
Exposing Non-Standard Architectures to Embedded
Software Using Compile-Time Virtualisation

Ian Gray
Department of Computer Science

University of York, York, U.K.
ian.gray@cs.york.ac.uk

Neil C. Audsley
Department of Computer Science

University of York, York, U.K.
neil.audsley@cs.york.ac.uk

ABSTRACT
The architectures of embedded systems are often application-
specific, containing multiple heterogenous cores, non-uniform
memory, on-chip networks and custom hardware elements
(e.g. DSP cores). Standard programming languages do not
use these many of these features natively because they as-
sume a traditional single processor and a single logical ad-
dress space abstraction that hides these architectural details.
This paper describes Compile-Time Virtualisation, a tech-
nique which uses a virtualisation layer to map software onto
the target architecture whilst allowing the programmer to
control the virtualisation mappings in order to effectively
exploit custom architectures.

Categories and Subject Descriptors
C.3 [Special-Purpose and Application-Based Systems]:
Real-time and embedded systems; D.3.4 [Programming
Languages]: Processors—Retargetable Compilers

General Terms
Design, Languages, Performance

1. INTRODUCTION
It is becoming increasingly common for the architectures

of embedded systems to include application-specific hard-
ware features such as function accelerators, non-standard
memory layouts, or custom interconnect. Standard pro-
gramming languages do not use these features natively, as
they assume a traditional single processor and a single logi-
cal address space abstraction that hides these architectural
details. Hence, custom hardware is accessed through error-
prone, ad-hoc techniques that are external to the abstraction
model of the source language (custom libraries, assembly
programming, manual linking etc.). This paper proposes
Compile-Time Virtualisation (CTV) as a solution. CTV
uses a virtualisation layer to map high-level software onto
the target architecture. It allows access to custom hardware

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CASES’09, October 11–16, 2009, Grenoble, France.
Copyright 2009 ACM 978-1-60558-626-7/09/10 ...$10.00.

ASIC CPU, MMU, comms
Soft architecture

VM1

VM2

VM0
FPGA

RTOS

Logical address space

OS API Language
Runtime

VM3User code

Figure 1: The stack of VMs in the standard general-
purpose architecture.

by allowing the programmer to control how language con-
structs from the virtualised model are implemented on the
actual target architecture.

A key motivation for CTV is the rise in complexity of
embedded system platforms. Due to the general trends of
Moore’s Law, hardware designers have become able to inte-
grate a larger number of elements into a single design. This
has become known as the System-on-Chip (SoC) paradigm
[13] and is a divergence from the common single-CPU single-
memory space assumed by most programming languages.
This, coupled with limits on clock speed and memory access
times has led to an explosion in the variety of on-chip archi-
tectures being deployed. A major trend is towards more spe-
cialised, application-specific designs that may contain mul-
tiple heterogenous processing elements [2, 15]; Networks-on-
Chip [10]; non-standard memory hierarchies [12]; DSP cores
and SIMD units [17, 24]; and reprogrammable elements us-
ing FPGA-based technology [1].

Programming heterogeneous architectures presents a fun-
damental challenge for the development of embedded soft-
ware. Figure 1 shows the standard general-purpose pro-
gramming model expressed as a stack of virtual machines.
Each virtual machine hides underlying details to simplify
programming and insulate the programmer from implemen-
tation changes. VM1 is built from the actual hardware and
presents a single contiguous address space and in-order exe-
cution of opcodes. VM2 is presented by the real-time oper-
ating system (RTOS) so that each process believes it has sole
control over the CPU, access to atomic actions, and other
RTOS features. VM3 represents the language-level virtual
machines of languages like Java and Smalltalk [23].

Unfortunately these VMs add inefficiency and because
they do not allow easy access to underlying hardware it be-
comes difficult for code at higher layers to access custom

hardware without the use of specialised libraries. When cus-
tom hardware elements are introduced they either cannot be
exploited (as with function accelerators) or they cause ar-
chitectural assumptions of the VMs to fail and user code no
longer functions (as with non-contiguous memory layouts).
This paper argues that although the programmer may not
require complete control over the implementation of their
code, they do want to be able to influence compilation to
better suit their target design. To this end, Compile-Time
Virtualisation (CTV) amalgamates VMs 0, 1 and 2 into
a single virtualisation layer, termed the Virtual Platform
(VP), the operation of which can be controlled by the ap-
plication programmer via the compiler.

The paper summarises work related to this field in sec-
tion 1.1. It then describes Compile-Time Virtualisation in
section 2 and Anvil, an example CTV implementation, in
section 3. Section 4 describes the ways that Anvil can be
used to target custom architectures and presents an evalua-
tion of its capabilities.

1.1 Related work
From observing modern architectural trends, it can be

determined that embedded development languages must be
able to exploit four main architectural features:

● Parallelism: multi-core, co-processors.

● Memory: memory spaces, shared memory, caching, co-
herency.

● Unique hardware features: co-processors, function ac-
celerators, communication channels.

● New paradigms: streaming languages, data path com-
putation, actor-oriented programming.

