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Abstract—This paper gives an overview of the model-based hardware
generation and programming approach proposed within the MADES
project. MADES aims to develop a model-driven development process
for safety-critical, real-time embedded systems. MADES defines a sys-
tems modelling language based on subsets of MARTE and SysML
that allows iterative refinement from high-level specification down to
final implementation. The MADES project specifically focusses on three
unique features which differentiate it from existing model-driven develop-
ment frameworks. First, model transformations in the Epsilon modelling
framework are used to move between system models and provide
traceability. Second, the Zot verification tool is employed to allow early
and frequent verification of the system being developed. Third, Compile-
Time Virtualisation is used to automatically retarget architecturally-
neutral software for execution on complex embedded architectures.
This paper concentrates on MADES’s approach to the specification of
hardware and the way in which software is refactored by Compile-Time
Virtualisation.

Index Terms—Model Driven Engineering, Epsilon, MADES, Embedded
Systems, Real-Time Systems.

1 INTRODUCTION

The architectures of embedded systems are becoming
increasingly non-standard and application-specific. They
frequently contain multiple heterogenous processing
cores, non-uniform memory, complex interconnect or
custom hardware elements such as DSP and SIMD cores.
However, programming languages have traditionally as-
sumed a single processor architecture with a uniform
logical address space and have abstracted away from
hardware implementation details. As a result, develop-
ing software for these architectures can be challenging.
Equally, such systems are frequently deployed in high-
integrity or safety-critical systems which require the
highest levels of predictability and reliability.

The MADES Project is an EU-funded project that aims
to use model-driven techniques to enable the develop-
ment of the next generation of highly complex embed-
ded systems, whilst reducing development costs and in-
creasing reliability. In this paper we provide an overview
of the MADES approach to model-driven development
of embedded systems. We also give specific details of
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the proposed hardware development flow and the way
that embedded software can be targeted at the resulting
complex architectures.

1.1 MADES Project Goals
The MADES project (Model-based methods and tools
for Avionics and surveillance embeddeD systEmS) aims
to develop the elements of a fully model-driven ap-
proach for the design, validation, simulation, and code
generation of complex embedded systems to improve
the current practice in the field. MADES differentiates
itself from similar projects in that way that it covers
all the phases of the development process: from system
specification and design down to code generation, vali-
dation and deployment. Design activities exploit a ded-
icated language developed on top of the OMG standard
MARTE (Modeling and Analysis of Real-time and Em-
bedded systems) [12], and foster the reuse of components
by annotating them with properties and constraints to
aid selection and enforce overall consistency.

Validation activities comprise the verification of key
properties of designed artifacts and of the transforma-
tions used throughout the development process, and also
the closed-loop simulation of the entire system. Code
generation addresses both conventional programming
languages (e.g., C) and hardware description languages
(e.g., VHDL), and uses the novel technique of Compile-
Time Virtualisation to smooth the impact of the diverse
elements of modern hardware architectures and cope
with their increasing complexity.

All these aspects will be fully supported by proto-
type tools integrated in a single framework, and will
be thoroughly validated on real-life case studies in the
surveillance and avionic domains. The project also aims
to develop a handbook to provide detailed guidelines
on how to use MADES tools in the development of
embedded systems and promote their adoption.

2 OVERVIEW OF THE MADES APPROACH

This section provides an overview of the model-based
hardware generation and programming aspects of the
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Fig. 1. Overview of the artifacts in the MADES approach

MADES project and identifies the high level artifacts and
the mappings between them. A conceptual model of the
different inter-relationships between the various artifacts
of the approach is illustrated in figure 1.

One of the main characteristics of the MADES ap-
proach to software development for embedded systems
is that it is model-driven and transformation-based.
Model transformations (also called mappings) are used
to transform one or more input specifications into one
or more output specifications.

From figure 1, it can be seen that the MADES model-
driven approach focusses on the generation of platform-
specific embedded software from architecturally-neutral
software specifications, generation of hardware descrip-
tions of the modelled target architecture, and verifica-
tion.

