TECHNICAL PAPER: MPC VS. PID CONTROLLERS IN MULTI-CPU MULTI-OBJECTIVE REAL-TIME SCHEDULING SYSTEMS. 1

MPC vs. PID Controllers in Multi-CPU
Multi-Objective Real-Time Scheduling Systems

Hashem Ali Ghazzawi, Iain Bate, and Leandro Soares Indrusiak
The University of York, Department of Computer Science, Deramore Lane, York, YO10 5GH, UK.
{hag, iain.bate, 1si} @cs.york.ac.uk

Abstract—This paper provides an empirical investigation be-
tween multiple control-theoretic approaches in real-time schedul-
ing systems. These approaches include proportional-integral-
derivative (PID) and model predictive control. The former is
a widely adopted controller due to its simplicity in design and
implementation. The latter is considered a sophisticated one in
the control community with respect to controller design. PID
is widely adopted in industrial systems that are electrical and
mechanical oriented. However, due to the advent of utilising
control-theoretic approaches in real-time scheduling systems,
sophisticated controllers have been argued to provide better
performance with respect to meeting real-time multi-objective
optimisation problems such as reducing deadline slacks and
increasing CPU utilisation. We will also investigate multi-CPU
platforms and cross view the performance of the different
controllers.

Index Terms—Real-time systems, scheduling, real-time multi-
objective optimisation (RTMOO), quality-of-service (QoS), feed-
back control, multi-input-multi-output (MIMO), admission con-
trol (AC), proportional-integral-derivative (PID), model predic-
tive control (MPC).

I. INTRODUCTION

OME traditional real-time scheduling approaches assume

exact knowledge of system workload and service capacity
a priori. This can cause poor (1) prediction of scheduling
performance in dynamical computing systems, (2) handling
dynamic dependencies, and (3) managing trade-offs in
multi-objective real-time optimisation [11]. This has been
the motivation for alternative approaches that analyse and
describe the aggregate behaviour of real-time systems. It is not
the scope of this paper to elaborate on the (dis)advantages of
utilising control-theoretic approaches in real-time scheduling
systems, for more details refer to [11]. We are exploring here
the third point mentioned above by investigating different
available control-theoretic approaches that have been adopted
in the real-time community such as proportional-integral-
derivative (PID) controllers e.g. [6], and model predictive
control (MPC) [7].

For instance, in [6], two PID controllers were implemented
to meet two real-time objectives; maximising CPU utilisation
and minimising deadline miss ratio. Lu’s attempt in addressing
real-time multi-objective optimisation (RTMOO) has lead to
significant results in his single-CPU case-study with respect to
his RTMOQO. In the literature we can see how PID is argued,
in theory, to be used for RTMOO [2], where a mechanical
industrial experimentation is illustrated in [10]. However,

later on when multi-CPU scenarios were examined by Lu,
MPC has offered successful results for the same RTMOO
[7]. This very work of Lu has inspired us adopting MPC
supporting admission control (AC) decisions for real-time
scheduling, [4], as MPC-based AC was suggested in [7]. The
problem statement examined in Lu’s work differs from ours;
the release rate of tasks (i.e. workload) cannot be controlled
in our case. However, there are other related work that studies
AC approaches such as [9] where controlling the workload
of tasks was practiced. Shifting from PID to MPC in our
work requires empirical investigation which this paper offers.
The motivation for this investigation is because our problem
statement involves multi-CPU platform and multi-objective
optimisation problem which PID control is argued to lack
performance in such scenarios [1].

Our research scope is to improve the real-time scheduling
performance of a workflow management system in a
particular industrial organisation [3], which is our case-study.
The system handles data-driven applications e.g. CFD
simulations. The system also experiences poor scheduling
performance with respect to meeting real-time objectives
such as meeting deadlines. The system consists of static
scheduling based on first-come-first-served (FCFS) policy
which makes missing deadlines inevitable due to the lack
of dynamic (pre-emption) actions allowing higher priority
tasks (with respect to deadline or resource requirements)
to execute first. The real-time scheduling objectives in this
work are threefold. One is maximising the cluster CPU
utilisation, where a cluster is considered a homogeneous
high-performance computing (HPC) cluster that can be of
different sizes (CPUs wise). We have two different types of
tasks our case-study deals with; Data and Design. Minimising
the associated deadline slacks for tasks of the different types
form the second and third real-time objectives. These three
objectives form the three components of our RTMOO problem.