In an attempt to utilise these features, much recent work
has considered the development of new languages or lan-
guage extensions. OpenMP [4] and Chapel [3] attempt to ex-
tract parallelism from source code to utilise high-performance
computing architectures. Sequoia [12] is an extension to C
which aims to ease programming for non-uniform memory
architectures (NUMA). SystemC [18] and SpecC [14] are ex-
amples of system-level languages that can be used to help
the programmer to better utilise features of the underlying
hardware, such as hardware accelerators and reconfigurable
logic. Some work attempts to give the programmer differ-
ent programming paradigms that better suit novel architec-
tures. Streams-C [16] and StreamIt [27] add semantics to
C for describing data paths and computational kernels for
stream programming whilst there is a recent interest in gen-
eral purpose languages that execute on graphics processors,
such as CUDA [21] and OpenCL [20].

Unfortunately, such languages tend to only concentrate on
solving a single problem. For example Sequoia only targets
non-standard memory layouts and does not include provi-
sions for easy access to custom hardware. This paper con-
tends that due to the rapid rate of hardware evolution it is
neither feasible nor sustainable to continue developing new
languages with associated compilers and toolchains for each
new hardware element and paradigm that appears. There is
also a fundamental semantic discontinuity encountered when
attempting to extend a software language with architectural
information, as these approaches have done. Programming
languages are introspective by design, meaning they are only
concerned with internal details such as data structures and
statements. In general they cannot describe features exter-

Virtualisation layer

Virtual platform

Source code (C, Ada etc.) Target descriptionUser code

Target architecture, physical platform

CPUs
H/w accelerators
Channels
Memories

Designer-provided
mappingsInter-process

communications

Threads Single, contiguous
address space

Standard RISC
processors

Hardware
features

Distributed
code

NUMA
Heterogeneous

processors, custom ISAs

Custom hardware, function
accelerators

uses gcc, gnat, etc.Virtualising compiler

Figure 2: Tools-oriented view of CTV

nal to themselves that define the system in which the code
will execute, or how it should be implemented. Compile-
Time Virtualisation avoids this problem by introducing a
holistic abstraction model that gives the programmer greater
control over the compiler.

2. COMPILE-TIME VIRTUALISATION
As described in section 1, the VMs present in standard

software development hide important architectural informa-
tion from the programmer, thereby preventing the efficient
use of hardware features. Compile-Time Virtualisation (CTV)
removes this problem by replacing the existing VMs with
a single virtualisation layer across the entire architecture,
termed the Virtual Platform (VP), which has three impor-
tant features:

● The VP is a high-level view of the underlying hardware
that presents the same programming model as the source
language to simplify development. For example, it may
present a single logical address space or uniform inter-
thread communication. This allows the programmer’s
code to function irrespective of the target architecture.

● Unlike a standard run-time VM, the virtualisation map-
pings (thread→ CPU, variable→memory space etc.) that
are implemented by the VP are exposed to the program-
mer. This allows them to influence the implementation
of the code and achieve a better mapping onto the archi-
tecture. For example, by placing communicating threads
on CPUs that are physically close to each other, or locat-
ing global data in appropriate memory spaces to minimise
copying.

● Also unlike a VM, custom hardware is exported up to the
programmer through the VP at design-time and presented
in a form that is consistent with the source language’s
programming model, thereby allowing it to be effectively
exploited.

By moving the virtualisation to compile-time, run-time
overheads are reduced to a minimum. If the hardware de-
sign later changes (for example, the addition of a processor
or a new memory layout) a new VP is generated and the
same input code is automatically retargeted to use this new
architecture. This facilitates code reuse and allows designers
to perform design space exploration rapidly.

The VL translates incoming source code, passes it though
the language’s existing compiler, and links the resultant ob-
ject code. No new compilers need to be written, hence
new platforms can be targeted easily. This is shown in

Source code

Concurrent
objects

Coordination
primitives

Shared
data

CPUs Channels Memory spaces External hardware

Virtual
Platform

Target architecture

Communications
layer

Object
managers Hardware model

Input
program

Target
hardware

Figure 3: CTV system model

figure 2. This technique is language- and implementation-
independent; nothing is assumed about the source language
or the final implementation.

CTV does not duplicate the work of system design lan-
guages such as SystemC or SpecC. The design method pre-
sented by these languages requires the designer to begin at
a high level of abstraction and iteratively refine the design
until it is of a sufficiently low level to be implementable,
and tends to target both hardware and software. CTV in-
stead focusses on software and gives the programmer influ-
ence over implementation choices that are normally made by
the compiler to obtain a better implementation on a wide
range of architectures. Similarly, the CTV VP should not be
confused with virtualisation environments like the CoWare
Virtual Platform [8]. The CoWare VP is a software simula-
tion of the target hardware that provides introspection and
observability to aid software design. This technology is im-
portant to industry and could be integrated into CTV, but
addressing it is an orthogonal problem.

Section 2.2 gives an overview of the abstract requirements
of CTV, and discusses the system model as shown in figure 3.
The components of the VP are then described in more detail
in sections 2.3-2.5.

2.1 CTV compared to run-time virtualisation
CTV does not perform the same function as run-time vir-

tualisation. Consider Java, an existing run-time virtualisa-
tion system. Java’s VM extends the run-time capabilities
of the system to make it appear to the programmer that
the target CPU can execute Java bytecodes, when in fact it
cannot. CTV, in contrast, does not exist at run-time and
instead it extends the compile-time capabilities of the lan-
guage and its compiler, to make it appear to the programmer
that their language and toolchain can target more complex
architectures than it normally can.

2.2 System model
The CTV system model is derived from the common char-

acteristics of concurrent, imperative programming languages.
These languages all have some notion of a concurrent object
(threads or processes) and a set of coordination primitives
that allow the concurrent objects to work together. For a
language with a POSIX-based threading model these are
mutexes and condition variables, for Ada [26] these are task
entries and the rendezvous. Every concurrent language must
also handle shared data, which may range from simple vari-
ables to complex elements like Ada’s protected objects.