Since the MADES approach is model-driven, every de-
velopment effort starts with building the relevant design
and analysis models. These models are expressed in the
MADES modelling language and they are considered
as first-class artifacts. As such, they guide the rest of
the development process by being used as input to the
various tools of the MADES toolset such as the verifi-
cation and code generation tools. MADES diagrams are
able to model different viewpoints and different levels
of abstraction. They are able to describe the structure
and the behaviour of the system, as well as time system
constraints. Hence, all the system aspects of interest can
be modelled using the MADES notation. Any additional
information required by the transformation engines can
be provided by attaching annotations on the system
models or by user input.

The top-level MADES modelling language (‘design
models’ in figure 1) is based on a combined subset of
OMG MARTE [12] (a UML profile for modelling real-

time embedded systems) and SysML [16] (a general-
purpose modelling language for systems engineering
applications). The language aims to overcome shortcom-
ings of these existing languages and to provide:

• Specifications of functionality in an architecturally-
neutral way.

• Descriptions of target hardware.
• Deployment diagrams that map functionality to

hardware/software.
• Timing and non-functional properties for early and

frequent verification.
• Code-reuse, component-based design, and main-

tainability.
A full specification and motivation for the MADES

language is outside of the scope of this document and
will be presented in a dedicated paper at a later date.

Verification and simulation play a key role in the
MADES approach. This involves verification of key
properties on designed artifacts, closed-loop simulation
based on detailed models of the environment and ver-
ification of designed transformations (from high-level
system models down to low-level hardware/software
implementations). The Zot tool [13] will be used to
provide this. The input to Zot depends on the action the
tool is required to perform. In the case of verification,
Zot needs a verification script and user input which
will specify the properties to be verified. In the case
of simulation the input to Zot is a simulation script.
Zot uses Common Lisp as internal scripting language
of the tool. The purpose of the verification phase is to
provide rapid and early verification of the system being
developed with the aim of reducing design time and
guaranteeing correctness of the final system.

The second set of artifacts is related to code generation.
The code generation phase allows the designer to model
the target hardware at a high-level of abstraction and use
deployment diagrams to map the input code (which is
provided in an architecturally-neutral form) to elements
of the hardware. Three different artifacts are needed
for this. Firstly, normal architecturally-neutral code with
distributed operating system features such as threading,
shared memory, cache coherency etc. Currently, we are
considering Real Time Java as the target programming
language. The benefits of using Real Time Java for real
time and embedded systems development are reported
in the literature (e.g. [3]). Second, a target architecture
description is required, which provides a high-level view
of the target architecture. Finally, a set mappings which
map constructs from the input software to hardware fea-
tures are required. Finally, the output is a set of platform-
specific programs (one for each target processor), written
in the same language as the input architecturally-neutral
code, i.e. Real Time Java.

Finally, the last artifact of the MADES approach con-
siders generation of synthesisable hardware descriptions
from the hardware model. The deployment mappings of
the code generation phase use a high-level description
of the capabilities of the desired target architecture (for
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example, “three processors connected with a common
bus, two banks of shared memory”). This can be reified
into an unambiguous hardware description for imple-
mentation using the MADES approach.

2.1 Related work
Model-Driven Engineering (MDE) is a development
paradigm which has been advocated as an effective way
to deal with the increasing complexity of embedded
systems. MDE promotes the use of models at different
levels of abstraction and transformations between them
in order to drive the application implementation. This
section identifies other projects that also consider the
application of MDE principles to the development of
embedded systems.

Gaspard2 [17] is an Integrated Development Envi-
ronment (IDE) for System-on-Chip (SoC) visual co-
modelling. It allows modelling, simulation and code
generation of SoC applications and hardware archi-
tectures. The approach shares a common philosoph-
ical background with the approach proposed in the
MADES project, although the MADES approach has two
unique characteristics. First, in the MADES approach the
technique of CTV is utilised in order to enhance the
code generation with the ability to target non-standard
hardware architectures. Moreover, in the MADES ap-
proach emphasis is given to the verification of functional
and non-functional properties of the system at different
stages of the development process.

