
Application-Defined Virtualisation for Embedded Real-Time Software on
Complex Architectures

Ian Gray
University of York
iang@cs.york.ac.uk

N. C. Audsley
University of York
neil@cs.york.ac.uk

Abstract

In this paper we present a novel approach to embed-
ded system development based on compile-time virtuali-
sation. Whilst the target architecture may include multiple
heterogeneous CPUs with non-uniform memory, the pro-
grammer is presented with an idealised view that supports
the abstractions required by high-level languages like C.
Unlike standard virtualisation, the programmer can influ-
ence the virtualised mappings to better tailor their system
towards a target application. An example implementation
is presented along with preliminary results.

1 Introduction

In order to meet escalating consumer demands for pro-
cessing power and device functionality, the architectures
of embedded systems are becoming increasingly complex.
Many systems adopt application-dependent architectures
that are optimised to perform a specific purpose. Such sys-
tems often contain multiple heterogenous processing ele-
ments [7, 2]; on-chip networks [5]; non-standard memory
hierarchies with shared memory and new memory tech-
nologies [6, 1]; and unique features of the implementation
fabric such as DSP cores and SIMD units [9, 10].

These new designs can complicate software develop-
ment considerably because programming languages were
developed under the assumption of a standard uniproces-
sor architecture that contains a single block of contigu-
ous memory. By their very design, the abstractions de-
veloped for programming languages hide what have be-
come important implementation details. The programmer
is required to break the abstraction model using a num-
ber of techniques that are external to the source language.
For example, architectures with non-contiguous blocks of
memory require the use of custom linker scripts and com-
piler pragmas. These techniques are architecture-specific,
time-consuming and error-prone.

In an attempt to solve this, much recent work has con-
sidered the development of new languages or language
extensions that use certain features of these more com-
plex architectures. However, such an approach is not a
long-term solution as new hardware techniques are con-

stantly being developed, and it is not feasible to create a
new language each time. Also, the complexity of language
and compiler development is considerable and such an ap-
proach fragments the development community, rendering
obsolete existing tools for verification and validation.

Some example of domain-specific extensions are
OpenMP [4] and Chapel [3] which attempt to integrate
parallelism into the language to simplify parallel program-
ming; Sequoia [6], which tries to simplify NUMA pro-
gramming; and Streams-C [8] and StreamIt [11] which
add concepts to C for describing stream paths and compu-
tational kernels.

This paper argues that the overall approach taken by the
above languages can be improved by adopting a system
with more suitable abstraction models. For example, code
executes on a CPU but it does not describe the system the
CPU is situated in. A language like (standard) C does not
have a suitable abstraction model to reason about its exe-
cution model or target architecture – the execution model
is constant; the target architecture can only accessed via
the rather limited abstraction of memory mapping.

Within this paper we explore relaxing these fundamen-
tal language assumptions – although the programmer does
not want complete control they do want to be able to in-
fluence the compilation to better suit their design.

2 Compile-time virtualisation

This paper describes a different approach that attempts
to insulate the programmer from the complexities of the
underlying hardware by using virtualisation. The ap-
proach presents the programmer with a standard Von
Neumann-style architecture with a uniform memory map
that is suitable for standard languages, such as C or Ada.
Both automatic and designer-guided translations are pro-
vided that map between programming language elements
and architectural elements. Normal virtualisation has a
fixed mapping between the virtual environment and the
implementation environment. The proposed technique al-
lows for this mapping to be influenced by the designer
so that custom architectures can be effectively exploited
without breaking the abstraction rules of the source lan-
guage. In order to maintain efficiency and avoid run-time
overheads the virtualisation is applied at compile-time.

Virtualisation layer (CV) (influenced by architecture description)

Virtual programming model (AV)

Source code (C, Ada etc.) Target architecture descriptionUser code

Target architecture, actual programming model (AT)

uses gcc, gnat, etc. (CT)Virtualising compiler

CPUs
H/w accelerators
Channels
Memories

Architecture
programming model

Inter-process
communications

Threads Single, contiguous
address space

Standard RISC
processors

Extended
type model

Hardware
functions

Distributed
code

NUMA

Heterogeneous
processors, custom ISAs

H/w-oriented
types

Function accelerators,
custom hardware

Figure 1. System overview

The proposed virtualisation layer (VL) is bidirectional
and allows for more efficient use of custom hardware by
exporting architectural constructs up to the software level.
For example, hardware accelerators and other unique ele-
ments like on-clip multipliers or clock managers can be
presented to the programmer as first-class parts of the
source language, effectively extending the source lan-
guage in a controlled way. Without this extension the sys-
tem is still beneficial, but only features expressible by the
source language can be mapped to the target hardware.