Our contribution in this work is to offer an empirical
investigation between adopting MPC- and PID-based AC
approaches in the real-time-control community when dealing
with periodic tasks in multi-CPU clusters with an RTMOO
problem like this case-study. The structure of the paper is
as follows; we introduce our case-study under the Problem
Formulation section. We then discuss the Task Sets used and
also both of the control frameworks (MPC- and PID-AC) for
the benefit of our case-study’s RTMOO. The Experimentation

TECHNICAL PAPER: MPC VS. PID CONTROLLERS IN MULTI-CPU MULTI-OBJECTIVE REAL-TIME SCHEDULING SYSTEMS. 2

section covers the results obtained signifying the performance
for each control framework with respect to the RTMOO
problem; there are analysis from both real-time and control
theory perspectives. There will be a Summary and Discussions
section, then finally we have Conclusions and Future Work.

II. PROBLEM FORMULATION
The case-study we are studying in this work can be graph-
ically represented by Figure 1.

Workflow Generator Monitor

é

Fig. 1. Block representation of the case-study.

We can group the blocks of the above figure into three sections.
One, representing the task sets used in this work. Two,
representing, in control terms, the plant model of our case-
study containing the queueing mechanism and tasks execution
in the cluster. Three, Monitoring certain values that are used
for control analysis.

A. Task Sets

Tasks form the lowest level of granularity of our notion of
workflows. Each workflow consists of 10 tasks, each task is
characterised by the following attributes:

Task Type | C (hours) D (hours) | T (hours)

Data 4.0-6.0 or 12.0-15.0 | C+20.0% 4.0

Design 4.0-6.0 C+20.0% 0.8
TABLE I

TASK MODEL OF GENERATED JOBS.

As far as the second and third components of the RTMOO
problem are concerned, we take the normalised slack values
in our calculations. The reason behind that is to show (1)
what task has missed its deadline, and (2) how far is it from
its deadline - this can be positive, zero, or negative values.

B. Plant Model

The Plant Model block refers to a linear mathematical
model of queueing, scheduling and execution of the generated
workflows of the industrial case-study. In brief, System
Identification was used to identify the dynamic behaviour of
our case-study. This assists the controller as control theory
deals with linear models [5]. More details on the adopted
modelling approach and its reasoning of this case-study
are in [4] '. We proposed an MPC-based AC approach for
our industrial case-study in [4], the control framework is
represented in Figure 2.

A copy is available at https://sites.google.com/a/york.ac.uk/hag/publications

Y

Workflow Generator Plant Model Monitor

Control Outputs
(4 and 5)

System Outputs
_ (1,2and 3)
<

MPC

Legend

1. Cluster CPU utilisation, y1.

2. Data task normalised slack, y2.

3. Design task normalised slack, y3.

4. Optimal Data task computation time, C_DataMPC.

5. Optimal Design task computation time, C_DesignMPC.

Fig. 2. Block Representation of The MPC Control Framework, [4].

When we accommodated PID control for the purpose
of this paper, some modifications were done at both the AC
and control blocks. For instance, we no longer have one
control block (i.e. MPC), rather, there is a PID controller
for each component of the RTMOO problem. This PID
framework is also adopted in [6], see Figure 3.

Workflow Generator > AC —>» Plant Model » Monitor
A A

4 1
PID [*€

5 2
PID [«

6 3
PID |«

Legend

1. System Output: cluster CPU utilisation, y1.

2. System Output: Data task normalised slack, y2.

3. System Output: Design task normalised slack, y3.
4. Control Signal addressing y1.

5. Control Signal addressing y2.

6. Control Signal addressing y3.

Fig. 3. Block Representation of The PID Control Framework.

The AC receives signals 4, 5, and 6 from the different PID
blocks. Each control signal is computed by the PID in order
to meet the desired value of each component of the RTMOO
problem. For instance, signal 4 is computed to maximise
cluster utilisation. At the case of receiving a Data type task,
the AC maps signals 4 and 5 to an admission decision. When
a Design task arrives, the AC maps signals 4 and 6 for
admission control. The reason for having signal 4 consistently
part of the mapping is to address the first component of our
RTMOO problem. Since each control signal computed by the
PID blocks are independent of each other, it was necessary
to map them, accordingly, in every admission decision.

