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ABSTRACT
As their complexity grows, the architectures of embedded
systems are becoming increasingly parallel. However, the
frameworks used to assist development on highly-parallel
general-purpose systems (such as CORBA or MPI) are too
heavyweight for use on the non-standard architectures of
embedded systems. They introduce significant overheads
due to the lack of architectural and structural information
contained within most programming languages. Specifically,
thread migration across irregular architectures can lead to
very poor memory access times, and unconstrained cache
coherency cannot scale to cope with large systems.

This paper introduces an approach to solving these prob-
lems in a scalable way with minimal run-time overhead by
using the concept of ‘Islands of Coherency’. Cooperating
threads are grouped into clusters along with the data that
they use. These clusters can then be efficiently mapped to
the target architecture, utilising migration only in the areas
where the programmer explicitly declares it.

This is supported through the use of an existing technique
called Compile-Time Virtualisation (CTV). CTV does not
support run-time dynamism, so it is extended to allow the
implementation of Islands of Coherency. The presented sys-
tem is evaluated experimentally through implementation on
an FPGA platform. Simulation-based results are also pre-
sented that show the potential that this approach has for
increasing the performance of future embedded systems.

Categories and Subject Descriptors
C.3 [Special-Purpose and Application-Based Systems]:
Real-time and embedded systems; C.0 [General]: Model-
ing of computer architecture; D.3.4 [Programming Lan-
guages]: Processors—Retargetable Compilers

General Terms
Design, Languages, Performance
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1. INTRODUCTION
Embedded system architectures range from simple single

CPU systems, to large architectures with dozens of het-
erogeneous interacting cores and non-standard memory lay-
outs. Also, systems are becoming increasingly dynamic due
to techniques to support user-configurable software, power
scaling, fault tolerance, etc. However, the programming lan-
guages used to program these systems (e.g. C) assume an
architecture with a single logical address space and single
shared bus that can be far removed from the actual hard-
ware architecture and behaviour. For multi-CPU heteroge-
nous embedded systems, it is difficult for the programmer
to map the application functionality to the target platform
and to exploit its dynamic characteristics efficiently.

This paper considers a solution to these problems using an
‘Islands of Coherency’ model. In this model, the program-
mer is able to group related threads and data such that they
maintain locality during migration, leading to more efficient
systems. The model also lowers cache coherency require-
ments, leading to increased scalability.

In this paper we implement Islands of Coherency with
an existing technique called Compile-Time Virtualisation
(CTV). CTV has previously been shown to allow program-
mers greater control over the mapping of their applications
to non-uniform embedded architectures. However, as a compile-
time technique it does not support run-time dynamism. In
this work, CTV’s system model is extended to support the
required dynamism and an implementation is created and
evaluated.

Section 2 further explores the problem considered by this
work while section 4 gives an overview of CTV and details
the extensions added to support dynamic systems. Section 5
describes an implementation of CTV which supports these
extensions, and sections 6 and 7 evaluate and conclude.

2. MOTIVATION
Embedded systems have tight power and cooling constraints

which limit processing clock frequencies. To provide greater
computational power therefore, system designers exploit on-
chip parallelism and application-specific features. The in-
creasing disparity between clock speeds and memory ac-
cess times (the ‘memory gap’) forces the adoption of non-
standard memory layouts that can provide more localised
storage closer to the site of computation and greater effec-
tive bandwidth. Embedded architectures also tend to con-
tain features that are implemented using dedicated hard-
ware, reconfigurable logic, or custom CPUs. Embedded ar-
chitectures may contain:



● Multiple heterogenous processing elements [12, 6].

● On-chip networks and buses, possibly spanning clock
domains [8, 26].

● Non-standard memory hierarchies with shared mem-
ory and the integration of new memory technologies
[11, 1].

● Unique features of the implementation fabric such as
DSP cores, SIMD units, or other custom hardware [21,
23].

Whilst many embedded systems are entirely static (e.g. sim-
ple single-CPU systems), as embedded platforms become
increasingly parallel the issue of dynamic migration of com-
putation is introduced. For example, modern mobile phones
contain multiple interacting processing cores which are ex-
ploited to meet the computational requirements of the broad-
band communications stack and multiple user applications.
Important dynamic features that are being introduced in
such embedded systems are:

● Multiprocessor systems: As with desktop machines,
devices with multiple execution units will support a
POSIX-style threading model that may allow threads
to migrate and be scheduled across cores.

● Power scaling: Reducing power consumption is es-
sential for many embedded devices. A device that is
under low load may switch some cores off and migrate
all their computation onto a smaller active set.

● Fault tolerance: As cores fail, if possible it is de-
sirable to migrate any threads that were executing on
them to other areas of the system.