Another project, which applies MDE principles for
the development of embedded systems, is the Toolkit
in OPen source for Critical Applications & SystEms De-
velopment (TOPCASED) project [15]. TOPCASED differs
from MADES as it focuses mainly on the infrastructure
of an IDE for embedded systems development and not
on a particular implementation. This implementation
includes metamodel and model editors and a model
bus, which can be used for communication with external
tools.

Finally, the MARTES (Model-based Approach to Real-
Time Embedded Systems) project [2] focused on how to
use the standard unified modelling (UML) and SystemC
hardware description languages efficiently in combina-
tion for systematic model-based development of real-
time embedded systems. The results of this project have
contributed to the development of the MARTE mod-
elling standard, which is used by MADES.

3 MODEL TRANSFORMATIONS

This section specifies the transformations that are present
in the MADES approach between the modelling artifacts
defined in section 2.

The Epsilon platform [11] is used to implement both
the model-to-model and model-to-text transformations
used in the MADES approach, although in principle
any modelling framework which supports these model
operations (e.g. ATL [9], QVT [7], MOFScript [8]) could

have been used for this purpose. Epsilon (Extensible
Platform of Integrated Languages for mOdel maNage-
ment) is a platform for building consistent and inter-
operable task-specific languages for model management
tasks such as model transformation, code generation,
model comparison, merging, refactoring and validation.

Epsilon can manipulate models in any modelling lan-
guage since it is meta-model-agnostic. An important
feature of Epsilon is its ability to provide traceability
information produced by the various transformations,
which is of paramount importance for embedded sys-
tems design due to the need to comply to particular
standards such as the DO-178B Standard which requires
full traceability from requirements down to the source
code level.

Epsilon provides different languages for model man-
agement but three of the provided languages are of
particular interest for the transformation and code gener-
ation facilities of the MADES approach. These languages
are the Epsilon Object Language (EOL), the Epsilon
transformation language (ETL) and the Epsilon Gener-
ation Language (EGL).

The rest of this section details the three main model
transformation chains that are used by MADES and
implemented using Epsilon. This document focusses on
the hardware generation and code targeting flow of
MADES - other transformations are only summarised.

Design models to Zot scripts

This is implemented as a set of model-to-text transforma-
tions from the MADES language, as well as user input,
and generates Zot Scripts. These scripts could be either
Verification scripts or Simulation scripts expressed in
Common Lisp. To generate the Zot scripts a combination
of the behavioural diagrams of the MADES language
will be needed, particularly State, Sequence and Activity
diagrams. A specification of the structure of the system
is also needed which is derived from the Class diagram.
Moreover, timing information is required, which will be
derived from the Time diagram of the MADES language.
Specific details on the verification transformations are
outside of the scope of this document and will be
covered in later publications.

Design models to architecture-neutral code

This model-to-text transformation takes as input models
defined in the MADES language and it generates skele-
ton architecture-neutral code. MADES will concentrate
on Real-Time Java as its input and output languages.
This transformation should be viewed as model-assisted
programming, as it is unlikely that fully-automated code
generation will be used. The MADES approach will not
repeat research into automatic code generation as this
has been considered by many previous projects. Existing
results can be incorporated into MADES. Further details
of this code generation phase are outside of the scope of
this document.
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Fig. 2. Hardware models in the MADES approach

The code produced from this stage is architecturally-
neutral, and does not consider the complex architectures
that the MADES tools might be used to generate. This is
refactored into architecturally-specific code for the final
system using a technique called Compile-Time Virtuali-
sation, described in section 4.

Design models to hardware descriptions

Hardware generation from source code is difficult be-
cause in general, software languages do not contain
architectural information. Consequentially, this informa-
tion must be obtained either through annotation (such as
in user-directed co-design of Silva et. al. [14]) or through
automatic synthesis (such as in the HandelC language
[1]).

In the MADES approach, generation of hardware de-
scriptions is implemented as a model-to-text transfor-
mation which takes as input models defined in the
MADES language and generates a hardware architec-
ture expressed in an appropriate hardware description
language. The architectural information does not have
to be inferred from the software, it is all derived from a
single system model.

