Targeting Complex Embedded Architectures
by Combining the Multicore Communications
API (MCAPI) with Compile-Time Virtualisation

Ian Gray

Department of Computer Science
ian.gray@cs.york.ac.uk

Abstract

Within the domain of embedded systems, hardware architectures
are commonly characterised by application-specific heterogeneity.
Systems may contain multiple dissimilar processing elements, non-
standard memory architectures, and custom hardware elements.
The programming of such systems is a considerable challenge, not
only because of the need to exploit large degrees of parallelism but
also because hardware architectures change from system to system.
To solve this problem, this paper proposes the novel combination of
a new industry standard for communication across multicore archi-
tectures (MCAPI), with a minimal-overhead technique for target-
ing complex architectures with standard programming languages
(Compile-Time Virtualisation).

The Multicore Association have proposed MCAPI as an indus-
try standard for on-chip communications. MCAPI abstracts the on-
chip physical communication to provide the application with logi-
cal point-to-point unidirectional channels between nodes (software
thread, hardware core, etc.). Compile-Time Virtualisation is used
to provide an extremely lightweight implementation of MCAPI,
that supports a much wider range of architectures than its specifica-
tion normally considers. Overall, this unique combination enhances
programmability by abstracting on-chip communication whilst also
exposing critical parts of the target architecture to the programming
language.

Categories and Subject Descriptors C.0 [General]: Modeling of
computer architecture; C.2.4 [General]: Computer-Communica-
tions Networks—Distributed systems; C.3 [Special-Purpose and
Application-Based Systems]: Real-time and embedded systems;
D.3.4 [Programming Languages]: Processors—Retargetable Com-
pilers

General Terms Design, Languages, Performance

1. Introduction

When programming complex embedded heterogenous multicore
platforms, there is an inevitable trade-off between programmability
and efficiency. High-level programming languages typically used
in embedded systems development (e.g. C) assume the presence of

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

LCTES’11, April 11-14, 2011, Chicago, Illinois, USA.

Copyright © 2011 ACM 978-1-4503-0555-6/11/04. .. $10.00

Neil C. Audsley

Department of Computer Science
neil.audsley@cs.york.ac.uk

a common address space to facilitate the use of shared data. They
provide few mechanisms or abstractions for direct programming
of the target hardware for efficient device programming. Whilst
these assumptions can be supported efficiently on SMP-style archi-
tectures with cache-coherence algorithms and similar architectural
techniques, it is a significant challenge to provide support on het-
erogeneous platforms with asymmetric memory architectures (con-
taining many CPUs, function accelerators, memories and commu-
nications channels).

In this paper we propose an approach to support the common
assumption of a single logical address space on complex, hetero-
geneous architectures through the use of compile-time refactoring
of the source code. The technique can be applied to legacy code
written with no assumptions regarding target platform. However,
this can lead to inefficient systems, particularly if the characteristics
of the underlying non-uniform memory are not considered by the
source code. To support direct exploitation of the architecture, we
extend the refactoring approach to expose pertinent platform fea-
tures to the source code with a simple architectural description lan-
guage. This enables the programmer to improve efficiency without
sacrificing the programmability of common languages. For exam-
ple, facilities are provided to constrain computation (eg. threads)
to particular processors, enabling them to be placed close to the
shared data which they access. The data itself can be constrained to
a particular area of memory.

The compile-time refactoring presents to the source code a Vir-
tual Platform, which is an idealised view of the underlying hard-
ware that supports the single address space abstraction and similar
architectural simplifications whilst hiding low-level implementa-
tion details. The Virtual Platform supports the programming model
of the source code, and can be manipulated to allow architectural
exploration and mapping.

A key facet of the approach proposed in this paper is to incor-
porate proposed standard abstractions of on-chip, inter-core com-
munication. The Multicore Association has developed the Multi-
Core API (MCAPI) standard [25] which abstracts physical on-chip
communication into virtual channels between nodes in the system.
Nodes can be software entities (eg. OS, application thread) or hard-
ware entities (eg. processor, hardware accelerator). The result is a
uniform lightweight communications interface between constituent
parts of the system.

As an API, MCAPI is bound by the programming models of
existing languages. Whilst a programmer is able (via MCAPI) to
achieve abstract communications with constituent nodes in the sys-
tem, other parts of the architecture are hidden by the programming
language. For example, it is becoming increasingly common for
the architectures of embedded systems to include large amounts of
application-specific hardware, such as function accelerators, non-

standard memory layouts, heterogenous CPUs, or custom inter-
connect. Standard programming languages do not use these fea-
tures natively as their abstraction models hide key architectural de-
tails. This makes it impossible for an MCAPI implementation to
use these features, and relies on the presence of a distributed OS
or middleware layer which is not always practical in a resource-
constrained embedded system. This problem is solved by the ap-
proach in this paper.