● Load balancing: Load balancing systems allow for
systems to better deal with infrequent bursts of high
volumes of computation (e.g. in a network switch).

● Dynamic reconfiguration: FPGA technologies al-
low embedded architectures to change at run-time
through a process called partial dynamic reconfigura-
tion [24], leading to high amounts of dynamism.

A key issue is the efficient exploitation of the dynamic
features of the target platform by the programmer, through
the use of a standard programming language.

2.1 Programming multiprocessor embedded
systems

With programming multiprocessor embedded systems there
are two distinct issues to consider: program structure and
memory coherency. The former considers the mapping of
the program onto the underlying multiprocessor (and non-
uniform memory) architecture. The latter considers the
need to provide the illusion of a single address space from the
program perspective to support existing languages (e.g. C).
We now consider these issues in detail.

Program structure
Programs are generally expressed in units such as threads
and data objects. However, the relationship between threads
and data (i.e. which data objects are required by a thread)
is not typically present in programming languages. When a
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Figure 1: Unguided thread migration can lead to
increased inter-thread distances and poor perfor-
mance.

thread migrates from one CPU to another, the language run-
time lacks the necessary structure that would allow it to also
migrate any related threads and the data they use. This un-
guided thread migration can lead to increased inter-thread
distances and therefore higher communications latency and
poor memory access times, as shown in figure 1. This prob-
lem affects embedded systems particularly, because they are
rarely homogenous grid architectures of the kind found in
supercomputing environments.

In an attempt to mitigate this problem, some languages
allow the programmer to bind threads to only execute on a
subset of available CPUs. Thread affinities in Java [9] are
one such example. Affinities describe which CPU a thread
may be scheduled upon at runtime, but there is no way to
bind items of shared data to that thread or to state that
threads should be grouped and moved together. It may
sometimes be possible to infer this data to a limited extent
with static analysis, but this does not help in the general
case.

Chapel [7] uses the concept of locales to group threads and
data. A locale can then be bound to specific nodes of the ar-
chitecture, much like affinities. We note that locales are low-
level, forcing all threads in a locale to execute on the same
processing node and limiting the sharing of data between
locales. Also, Chapel relies on a shared-memory model and
a regular grid architecture making it rather heavyweight for
many embedded systems. A related language, Unified Par-
allel C (UPC) [5] allows threads to have private and shared
data, and also introduces the concept of data affinity which
states that a particular thread ‘owns’ a particular data item.
Unfortunately it does not allow clustering of threads as the
model is flat rather than hierarchical, and like Chapel it
is not an embedded language and was designed for heavy-
weight supercomputing architectures.

We note that solutions used in general multiprocessor (and
distributed) architectures employ middleware like MPI [16],
CORBA [20] or PVM [13]. These are not appropriate for
embedded systems due to their inefficiency and need for
complex Operating System and communications support.
Also, such systems are frequently multi-program, whereas
this work is interested in distributing a single application
across the target system.

Coherency
Whilst embedded architectures employ complex, hierarchi-
cal, heterogenous models, almost all existing languages as-
sume a contiguous global address space. The programmer
cannot effectively map the data of their program onto the



memory hierarchy, and so therefore has little control over
data transfers between CPUs and the memory spaces of the
architecture. The result of this single address space assump-
tion is that many software languages place heavy demands
on cache coherency algorithms, usually that the entire sys-
tem is kept coherent. This is very expensive (in terms of
execution time and required hardware) and it does not scale
to support large numbers of caches. [2] On embedded plat-
forms it is even worse because their application-specific na-
ture means that frequently the programmer actually only
needs to keep a few small areas of the system coherent, as
determined by their application.

Lightweight schemes that limit coherency into islands are
more scalable than complete coherency solutions [19], but
they do require significant support from the programming
environment which is typically not available. C assumes
that the entire program is within a single contiguous ad-
dress space, and its non-analysable pointer arithmetic re-
quires perfect coherence across all memory. Furthermore,
because threads are not a first-class part of the language
they cannot be reasoned about in terms of the data that
they use. Ada’s Distributed Systems Annex (DSA) [3] al-
lows for the notion of separate memory spaces, but it pro-
duces very heavyweight partitions that cannot communicate
or share data without the use of explicit communication. It
uses no coherency at all between partitions, no task migra-
tion, and inside a partition the memory model is similar to
C. Java largely ignores different memory spaces as it is de-
signed to operate on top of the JVM, but support has been
added to the Real-Time Specification for Java [14] to allow
the programmer to place objects in different memory spaces
using the concepts of scoped and immortal memory. This
allows placement throughout the architecture but the result-
ing code is very hardware-specific. There is no concept of
threads and data being related and coherency is still pre-
sumed to be across all memory. As mentioned previously,
UPC allows threads to claim an item of data as its own,
but the model requires all shared data to be accessible to all
threads.