The MADES toolchain allows for the generation of
implementable hardware descriptions of the target ar-
chitecture. A chain of three hardware models are used,
H2 → H1 → H0. These models are detailed in figure 2
and described below:

• H2: A high-level model of the target architecture.
Its constituent elements are processors, memory
spaces, communication channels, and custom hard-
ware elements and it can be directly generated from
the architecture description of the code generation
phase (described in section 4.3). This model does not

describe any lower-level details (such as addresses
or bus topologies).

• H1: A refinement of H2, H1 is a lower-level model
which codifies the bus topology of the system and
specifies I/O. It still contains all information from
H2, it is a true refinement. H1 does not define
the specific types of each hardware instance. For
example, at this level the model will still denote
‘processor’ rather than ‘Arm9’.

• H0: H0 effectively instantiates the H1 model in
terms of the MHS language (see below). Gener-
ated by model-to-model transformation from H1
using transformation rules and in-place refinement,
known as ‘polishing rules’.

H0 demonstrates an equivalent level of abstraction
to that of the Microprocessor Hardware Specification
(MHS) [19] language used by Xilinx Corporation’s FPGA
Development Tools. MHS files are generated by the
MADES tools from a H0 model using a model-to-text
transformation. The Xilinx tool ‘platgen’ [18] is then used
as an underlying HDL generator, as it can take an MHS
description and generate a set of synthesisable VHDL
files for implementation on an FPGA.

The use of MHS files and Xilinx FPGAs is not required
by the MADES tool chain, but it is a useful language
to work with as it already has robust industrial-quality
tool support available. If a different language or im-
plementation fabric is required, another model-to-text
transformation can be used.

Generating a hardware description from a high-level
deployment model therefore involves translating an H2
model through H1 to H0. An MHS description can
then be generated from H0 using a simple model-to-
text transformation. Moving from H2 to H0 adds ex-
tra detail, so a translation has a lot of freedom over
implementation-specific details. First, hardware features
(e.g. processor, memory) are translated to corresponding
Xilinx IP cores (e.g. Microblaze, BlockRAM respectively).
Then the connectivity of the system must be determined.
H2 does not specify the target bus topology so this
information is introduced by the translation to H1. This
is done in two stages, memory connectivity and com-
munications connectivity. Memory connectivity specifies
how memory spaces are accessed by the processors of
the system (dedicated, shared bus, etc.) and communica-
tions connectivity determines the type of interprocessor
communications provided by the architecture.

Once the connected items for each processor have
been determined, the processor’s address map must
be built. Each peripheral has a required address size,
which can be determined automatically by checking
the definition of the IP core. This can be performed
automatically. Finally, interrupts must be connected. If a
processor does not provide enough native interrupt lines
then an interrupt controller instance must be created
and connected appropriately by instantiating a pre-built
processor-specific template. This transformation chain is
illustrated in figure 3.
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4 COMPILE-TIME VIRTUALISATION

The architecture-neutral code to architecture-specific
code refactoring process uses a technique called
Compile-Time Virtualisation (CTV) [5], [6]. Standard em-
bedded software development for complex architectures
requires the use of a multi-program development model.
In the multi-program model, a complex multi-core archi-
tecture is viewed as a set of single-core architectures that
interact to perform the tasks of the larger application.
This is done because existing programming languages
demonstrate poor support for complex, non-standard
architectures. Languages tend to assume that the target
architecture is a single core system with a single, con-
tiguous memory space. Deviations from this cause the
compiled code to fail, and custom hardware elements
such as function accelerators are not included in the
programming model so cannot be effectively exploited.

Due to this problem, the programmer is forced to pro-
vide an input program for each processor of the target
system. Each program must be separately specified, de-
veloped, compiled, tested, and debugged. The problems
with this model are numerous, as the programmer is
forced to manually split their software requirements into
a set of separate programs, which is inflexible to chang-
ing requirements, and causes many problems at system
integration time. The alternative to the multi-program
model is a single program development model, in which
the operation of the entire architecture is controlled by a
single program. This is the way that software developers
are used to programming, supports flexible architectures
and specifications, and is less error-prone.

