3.71
OL36 -0.44 -0.10 0.04 0.63 3.50
CL50 -0.44 -0.10 0.00 0.24 2.71
OL50 -0.44 -0.10 0.00 0.08 2.25
CL100 -0.44 -0.10 -0.10 0.00 2.71
OL100 -0.44 -0.33 -0.10 0.00 0.21

TABLE VIII
STATISTICAL SUMMARY FOR NORMALISED DATA SLACKS OF HYPOTHESIS

2.2.

The table above suggests that the current scheduling/queueing
performance of the OL system reduces the normalised Data
slacks more than the CL peer. The OL system was found to
have significantly lower normalised Data slacks than the CL
system. It is important to mention at this stage that this finding
is argued from three points of view. One being the normalised
Data slacks of the CL system fit in the set-point range of 15
hours, thus as far as the end-users of the industrial workflow
management system are concerned, the CL system performs
satisfactorily. However, it is always desired to adopt a system
with lower normalised slacks. On the other hand, the MPC
was tuned to be more robust towards Design jobs as they
form the core of the control objectives. Finally, the CL system
used in this experiment has had FCFS as its scheduling policy.

Hypothesis 2.3 There is no significant difference in
minimising normalised Design slacks in the industrial
workflow management system when adopting the proposed
control framework.

Table IX shows the statistical summary for different

test cases for normalised Design slacks.

Test Case Min. 1st Q Med. 3rd Q Max.
CL10 -0.44 2.37 8.14 8.17 16.17
OL10 0.57 8.06 14.13 20.71 34.42
CL36 -0.44 0.11 0.88 1.13 3.71
OL36 -0.22 7.07 12.67 18.04 29.71
CL50 -0.44 0.11 0.67 0.88 2.63
OL50 -0.22 6.50 12.63 17.74 29.71
CL100 -0.44 0.11 0.13 0.88 0.88
OL100 -0.22 6.50 12.67 18.78 29.71

TABLE IX
STATISTICAL SUMMARY FOR NORMALISED DESIGN SLACKS OF

HYPOTHESIS 2.3.

The current scheduling/queueing performance of the OL
system experiences high normalised Design slack values as
opposed to its CL peer, which reduces the normalised slacks
noticeably. The p-values for all the CPU cases are < 0.05,
therefore the null hypothesis is rejected for all of different
cluster sizes. This finding suggests the significant effect of
the MPC has had on reducing the normalised Design slacks.

In summary, this experiment has shown us the benefits
for the industrial workflow management system when only
adopting the proposed control framework without changing
the current scheduling policy. Table X summarises the
findings of this experiment.

Metrics CL-FCFS vs. OL
Cluster CPU Utilisation 7.
Normalised Data Slacks (hrs) 7. CL still performs within QoS limit.
Normalised Design Slacks (hrs) X.

TABLE X
EXPERIMENT 2 RESULTS SUMMARY.

C. Experiment 3: Closed-loop (with EDF) vs. Open-loop
In the context of this experiment, we raise three hypotheses:

Hypothesis 3.1 There is no significant difference in
maximising cluster CPU utilisation in the industrial workflow
management system when adopting the proposed control
framework and EDF scheduling policy.

Table XI shows the statistical summary for different
test cases for cluster CPU utilisation.

Test Case Min. 1st Q Med. 3rd Q Max.
CL10 0.00 0.55 0.76 0.79 0.83
OL10 0.00 0.82 0.89 0.92 0.94
CL36 0.00 0.28 0.45 0.50 0.54
OL36 0.00 0.33 0.45 0.50 0.54
CL50 0.00 0.25 0.33 0.37 0.40
OL50 0.00 0.29 0.33 0.37 0.40
CL100 0.00 0.14 0.18 0.19 0.20
OL100 0.00 0.14 0.18 0.19 0.20

TABLE XI
STATISTICAL SUMMARY FOR CLUSTER CPU UTILISATION OF HYPOTHESIS

3.1.

TECHNICAL PAPER: A CONTROL THEORETIC APPROACH FOR WORKFLOW MANAGEMENT. 9

We notice different performances between the two systems
at smaller cluster sizes, and as we increase the number
of CPUs, they share similar results with respect to cluster
CPU utilisation. In fact, the table suggests that at smaller
cluster sizes, the OL system enjoys higher cluster CPU
utilisation than the CL peer. The p-values for all the CPU
cases are = 0.05, therefore the null hypothesis is not rejected.
Similarly to the previous experiment, in Hypothesis 2.1, the
non-significant difference stems from the increased queueing
time and AC actions of rejecting tasks periodically in order to
reduce the normalised Data and Design slacks. For instance,
let us study the 36-CPUs case, see Figure 5:

Fig. 5. Cluster CPU under-utilisation for CL-EDF with 36 CPUs.