Some recent work has considered ways to limit this co-
herency problem. Huang et. al. [17] augments the program-
mer’s source code at points where locks are requested and
released with library calls to determine what shared data
is required by which parts of the design. Similarly, Virtual
Tree Coherence (VTC) [10] uses a tree-based coherency sys-
tem to limit coherence actions to the necessary subset of the
nodes of an on-chip network.

Summary
Modern languages are built upon a set of architectural as-
sumptions and abstraction layers that simplify development
but do not allow the programmer to reason about or exploit
features of the underlying hardware. For general-purpose
systems this is preferable because the hardware is largely
uniform. However, for dynamic embedded systems the lack
of precise architectural mappings causes difficulties mapping
the application to the platform, and can lead to unneces-
sary overhead. This causes particular problems in systems
that use dynamic migration, as locality between threads and
their data is lost. Also, existing programming models tend
to place infeasible demands on the cache coherency system
by assuming system-wide coherency.
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Figure 2: Islands of coherency in a large software
system.
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Figure 3: Supporting IoC in a standard program-
ming environment

Solutions for programming multiprocessor embedded sys-
tems with existing languages (like C) must provide:

● the ability for the programmer to control the mapping
of elements of the program onto the underlying multi-
processor (and non-uniform memory) architecture;

● efficient mechanisms to migrate groups of related threads
and data.

3. ISLANDS OF COHERENCY (IOC)
As a potential solution to the problems noted in the pre-

vious section, this paper uses the concept of Islands of Co-
herency (IoC). In this model, rather than considering the
whole system at a single level of granularity, the threads
of the system are grouped into cooperating clusters. The
threads in these clusters typically coordinate on a particular
subproblem, sharing the same input and temporary data.
Communication between clusters is less frequent, higher-
level, and not as data-driven. These clusters are referred
to as IoC because caches within an island are kept tightly
coherent with each other (e.g. with hardware support), but
not with those outside the island which may rely on simple
message passing or no coherence at all. This layout is shown
in figure 2. Due to its hierarchical nature this model is very
scalable. The model is not new as aspects of it can be seen in
many high-performance parallel frameworks (like CORBA,
MPI), but this paper is interested in an efficient embedded
implementation.

In the IoC model, when a thread from a cluster is migrated
the system can choose to also migrate the other threads and
data of its cluster. Whilst this carries a larger initial cost,
it ensures that clusters retain their locality and as a result
subsequent calculations can be much faster.

The models of existing programming languages do not



provide this clustering information and so migrations cannot
be guaranteed to preserve locality. However, it is possible
to support IoC in existing programming languages through
the use of a mapping layer, as shown in figure 3. This map-
ping can be performed at either run-time or compile-time.
This paper attempts to minimise overheads to produce a
system suitable for high-performance embedded systems, so
a compile-time solution is presented. A technique called
Compile-Time Virtualisation (CTV) is used, which is de-
tailed in the following section. CTV does not support dy-
namic behaviour, so this paper extends its model to allow
the implementation of IoC and these extensions are detailed
also.

4. COMPILE-TIME VIRTUALISATION
Compile-Time Virtualisation (CTV) [15] is a virtualisation-

based technique that attempts to give the programmer a
more suitable abstraction model for developing software for
complex, application-specific architectures. CTV replaces
the existing layers of virtualisation and abstraction that are
present in standard software development with a single vir-
tualisation layer across the entire architecture, termed the
Virtual Platform (VP), which has three main features:

Compatibility with the chosen programming model:
The VP is a high-level view of the underlying hardware that
presents the same programming model as the source lan-
guage to simplify development. For example, it may present
a single logical address space or uniform inter-thread com-
munication. In essence, as with standard run-time virtual-
isation the layer is tasked with ensuring that the program-
mer’s code operates correctly without low-level programmer
intervention. Because the layer hides low-level implementa-
tion details it allows for code to be architecturally-neutral, as
the developer does not need to break the abstraction models
of the language.

Flexible mappings from the virtual architecture to
actual hardware:
Every virtualisation-based system contains a set of virtu-
alisation mappings. These mappings map elements of the
software and virtual hardware onto the actual physical hard-
ware. (For example, threads → CPUs, variables → memory
spaces etc.) In a standard run-time virtual machine (like
Java), these virtualisation mappings are implemented by a
run-time system and are largely opaque to the programmer.
In CTV, the mappings are directly exposed to the source
code, allowing the programmer to use their application-specific
knowledge to influence the implementation of the code and
achieve a better mapping onto the target architecture. For
example, the designer can choose to place threads that fre-
quently communicate onto CPUs that are physically close
to each other, or to place global data in memory spaces that
are close to where its it going to be needed. This kind of ar-
chitectural exploration cannot be performed easily in Java.
‘Compatibility with the chosen programming model’ ensures
that however the programmer adjusts these mappings, the
software will still operate correctly. Only its non-functional
properties will be affected.