TECHNICAL PAPER: MPC VS. PID CONTROLLERS IN MULTI-CPU MULTI-OBJECTIVE REAL-TIME SCHEDULING SYSTEMS. 3

Each task has to simultaneously pass two criterions
before it is fully admitted by the AC. First criteria detects
if the arrived task’s computation time significantly increases
the system’s overall slack values of that particular type
(Data/Design) by multiplying the slack control signal to the
system’s current slack value. Second, the CPU utilisation
control signal increases the likelihood of accepting a task
simply in order to maximise utilisation. However in the case
of CPU over-utilisation, even if a task’s admission does not
significantly affect the systems slack values, it will be rejected
due to signal 4 mapping over-utilisation to the AC. This way,
enforcing these two criterions in parallel assures that a task
is accepted without the compromise of increased slack values
and CPU under-/over-utilisation.

III. EXPERIMENTATION

We conducted two experiments in order to cover analysis
of our multiple control-theoretic approaches in the case-study.
The first experiment shows real-time scheduling analysis when
applying FCFS and early deadline first (EDF) policies in
meeting our real-time objectives at different CPU platforms.
The latter covers performance comparisons of the different
controllers in the case-study. The following points summarise
the settings of the experiments:

e Duration: each simulation is 500 hours representing ap-
proximately two weeks of submitting tasks into HPC
clusters in the case-study.

e QoS Levels: 100% cluster CPU utilisation, and 9 hours
for normalised slacks for the two types of tasks. These
requirements were taken after conducting ethnographic
studies in the industrial organisation.

It is important at this stage to mention that we implemented
P, PI, and the full PID controllers in order to see which
controller performs best under which circumstances i.e.
cluster size and the different components of the RTMOO.

Significance tests are included; in the significance testing
tables, a v'refers to a significant advantage of the parameter
listed next to it. For instance, “v'for FCFS in cluster
CPU utilisation” means that FCFS scheduling provides
significantly higher utilisation in that particular test case.
Also, for instance “v'for EDF in normalised Data slacks”
means that EDF provides significantly lower slack values for
Data tasks in that particular test case.

A. Experiment I: Real-Time Scheduling Analysis (FCFS vs.
EDF)

Each test case in the tables below refers to each system
tested (OL for open-loop, P, PI, PID, and MPC) and the
scheduling algorithm implemented (FCEFS or EDF). The three
tables in this section show the performance of every test
case (controller and a scheduling policy) at meeting the three
components of the RTMOOQO problem.

Table II summarises the significance testing results for
cluster CPU utilisation in a 10-CPU cluster.

Test Case Significance
OL-FCEFS vs. OL-EDF X

P-FCFS vs. P-EDF v for FCFS
PI-FCFS vs. PI-EDF v for FCFS
PID-FCFS vs. PID-EDF X
MPC-FCFS vs. MPC-EDF | X

TABLE II
REAL-TIME ANALYSIS SIGNIFICANCE TESTING FOR CLUSTER CPU
UTILISATION IN A 10-CPU CLUSTER.

We notice that there is no significant difference between
FCFS and EDF scheduling algorithms when it comes to
cluster CPU utilisation in most test-cases of this case-study.
These results confirms our findings in [4]. Although this
result is counter-intuitive since EDF is meant to increase CPU
utilisation to its maximum. However, due to the high release
rate of Data and Design tasks, the cluster CPU utilisation is
not affected significantly. It seems only P and PI controllers
have experienced significantly higher utilisation with FCFS
than EDF. See Figure 4 for observing the different utilisations.

Cluster CPU Utilisation for a 10-CPU Cluster
1 T T T T

056 lfﬂ/b = 7 1
.+~ FCFS and EDF (MPC)

FCFS (OL, P, PI, and PID) .
J FCFS (OL, P, Pl, and PID)
02 (g

Cluster CPU Utilisation

| | | | | 1 |
0 50 100 150 200 250 300 350 400 450 500
Time (hours)

Fig. 4. Cluster CPU Utilisation of A 10-CPU Cluster.

The table below summarises the significance testing results
for normalised Data slacks in a 10-CPU cluster.

Test Case Significance
OL-FCFS vs. OL-EDF X

P-FCFS vs. P-EDF X

PI-FCFS vs. PI-EDF X
PID-FCFS vs. PID-EDF X
MPC-FCFS vs. MPC-EDF | v 'for EDF

TABLE III
REAL-TIME ANALYSIS SIGNIFICANCE TESTING FOR NORMALISED DATA
SLACKS IN A 10-CPU CLUSTER.