Given this, the CTV system model is shown in figure 3.
In the diagram, arrows represent a programmer-controllable
mapping from one element set to another. CTV models

source code as a 3-tuple of sets (T,P,D) where T is a set
of concurrent objects, P is a set of coordination primitives
and D is a set of language-level shared data objects. (Com-
pound types like structures and arrays are represented by
only one set member.) Similarly, target architectures are
represented by a 4-tuple, (C,L,M,H) where C is the set
of CPUs in the target architecture, L represents communi-
cation channels (buses and on-chip networks), M is the set
of memory spaces, and H is the set of external hardware
elements (e.g. function accelerators, I/O channels) that are
to be exposed to the source language. The VP is a mapping
of source language-level elements to architectural elements
that can be controlled by the programmer to best exploit
the features of the target system:

(T,P,D)→ (C,L,M,H)

This model allows for many extra capabilities of the source
language to be carried into the VP. For example, in the
Real-Time Specification for Java thread affinity is modelled
as a mapping T → C and memory spaces are modelled as
D →M .

Threads and shared data may be mapped to any tar-
get CPU and memory space respectively, so the VP must
present a programming model which hides the implemen-
tation details of this complexity. Three main features are
required.

● Shared memory: The implementation of a distributed
shared memory system is required to allow transparent
access to shared data from all threads regardless of its
storage location, whilst still allowing control over where
shared data is placed in the system. This creates the ab-
straction of a single logical address space over the entire
architecture, which is assumed by almost all standard lan-
guages. For example, when two threads access a global
variable CTV must account for the possibility that the
two threads are mapped onto separate CPUs, neither of
which share a memory space with the variable itself.

● Concurrency: Concurrency primitives that operate across
the whole target architecture must be provided to support
the execution model of the source language. Most concur-
rency features are provided by the operating system (i.e.
POSIX mutexes) or the language run-time (i.e. Java syn-
chronised methods) and so are localised to a single CPU
and cannot operate over the entire system.

● Communications: The custom communications resources
of the target architecture must be used transparently by
all inter-thread communications without manual program-
mer intervention. For example, if a thread requests a mu-
tex lock,it should communicate the request to the rest of
the system appropriately.

To provide these three features, the VP introduces the
concept of Object Managers, specifies a run-time commu-
nications layer, and specifies a model for the integration of
external hardware elements. These are described in the fol-
lowing sections.

2.3 Object Managers
A key requirement of CTV is that it must be able to sup-

port future architectures with potentially thousands of in-
teracting cores. Any form of centralised control must be
avoided or it will result in a loss of scalability. Therefore,
CTV uses a set of Object Managers (OMs) to manage op-
erations on the members of the T , P and D sets (threads,

coordination primitives, and shared data). Different OMs
are entirely independent and operate in parallel, hardware
permitting.

An OM is a passive object, mapped to a CPU, that is
assigned to oversee all operations concerning a subset of the
members of the T , P and D sets. For example, the OM
of a mutex primitive stores the mutex’s state and handles
lock and release requests atomically. The OM of a shared
data object handles read and write requests. Any number
of objects can be assigned to an OM, however shared data
objects must be stored in the same memory space as their
OMs. Assigning two OMs to the same CPU is equivalent to
assigning a single OM that manages both sets of objects.

s(O3) = s(O1) ∪ s(O2)⇒ c = {O1,O2} ≡ c = {O3}

Where c is a CPU from set C and s(Ox) is the set of objects
Ox is managing. Therefore the system model defines the
set of OMs (O) as a subset of the CPUs in the system.
Most OMs will share their CPU with other threads, so the
performance of these threads will be reduced. The number of
OMs, the items they manage, and the CPUs onto which they
are allocated can be influenced by the programmer through
the VP mappings in terms of the system model:

℘
T∪P∪D

→ O where O ⊆ C

The set of OMs is static, which does slightly limit the run-
time behaviour of the source code. However, for embedded
systems this is not overly restrictive because dynamic be-
haviour is generally reduced in embedded development to
increase code predictability and to ease proof of correctness.

The actual functionality of the OMs varies depending on
the capabilities of the source language. Most concurrent
languages (like Java and Ada) allow a thread to start other
threads and then wait for them to finish, so for these lan-
guages the thread OMs must provide this functionality. Shared
data OMs are the same for all languages and they allow a
remote thread to read and write the contents of the object
(or part of it).

If an OM is called by a thread that is hosted on the same
CPU the request is handled internally, but if the thread or
OM are remote then the communications layer (section 2.4)
is used to send messages across the system.

2.4 The communications layer
The primary goal of the communications layer is to al-

low the VP to present a single logical address space to the
source language. This requires the implementation of an
object-based distributed shared memory system [25], such as
Teamster [5] or Rthreads [11]. The specific advantages and
disadvantages of different systems do not affect the overall
approach. To implement this, the layer uses the function-
ality of the OMs on behalf of the source threads. Remote
variable accesses are passed to the correct OM over a suitable
communications channel (set L), whilst managing cache co-
herency and efficiency. The actual read or write is performed
by the OM, but the operation as a whole is coordinated by
the layer. Similarly, the layer manages the operation of coor-
dination primitives. For example, when a thread requests a
mutex lock the layer composes and transmits the request to
the mutex’s OM. Then, the OM performs the actual atomic
test-and-set and uses the layer to send the reply.