Visibility of custom hardware elements:
Existing run-time virtualisation systems hide underlying hard-
ware details, making it difficult to use custom hardware el-
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ements. In CTV these elements are exported up to the pro-
grammer through the VP at design-time and presented in a
form that is consistent with the source language’s program-
ming model. This allows these elements to be effectively
exploited without extra development effort and in a man-
ner that is consistent with the current programming model.
The virtualisation system has enough information to handle
marshaling of data, synchronisation, data copying issues etc.
and programmer intervention is not required.

An overview of the CTV system is shown in figure 4.
The primary difference between a run-time VM like Java
and CTV is that by moving the virtualisation to compile-
time, run-time overheads are reduced to a minimum. If the
hardware design later changes (for example, the addition of
a CPU or a new memory layout) a new VP is generated
and the same input code is automatically retargeted to use
this new architecture. As its name implies, Compile-Time
Virtualisation is differentiated from run-time virtualisation
systems by the fact that its virtualisation layer only exists
during compilation, as illustrated in figure 5.

Moving the virtualisation to compile-time results in lower
run-time overheads and greatly facilitates code-reuse be-
cause it allows the use of unmodified languages and com-
pilers. However, the disadvantage is that the run-time dy-
namism of the system is limited, as will be discussed in the
following section.

4.1 System model
The CTV system model shown in figure 6 represents source

code as a 3-tuple of sets called the source tuple (T,P,D)
where:
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● T = concurrent objects (threads): A set of the
units of concurrency of the source language. For ex-
ample, threads, tasks or processes.

● P = coordination primitives: Language constructs
used to coordinate the items of set T , such as mutexes,
monitors, mailboxes etc.

● D = shared data: Language-level items of shared
data. Compound types like structures and arrays are
represented by only one set member.

Similarly, target architectures are represented by a 4-tuple
called the target tuple (C,L,M,H) where:

● C = CPUs: Processing elements of the target archi-
tecture.

● L = communication channels: Hardware features
that transfer data between elements of set C, such as
buses and on-chip networks.

● M = memory spaces: All distinct memory spaces
in the system.

● H = hardware elements: Unique hardware fea-
tures, like function accelerators and I/O channels, that
are to be exported up to the source language.

The VP is a mapping between these two tuples:

(T,P,D)
V P
ÐÐ→ (C,L,M,H)

This mapping distributes the source program over the tar-
get architecture. Mapping a thread to a CPU informs the
compilation process upon which CPU the programmer wants
the chosen thread to execute. Data is placed into memory
in the same way. Due to the compile-time nature of CTV
these mappings must be compile-time static. This system
model, therefore, does not allow threads or data to migrate
at runtime as is required by the IoC model. This work intro-
duces extensions to CTV to allow the use of the IoC model,
which are detailed in section 4.3.

The CTV system model requires the VP to implement
complete compile-time mobility of code and data - the pro-
grammer must be able to place elements throughout the sys-
tem and the VP must ensure that the functional properties
of the code are not affected. To do this, the VP implements
three systems - a distributed shared memory system; concur-
rency primitives that operate across the target architecture;
and communications libraries that make transparent use of
the underlying communications media of the architecture.
These are implemented using a scalable communications and
coordination model called the Object Manager model.

4.2 The Object Manager model
CTV is designed to support architectures with potentially

thousands of interacting cores. As a result, any form of
centralised control must be avoided or it will result in a loss
of scalability. Therefore, shared memory access, concurrency
control, and inter-thread communications are implemented
with a model known as the Object Manager (OM) model
[15].