Across all of the controllers used, EDF scheduling proves
more efficient than FCFS with MPC control with respect to
reducing Data slacks. The reason there was no significant
difference between FCFS and EDF across the differen
controllers is because Data tasks in the industrial case-study
almost always meet their deadlines on time which is depicted
in our simulations. However we added Data into our RTMOO
to continue respecting meeting Data tasks while working
towards bringing the Design slacks significantly lower. Design
slacks form the main component in our RTMOO problem.

TECHNICAL PAPER: MPC VS. PID CONTROLLERS IN MULTI-CPU MULTI-OBJECTIVE REAL-TIME SCHEDULING SYSTEMS. 4

Table IV summarises the significance testing results for
normalised Design slacks in a 10-CPU cluster.

Test Case Significance
OL-FCEFS vs. OL-EDF v for EDF
P-FCFS vs. P-EDF v for EDF
PI-FCFS vs. PI-EDF v for EDF
PID-FCFS vs. PID-EDF v for EDF
MPC-FCFS vs. MPC-EDF v for EDF

TABLE IV
REAL-TIME ANALYSIS SIGNIFICANCE TESTING FOR NORMALISED
DESIGN SLACKS IN A 10-CPU CLUSTER.

These results are intuitive as EDF is meant to respect tasks’
deadline more than FCFS. Design slacks were also signifi-
cantly lower with EDF in the open-loop system. The real-
time analysis of the bigger cluster sizes, 50 and 100 CPUs, is
covered in the Summary and Discussions section.

B. Experiment II: Control Analysis (Open-Loop vs. P vs. PI
vs. PID vs. MPC)

In this experiment, there is a cross investigation of the
different controllers in our case-study with respect to meeting
the three components of our RTMOO. The are three tables
in this section for the RTMOO components. We compare the
OL system against the P controller, then the latter against
PI, then the latter against PID, and finally PID against MPC.
The reason behind this is because during the experimentation
phase of this work, it was realised that the more sophisticated
the controller, the better it performs in meeting our real-time
objectives. This finding is not similar to other mechanical
industries where PI control provides better performance than
PID at, for instance, vibration control. For this reason, we
did not include every pair comparison between the controllers.

Table V summarises the significance testing results for
cluster CPU utilisation in a 10-CPU cluster.

Test Case Significance

OL-FCFS vs. P-FCFS X

P-FCEFS vs. PI-FCFS X

PI-FCFS vs. PID-FCFS X

PID-FCFS vs. MPC-FCFS | v'for MPC

OL-EDF vs. P-EDF v'for P

P-EDF vs. PI-EDF X

PI-EDF vs. PID-EDF X

PID-EDF vs. MPC-EDF v for MPC
TABLE V

CONTROL ANALYSIS SIGNIFICANCE TESTING FOR CLUSTER CPU
UTILISATION IN A 10-CPU CLUSTER.

The interesting result in the above table is that MPC
outperforms PID control in maximising CPU utilisation when
using any of the two scheduling algorithms. For P, PI and
PID controllers, there was no significant difference amongst
them with respect to utilisation. You can also refer to Figure
4 for more observations.

Table VI summarises the significance testing results for
normalised Data slacks in a 10-CPU cluster.

Test Case Significance

OL-FCEFS vs. P-FCFS X

P-FCFS vs. PI-FCFS X

PI-FCFS vs. PID-FCFS X

PID-FCFS vs. MPC-FCFS | vfor PID

OL-EDF vs. P-EDF X

P-EDF vs. PI-EDF X

PI-EDF vs. PID-EDF X

PID-EDF vs. MPC-EDF v for PID
TABLE VI

SIGNIFICANCE TESTING FOR NORMALISED DATA SLACKS IN A 10-CPU

CLUSTER.

This table shows that PID outperforms MPC in reducing Data
slacks, however if we check the MPC performance, see Table
XI, we notice that the results are within the QoS value of
this component of the RTMOO.

The table below summarises the significance testing results
for normalised Design slacks in a 10-CPU cluster.

Test Case Significance

OL-FCFS vs. P-FCFS v 'for P

P-FCFS vs. PI-FCFS X

PI-FCFS vs. PID-FCFS X

PID-FCFS vs. MPC-FCFS | v'for MPC

OL-EDF vs. P-EDF v for P

P-EDF vs. PI-EDF X

PI-EDF vs. PID-EDF X

PID-EDF vs. MPC-EDF v for PID*
TABLE VII

SIGNIFICANCE TESTING FOR NORMALISED DESIGN SLACKS IN A
10-CPU CLUSTER.