The layer is applied at compile-time and leaves minimal
run-time overhead. Once the mapping of OMs to the target

Hardware type Port configuration
Std. function accelerator 1 sync. port
Mailbox 1 sync. for sending,

1 async. for receiving
CAN Network n async. ports
CSP channel 2 sync. ports

Figure 4: Examples of how external hardware is
modelled by CTV

architecture is known, the virtualisation layer can determine
which threads need to communicate with which OMs. For
example, if thread i creates thread j and reads variable s,
i needs to communicate with the OMs of j and s. These
communications are mapped onto set L and from this infor-
mation the layer is built, linking in driver code to utilise the
communication channels as required. Traditionally run-time
issues like routing are moved to compile-time.

The source code is refactored to inject calls to the layer.
Accesses to remote data objects are detected before com-
pilation and calls inserted that implement the access. Like
most distributed shared-memory systems, this assumes that
remote accesses do not use arbitrary pointer manipulation.
Pointers can be used, but only if they can be determined at
compile-time to only point to the shared object.

The main penalty of moving the virtualisation from run-
time to compile-time is that threads and OMs must remain
static and cannot migrate throughout the system at run-
time. Given the target domain, however, this is not an un-
reasonable restriction. Commonly code can not be migrated
throughout a complex embedded architecture without re-
compilation because of heterogeneous CPU instruction sets
or differing memory layouts. Even when they can be, thread
migration is complex and can make it difficult to analyse the
worst-case execution time of the system to meet real-time
deadlines. Finally, the frameworks to support such migra-
tion introduce undesirable run-time overhead.

2.5 Hardware model
CTV defines a model for access to external hardware from

the H set of the system model. Each element of custom
hardware has at least one port, which can be used to ac-
cess it from a CPU or co-processor. Each port is either
synchronous or asynchronous and the ports of a single hard-
ware element can be of different types. Synchronous ports
provide blocking read and write semantics. The thread of
control accessing the port must wait for the operation to
complete before it continues with its execution. In contrast,
asynchronous ports provide non-blocking semantics and al-
low the CPU to trigger an action which will complete at a
later date. It is up to the implementation of the source lan-
guage to determine a suitable notification method, although
callback functions are often appropriate. Examples of how
external hardware is represented in this model are shown in
figure 4.

Each hardware port is assigned a set of parameters. All
ports have an address, which is the base memory address
that the attached CPU accesses it at. Asynchronous ports
also have an associated interrupt vector and the name of a
callback routine from user-level code that will be called when
the interrupt fires. Note that synchronous ports may use
interrupts internally for efficiency, but they will still present
a synchronous interface to the programmer.

program ::= {decl | assign}
decl ::= id_list ":" type id [params]
id_list ::= id | id "," id_list
type ::= "processor"|"memory"|"hardware"|"channel"
params ::= "(" p_list ")"
p_list ::= param | param "," p_list
param ::= number | string | list
assign ::= attrid "=" (param | id [params])
attrid ::= id "^" id

Figure 5: Simplified EBNF of the Anvil ADL

Microblaze
0

RAM RAM

Microblaze
1Fast serial

Shared
RAM

Figure 6: Simple dual-core system

3. ANVIL: AN IMPLEMENTATION OF CTV
Anvil is an implementation of CTV that maps applica-

tions written in C to complex multi-core architectures with
non-uniform memory, custom on-chip interconnect, and non-
standard hardware features such as function accelerators.
Use of the POSIX standard pthreads library is assumed to
provide multiple threads of control. Anvil uses an unmodi-
fied version of the gcc compiler internally for its object code
generation. Input code is extensively refactored according to
the mappings in its VP description (section 3.1) to present
gcc with source code that will operate correctly on the tar-
get architecture. This refactoring is described in section 3.2.

3.1 Virtual platform description
Anvil uses a simple architecture description language (ADL)

to define its VP and the mappings from source language to
target hardware. This language does not have the power of
a full ADL [7] because it only needs to provide a very high-
level view of the architecture. Not all mappings need be
defined (the system can perform many allocations automat-
ically) but it is through this mechanism that the designer
can influence the implementation of the system. The lan-
guage syntax is described in figure 5.

The ADL allows the definition of target architectures in
terms of the CTV 4-tuple model. The keywords processor,
memory, channel and hardware declare sets C, L, M , and H
respectively. Each declared item can be assigned attributes
which add extra information about its behaviour and de-
scribe the mappings of the 3-tuple (concurrency objects, co-
ordination primitives, shared data) down to the target plat-
form. The simple dual-CPU system shown in figure 6 can
be described as follows:

Anvil compiler

Source code (C pthreads) VP
description

Thread, mutex, CV
identification

Shared variable
identification

OM assignment

Data flow
analysis

Communication
stub generation
and injection

Code refactoring

pthread call
refactoring

Build embedded
pthreads library

Hardware
support libs

Retargeted code gcc Object code

Code splitting
Split
into

objects

Assign
OMs

Build
libs,

modify
input
code

Build external
hardware drivers

Build hardware
callbacks

Figure 7: The main processes inside the Anvil com-
piler

CPU1, CPU2 : processor Microblaze;
mem1, mem2, mems : memory BlockRAM;
sc : channel UARTSerial;
CPU1^memory=mem1; CPU2^memory=mem2;
CPU1^extramemory = mems; CPU2^extramemory = mems;
sc^connectedto =

[CPU1(0x84000000, 1), CPU2(0x84000000, 0)];

Note the use of the connectedto attribute to provide the
serial channel’s port parameters as required by the CTV
hardware model (see section 2.5). Once the architecture
has been described, the programmer maps system elements
onto it. The following code segment uses attributes to map
shared data into memory spaces (line 1), threads to execute
on CPUs (line 2), and assign system objects to OMs (lines
3-4).

mems^variables = ["sourceimage"];
CPU1^threads = ["mythread", "main"];
CPU1^manages = ["sourceimage"];
CPU2^manages = ["mythread", "main"];

In this code, sourceimage, mythread and main are source
language-level elements - items in the user’s source code.