An OM is a passive object, mapped to a CPU, that is
assigned to oversee all operations concerning a subset of the
members of the source tuple (threads, concurrency primi-
tives and shared data items). For example, the OM of a
mutex primitive stores the mutex’s state and handles lock
and release requests atomically. The OM of a shared data
object handles read and write requests and is responsible for
implementing cache coherency. Any number of objects can
be assigned to an OM, however shared data objects must be
stored in the same memory space as their OMs. Assigning
two OMs to the same CPU is equivalent to assigning a single
OM that manages both sets of objects.

s(O3) = s(O1) ∪ s(O2)→ c = {O1,O2} ≡ c = {O3}

Where c is a CPU from set C and s(Ox) is the set of ob-
jects Ox is managing. Therefore the system model defines
the set of OMs (O) as a subset of the CPUs in the sys-
tem. Most OMs will share their CPU with other threads,
so the performance of these threads will be reduced slightly.
The number of OMs, the items they manage, and the CPUs
onto which they are allocated can be influenced by the pro-
grammer through the VP mappings in terms of the system
model:

℘
T∪P∪D

→ O where O ⊆ C

4.3 Extending CTV with logical objects
The system model shown in sections 4.1 and 4.2 is entirely

static - the VP mappings cannot be changed at run-time.
Therefore, previous iterations of CTV could not support any
migration of threads or data. In this paper we add a logical
layer to the model which is an abstraction of the target tuple
that notionally behaves in the same way as its physical coun-
terpart, but may be distributed across multiple members of
the target tuple. The layer is composed of a set of cluster
objects (u) and introduces the concept of logical CPUs (c)
and logical memory spaces (m). The logical layer exists as
part of the VP, and therefore sits between the source and
target tuples.

(T,P,D)
logical
ÐÐÐÐ→ (u, c,m)

physical
ÐÐÐÐÐ→ (C,L,M,H)

A cluster is an abstract concept that describes a group
of tightly-related threads and the data that they use, and
can be seen as similar to the idea of a Chapel locale. Every
thread and data item from the source tuple must be mapped
to exactly one cluster. Every cluster must be mapped to at
least one logical CPU and at least one logical memory space,
but it can be mapped to more. Threads assigned to a given
cluster may migrate between all of the logical CPUs to which
the cluster is assigned. Similarly, data items assigned to a
cluster may be located in any of the logical memory spaces
to which the cluster is mapped. Logical CPUs and memory
spaces are abstractions of respective members of the target
tuple. Threads that a cluster places into a logical CPU may



be scheduled on any of the target CPUs that comprise it.
The two levels of grouping in this model are required to al-

low the expression of realistic dynamism. Cluster objects are
used by the application programmer to inform the compile-
time system how their application and its data are linked.
Logical objects are used by the hardware designer to inform
CTV about areas of the architecture that are suitable for
containing computation clusters. At compile-time, CTV cre-
ates a system that ensures clusters retain locality and only
migrate between the logical elements that they are assigned
to. This is done by extending the OM model to support
migrating threads and data and is discussed in section 5.1.
It is up to the implementation as to whether the system
uses a true load balancing system, standard multiprocessor
scheduling, or a redundant fault tolerance mechanism.

This model allows the programmer to inform the com-
piler where clusters of threads and data may be situated in
order to ensure that tightly-coupled threads remain tightly-
coupled. Clusters also tell the compiler about the amount
of cache coherency required in the system. CPUs that are
within the same logical memory space are kept coherent, and
those from different memory spaces are not. The actual algo-
rithm used is not specified by CTV, and is implementation-
dependent. Any existing system can be used.

Note that it is possible to map more than one cluster to
the same logical items, thereby allowing IoC to overlap. Also
if the logical layer is not required then the programmer can
use a 1-1 identity mapping, which creates a single logical
element for each target element, a single cluster for each
logical element, and maps them one-to-one. The identity
layer has no effect and introduces no dynamism. Finally, if
required, threads can still also be directly mapped to target
CPUs, to allow the programmer to ‘hint’ to the compiler
where the thread should execute.

4.4 From dynamic-default to static-default
As previously mentioned, unless logical CPUs and mem-

ory spaces are used in the CTV system it is assumed that
the input and output tuples are static and the mappings
between them will not change at runtime. In other words,
unless stated otherwise, dynamism is assumed to be virtually
non-existent. Programs use a fixed number of threads that
do not migrate between CPUs, items of shared data cannot
be created or freed, synchronisation features are fixed etc.
This results in a system which is very similar to the Raven-
scar subsets of Ada [4] or Java [18] that are designed to
make code easier to analyse for correctness in safety-critical
contexts.

The use of logical elements allows the programmer to de-
fine specific areas of their system in which dynamism may
occur, limiting its effect on the entire system. Dynamic be-
haviour is restricted and must be specifically enumerated,
and the provision for dynamism in one part of the system
does not directly impact the correctness or execution time
analysis of another (static) part of the system. It could
indirectly affect the analysis if the two sections communi-
cate or compete for shared resources, but techniques such
as sporadic servers [22] can be used to mitigate this inter-
ference. This represents a major conceptual change from
the way that systems are normally designed, resulting in de-
signs that are more predictable and more amenable for use
as real-time systems.