There are two key results we can derive from the table above.
One is implementing a simple P controller in the case-study
proves sufficient for reducing Design slacks. The second
point is when implementing FCFS, MPC proves better than
PID, where the opposite is true for EDF. However, in the
latter case, the MPC still performs within the QoS of this
component of the RTMOO. The control analysis of the bigger
cluster sizes, 50 and 100 CPUs, is covered in the Summary
and Discussions section.

IV. SUMMARY AND DISCUSSIONS

As far as P, PI, and PID controllers are concerned, there
was no significant incentive to adopt P or PI controls in this
case-study with respect to meeting our RTMOO components
as a substitute of the full PID and/or MPC. However, P and PI
controllers are widely adopted in industries that are concerned
with mechanical or electrical RTMOO rather than scheduling
systems and resource/admission control. The reason for their
popularity in other industries is for their low computation
time (power) for computing control signals, please refer to
[2] for more details.

TECHNICAL PAPER: MPC VS. PID CONTROLLERS IN MULTI-CPU MULTI-OBJECTIVE REAL-TIME SCHEDULING SYSTEMS. 5

Changing the control algorithm can be expensive in
some industries. For industries that have the following listed
real-time scheduling attributes, then considering Table VIII
can be of a useful road-map if changing the scheduling
algorithm is under consideration.

o Having a control-based AC framework regulating data-
driven workflows into compute clusters, and/or

o Task models as in Table I.

e The three RTMOO components, and their associated

QoS levels.
Test Case OL Por PI | PID MPC
CPU Utilisation in 10 CPUs FCFS | FCFS FCFS | Either
Data Slacks in 10 CPUs Either | Either Either | EDF
Design Slacks in 10 CPUs EDF EDF EDF EDF
CPU Utilisation in 50 CPUs FCFS | FCFS FCFS | Either
Data Slacks in 50 CPUs Either | Either Either | EDF
Design Slacks in 50 CPUs EDF EDF EDF EDF
CPU Utilisation in 100 CPUs | FCFS | FCFS FCFS | Either
Data Slacks in 100 CPUs Either | Either Either | Either
Design Slacks in 100 CPUs EDF EDF EDF Either
TABLE VIII

SUMMARY OF REAL-TIME SCHEDULING ANALYSIS.

Alternatively, if an industry is considering which controller
to pick given it has the same real-time scheduling attributes
listed earlier in this section, then Table IX can be a useful
reference.

Test Case FCFS EDF
CPU Utilisation in 10 CPUs MPC MPC
Data Slacks in 10 CPUs PID or MPC | PID or MPC
Design Slacks in 10 CPUs MPC PID or MPC
CPU Utilisation in 50 CPUs PID MPC
Data Slacks in 50 CPUs PID or MPC | PID or MPC
Design Slacks in 50 CPUs MPC MPC
CPU Utilisation in 100 CPUs | PID MPC
Data Slacks in 100 CPUs MPC MPC
Design Slacks in 100 CPUs MPC MPC
TABLE IX

SUMMARY OF CONTROL ANALYSIS.

As far as our case-study is concerned, and given the fact
that the industrial organisation is willing to change from
FCFS to EDF if proven efficient meeting all of its RTMOO
components. Also, the organisation can afford adopting our
proposed control-based AC approach, argued for in [4]. Then,
after conducting this work, we can empirically advocate the
following recommended control framework, see Table X,
with respect to meeting all of the RTMOO components based
on the cluster size the (organisation) utilises.

Cluster Size | Recommended Control-based AC Approach
10 CPUs MPC with EDF
50 CPUs MPC with EDF
100 CPUs MPC with EDF
TABLE X

ANALYSIS SUMMARY.

At some test cases there was no significant difference between
P, PI, and PID controllers with respect to some RTMOO
components. However, it is a good practice to recommend a
controller that has at least similar if not significantly better
performance with respect to all three RTMOO components.
Both EDF scheduling and MPC algorithm prove efficient
with respect to all RTMOO components across the different
cluster sizes.