The remainder of the paper analyses the problems encountered
when targeting complex architectures in section 3, and describes
the approach taken by this work in section 4. The approach involves
two technologies, MCAPI (described in section 4.1) and Compile-
Time Virtualisation (described in section 6). Section 7 describes the
implementation detailed in this paper followed by an evaluation in
section 8.

2. Contributions

This paper combines MCAPI, an API for multicore communica-
tions with Compile-Time Virtualisation (CTV), a technique that al-
lows normal architecturally-neutral code to be mapped to complex
architectures. The resulting system demonstrates the following con-
tributions:

e Support for multicore programming models on complex archi-
tectures that MCAPI would not normally be able to support due
to its reliance on its host language (for example, non-uniform
memory architectures with non-standard interconnect). MCAPI
can be used on more targets.

e Low-level and error-prone hardware-specific code is automati-
cally generated.

e Integration of custom hardware items (function accelerators
etc.) into the programming model.

e Decoupling of the target architecture with CTV’s Virtual Plat-
form greatly aids the portability and reuse of MCAPI code.

3. Problem Analysis

The abstraction models of existing programming languages were
not developed to cope with the variety and variability of modern
embedded systems. Early computer architectures were largely uni-
form and entirely static, consisting of a single processor with ac-
cess to one contiguous block of memory. As a result, many archi-
tectural details were hidden by the abstraction layers of program-
ming languages. This approach has been inherited by modern lan-
guages, which increasingly rely on the presence of middleware or
a distributed operating system to provide program distribution and
architectural mapping. Access to features such as complex mem-
ory or custom hardware can only be achieved though the use of
abstraction-breaking techniques (link scripts, inline assembly, raw
pointers etc.). These techniques are error-prone, difficult to port to
new architectures, and hard to maintain.

In a resource-limited embedded system, the absence of a full
OS causes the architectural assumptions of the language to fail,
resulting in the following problems:

Non-uniform memory and caching:

Languages cannot assume that all variables in scope are accessible
to all threads of the system. If a thread is located on a processor that
is not connected to some of the memory spaces of the system then
this is not the case, and some data items may be inaccessible.

Universal communications:

Programming models also cannot assume that threads can commu-
nicate with all other threads. In an SMP-style architecture this as-

sumption is reasonable, but as implementation architectures grow
the presence of a single shared communications bus is less likely.
Communications must be routed using complex routes that may in-
volve a number of hops. Routing must be performed manually by
the programmer, or with a middleware layer such as CORBA [22].
Existing middleware solutions target networked systems and are
too large for resource-constrained embedded systems.

Universal coherence:

When caches are present in the implementation architecture co-
herency must be considered. Language models tend to assume that
items of shared data are kept coherent across the entire system, re-
gardless of where each item is actually used. Cache coherency does
not scale to large numbers of processing cores [2], yet the models
do not allow the programmer to limit coherency to useful subsets
of the system.

Distributed services:

Language models provide a range of services or libraries to express
threading, migration, coordination primitives etc. However, these
services are often not implemented over complex target architec-
tures, restricting their use to individual cores of the system. For ex-
ample, pthreads based mutexes will not operate correctly between
the cores of an embedded architecture without the use of a full dis-
tributed operating system to act as a middleware layer. When lan-
guage runtime systems are distributed (for example the Distributed
Ada Runtime System [16]) they tend to target large-scale homo-
geneous networked systems rather than heterogeneous embedded
systems.

The architectural features listed above will cause the program-
mer’s code to fail because the programming model of the input code
is not supported by the underlying architecture. There are also a
range of issues which do not cause implementations to fail, but can
lead to very inefficient systems:

e Flexible mappings: The transparent placement of code and
data throughout the target architecture is essential in a hetero-
geneous system. Threads need to be mapped to the processor
which can most efficiently execute them, and data should be
stored close to the threads which use it.

e Communications abstractions: As systems move further from
SMP-style architectures with a single shared bus, explicit com-
munication abstractions are required to make efficient use of the
target system.

¢ Exploitation of unique hardware elements: Unique hardware
features (such as function accelerators, I/O devices, DSP cores
etc.) must be accessible to the programmer.

Embedded languages such as C, Ada or Real-Time Java do not
provide the programmer with the expressive power to reason about
these issues from within the source language. C in particular is
heavily dependent on its assumed target architecture of a standard
Von Neumann architecture with a single processor and single logi-
cal memory space.