In standard development, if dynamic features such as ar-
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bitrary thread creation and migration are supported by the
language then they may happen at any time and so run-time
systems must always be built to support these mechanisms.
The overhead associated with these features must be paid,
even when they are not actually required by the code. The
only time this overhead can be avoided is if the compiler can
perform sufficient static analysis to determine that support
for the unused features can be safely removed. Unfortu-
nately this is often equivalent to the halting problem in the
general case, meaning the compiler is forced to assume the
worst case and include it. CTV’s approach does not suffer
from this problem. With the assumption of no dynamic be-
haviour the ‘default’ run-time support required is minimal.
Any extra dynamic behaviour must be specifically justified
and enumerated by the programmer resulting in a system
with the minimum required overhead.

5. IMPLEMENTATION
Anvil is an implementation of CTV that maps applica-

tions written in C to complex multi-core architectures with
non-uniform memory, custom on-chip interconnect, and non-
standard hardware features such as function accelerators.
The POSIX standard pthreads library is used to provide
multiple threads of control. Anvil uses an unmodified ver-
sion of the gcc compiler internally for its object code gener-
ation.

The programmer uses a simple architecture description
language (ADL) to describe the target architecture in terms
of the target tuple (C,L,M,H) and map to it features from
the source language (T,P,D). Examples can be found in
section 6. The majority of Anvil’s work involves refactoring
the programmer’s input code according to the mappings in
its VP and producing standard ANSI C programs that it
compiles with gcc. The refactoring process is illustrated in
figure 7 and discussed in more detail in [15].



1 extern _anvil_a_var_t _anvil_accessedvars[];
2 int x; //Storage for remote data, (could be malloced)
3 void main(void) {
4 _anvil_accessedvars[0].data = (unsigned char *) &x;
5 _anvil_read_sv(0, 0, 4, 1); //id, offset, bytes, OM id
6 printf("%d\n", x);
7 x = x + 1;
8 _anvil_write_sv(0, 0, 4, 1);
9 }

Figure 8: Simple example of Anvil’s refactoring to
implement shared memory. Lines 1, 2, 4, 5 and 8
are added by Anvil.

5.1 Extensions to support logical objects
Previously, Anvil could be certain where every object was

in a given system because they did not move at run-time.
CPU-specific communications libraries were generated dur-
ing compilation that implement these communications di-
rectly with no lookups or other inefficiencies. To implement
dynamic objects however it is clear that a level of indirection
has to be implemented as the sender does not know where
the receiver is currently located.

Coordination primitives (mutexes etc.) do not migrate
under the logical layer so their implementation does not need
to change. However, threads and data items do. When com-
municating with one of these dynamic objects the commu-
nications must be routed through its object manager, which
maintains a record of the item’s current location so it knows
where to send the message. This means that the location
of OMs must not change. In practice this turns out not to
be much of a restriction because the majority of embedded
systems are static, and only proportionally small sections
are dynamic.

This extra resolution hop is unavoidable and all dynamic
systems have a similar mechanism, which usually involves
querying an OS running on a given core or making use of
communication broadcast to ask where an item is. There
are a number of potential optimisations that can reduce its
impact. For example, the sender can cache receiver locations
so that it does not need to make a request for each message.
Each object manager must maintain a list of the items that
have requested location information so that if its managed
item migrates it can inform all clients to keep their cache
up-to-date.

An important point is that due to the compile-time nature
of CTV any inefficiency is only introduced for dynamic ob-
jects (where it is unavoidable). Static communications are
totally unaffected. This is an example of the way in which
CTV’s ‘static by default’ approach reduces overheads to the
minimum required by the system.

Migrating data items introduces a number of other con-
siderations. For systems that are implementing migration
for fault tolerance, the system must reserve enough space in
each target memory space to guarantee that there is room
for the item to migrate into. In systems with less stringent
requirements, a small run-time system must be implemented
that can attempt to allocate enough memory to perform the
move. If this allocation fails then the migration cannot take
place. It is up to the implementation to decide on the ap-
propriate choice. Anvil uses the reserved space mechanism.
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Figure 9: The experimental architecture

myapp : island;
leftpair : virtual processor;
rightpair : virtual processor;
myapp^cpus = [leftpair, rightpair]
myapp^manages = ["shareddataitem",

"mythread1", "mythread2"];
leftpair^cpus = [cpu1, cpu2];
rightpair^cpus = [cpu3, cpu4];
leftpair^memory = sh_mem1;
rightpair^memory = sh_mem2;

Figure 10: Anvil ADL fragment showing application
mapping to islands and virtual objects.

6. EVALUATION
This section first presents experimental results that show

Anvil’s implementation of IoC in action in section 6.1. Then,
section 6.3 presents results from simulation to show the po-
tential that the technique has in improving the efficiency of
larger systems.