V. CONCLUSIONS AND FUTURE WORK

We can conclude that for our industrial case-study,
MPC-based AC with EDF scheduling provide, as a control
framework, the most significant performance with respect
to our real-time objectives. As for computer systems, this
case-study is a non-linear system. Thus, changing any of the
RTMOO components, cluster size, QoS levels, or the task sets
can give us different results with respect to the scheduling
and/or controller algorithms’ performance observed in this
paper. The system here is characterised with periodic tasks of
different soft real-time attributes, and no disturbances were
added while the simulations. Thus, we cannot recommend
any of the studied approaches to case-studies with similar
real-time attributes, but rather ones with the same attributes
due to the non-linearity inheritance. From this statement we
can derive two potential future work steps. One, is dealing
with sudden change or dynamic QoS levels. Second, conduct
thorough experimentations and propose a legacy control-based
AC approach for similar real-time scheduling systems.

The P, PI, PID controller gain parameters i.e. each part
(P/UD) were fixed values in this work. Tuning of P/I/D
parameters using software tools or classical methods such as
Ziegler-Nichols method can be a potential future work. The
motivation behind this is because tuning mechanisms can
improve the performance of PID controllers which has been
proven in many electrical and mechanical systems, [8]. It
will benefit the real-time-control community in exploring PID
tuning mechanisms in real-time scheduling systems. If PID
proves efficient with advanced or enhanced parameter tuning
mechanisms, then adopting hybrid or hierarchical control
frameworks will be more plausible. This is because PID does
not necessarily work on system models, and this reduces its
control signal computation time significantly.

TECHNICAL PAPER: MPC VS. PID CONTROLLERS IN MULTI-CPU MULTI-OBJECTIVE REAL-TIME SCHEDULING SYSTEMS. 6

[1]
[2]

[3]

[4]

[5]

[6]

[7]

[8]
[9]

[10]

(11]

REFERENCES

G. F. Franklin, J. D. Powell, and A. Emami-Naeini. Feedback Control of
Dynamic Systems, Sixth Edition. Pearson Higher Education, Inc., 2010.
A. Gambier. MPC and PID control based on multi-objective opti-
mization. In Proceedings of the American Control Conference, pages
47274732, 2008.

H. A. Ghazzawi. Scheduling Approaches for Large-Scale Complex Task
Management. The Proceedings of the 2"¢ Large Scale Complex IT
Systems (LSCITS) Postgraduate Workshop, 60-66, 2010.

H. A. Ghazzawi, I. Bate, and L. S. Indrusiak. A Control-Theoretic
Approach to Workflow Management. ICECCS July 2012, unpublished
conference proceedings.

J. L. Hellerstein, Y. Diao, S. Parekh and D. M. Tilbury. Feedback Control
of Computing Systems. John Wiley & Sons, 2004.

C. Lu, J. A. Stankovic, T. F. Abdelzaher, G. Tao and S. Son. Performance
specifications and metrics for adaptive real-time systems. Proceedings of
the 21st IEEE conference on Real-time systems symposium, R7SS 10,
13-23, 2000.

C. Lu, X. Wang and X. Koutsoukos. Feedback utilization control in
distributed real-time systems with end-to-end tasks. IEEE Transactions
on Parallel and Distributed Systems, 16, 550-561, 2005.

K. Ogata. Modern Control Engineering. Prentice Hall, 2010.

S. M. Park and M. A. Humphrey. Predictable High-Performance Com-
puting Using Feedback Control and Admission Control. IEEE Transac-
tions on Parallel and Distributed Systems, 22, 396-411, 2011.

G. K. M. Pedersen and Z. Yang. Multi-objective PID-controller tuning
for a magnetic levitation system using NSGA-IIL. In the Proceedings
of the Genetic and Evolutionary Computation Conference, 1737-1744,
2006.

L. Sha, T. Abdelzaher, K. E. Arzen, A. Cervin, T. Baker, A. Burns,
G. Buttazzo, M. Caccamo, J. Lehoczky and A. K. Mok. Real Time
Scheduling Theory: A Historical Perspective. Real-Time Systems, 28,
101-155, 2004.

Appendix: Statistical Summaries.

The statistical summaries are grouped by the cluster
sizes into 10, 50, and 100 CPUs i.e. three tables. Each table
contains the two scheduling algorithms (FCFS and EDF) and
the measured variables (cluster CPU utilisation, normalised
Data slacks, and normalised Design slacks).

Note that OL refers to the open-loop system, CPU for
cluster CPU utilisation, Data for normalised Data slacks, and
Design for normalised Design slacks.