CTV is a technique developed to support the develop-
ment of software for complex embedded architectures
using a single-program model without requiring the
development of new languages or compilers. CTV allows
the programmer to write normal architecturally-neutral
code with distributed operating system features such as
threading, shared memory, cache coherency etc. and to
automatically distribute that program over a complex
target architecture.

The mapping to the architecture can be performed
after the program is written because the programmer’s
input code is architecturally-neutral. CTV allows many
different code mappings to be explored quickly as it
handles low-level implementation details automatically.

The CTV system model models input code (section
4.2) and the target architecture (section 4.3). In previous
CTV-based work these models must be generated man-
ually. In the MADES approach, model transformations
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Fig. 4. CTV system model

are used to automatically translate the hardware and
software designers’ views of the system into a form
suitable for CTV. Mapping decisions are described in
the MADES modelling language, CTV is then used as
a ‘compilation phase’ to generate output code.

4.1 The CTV Virtual Platform

The layers of virtualisation and abstraction that are
present in standard software development do not sup-
port changing, non-standard architectures, and they in-
sulate the programmer from the architectural informa-
tion required to efficiently map software to the target
hardware. CTV replaces these layers with a single vir-
tualisation layer across the entire architecture, termed
the Virtual Platform (VP) that contains more appropriate
abstractions for embedded development.

The VP sits between a model of the programmer’s
input code and a model of the target hardware (or
the embedded operating system if one is present). This
is shown in figure 4.2. The VP’s purpose is to pro-
vide the abstractions that the programmer is used to
and are assumed by the programming language (such
as a single shared memory space) but in a way that
does not lose the architectural information required for
an efficient, single-program, implementation on top of
complex hardware. The VP allows the programmer to
view mapping decisions at a high level of abstraction,
for example where to place threads and data or which
communication channels or custom hardware elements
to use. The VP ensures that the low-level implementation
details that result from these high-level decisions are
kept hidden from the programmer.

The VP can support development of an embedded OS
(so the VP sits between the hardware and the OS), or it
can use a pre-existing OS as part of its implementation
(so the VP sits between user code and the OS).
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4.2 CTV System model

The input code confirms to the following system model,
which expresses input code as three sets of objects:

• Concurrent objects: The units of concurrency of
the source language. Concurrency is an essential
modelling primitive, motivated by the trend to-
wards highly-parallel architectures. Examples are
Ada tasks, Java threads and C/C++ pthreads.

• Shared objects: Passive constructs that are called by
the concurrent objects of the system to allow mul-
tiple concurrent elements to synchronise and coor-
dinate their execution to avoid race conditions and
the corruption of shared data. Examples are mutexes
and condition variables from pthreads, protected
objects from Ada, and synchronised objects in Java.

• Shared data: Data items that are read and written by
the concurrent objects of the system. As with shared
objects, shared data items do not assume a shared
memory model and may be placed throughout a
complex memory hierarchy.

The CTV System Model has similarities to the system
model used by AADL [4], an architecture-aware lan-
guage used for the development of embedded systems.
Like AADL, CTV’s input programs are expressed in
terms of units of concurrency, data, and coordination,
and these elements are mapped to a description of the
target architecture (see section 4.3). However, CTV is a
language-agnostic technique that can work with any ex-
isting language (including AADL). Also, CTV provides
virtualisation, allowing code to be easily moved between
architectures. CTV supports existing development prac-
tices, and if those include the use of AADL then the two
technologies can combine well.

4.3 CTV Target Architecture Description

The target architecture description provides a high-
level view of the target architecture. Its purpose is
to provide the CTV code generation with enough in-
formation to generation architecture-specific code from
the architecturally-neutral input code described by the
model in section 4.2. The target architecture is mod-
elled using a simple Architectural Description Language
(ADL) which describes four sets of elements:

• Processing elements: The processors of the target
architecture. Includes both general-purpose and
application-specific cores (such as DSP cores, vector
processors, and SIMD units). This set models the
features of the hardware whose behaviour is con-
trolled directly by the concurrent objects of the input
source code.