The main advantage of virtualisation is that it presents
the designer with a much simpler programming model. It
helps to maintain appropriate abstraction models by mov-
ing architectural concerns into the mappings of the VL and
away from the source code. It also greatly facilitates code
reuse and allows designers to explore different hardware
architectures without affecting the software.

2.1 System overview
In normal run-time virtualisation, a layer sits between

executing code and the true implementation architecture,
At. The VL presents to the running code an idealised
view of the architecture, Av . Av has a different set of
abstractions which allow for a simpler or more powerful
programming model. The true complexity of the hard-
ware is hidden. At run-time, the executing code (which
is written assuming Av) is translated into operations that
are appropriate for At. This translation process incurs a
considerable cost, so to avoid this the presented system in-
stead uses compile-time virtualisation. Compile-time vir-
tualisation sits between the application source code and
its compiler rather than between executing code and the
hardware. It is analogous to run-time virtualisation; it
presents the code with a virtual compiler Cv , which trans-
lates source code into a form which is suitable for the true
compiler Ct.

In this system, Ct is a pre-existing compiler such as
gcc or GNAT. A compiler and its input language have
a set of implicit assumptions about the hardware upon

which their output will run. It is these assumptions which
cause problems in embedded systems development be-
cause they are often incorrect, forcing programmers to use
the techniques mentioned in section 1. In effect, Ct only
targets one architecture whereas Cv can target a range of
architectures by allowing the programmer to tweak the
translations employed within the VL. It uses Ct to per-
form the bulk of the compilation, whilst ensuring the out-
put code is suitable for At.

As well as removing runtime overheads this approach
allows existing compilers and toolchains to be used, some-
thing which is not the case with most language extensions.
It is also worth noting that this technique is language- and
implementation-independent. Nothing is assumed about
the starting language or the final implementation, only the
mappings within the VL change, as described in the fol-
lowing section.

2.2 Mapping to the target architecture
In order to be able to map language elements to ar-

chitectural elements correctly, the VL must be aware of
the high-level layout of the target architecture. It needs
to know the number of CPUs in the system, the memory
layout of each CPU and the manner in which CPUs can
communicate. This information can be provided by the
programmer (as in our implementation described in sec-
tion 3) or inferred from the source code itself.

It is through this information that the designer can in-
fluence the VL mappings and therefore the implementa-
tion of their design. A system with two threads may be
implemented with two CPUs with a thread each, or one
CPU that executes both. This sort of decision is outside
the scope of normal programming languages so either is
equally correct. However, the two solutions have very
different non-functional properties that the designer must
control. Previous approaches have failed to give the de-
signer this ability.

2.3 Required abstractions
In order to develop the virtualisation layer concept we

have developed an initial list of abstractions that must be
supported by the virtualisation layer in order for software
to execute correctly and efficiently.

Uniform memory architecture All memory is in a con-
tiguous block with a single address space, accessible
from all threads. Memory access times are indepen-
dent of address and within the same order of magni-
tude.

Consistent concurrency controls Inter-process concur-
rency control is possible, i.e. mutexes or condition
variables.

Standard ISAs The capabilities of each CPU in the sys-
tem are equivalent, and executing on one CPU is the
same as executing on another. No custom accelera-
tors, except for the floating-point unit.

For many embedded architectures these do not hold.
For example, a programmer can write C code (which as-
sumes a contiguous memory space), but it will not work
on an architecture with a non-uniform memory map. The
virtualisation layer must therefore provide a translation
between the assumptions of the input language and the
actual implementation hardware. Given the list above we
have developed an initial implementation of a virtualisa-
tion layer than allows the execution of multithreaded C
code on multi-core platforms. This is described in the fol-
lowing section.

3 Anvil

To test the efficacy of the virtualisation layer concept,
we are currently developing an example virtualisation sys-
tem named Anvil. Anvil allows the targeting of C code
to FPGA-based NUMA multicore architectures. C is not
a concurrent language, so in order to provide multiple
threads of control use of the pthreads library is as-
sumed. pthreads was selected because it is commonly
used, part of the POSIX standard, and has been exten-
sively studied.