Other languages do allow some architectural mapping detail, but
none provide enough to efficiently map to modern embedded archi-
tectures unassisted. For example, Java thread affinities [9] allow the
programmer to reason about the location of computation in the tar-
get system, but its memory model is similar to that of C and cannot
easily map to NUMA systems. The Real-Time Specification for
Java [12] is currently attempting to extend this model to consider
more complex memory hierarchies. Ada’s Distributed Systems An-
nex (DSA) [3] is designed for distribution between workstations
and as a result its partitions are too coarse for use within a small

embedded system. (Partitions cannot directly share memory or pe-
ripherals.)

There has also been a recent push to develop new languages
that contain greater amounts of architectural detail. For example
to target non-uniform memory [10] or data streaming architectures
[11, 26]. Unfortunately, such languages tend to only concentrate on
solving a single problem each, and cannot adapt easily to support
new architectural paradigms in the future.

Fartitioned Global Address Space (PGAS) languages are an-
other recent development. Rather than assuming a single logical
memory space, a PGAS programming model targets a partitioned
memory space. Intra-partition communication is assumed to be
cheaper and faster than inter-partition communications, and threads
can be placed inside partitions to ensure they retain locality with
their working data set. Common PGAS languages are X10 [7], UPC
[4] and Chapel [5].

The development of PGAS languages demonstrates that a move
towards a greater amount of architectural information is important
for the efficient exploitation of complex architectures. However,
PGAS languages focus on high-performance computing environ-
ments, and do not support the kinds of application-specific mem-
ory hierarchies or custom hardware elements commonly seen in
embedded systems.

The approach taken in this paper shares similarities with run-
time virtualisation systems (such as Java) and the architectural
information of PGAS languages, but it focussed on supporting
highly variable architectures.

4. Approach

This paper introduces a system which solves the problems identi-
fied in section 3. The approach has the following characteristics:

e Rather than attempt to define another new language, standard C
is used because of the large amount of programmer experience,
industrial-level tools, and legacy code that already exists for it.

In order to support efficient use of complex communication
hierarchies, a proposed standard for on-chip communications
from the Multicore Association (called MCAPI [25]) is used.
MCAPI adds explicit inter-thread communications to the pro-
gramming model.

Mapping to complex architectures is achieved through the use
of Compile-Time Virtualisation (CTV) [13], a technique for
programming embedded architectures that imposes minimal
run-time overheads.

CTV provides a flexible Virtual Platform that hides the underly-
ing complexities of the target hardware whilst affording the pro-
grammer control over high-level mapping decisions to maintain
efficiency.

MCAPI is described first in section 4.1. CTV, and the way
in which it can be combined with MCAPI is then described in
section 6.

41 MCAPI

The Multicore Association (MCA) was founded in 2005 as an in-
dustry forum for establishing a set of application programming in-
terfaces (APIs) to be supported by industry on multicore technolo-
gies. The MCA has a number of key industrial members and is
widely seen as an important contributor to multicore programming
practice.

The APIs developed are in two main areas: communications and
resource management. Communications, via the MCAPI API, is
intended to support communication within a closed distributed sys-
tem — e.g. a multicore system-on-chip. Resource management, via

Application

v v

MCAPI MRAPI

v v

OS Virtualisation

v

Multicore platform

Figure 1. Multicore Association APIs Overview

the MRAPI API, is intended to support and coordinate shared mem-
ory management and synchronisation (eg. mutexes, semaphores).
The MCAPI API has now been released as a de-facto industry stan-
dard whilst MRAPI remains under discussion. MCAPI, MRAPI,
and the efforts in virtualisation and application programming are
shown in figure 1. It is important to note that the two APIs are in-
dependent of each other, and can be implemented separately.

MCAPI [25] defines a communication API for closely coupled
systems where there are multiple cores connected in an arbitrary
topology with no requirement for symmetry. MCAPI enables point-
to-point communication between endpoints that are associated with
nodes. An MCAPI node is a logical notion that can be a process, a
thread, an OS instance, or hardware component (accelerator, CPU,
DSP core etc.). A node can contain several MCAPI endpoints and
endpoint identifiers are unique within the system, named with a
tuple <node_id, port_id>. Endpoints can have a set of attributes
describing QoS features, buffer capabilities and timeouts.

After MCAPI initialisation, a connection is created and estab-
lished between two endpoints. Then both sender and receiver can
open a channel between those endpoints. Data to be sent is stored
in an application buffer and passed to an MCAPI send endpoint.
When there is space at the receiver, the data is sent to the receiving
endpoint where it is stored in a FIFO buffer for subsequent appli-
cation use.

An example use of MCAPI to communicate between two nodes
is given in figures 2 (node_1) and 3 (node_2). In this example two
channels are used: a packet channel channel_1 is used to com-
municate data from node_1 and to node_2; and a scalar channel
channel_2 is used for the reply.