• Communication channels: The set of communication
channels models the data transfer mechanisms of
the architecture (such as buses, on-chip networks,
FIFO mailboxes, etc.).

• Memory spaces: The distinct memory spaces in the
system. Memory spaces may contain data, code

ppe : processor PPE;
spe0 : processor SPE;
//and declarations for spe1, spe2 etc.

eib : channel EIB;
eibˆendpoints = [ppe, spe0, spe1...];

mic : memory XDR;
micˆwidth = 64;
//micˆsize set to the system memory capacity
ppeˆmemory = mic;

spe0local : memory SPE_LOCAL;
spe0ˆmemory = spe0local;
//and declarations for spe1, spe2 etc.

flexio0, flexio1 : hardware FlexIO;
flexio0ˆports = [ppe, spe0, spe1...];
flexio1ˆports = [ppe, spe0, spe1...];

spe0dma : DMA SPE_DMA;
spe0dmaˆmemory = [spe0local, mic];
spe0dmaˆports = [spe0, ppe];

Fig. 5. CTV ADL describing the Cell processor architec-
ture.

or both. Caches are not described as a separate
memory space because their use is transparent to
software and the processor.

• Other hardware elements: Features of the target ar-
chitecture that are accessible from the processing
elements of the system but are not expressed by
the previous three sets. This includes I/O devices,
which are required for interfacing with the outside
world, and application-specific hardware such as
function accelerators, radio transceivers or real-time
clocks.

This information is used by the refactoring processes
(section 4.4 onwards) to refactor the input code so that
it can execute correctly on complex architectures, even
when the input code was written assuming a simpler
platform. The MADES approach currently leaves the
task of describing suitable candidate architectures to the
hardware designer, but greatly assists with evaluation
of designed platforms by performing automatic model-
based generation of VHDL (to implement the modelled
architecture) and target code (from the input code).

An example ADL to describe the IBM Cell processor
architecture [10] is shown in figure 5.

4.4 CTV Outputs
From the inputs defined in the system model of sec-
tion 4.2, CTV generates two sets of output code.

• Processor-Specific programs: Recall that CTV al-
lows software development using a single-program
model. Accordingly, the CTV code generation pro-
cess must take the single input program and split it
into a set of programs, one for each target processing
element. This is described in section 4.4.1.
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• Architecture-Support Libraries: The processor-specific
programs generated by CTV also require the pres-
ence of a set of libraries that interface with the
low-level target hardware and provide distributed
language services (such as coordination, threading,
memory management and migration). This is de-
scribed in section 4.4.2.

4.4.1 Processor-Specific Programs
According to the provided hardware/software map-
pings, the input program is split into a set of programs,
one for each processor of the system. Each processor-
specific program is a small subset of the input code, usu-
ally the body of the thread that is mapped to the current
processor and whichever library functions are called.
This can be determined using reachability analysis and
call-graph generation. The processor-specific programs
must also be refactored so that they make use of a
set of architecture-support libraries that are generated
alongside and detailed in the following section.

4.4.2 Architecture Support Libraries
The processor-specific programs will not correctly ex-
ecute because they are written using a standard pro-
gramming model. Normal development languages (such
as Java, Ada and C) assume a shared global memory
space, universal communications and coherent caches.
None of these assumptions are likely to be the case in a
complex, non-standard, embedded architecture. To solve
this problem, three support libraries are generated by the
refactoring engine according to the target architecture
and hardware/software mappings to make efficient use
of the underlying hardware. The generated libraries
provide:

• A distributed communications library which allows
the transfer of messages between the processors of
the system using the communication channels in
the target architecture description. All other libraries
use this layer as a base to implement their higher-
level algorithms.

• A shared memory system which handles remote
data access, cache coherency and data marshalling.
The library provides a distributed solution that
avoids a single point of contention.

• Distributed language features that implement
system-wide features of the source programming
model such as inter-thread communications, coor-
dination (such as mutual exclusion and signalling)
and thread and data migration. The specific features
that are provided are determined by the source
language of the input program. Simpler languages
like C do not require as much run-time support as
a more high-level language like Java or Ada.