6.1 Experimental results
The experimental architecture (figure 9) is a four-core

NUMA system implemented upon a Xilinx XC4VLX25 Vir-
tex 4 FPGA [25] on the Xilinx ML401 prototyping board and
uses the Microblaze soft-processor. The cores are arranged
as two pairs, and each pair has its own bank of shared mem-
ory. The pairs can communicate using a dedicated mailbox.

Threads can migrate between all cores of the system to
allow cores to be shut down to save power or for fault toler-
ance, but clearly when this happens it is preferable for data
to move with their threads. If threads and data move to
different pairs, access times are very slow. Without IoC and
the architectural knowledge provided by CTV this require-
ment cannot be easily expressed in existing programming
systems. Figure 10 shows an Anvil ADL fragment illustrat-
ing how this mapping is provided by the programmer.

A range of single and multi-threaded benchmarks were
run on the target system. Each program was executed in
three different modes and the resulting execution times are
shown in figure 11. In this figure, all results are normalised
against the local execution time, which is the time taken
when running with its data in local shared memory (i.e. it
has not migrated at all). Migrated shows the same program,
but when one of its threads has been migrated to the other
CPU pair and must fetch its data remotely. Islands shows
the cost of executing the application under CTV’s IoC. This
includes the initial cost of migrating the application’s data
and then its subsequent execution time.

As can be seen from these results, our extended CTV al-
lows threads to migrate throughout a heterogeneous archi-
tecture without risking incurring sizable performance penal-
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Figure 11: Resultant slowdowns experienced when
threads execute with non-local data.

ties. Most programs complete in between 1.1 and 2.8 times
the execution time, as compared to between 8.5 and 37.9 for
systems that do not use IoC. Overhead in the IoC system is
due to migrating the thread’s data and migrating it back at
a later date, which is largely unavoidable and must be paid
in any such system.

One outlier is the binary search benchmark. This system
performs slightly worse when using IoC than not. The rea-
son for this is that the search only reads on average log n
data items (where n is the input array length) yet migrating
the entire array requires n accesses. Whilst individual ran-
dom accesses are much slower than the bulk DMA transfer
used in the IoC-based system, it is slightly faster overall.
This shows that whilst island migration is better for most
programs, care should be taken if the program only accesses
a small number of random elements from a large data source.
The converse of this is the Sobel filtering example. Because
the Sobel algorithm frequents the same pixel values multiple
times, the IoC-based system is vastly more efficient.

6.2 Cache coherency
Anvil’s VP exposes to the programmer a single logical

address space across the architecture which is designed to be
compatible with C’s memory model. CTV trades run-time
variability for predictability and efficiency. By requiring that
the number and location of shared data OMs is compile-time
static, only the cores that actually use an item of data need
to be considered for coherency. This is an improvement over
more general systems, which have to assume the worst-case
and keep all cores coherent.

Anvil implements a directory-based coherency scheme that
makes use of the OM model. When a core writes to an item
of shared data it also informs that item’s OM that it has
done so. The OM is aware of which cores access that data
item from the IoC model and so it only needs to inform that
subset about the change. The informed cores can then inval-
idate their cache lines accordingly. On the example system,
this means that keeping a pair of CPUs coherent only re-
quires 23 cycles after a write, as opposed to over 150 if the
OM had to inform all CPUs of the system.

The directory size problem is solved, because OMs only
need to store information about the shared data that is ac-

cessed by their island. Other items of shared data elsewhere
in the system have no impact, and this can be verified of-
fline using static analysis due to the static nature of CTV.
The system allows the programmer to write as if the entire
program is within a single address space, but does not place
coherency demands on the hardware and run-time system
that are not explicitly required by the application, ensuring
a minimum amount of overhead.

6.3 Simulation results
In order to explore the IoC concept further, a simula-

tor was developed that allows experimentation with large
grid-based systems. The architecture simulated is a regular
Manhattan grid of processing nodes, where each node has
its own local memory. Each node is connected to its North,
South, East and West neighbour via a dedicated mailbox
for message passing. There is no global shared memory or
caches. The simulation framework creates a random set of
tasks and assigns them to a number of IoC in the system.
It also creates a number of items of shared data and these
are also distributed though the system. Each created task
has an execution time and a memory access pattern that
determines which items of shared data it needs and how fre-
quently. Finally, each processing node of the system has a
likelihood of being shut down, thereby triggering a migra-
tion of any tasks and data items that are on that node. The
simulation runs in two modes. It can respect the IoC and
migrate the entire island and all of its accessed data when
one of its nodes is shut down, or it can not respect the is-
lands and simply move the tasks that it has to. Memory
access times and inter-node communication times are taken
from real Microblaze-based FPGA systems. Undirected mi-
grations are considered because standard programming lan-
guages do not provide grouping or mapping information that
is required to use a more intelligent algorithm (without ex-
tensions or pragmas).