Anvil’s Ct is gcc, and the Cv it provides accepts C
code to distribute code over a custom FPGA-based sys-
tem. Rather than just targeting the source code, it also
leverages the architectural information that it has been
given to generate VHDL for the entire system, ready for
FPGA place and route. Therefore, Anvil also includes fea-
tures of high-level synthesis languages. Anvil works by
reading a system-level description of the target architec-
ture and refactoring the programmers C source code so
that it can be used on the described hardware. Threads
are separated into separate source files, one for each tar-
get CPU. Inter-thread communications are recoded to use
the communication media of the architecture. The single
address space abstraction is layered over the code so that
NUMAs can be transparently accessed by the program-
mer.

Unless specified otherwise, Anvil will default to the
same implementation that C expects; a single CPU system
with a single block of contiguous memory. However, the
designer can provide a simple system description along
with the C source code that influences the virtualised map-
ping and produces a different architecture. This system
description contains processor, memory, channel, vari-
able. Processors and memories declare CPUs and RAM
respectively, channels provide inter-CPU communications
and variables declare globally-shared data. Attribute as-
signments are used to assign memory and threads to pro-
cessors. Example Anvil source to describe this is shown
below. A full description of the Anvil language is outside
the scope of this paper.

CPU1, CPU2 : processor Microblaze;
shared, mem1, mem2 : memory BlockRAM;
CPU1ˆmemory = mem1; CPU2ˆmemory = mem2;
CPU1ˆextramem = shared;

CPU2ˆextramem = shared;
globalvar : variable;
globalvarˆmemory = sharedmem;

This sets up two CPUs with memory and declares a
block of shared memory that can be accessed by both.
globalvar is a global variable in the C source code,
and is assigned to the sharedmem memory. Type infor-
mation is not required as it can be taken directly from the
source.

3.1 Implementation details
The first stage of implementation maps threads and

variables onto CPUs and memory. Anvil performs a
static analysis of the source code to determine the num-
ber of pthreads in the system. This places a restriction
on the threading models used that they must be statically
analysable, which is a common restriction in embedded
systems development. If non-analysable behaviour is re-
quired, it must be confined to operate within a single CPU.
Once this information is obtained, Anvil generates a C
source file for each CPU in the system. The CPU that
is assigned the initial main thread gets a copy of the orig-
inal main() function. All other source files get a gener-
ated main() function which simply waits until its thread
is started and then calls the thread body function. Each
source file also receives a copy of all data structures, type-
defs, and library functions that the thread requires.

Global variables must then be assigned. The scope
rules of C require that all variables shared between threads
are in global scope. Anvil uses this knowledge and can
safely ignore local variables in the mapping phase, assum-
ing that they will be placed in memory local to the thread’s
CPU. The declarations for global variables are placed in
the source file of the thread they are assigned to. This
assignment is currently provided by the designer but anal-
ysis could assist with this in the future.

The second stage of architectural mapping involves ap-
plying the SAS and concurrency control abstractions. We
have developed and implemented a technique based on
object managers which assigns the control of shared data
and concurrency primitives to threads throughout the sys-
tem in a scalable and efficient manner. Full details are
outside the scope of a short paper and will be presented
soon. Once the object managers are assigned, library
functions for inter-thread communication written. Then,
all pthreads calls are modified to use a specially devel-
oped ‘Anvil pthreads’ library which implements the ob-
ject manager system. Finally, global variable accesses are
wrapped by calls to fetch and update the values of the vari-
able from its manager. The result of this phase is that the
code of each thread now calls specially-written communi-
cation routines for access to all external data and for con-
currency control.

The final implementation stage involves generating
support files for gcc and the ld linker to ensure that code
and data sections are correctly placed in the memory map
of each CPU. Once this stage is complete, each source file

can be compiled and executable object code is produced
for each CPU in the system.

3.2 Preliminary results
The following section describes the results of prelimi-

nary testing of Anvil. For this test, we created a standard
C implementation of Triple-DES encryption that pseudo-
randomly generates fifty blocks of data and encrypts them.
We also created a two-threaded pthreads version in which
one thread encrypts even-numbered blocks and the other
encrypts odd-numbered blocks. In the pthreads version,
mutexes are used to ensure data is fetched and saved un-
der mutual exclusion and the master thread joins with the
worker at the end to complete execution. The single-
threaded version was implemented on a Microblaze soft-
core processor on a Xilinx Spartan 3e using a single block
of RAM for code and data storage. The multithreaded ver-
sion was implemented on two Microblazes, each with its
own block of memory, and a simple UART for inter-CPU
communications. The two-thread Anvil architecture defi-
nition was as follows:

CPU1, CPU2 : processor Microblaze(size);
mem1, mem2 : memory BlockRAM(1024);
CPU1ˆmemory = mem1; CPU2ˆmemory = mem2;
comms : channel uart(921600, 8, 0);
CPU1ˆchannels = [comms];
CPU2ˆchannels = [comms];
CPU1ˆthreads = ["main"];
CPU2ˆthreads = ["thread1"];