• Driver code for custom hardware elements to al-
low the generated libraries to manipulate the target
hardware.

A version of the libraries is constructed for each pro-
cessor in the system. These processor-specific libraries

Platform-agnostic source
code

Mappings

Identify shared variables, shared
objects and concurrent objects.

Data flow
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stub generation

and injection

Code refactoring

Build distributed
OS services

Hardware
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Fig. 6. The CTV refactoring process

are optimised to use the memory, communications and
hardware available to the processor.

4.5 CTV Implementation

CTV aims to produce a low overhead implementation
that is suitable for use in a resource-constrained embed-
ded system. The process can be broken down in the steps
illustrated in figure 6 and detailed in the remainder of
this section.

Due to space constraints a fully-worked example of
CTV is outside of the scope of this paper, but the reader
is directed to existing documentation [5], [6] for code
examples that demonstrate CTV’s refactoring in action.

4.5.1 Parse Input Program
This stage must parse the incoming source code so
that it can be represented in terms of the CTV system
model (detailed in section 4.2). This involves extracting
the concurrent objects (threads, tasks), shared objects
(mutexes, protected objects, etc.), and shared data items
that are present in the application.

4.5.2 Code Splitting
The code splitting stage is the phase of the refactoring
process that splits the input program (expressed using
a single-program model) into a set of processor-specific
output programs, one for each target processor of the
system. The hardware/software mappings provided to
CTV state which processors the threads of the system
should be mapped to, and to which memory spaces
items of shared data should be mapped.

The callgraph of the input program is built and used
to perform reachability analysis in order to determine
the subset of the input program, which is accessible, by
each thread. In this way, each processor-specific program
will only contain the code for threads mapped to that
processor, and any shared libraries that those threads
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access. It will not contain the code of the other threads
of the system.

If multiple threads are mapped to the same processor
then the use of an embedded microkernel is assumed to
provide threading and scheduling services.

4.5.3 Build Architecture-Specific Libraries
The output programs of the code splitting stage will
not execute correctly if they reference non-local shared
memory or use language features, which the language
runtime does not expect to be distributed over a complex
architecture (such as threading, communication etc.). To
solve these problems, four architecture support libraries
are built that handle these problems. Then, the code of
each processor-specific program is refactored to make
appropriate use of the newly created libraries. The li-
braries are described in the following sections.

4.5.4 Communications Layer
The VP generates a universal communications layer
that allows all threads to communicate transparently
(which is assumed by all modern concurrent languages).
The communications layer is generated at compile-time,
optimised specifically for the current target architecture.

The layer is implemented with a compile-time multi-
stage permutation routing system. Each processor of the
system that is involved in a communication has a small
communications kernel added to its interrupt handler to
allow the processor to fetch and forward messages. In
complex architectures, some processors will be used as
routers, forwarding messages between otherwise sepa-
rate areas of the architecture.

Routes are calculated offline between static elements
so impose minimal overhead. Dynamic elements (such
as migrating threads) require that they update the com-
munications layer each time they migrate.

4.5.5 Shared Memory System
The primary goal of the shared memory system is to
allow the VP to present a single logical address space
to the source language because this is the memory
model assumed by most standard development lan-
guages. This requires the implementation of an object-
based distributed shared memory system that can allow
the threads of the system to share data efficiently and
coherently. In all cases it is assumed that the program
already exhibits correct concurrent behaviour without
race conditions. The library is required to ensure correct
behaviour in the following two situations:

• A thread is accessing data that is not locally address-
able (i.e. it is not directly connected to the memory
bus of the processor) and may be shared between
multiple threads. The system must cooperate to pass
data between the processors of the system to give
the illusion that all data is available to each thread.

• A thread is accessing data, which is locally address-
able, but is shared between multiple processors.
Caches coherency must be considered in this case.

The generated library implements algorithms to pass
shared data elements using the communications layer.
Small communications kernels added to the processors
of the system cooperate to provide a distributed system
without bottlenecks that can scale to large multicore
systems.