In this simulation the cost of the allocation algorithm that
determines the migration target location is not considered.
This is because we are interested in showing the benefit of
IoC when used with future architectures with potentially
hundreds of cores. For such architectures, the cost of mi-
grating a single thread will be very similar to the cost of
migrating an island of threads.

The purpose of the following experiments is to determine
whether or not migrating the entire island (which has a
higher initial cost than migrating a single task) results in
shorter average memory access times over the execution of
the program, and if so under what circumstances.

Varying grid size
Figures 12 and 13 show the effect of varying task execu-
tion time on grids of different sizes. In these experiments
the probability of migrating tasks from a CPU is fixed one
migration every 100,000 clock cycles. This is deliberately
rather frequent - real systems are likely to migrate much
less. As can be seen, on the smallest architecture (2x2) mi-
grating the entire island appears on balance less efficient as
the costs of migrations are considerably higher and do not
give any real benefit due to the small size of the system
and rapid migrations. However, on all larger architectures
it does not take long before migrating whole island results
in more efficient systems. The tests for the 4x4 architecture
demonstrate clearly that for tasks with short execution times
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Figure 12: Varying task execution time with and
without island migration on smaller architectures
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Figure 13: Varying task execution time with and
without island migration on larger architectures

the tasks are only likely to be migrated a small number of
times so the large transfer cost of migrating an entire island
is not beneficial. Longer tasks however rapidly become less
and less efficient as they migrate further from their data,
as demonstrated most noticeably by the results for the 8x8
and 16x16 architectures. Also, when using IoC, the results
for the 8x8 architecture are almost identical to the results
for the 16x16 architecture due IoC’s preservation of locality.
This demonstrates the scalability of the IoC approach.

Varying task migration chance
Figure 14 shows the effect of varying the task migration
chance. When migrations are incredibly frequent (around
every 200 cycles) the cost of island migration is much higher
than migrating single tasks, but for more realistic systems
island migration results in systems that have a lower average
memory access time by a factor of 3 in some cases.

Varying amount of shared data
Finally, figure 15 shows the effect of varying the frequency
with which tasks access their shared data items. When is-
land migration is not being used, this has no effect on overall
system performance because the migration mechanism does
not consider which data items are accessed by which tasks.
As can be seen, if tasks only access their shared data infre-
quently (of a similar order of magnitude to the chance of
migration) then migrating islands has no benefits and the
average costs are higher. However, more frequent access re-
sults in much faster access times on average.
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Figure 14: Varying task migration chance with and
without island migration (8x8 grid)
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Figure 15: Varying how frequently tasks access
shared data (8x8 grid)

Summary
These simulation results indicate that the IoC technique has
the potential to greatly increase the efficiency of embedded
systems that make use of migration. IoC becomes a partic-
ularly effective technique when:

● task execution time increases (as compared to the mi-
gration frequency),

● the architecture grows in size, or

● shared data is accessed more frequently.

If shared data is accessed very infrequently, migrations
are incredibly common, or the architecture is very small the
costs can outweigh any benefits, but it appears that on the
vast majority of medium to large embedded systems with
dynamism the technique can be used to deliver sizable per-
formance benefits.

7. CONCLUSION
In this paper we have argued for the adoption of an Islands

of Coherency model for modern embedded architectures that
can allow for more efficient thread and data migration and
reduce the pressure placed on cache coherency algorithms.
To do this, we have taken a recent technique called Compile-
Time Virtualisation (CTV) and extended its system model
to allow it to work with dynamic systems.



The paper argues that the use of Islands of Coherency
with CTV represents a paradigm shift from systems that
are dynamic by default to systems that are presumed static,
in which areas of dynamism must be explicitly enumerated.
This leads to much greater predictability and aids analysis
of non-functional properties.

The hierarchical IoC model is argued to be highly-scalable,
and suitable for future embedded architectures which will
contain greater numbers of CPUs. The model alleviates
the need for system-wide cache coherency in favour of a
programmer-directed approach that can better support mul-
ticore architectures. The compile-time nature of CTV re-
duces overheads to a minimum, in contrast to other run-
time systems which are in general too heavyweight for use
in embedded systems.

Anvil, an implementation of CTV, is augmented to sup-
port our extensions to CTV. Through experimental results
we have shown that the Islands of Coherency model can have
a large positive impact on the efficiency of complex embed-
ded systems with dynamic thread and data migration.
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