3.2 Refactoring
The Anvil refactoring process is shown in figure 7. The

first phase involves reading the input program in terms of
the CTV system model. Anvil parses the incoming source
code, generates the abstract syntax tree and symbol ta-
bles, and from this information determines the threads, mu-
texes, condition variables and shared data that are present
in the source code. (The (T,P,D) input tuple.) Due to the
fact that this is performed at compile-time, this information
must be compile-time static. This is the main restriction on
run-time behaviour that is imposed by CTV, although it is
believed that given the target domain this is not an onerous
restriction. Non-analysable behaviour is still supported, but
it must be constrained to a single CPU. This is similar to
many other systems, such as Rthreads [11].

The OM model is then applied. Items from the (T,P,D)
tuple are assigned to OMs on the system’s CPUs according
to input from the programmer’s ADL, as described in sec-
tion 3.1. Unassigned system objects are automatically as-

signed, although only a simple allocation algorithm is used
currently because optimal OM assignment is not the focus of
this work. Existing work [19] has concentrated on the prob-
lems of evaluating task assignments in complex embedded
systems and their results are useful here.

After OM assignment, the input program must be split
into a set of programs, one for each CPU of the system.
A new main() function is created for each of these CPU-
specific programs which sleeps until it is woken by the ap-
propriate pthread_create call elsewhere in the system. The
original main() function (the program’s initial thread) re-
mains unchanged. Most of the CPUs in the system will only
need a small subset of the input code, usually the body of
its thread and whichever library functions are called. This
is determined using reachability analysis and call-graph gen-
eration, although gcc and ld can also do this automatically.

Now Anvil has generated a program for each CPU, but
they will not correctly execute due to a lack of shared mem-
ory and that the POSIX pthreads library doesn’t support
complex architectures. Three support libraries are required:
an object manager-aware shared memory system, an embed-
ded pthreads library, and driver code for custom hardware
elements. These libraries are optimised for each CPU to use
the memory, communications and hardware available, there-
fore one must be constructed for each core in the system.

As described in section 2.4, the shared memory system
implements an object-based shared memory system. Where
two threads share data that is not in shared memory, re-
mote reads and writes must be conveyed over the system’s
communication channels. The implemented system uses mi-
gration semantics. When a remote variable is accessed it is
semantically migrated over the to the reader who can ma-
nipulate it freely before writing its final value and migrating
it back to its manager. This fits well with the mutex-based
coordination of pthreads-based programs. The refactoring
engine uses data-flow analysis over the abstract syntax tree
to determine the points in the program where shared vari-
ables (that are not in shared memory) are used as L- or
R-values and calls that remotely read and write the data
are injected before and after these accesses. Consider the
following code:

void main(void) {
printf("%d\n", x);
x = x + 1;

}

Here, x is a shared variable which is read and written
by the code in main. Anvil transforms the code into the
following:

1 extern _anvil_a_var_t _anvil_accessedvars[];
2 extern _anvil_var_t _anvil_managedvars[];
3

4 int x; //Local space for remote data
5

6 void main(void) {
7 _anvil_accessedvars[0].data = (unsigned char *) x;
8

9 _anvil_read_sv(0, 0, 0, 1); //id, offset, len, bytes
10 printf("%d\n", x);
11 x = x + 1;
12 _anvil_write_sv(0, 0, 0, 1);
13 }

Lines 1 and 2 declare data structures internal to the shared
memory library that are responsible for tracking and man-
aging shared data. Line 7 assigns an address that can be

used as local storage for when the remote variable is mi-
grated over, and finally lines 9 and 12 are the injected read
and write calls. To extend this, shared data can be associ-
ated with a mutex so that all writes are cached and the final
value not updated until the associated mutex is released.
Pointer access to shared data is also supported through the
use of offsets if the pointer is initialised to point to the shared
data. Anvil has enough compile-time information to exploit
burst-mode and DMA transfers to speed data transmission.

Cache coherency must be considered when two CPUs are
accessing shared data from shared memory. However, this
is a well-studied problem and the results from existing work
[9, 6] can be directly implemented in CTV. As coherency
is not the focus of this work, Anvil currently uses a simple
algorithm. Upon a write to a shared variable, that vari-
able’s OM instructs the other threads that access this data
to flush their cache next time they attempt a read. More
complex algorithms would increase efficiency but are not yet
implemented. Some architectures support cache coherency
natively (e.g. the ARM Cortex) so when targeting these ar-
chitectures Anvil does not need to consider coherency and
assumes it will be provided automatically.

The embedded pthreads library - the Anvil implemen-
tation of the CTV communications layer - contains stub
functions for all architecture-specific functionality (such as
sending a message to another CPU or handling interrupts).
These are completed at compile-time with routines read in
from an external support library to create a CPU-specific
library that can support all of pthread’s thread, mutex and
condition variable operations. It uses the OM assignments
to determine the CPU that each request should be sent to.
This is also done at compile-time, no run-time overhead is
required.