We can see that at the beginning of the simulation, there
is no queueing time present. This gives the intuition that
the cluster CPU utilisation being equal or higher than its
OL peer. However, due to the AC actions, the cluster CPU
utilisation for the CL system is lower than its OL peer. We
can notice from the graph how periodic the AC rejects tasks,
which is around dropping 1 task every 1 hour, but in some
instances there were higher number of rejected tasks up to
12-14 at a time. We can also notice that the AC is active only
until around the 18th hour of the simulation. This is because
the MPC has kept the normalised slacks within the accepted
range (up to 15 hours). Towards the end of the simulation, the
average queueing time for tasks remain low (<6 hours), and
having the AC no longer rejects any tasks, the cluster CPU
utilisation of both CL and OL systems are matching. This
has resulted in non-significant difference between the two
systems with respect to maximising cluster CPU utilisation.

Hypothesis 3.2 There is no significant difference in
minimising normalised Data slacks in the industrial workflow
management system when adopting the proposed control
framework and EDF scheduling policy.

Table XII shows the statistical summary for different
test cases for normalised Data slacks.

Test Case Min. 1st Q Med. 3rd Q Max.
CL10 -0.33 3.10 3.54 4.33 6.86
OL10 -0.33 0.24 4.58 6.69 12.54
CL36 -0.44 -0.10 -0.01 0.72 2.71
OL36 -0.44 -0.10 0.04 0.63 3.50
CL50 -0.44 -0.11 -0.10 0.32 2.71
OL50 -0.44 -0.10 0.00 0.08 2.25
CL100 -0.44 -0.10 -0.10 0.00 2.71
OL100 -0.44 -0.33 -0.10 0.00 0.21

TABLE XII
STATISTICAL SUMMARY FOR NORMALISED DATA SLACKS OF HYPOTHESIS

3.2.

The OL system experiences lower normalised Data slacks
than its CL peer. However, as we increase the number
of CPUs, the CL system shares similar performance with
respect to lower normalised Data slacks. The p-values for the
10/50/100-CPUs cases are < 0.05, thus the null hypothesis is
rejected. The CL system significantly reduces the normalised
Data slacks more than the OL system, except for the 100-
CPUs case where the OL performs significantly better with
respect to low normalised Data slacks. This suggests that the
proposed MPC requires further fine-tuning to be robust for
higher cluster sizes.

Hypothesis 3.3 There is no significant difference in
minimising normalised Design slacks in the industrial
workflow management system when adopting the proposed
control framework and EDF policy.

Table XIII shows the statistical summary for different
test cases for normalised Design slacks.

Test Case Min. 1st Q Med. 3rd Q Max.
CL10 -0.44 2.82 3.00 3.00 6.86
OL10 0.56 8.06 14.13 20.71 34.42
CL36 -0.44 0.11 0.67 0.88 2.07
OL36 -0.22 7.07 12.67 18.04 29.71
CL50 -0.44 0.11 0.67 0.88 1.37
OL50 -0.22 6.50 12.63 17.74 29.71
CL100 -0.44 0.11 0.11 0.88 0.88
OL100 -0.22 6.50 12.67 18.78 29.71

TABLE XIII
STATISTICAL SUMMARY FOR NORMALISED DESIGN SLACKS OF

HYPOTHESIS 3.3.

The table suggests that the OL system experiences high
normalised Design slacks as opposed to its CL peer which
reduces the normalised slacks noticeably. The p-values
for all of the test cases are < 0.05. Thus we reject the
null hypothesis, and we can conclude that the CL system
significantly reduces the normalised Design slacks more than
its OL peer.

TECHNICAL PAPER: A CONTROL THEORETIC APPROACH FOR WORKFLOW MANAGEMENT. 10

Table XIV summarises the findings of this experiment.

Metrics CL-EDF vs. OL-FCFS
Cluster CPU Utilisation 7.
Normalised Data Slacks (hrs) X10/50 CPUs.
Normalised Design Slacks (hrs) X.

TABLE XIV
EXPERIMENT 3 RESULTS SUMMARY.

We can conclude that adopting the proposed control
framework and changing the scheduling policy of the
industrial workflow management system brings a significant
advantage with respect to reducing normalised Design
slacks in all cases and Data slacks in two only. This is an
improvement from the previous experiment with respect to
normalised Data slacks, in Hypothesis 2.2, where the CL
was outperformed by its OL peer for all the cases. This is a
motivation for fine-tuning the control framework (the MPC
in particular) to outperform the OL system in all test cases
i.e. different cluster sizes.

A final remark; there is no significant difference found
between FCFS & EDF scheduling policies with respect
to cluster CPU utilisation, see Hypothesis 1.1. Because
of that, we attempted to cover the cluster CPU under-
utilisation analyses of CL system test cases with FCFS &
EDF scheduling policies and the different cluster sizes across
Hypotheses 2.1 and 3.1. We examined the CL-FCFS-10-CPUs
case, see Figure 4, in Hypothesis 2.1 without the 36-CPUs
case because the 36-CPUs case is analysed in Hypothesis 3.1,
see Figure 5. The reason behind this so analysis duplicates are
avoided. We did not cover analyses for the 50/100-CPUs cases
because the performance observed, with respect to cluster
CPU under-utilisation, matches the one of the 36-CPUs case.