Test Case Min. 1st Q Med. 3rd Q Max.
OL FCFS CPU 0.0000 0.6945 | 0.7039 0.7069 0.7087
OL FCFS Data 0.0000 0.0000 | 0.0000 0.0000 0.0000
OL FCFS Design 0.0000 8.5333 | 10.2400 | 12.8000 | 13.0000
OL EDF CPU 0.0000 0.6560 | 0.6640 0.6660 0.6670
OL EDF Data 0.0000 0.0000 | 0.0000 0.0000 0.0000
OL EDF Design 0.0000 0.2000 | 0.4000 0.6000 78.0800
P FCFS CPU 0.0000 0.9659 | 0.7053 0.7062 0.7073
P FCFS Data 0.0000 0.0000 | 0.0000 0.0000 0.0000
P FCFS Design 0.0000 5.8000 | 8.4000 10.2400 | 13.0000
P EDF CPU 0.0000 0.6609 | 0.6702 0.6733 0.6749
P EDF Data 0.0000 0.0000 | 0.0000 0.0000 0.0000
P EDF Design 0.0000 0.2000 | 0.4000 0.8000 45.4400
PI FCFS CPU 0.0000 0.6959 | 0.7053 0.7062 0.7073
PI FCFS Data 0.0000 0.0000 | 0.0000 0.0000 0.0000
PI FCFS Design 0.0000 5.8000 | 8.4000 10.2400 | 13.0000
PI EDF CPU 0.0000 0.6609 | 0.6702 0.6732 0.6748
PI EDF Data 0.0000 0.0000 | 0.0000 0.0000 0.0000
PI EDF Design 0.0000 0.2000 | 0.4000 0.8000 45.4400
PID FCFS CPU 0.0000 0.6957 | 0.7009 0.705 0.7071
PID FCFS Data 0.0000 0.0000 | 0.0000 0.0000 0.0000
PID FCFS Design 0.0000 6.0000 | 8.3200 10.2000 | 13.0000
PID EDF CPU 0.0000 0.6617 | 0.6706 0.6735 0.6751
PID EDF Data 0.0000 0.0000 | 0.0000 0.0000 0.0000
PID EDF Design 0.0000 0.2000 | 0.4000 0.6000 44.9600
MPC FCFS CPU 0.0000 0.7954 | 0.7954 0.7954 0.8307
MPC FCFS Data -0.3333 | 3.7222 | 3.7222 3.7222 15.5833
MPC FCFS Design | -0.4444 | 8.1389 | 8.1389 8.1389 16.1667
MPC EDF CPU 0.0000 0.7803 | 0.7867 0.7867 0.8335
MPC EDF Data -0.3330 | 3.1000 | 3.1000 3.1000 6.8611
MPC EDF Design -0.4440 | 3.0000 | 3.0000 3.0000 6.8611
TABLE XI

STATISTICAL SUMMARY FOR THE 10-CPU CLUSTER.

TECHNICAL PAPER: MPC VS. PID CONTROLLERS IN MULTI-CPU MULTI-OBJECTIVE REAL-TIME SCHEDULING SYSTEMS.