Finally, driver code for custom hardware is retrieved from
Anvil’s external libraries and added to the output code. All
Anvil drivers use a C struct to store the port parameters that
are required by the CTV hardware model (section 2.5). This
struct is injected by the refactoring process from information
provided in the ADL so that the programmer does not need
to worry about hardware addresses or interrupt vectors. An
example of this is shown later in section 4.5.

Once the support libraries have been built, the final stage
involves refactoring the original pthread calls to point to the
new embedded pthreads library and the code will compile
under standard gcc but execute on the target architecture.

Due to the fact that the refactoring stage adds another
layer of transformation to the programmer’s source code,
CTV’s impact on traceability must be considered. However,
because the refactoring is entirely predictable, debugging
information can be carried through in the same way that
it is through standard compilation optimisations and into
ancillary libraries.

4. TARGETING ARCHITECTURES WITH
ANVIL

This section details some of the ways that Anvil uses
CTV to map software onto complex embedded architectures.
All systems are implemented on a Xilinx Virtex 4 FPGA
(the XC4VLX25-FF668-10) on the Xilinx ML401 prototyp-
ing board and use the Microblaze soft-processor. Other FP-
GAs and cores are supported however.

Benchmark With CTV Without CTV
quicksort-fpu 26,222 26,222
fast-dct 7,716 7,716
binarysearch 114 114

Figure 8: Evaluation time (clock cycles)

4.1 Overhead introduced by CTV
The first architecture presented is a single-CPU system

with a single block of memory - the standard Von Neumann-
style architecture assumed by C. This is considered because
it helps to illustrate the main advantage of CTV, that the
only run-time overheads introduced are those actually re-
quired by the system (such as copying shared data, inter-
thread communications etc.). When the VP and the actual
platform are the same, the virtualisation reduces to nothing.

Figure 8 shows the execution times of three benchmark
programs when run with and without the aid of CTV. It
shows that because CTV does not need to alter the code
to help it execute correctly on the target architecture the
resulting overhead is 0%. This is different to run-time sys-
tems such as Java or CORBA [22] which always introduce
overheads.

It can be determined that there are only two possible
sources of (non-required) overhead in the system. First,
Anvil is forced to use a general-purpose communications
protocol for implementing its architecture support libraries.
With application-specific knowledge it is possible to trim
the required number of messages and therefore reduce time
spent communicating. However this is also architecture-
specific and error-prone, and can only offer a small benefit
for most applications.

The second source of potential inefficiency concerns the
shared memory and cache coherency systems implemented
by Anvil. These systems are applied at compile-time, and
it is not always possible for the compiler to determine ex-
actly which elements of shared data are read in a given code
block. As a result, the compiler may have to transfer more
data than is actually required at run-time. Similar prob-
lems are faced by all shared memory systems and as better
techniques are discovered they can be easily implemented in
Anvil to reduce this. One interesting advantage that CTV-
based systems have in solving this problem is that because
CTV has access to the source code (which run-time systems
do not) more expressive source languages will help the com-
piler to perform better.

4.2 Shared memory architectures
The first non-standard architecture presented is a dual-

processor system containing dedicated memory for each CPU
and a third block of shared memory accessible to both. The
CPUs communicate using an Anvil-supported serial com-
munications channel. This architecture is shown in figure 6.
Three applications are presented running on this system, a
Sobel edge filter, triple-DES encryption and a forward dis-
crete cosine transform (FDCT). All of the programs access
shared data and have not been rewritten for use in Anvil. In
these tests, Anvil successfully mapped the software threads
across the two CPUs and handled communications and cache
coherency correctly. Figure 9 lists the execution time (in
clock cycles) for these three applications, demonstrating the
expected increase in throughput as the cache is introduced.

Program Cached No cache
Sobel 13,078,036 28,430,514
3-DES 16,234,470 19,364,574
FDCT 31,643 36,688

Figure 9: Evaluation time (clock cycles)

Program Execution time
(cycles)

Single-threaded 34,363,789
Multi-threaded (hand-coded) 19,217,404
Multi-threaded (Anvil) 19,364,574

Figure 10: 3-DES on a 2-core NUMA system

To examine the amount of unnecessary overhead being in-
troduced by Anvil, a hand-written version of the triple-DES
program was created and compared with the 3-DES results
from the previous experiment. This is shown in figure 10.
As can be seen, the Anvil version demonstrates only 1%
overhead. The hand-coded version employed an application-
specific communications protocol, an option which is not
available to any automatic tool. This is the first source of
overhead identified previously in section 4.1. This indicates
that the performance of Anvil can be very close to that of
hand-written code.

4.3 Distinct memory architectures
Systems with distinct memory spaces require the OMs to

actively pass data between threads. This is clearly slower,
but is often required as the number of cores and memory
spaces in an architecture increases. To demonstrate Anvil’s
support for this, the shared memory was removed from the
above architecture and the Sobel application reimplemented.
The application still completed correctly but it is heavily
bottlenecked by the slow serial connection between the two
CPUs. The application has to transfer the entire 200×200
pixel source image from CPU1 to CPU2, and then copy the
filtered image back, which took over 9 million cycles and
increased the run-time of the application by 32%, or 69%
when compared with the cached version.

If present on the architecture it is possible to use DMA
engines to automate this copying and reduce wasted cycles.
This is not yet implemented in Anvil but it is supported by
the CTV object manager model.