V. CONCLUSIONS AND FUTURE WORK

Our work, to the authors best knowledge, is considered a
contribution in the real-time control community by presenting
an MPC-based AC framework for scheduling real-time
systems. Our aim is to dynamically manage the trade-off
between multiple real-time optimisation objectives with
respect to tasks computation time values. Although this work
is for a particular industrial organisation, we aim to generalise
its applications to other similar workflow management
systems in industry. However, our research at its current stage
is in its theory phase. We look forward to implementing
fair-share policies as part of our scheduling strategy in our
future work allowing re-admission of rejected workflows.
Also we will introduce high-level dependency trees in the
jobs level introducing the notion of dependent workflows.

Our next research milestone is achieving the future research
steps. We will then deploy the admission control framework
into the industrial workflow management system. During this
phase (of deployment) we will address classical real-time-
based issues of workflow management in order to generalise
our approach for the scientific communities. Such issues can
include handling resource constraints like memory utilisation.

REFERENCES

[1] T. Abdelzaher, K. G. Shin and N. Bhatti. Performance Guarantees
for Web Server End-Systems: A Control-Theoretical Approach. IEEE
Transactions on Parallel and Distributed Systems, 13, 80-96, 2001.

[2] T. Abdelzaher, J. Stankovic, C. Lu, R. Zhang, and Y. Lu. Feedback
Performance Control in Software Services. IEEE Control Systems, 23,
74-90, 2003.

[3] G. Buttazzo and L. Abeni. Adaptive Workload Management through
Elastic Scheduling. Real-Time Systems, 23, 7-24, 2002.

[4] Y. Diao, G. Neha, J. L. Hellerstein, S. Parekh and D. M. Tilbury. Using
MIMO feedback control to enforce policies for interrelated metrics with
application to the Apache Web server. The Network Operations and
Management Symposiums, 219-234, 2002.

[5] G. F. Franklin, J. D. Powell, and A. Emami-Naeini. Feedback Control of
Dynamic Systems, Sixth Edition. Pearson Higher Education, Inc., 2010.

[6] H. A. Ghazzawi. Scheduling Approaches for Large-Scale Complex Task
Management. The Proceedings of the 2nd Large Scale Complex IT
Systems (LSCITS) Postgraduate Workshop, 60-66, 2010.

[7] J. L. Hellerstein, Y. Diao, S. Parekh and D. M. Tilbury. Feedback Control
of Computing Systems. John Wiley & Sons, 2004.

[8] D. Henriksson, A. Cervin, J. Akesson, and K.E. Arzen. Feedback
Scheduling of Model Predictive Controllers. Proceedings of the Eighth
IEEE Real-Time and Embedded Technology and Applications Sympo-
sium (RTAS’02), RTAS’02, 207-217, 2002.

[9] J. Heo, P. Jayachandran, I. Shin, D. Wang, T. Abdelzaher and X. Liu.
OptiTuner: On Performance Composition and Server Farm Energy Min-
imization Application. IEEE Transactions on Parallel and Distributed
Systems, 99, 1045-9219, 2011.

[10] L. Ljung. System Identification: Theory for the User. Prentice-Hall, Inc.,
New Jersey, 1994.

[11] C. Lu, J. A. Stankovic, G. Tao and S. H. Son. Design and Evaluation of
a Feedback Control EDF Scheduling Algorithm. The 20th IEEE Real-
Time Systems Symposium, 56-67, 1999.

[12] C. Lu, J. A. Stankovic, T. F. Abdelzaher, G. Tao and S. Son. Performance
specifications and metrics for adaptive real-time systems. Proceedings of
the 21st IEEE conference on Real-time systems symposium, RTSS’10,
13-23, 2000.

[13] C. Lu, X. Wang and X. Koutsoukos. Feedback utilization control in
distributed real-time systems with end-to-end tasks. IEEE Transactions
on Parallel and Distributed Systems, 16, 550-561, 2005.

[14] MathWorks: Matlab and Simulink for Technical Computing, 2010, http:
//www.mathworks.co.uk/company/?s cid=global nav.

[15] M. Nicolaou. Model predictive controllers: A critical synthesis of theory
and industrial needs. Advances in Chemical Engineering, Academic
Press, 26, 131-204, 2001.

[16] S. M. Park and M. A. Humphrey. Predictable High-Performance Com-
puting Using Feedback Control and Admission Control. IEEE Transac-
tions on Parallel and Distributed Systems, 22, 396-411, 2011.

[17] C. Schmid and L. T. Biegler. Quadratic programming methods for
reduced hessian SQP. Computers & Chemical Engineering, 18, 817-832,
1994.

[18] L. Sha, T. Abdelzaher, K. E. Arzen, A. Cervin, T. Baker, A. Burns,
G. Buttazzo, M. Caccamo, J. Lehoczky and A. K. Mok. Real Time
Scheduling Theory: A Historical Perspective. Real-Time Systems, 28,
101-155, 2004.