Test Case Min. Ist Q Med. 3rd Q Max. Test Case Min. Ist Q Med. 3rd Q Max.
OL FCFS CPU 0.0000 0.6945 0.7039 0.7069 0.7087 | |OL FCFS CPU 0.0000 0.6945 0.7039 0.7069 0.7087
OL FCFS Data 0.0000 0.0000 0.0000 0.0000 0.0000 | |OL FCFS Data 0.0000 0.0000 0.0000 0.0000 0.0000
OL FCFS Design 0.0000 8.5333 10.2400 | 12.8000 | 13.0000| |[OL FCFS Design 0.0000 8.5333 10.2400 | 12.8000 13.0000
OL EDF CPU 0.0000 0.6560 0.6640 0.6660 0.6670 | |OL EDF CPU 0.0000 0.6560 0.6640 0.6660 0.6670
OL EDF Data 0.0000 0.0000 0.0000 0.0000 0.0000 | |OL EDF Data 0.0000 0.0000 0.0000 0.0000 0.0000
OL EDF Design 0.0000 0.2000 0.4000 0.6000 78.0800| |OL EDF Design 0.0000 0.2000 0.4000 0.6000 78.0800
P FCFS CPU 0.0000 0.1392 0.1411 0.1412 0.1415 | [P FCFS CPU 0.0000 0.0696 0.0705 0.0706 0.0707
P FCFS Data 0.0000 0.0000 0.0000 0.0000 0.0000 | [P FCFS Data 0.0000 0.0000 0.0000 0.0000 0.0000
P FCFS Design 0.0000 5.8000 8.4000 10.2400 | 13.0000| [P FCFS Design 0.0000 5.8000 8.4000 10.2400 13.0000
P EDF CPU 0.0000 0.1322 0.1340 0.1347 0.1350 | [P EDF CPU 0.0000 0.0661 0.0670 0.0673 0.0674
P EDF Data 0.0000 0.0000 0.0000 0.0000 0.0000 | [P EDF Data 0.0000 0.0000 0.0000 0.0000 0.0000
P EDF Design 0.0000 0.2000 0.4000 0.8000 45.4400| [P EDF Design 0.0000 0.2000 0.4000 0.8000 45.4400
PI FCFS CPU 0.0000 0.1392 0.1411 0.1412 0.1415 | |[PI FCFS CPU 0.0000 0.0696 0.0705 0.0706 0.0707
PI FCFS Data 0.0000 0.0000 0.0000 0.0000 0.0000 | [PI FCFS Data 0.0000 0.0000 0.0000 0.0000 0.0000
PI FCFS Design 0.0000 5.8000 8.4000 10.2400 | 13.0000| |PI FCFS Design 0.0000 5.8000 8.4000 10.24000 | 13.0000
PI EDF CPU 0.0000 0.1322 0.1340 0.1347 0.1350 | |PI EDF CPU 0.0000 0.0661 0.0670 0.0673 0.0675
PI EDF Data 0.0000 0.0000 0.0000 0.0000 0.0000 | |[PI EDF Data 0.0000 0.0000 0.0000 0.0000 0.0000
PI EDF Design 0.0000 0.2000 0.4000 0.8000 45.4400| [PI EDF Design 0.0000 0.2000 0.4000 0.8000 45.4400
PID FCFS CPU 0.0000 0.6958 0.7987 0.7050 0.7071 | |PID FCFS CPU 0.0000 0.6958 0.7009 0.705 0.7071
PID FCFS Data 0.0000 0.0000 0.0000 0.0000 0.0000 | [PID FCFS Data 0.0000 0.0000 0.0000 0.0000 0.0000
PID FCFS Design 0.0000 6.0000 8.3200 10.2000 | 13.0000| [PID FCFS Design 0.0000 6.0000 8.3200 10.2000 13.0000
PID EDF CPU 0.0000 0.1323 0.1341 0.1347 0.1350 | [PID EDF CPU 0.0000 0.0662 0.0671 0.0674 0.0675
PID EDF Data 0.0000 0.0000 0.0000 0.0000 0.0000 | [PID EDF Data 0.0000 0.0000 0.0000 0.0000 0.0000
PID EDF Design 0.0000 0.2000 0.4000 0.6000 44.9600| [PID EDF Design 0.0000 0.2000 0.4000 0.6000 44.9600
MPC FCFS CPU 0.0000 0.3633 0.3940 0.4051 0.4155 | IMPC FCFS CPU 0.0000 0.1846 0.1920 0.2045 0.2093
MPC FCFS Data -0.4444 | -0.1026 | 0 -0.1944 | 2.7083 | [MPC FCFS Data -0.4440 | -0.2333 | -0.0972 | O 2.7000
MPC FCFS Design | -0.4444 | 0.1111 0.6667 0.875 2.6250 | IMPC FCFS Design | -0.4444 | 0.1111 0.1333 0.8750 0.8750
MPC EDF CPU 0.0000 0.3566 0.3934 0.4045 0.4147 | MPC EDF CPU 0.0000 0.1847 0.1991 0.2044 0.2093
MPC EDF Data -0.4440 | -0.1070 | -0.0970 0.2361 2.7083 | [MPC EDF Data -0.4440 | -0.2333 | -0.0970 0 2.7030
MPC EDF Design -0.4440 | 0.1111 0.5667 0.8750 1.3667 | [MPC EDF Design -0.4440 | 0.1111 0.2083 0.8750 0.8750
TABLE XII TABLE XIII

STATISTICAL SUMMARY FOR THE 50-CPU CLUSTER.

STATISTICAL SUMMARY FOR THE 100-CPU CLUSTER.