4.4 Many-core systems
To show the scalability of CTV and the OM model, a

five-core system inspired by IBM’s Cell processor was also
developed, shown in figure 11. In this architecture, cores 1-4

Core 0

Core 1 Core 2

Core 3 Core 4

I/O

RAMRAM

RAM

RAM

RAM RAM

Figure 11: 5-core NUMA system with custom inter-
connect

10
15
20
25
30
35
40

cy
cl

es
 (

x1
,0

0
0

,0
0

0
)

Theoretical
Actual

0
5
10

1 2 3 4 5

C
lo

ck
 c

Number of cores

Figure 12: Evaluation times for 3-DES compared
against the theoretical best-case

are small Microblaze cores with a 3-stage pipeline whilst core
0 has an extended instruction set due to it having a float-
ing point unit, 5-stage pipeline, and instruction and data
caches. The architecture contains a complex memory layout
and multiple communication channels. It consumes 91% of
the target FPGA’s logic resources and has a throughput
of 2160 Dhrystone MIPS at 360MHz. Porting the applica-
tion to this architecture simply requires preparing an Anvil
ADL file to describe the VP and running the refactoring
process. The input code remains the same. When a thread
is mapped onto core 0, because this is known at compile-
time the compiler is able to create a binary which uses its
extra instructions. Figure 12 shows the execution times for
varying numbers of active cores when compared against the
theoretical best-case speed up (2x for 2 cores, 3x for 3 cores
etc.). As expected, the graph shows that the actual imple-
mentation is slower as the advantages of parallelisation are
reduced by task interference. However, this example shows
the communications layer operating correctly over a com-
plex architecture and the interthread communications scal-
ing to the highest number of cores that can be fit onto the
target FPGA. Whilst this result is encouraging, further ex-
periments will demonstrate architectures with even greater
numbers of cores.

4.5 Function accelerators - Synchronous
This example demonstrates how Anvil can use function

accelerators from the implementation architecture. The tar-
get system is a single-core system containing hardware to
evaluate the quadratic polynomial y = ax2

+bx+c in floating
point arithmetic. The coefficients a, b, and c are presented
to the hardware and on the next clock cycle y is available.
The Microblaze core used in this system does not have a
floating point unit, so all its floating point operations have
to be emulated in software.

The accelerator is first cast into the CTV hardware model.
It is accessed through a single synchronous port and there-
fore the only parameters it requires is the memory address
that it is located at (0x86000000 in this case). It is described
in Anvil ADL as:

quadeval : hardware Quadratic(CPU1, 0x86000000);

The Anvil hardware libraries define the interface to this
accelerator through driver functions:

typedef struct {int *addr;} quad_t;

Software With h/w acceleration
3808 - 3910 cycles 48 cycles

Figure 13: Quadratic evaluation times

int evaluate_quadratic
(quad_t quad, char a, char b, char c){

*(quad.addr) = (a << 16)|(b << 8)|c;
return (*(quad.addr + 1));

}

quad_t is a structure type which holds the port’s parame-
ters, the declaration of which is inserted into the source code
during refactoring.

quad_t quadeval = {(int *)0x86000000};

The user can write code to use the evaluate_quadratic

function normally and the refactoring will ensure that it
is always compiled to access the correct memory locations.
Through the VP, custom hardware is accessed using language-
level constructs in a way that fits C’s programming model.
The problematic and error-prone integration is handled at
compile-time by Anvil without requiring the user to deal
with assembly code, custom linking or any techniques exter-
nal to the source language.

Figure 13 shows the number of clock cycles taken to evalu-
ate a single equation using software emulation and the hard-
ware accelerator. A range of input variables for the coeffi-
cients were tested and the results show that the hardware
version is considerably faster, as expected.

4.6 Function accelerators - Asynchronous
Asynchronous accelerators are integrated in much the same

way as synchronous ones. This section describes the integra-
tion of a timer that can be requested to interrupt the CPU
a given number of clock cycles in the future. This hardware
is described in the CTV hardware model as having a single
asynchronous port, so it therefore requires an address, an
interrupt vector, and the name of a function to trigger when
it interrupts. In this example the following ADL is used:

mycall : hardware Callback(CPU1, 0x84000000, 3, trigger);

Again the libraries define the hardware interface, in this
case a trivial function which is used to request a callback
from the hardware, however they must also integrate the in-
terrupt handling. This is done during refactoring when the
communications layer is built. The main interrupt handler
of the layer is extended so that every time an interrupt ar-
rives on vector 3 it calls a function named trigger which
is a void function that takes no arguments and is provided
by the user to perform whatever actions they require. As
with the synchronous example above, the integration process
is now entirely expressed in terms of the source language’s
programming model. Both examples scale to include an ar-
bitrary number of accelerators and the technique is only lim-
ited by the addressing capabilities of the target CPU.

Using the techniques from this section and section 4.5,
external communication channels such as UARTs and net-
works have been brought into the Anvil model. The model
also works for I/O devices like buttons and LEDs. Anvil’s
hardware library currently provides support for a wide range
of such devices.