This sets up the hardware and allocates each thread of
the system to a CPU. From this information the hardware
can be built, although Anvil does not yet do this automat-
ically. The execution speed of our DES implementation is
data-invariant and the single-threaded version completes
in 34,363,789 clock cycles. The two-threaded version
completes in 17,442,119 clock cycles, 50.76% of the exe-
cution time. Therefore, this program displays only 0.76%
overhead compared to the theoretical optimal. However,
this program was very easy to parallelise and the time
spent holding mutexes was kept artificially small, lead-
ing to such impressive execution speed improvements. In
actual programs such improvements are less likely, but
the low system overheads will remain, and it is this point
which is important. Anvil cannot make programs more
parallelisable, but it does not impose a large operational
overhead, allowing the designer to get the best from their
code. Further tests are currently underway to ensure such
results are repeatable.

4 Conclusion

In conclusion, we have presented a novel approach to
embedded systems development that uses compile-time
virtualisation to insulate the programmer from the details
of the underlying hardware. The virtualisation layer pro-
vides mappings between language constructs and archi-
tectural constructs that can be influenced by the program-

mer to tailor their code to a range of implementation archi-
tectures. The approach is entirely language-independent
and due to the use of compile-time virtualisation over-
heads are very small. A large advantage of this approach
is that existing compilers and toolchains can be used. Ex-
pert knowledge is not required but it is assumed that the
designer wants control of the mapping process. Therefore
some knowledge of embedded systems will help produce
a more efficient system. Our work does not automatically
map software to hardware, perform parallelisation, or find
optimal scheduling schemes because these problems are
orthogonal and being studied elsewhere. The results from
such work can be easily combined with our findings.

We have created an example implementation of the
virtualisation layer concept called Anvil. Anvil operates
from C source code that uses the pthreads library and tar-
gets FPGA-based heterogenous multi-core systems. Ini-
tial tests have shown the Anvil system produces correctly
distributed systems with a very small amount of opera-
tional overhead. We expect a complete prototype of Anvil
soon which will allow us to perform more in-depth evalu-
ation.

References

[1] R. Banakar, S. Steinke, B.-S. Lee, M. Balakrishnan, and
P. Marwedel. Scratchpad memory: design alternative for
cache on-chip memory in embedded systems. In CODES
’02, pages 73–78, 2002.

[2] W. Cesario, A. Baghdadi, L. Gauthier, D. Lyonnard,
G. Nicolescu, Y. Paviot, S. Yoo, A. A. Jerraya, and
M. Diaz-Nava. Component-based design approach for
multicore SoCs. DAC, 00:789, 2002.

[3] B. Chamberlain, D. Callahan, and H. Zima. Parallel pro-
grammability and the Chapel language. Int. J. High Per-
form. Comput. Appl., 21(3):291–312, 2007.

[4] R. Chandra, L. Dagum, D. Kohr, D. Maydan, J. McDon-
ald, and R. Menon. Parallel programming in OpenMP.
Morgan Kaufmann, 2001.

[5] W. J. Dally and B. Towles. Route packets, not wires: On-
chip interconnection networks. DAC, 00:684–689, 2001.

[6] K. Fatahalian, D. R. Horn, T. J. Knight, L. Leem, M. Hous-
ton, J. Y. Park, M. Erez, M. Ren, A. Aiken, W. J. Dally, and
P. Hanrahan. Sequoia: programming the memory hierar-
chy. In SC ’06, page 83, 2006.

[7] D. Geer. Chip makers turn to multicore processors. Com-
puter, 38(5):11–13, May 2005.

[8] M. B. Gokhale, J. M. Stone, J. Arnold, and M. Kalinowski.
Stream-oriented FPGA computing in the Streams-C high
level language. In FCCM ’00, 2000.

[9] J. Gunn, K. Barron, and W. Ruczczyk. A low-power DSP
core-based software radio architecture. IEEE, Selected Ar-
eas in Communications, 17(4):574–590, Apr 1999.

[10] J. Robelly, G. Cichon, H. Seidel, and G. Fettweis. A
HW/SW design methodology for embedded SIMD vector
signal processors, 2005.

[11] W. Thies, M. Karczmarek, M. Gordon, D. Maze, J. Wong,
H. Ho, M. Brown, and S. Amarasinghe. StreamIt: A com-
piler for streaming applications, December 2001. MIT-
LCS Technical Memo TM-622, Cambridge, MA.