4.5.6 Distributed OS Services
The generated code must also provide services that are
presumed by the source programming model. Recall
that CTV is a language-agnostic technique and therefore
may be used on a range of languages. When used with
a C-POSIX application, the VP is required to expose
POSIX constructs that are implemented over the target
architecture. In practice, this requires implementation of
inter-thread communications and coordination features
such as mutexes and condition variables. In a language
such as Ada, the language model requires distributed
implementations of the inter-task rendezvous, protected
objects, and other such features. This stage of library
generation is therefore dependent on the chosen target
language. The communications layer and shared mem-
ory system generated previously are used to provide the
majority of the implementation.

4.5.7 Hardware Drivers
The final generated library involves the inclusion of
drivers for custom hardware elements that are exposed
as part of the VP. Driver code is not generated by
CTV; instead a library of pre-written drivers for common
hardware types is consulted. Drivers for the hardware
elements that are part of the target architecture are in-
cluded in the generated code. The drivers are used by the
communications layer to operate the communications
channels and I/O devices of the target system.

4.5.8 Refactoring
The refactoring stage operates on the set of processor-
specific programs (the output of the code splitting stage).
Recall that these programs will not execute correctly if
they reference non-local shared memory or use language
features, which the language runtime does not distribute,
over the target architecture. The final code generation
stage must therefore refactor the processor-specific pro-
grams to call the architecture-specific libraries, which
implement these features. This is done in three phases:

• Shared memory: The refactoring process analyses the
source code of the processor-specific programs for
locations where shared data is accessed. Calls to the
shared memory library are injected at these points
to fetch the shared data and coordinate with other
users of the data object. Cache coherency is also
considered for processors that use data caches.

• OS services: Any calls to OS services in the processor-
specific programs are replaced with calls to the
generated version that can operate over the target
architecture.
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• Custom hardware: Calls to custom hardware drivers
are inserted at points where the processor-specific
program interacts with any unique hardware fea-
tures of the target architecture. For example, the
programmer may indicate that their target architec-
ture contains a function accelerator that they would
like to access. The drivers for that feature will be
included in the stages above, and calls to those
drivers injected accordingly.

4.5.9 Compile
The output of the CTV code generation phase is as
follows:

• One set of source files per target processor of the
original application. Generated by the code splitting
phase and refactored to call functions from the
generated libraries.

• One set of source files per target processor that im-
plement the architecture-specific libraries. Includes
the communications layer, shared memory system,
OS services, and any hardware drivers that are used
by the application.

• A custom linker script per processor generated by
the shared memory system to place shared data
items at the correct section of memory.

CTV does not require the use of any custom compilers
or tools, apart from the CTV tool itself. The generated
code is entirely compliant with the source language, so it
can be compiled using that language’s normal compiler
(for example, gcc for C). Because the target architecture
may contain many different types of processor, an appro-
priate compiler must be available that can output object
code for each processor type.

The refactored processor-specific programs and each
processor-specific library are all separately compiled to
object files using an appropriate compiler. Then, for each
target processor its object code is linked against its spe-
cific libraries using any custom link scripts generated by
the shared memory library. The result of this is a single
executable for each target processor. The executables can
then be used in a variety of ways depending on the target
application. They might be programmed directly into on-
chip flash-based storage, stored on disk, transmitted into
dynamic RAM during a bootstrap phase, or in the case of
FPGAs, merged into the FPGA’s configuration bitstream.

5 CONCLUSION

This paper has provided an overview of the model-based
hardware generation and programming aspects of the
MADES project. MADES defines a systems modelling
language based on MARTE and SysML that allows the
developer to express their system at a high-level of
abstraction, and then to iteratively refine their design
to reach the final implementation. MADES differentiates
itself from similar work through three unique features.
First, extensive use of model transformations is used to
facilitate development and provide traceability. Second,

verification and validation are key parts of the MADES
design flow, allowing early and frequent verification
of the system being developed. Third, Compile-Time
Virtualisation (CTV) is used to assist the development
of embedded software. CTV allows for architecturally-
neutral code to be automatically retargeted for complex
hardware. This paper has provided specific details on
MADES’s approach to the specification of hardware and
the way in which that embedded software is refactored
for that hardware by CTV.
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