5. CONCLUSION
This paper has shown how Compile-Time Virtualisation

(CTV) can be used to extend the programming model of a
high-level language to help the programmer to more effec-
tively target changing, application-specific implementation
architectures. When using CTV, the programmer writes
code for the virtual platform, a virtualised view of the un-
derlying hardware with a simpler programming model than
the true platform. Code written for execution on this VP is
refactored and then compiled by the source language’s exist-
ing compiler, which does not need to be modified. The power
of the technique comes from the fact that the mappings in
this virtualisation layer can be influenced by the program-
mer to guide compilation and create a more efficient sys-
tem. CTV’s virtualisation layer exists at compile-time only,
thereby reducing run-time overhead to a minimum. CTV’s
Object Manager system does not require any form of central
control and is naturally parallel, resulting in a system that
can theoretically scale to any size supported by the imple-
mentation fabric.

An example CTV implementation called Anvil is presented
which is shown to be able to effectively target multi-threaded
C code to complex multi-core architectures with custom
memory layouts and non-standard hardware elements such
as function accelerators. Anvil is shown to introduce only
a very small run-time overhead when compared with hand-
optimised code.

CTV copes very well with the changing architectures of
modern embedded systems. Virtual Platforms can be de-
fined that expose and utilise these new architectures without
needing to develop new languages and toolchains or break
compatibility with legacy code.

6. REFERENCES
[1] D. Andrews, D. Niehaus, and P. Ashenden.

Programming models for hybrid cpu/fpga chips.
Computer, 37(1):118–120, 2004.

[2] W. Cesario et al. Component-based design approach
for multicore SoCs. DAC, 00:789, 2002.

[3] B. Chamberlain, D. Callahan, and H. Zima. Parallel
programmability and the Chapel language. Int. J.
High Perform. Comput. Appl., 21(3):291–312, 2007.

[4] R. Chandra et al. Parallel programming in OpenMP.
Morgan Kaufmann, 2001.

[5] J.-B. Chang, C.-K. Shieh, and T.-Y. Liang. A
transparent distributed shared memory for clustered
symmetric multiprocessors. The Journal of
Supercomputing, 37(2):145–160, 2006.

[6] L. Cheng, J. Carter, and D. Dai. An adaptive cache
coherence protocol optimized for producer-consumer
sharing. In High Performance Computer Architecture,
2007. HPCA 2007. IEEE 13th International
Symposium on, pages 328–339, Feb. 2007.

[7] P. C. Clements. A survey of architecture description
languages. In IWSSD ’96. IEEE Computer Society,
1996.

[8] CoWare, Inc. CoWare Virtual Platform -
hardware/software integration and testing...without
hardware.
http://www.coware.com/products/virtualplatform.php
(Accessed Aug 09).

[9] A. Cox and R. Fowler. Adaptive cache coherency for

detecting migratory shared data. In Computer
Architecture, 1993., Proceedings of the 20th Annual
International Symposium on, pages 98–108, May 1993.

[10] W. J. Dally and B. Towles. Route packets, not wires:
On-chip interconnection networks. DAC, 2001.

[11] B. Dreier, M. Zahn, and T. Ungerer. The Rthreads
distributed shared memory system. In 3rd Int. Conf.
on Massively Parallel Computing Systems, 1998.

[12] K. Fatahalian et al. Sequoia: programming the
memory hierarchy. In SC ’06, page 83, 2006.

[13] S. Furber. ARM System-on-Chip Architecture.
Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 2000.

[14] D. D. Gajski, J. Zhu, R. Domer, A. Gerstlauer, and
S. Zhao. SpecC: Specification Language and Design
Methodology. Kluwer Academic Publishers, 2000.

[15] D. Geer. Chip makers turn to multicore processors.
Computer, 38(5):11–13, May 2005.

[16] M. B. Gokhale, J. M. Stone, J. Arnold, and
M. Kalinowski. Stream-oriented FPGA computing in
the Streams-C high level language. In FCCM ’00,
2000.

[17] J. Gunn, K. Barron, and W. Ruczczyk. A low-power
DSP core-based software radio architecture. IEEE,
Selected Areas in Communications, 17(4):574–590,
Apr 1999.

[18] Institute of Electrical and Electronics Engineers.
SystemC language reference manual (IEEE std
1666-2005). 2005.

[19] T. Kempf, M. Doerper, R. Leupers, G. Ascheid,
H. Meyr, T. Kogel, and B. Vanthournout. A modular
simulation framework for spatial and temporal task
mapping onto multi-processor soc platforms. In DATE
’05: Proceedings of the conference on Design,
Automation and Test in Europe, pages 876–881,
Washington, DC, USA, 2005. IEEE Computer Society.

[20] A. Munshi, editor. The OpenCL Specification.
Khronos OpenCL Working Group, 2008.

[21] NVIDIA Corporation. CUDA Programming Guide ver
1.1. 2007.

[22] A. L. Pope. The CORBA reference guide:
understanding the Common Object Request Broker
Architecture. Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA, 1998.

[23] F. Rivard. Smalltalk: A reflective language. In
International Conference on Metalevel Architectures
and Reflection, 1996.

[24] J. Robelly, G. Cichon, H. Seidel, and G. Fettweis. A
HW/SW design methodology for embedded SIMD
vector signal processors, 2005.

[25] M. Stumm and S. Zhou. Algorithms implementing
distributed shared memory. Computer, 23(5):54–64,
May 1990.

[26] S. T. Taft and R. A. Duff. Ada 95 Reference Manual:
Language and Standard Libraries (ISO/IEC
8652:1995(E)). LNCS 1246, Springer Verlag, 1997.

[27] W. Thies et al. StreamIt: A compiler for streaming
applications, December 2001. MIT-LCS Technical
Memo TM-622, Cambridge, MA.