Related Work

Approaches such as OpenMP [6] and MPI [15] are aimed at widely
distributed systems and are intended to address issues in paral-
lel programming rather than fundamental communications abstrac-
tions. Existing communication frameworks such as CORBA [22],
TIPC [20] and MPI tend to be unsuitable for resource-constrained
embedded systems because are they are all either designed for
communications between larger entities (workstations, or clusters)
or result in large libraries that consume a lot of system memory.
MCAPI is designed to place as small a set of requirements on com-
municating nodes as possible, leading to a very small implementa-
tion footprint.

Approaches such as TBB [23] and OpenCl [21] have been
proposed as programming approaches for closely coupled systems
— essentially symmetric multiprocessor architectures typified by
desktop multicore processors and graphics processing units (GPUs)
respectively. However, these approaches do not provide coverage of
general heterogeneous architectures.

//MCAPI Communications Ezample — node_1.c
char *buffer[1024];

mcapi_uint8_t reply;

size_t size;

mcapi_node_t node_id_local = NODE_LOCAL;
mcapi_node_t node_id_remote = NODE_REMOTE;
mcapi_port_t pid_chl_loc = PORT_CH1_LOCAL;
mcapi_port_t pid_chl_rem = PORT_CH1_REMOTE;
mcapi_port_t pid_ch2_loc = PORT_CH2_LOCAL;
mcapi_endpoint_t el_loc, el_rem, e2_loc;
mcapi_pktchan_send_hndl_t chl, ch2;
mcapi_request_t request;

mcapi_status_t mcapi_status;

//Create local endpoints on channels 1 and 2
el_loc = mcapi_create_endpoint(

pid_chl_loc, &status);
e2_loc = mcapi_create_endpoint{

pid_ch2_loc, &status);

//Get and connect the remote endpoint on channel 1
el_rem = mcapi_get_endpoint(

node_id_remote, pid_chl_rem, &status) ;
mcapi_connect_pktchan_i(

el_loc, el_rem, &request, &status);

//Open a Packet channel and a Scalar channel
mcapi_open_pktchan_send_i(

&chl, el_loc, &request, &status);
mcapi_open_sclchan_recv_i(

&ch2, e2_loc, &request, &status);

//Blocking send on channel 1
mcapi_pktchan_send(
chl, buffer, 16, &status);

//Blocking receive on channel 2
reply = mcapi_sclchan_recv_uint8(
ch2, &status);

//Non-blocking send on channel 1
mcapi_pktchan_send(
chl, buffer, 1024, &request, &status);

//Continue with application whilst send occurs...
//Wait on channel 1 send complete

mcapi_wait (
&request, &size, &status, MCAPI_INFINITE);

Figure 2. MCAPI send/recive example: node_1

Implementations of MCAPI are currently limited to an outline
reference implementation from the MCA. Little other work has
considered MCAPI, only a model checking approach to check the
use of MCAPI API calls from an application [24].

4.2 MRAPI Overview

The MCAPI API does not consider the provision of shared re-
sources. The Multicore Resource Management API (MRAPI) [17]
is a companion API that has been developed to address this issue
by defining a set of lightweight primitives that are designed to be
used by MCAPI programs. MRAPI is still in development, but the
primitives currently supported are:

//MCAPI Communications Ezample - node_2.c
//Declarations identical to node_1.c

//Create local endpoints on channels 1 and 2
el_loc = mcapi_create_endpoint(

pid_chl_loc, &status);
e2_loc = mcapi_create_endpoint(

pid_ch2_loc, &status);

//0Open a Packet channel and Scalar channel
mcapi_open_pktchan_recv_i (

&chl, el_loc, &request, &status);
mcapi_open_sclchan_send_i (

&ch2, e2_loc, &request, &status);

//Get and connect the remote endpoint on channel 2
e2_rem = mcapi_get_endpoint(

node_id_remote, pid_ch2_rem, &status);
mcapi_connect_pktchan_i(

e2_loc, e2_rem, &request, &status);

//Blocking receive on channel 1
mcapi_pktchan_recv(
chl, &buffer, &size, &status);

//Blocking send on channel 2
mcapi_sclchan_send_uint8(
ch2, data, &status);

//Non-blocking receive on channel 1
mcapi_pktchan_recv_i(
chl, &buffer, &request, &status);

//Continue with application whilst send occurs...
//Now wait on channel 1 receive complete

mcapi_wait (
&request, &size, &status, MCAPI_INFINITE);

Figure 3. MCAPI send/recive example: node_2

® Mutexes

e Semaphores

e Shared and remote memory
e Metadata

Whilst MRAPI is independent from MCAPI (as shown in fig-
ure 1), it is intended that MRAPI implementations utilise the com-
munications primitives provided by MCAPI. This does not prevent
MRAPI implementations using a different communications infras-
tructure.

5. Using MCAPI for complex
architectures

Due to the fact that MCAPI is an API, it is restricted to use the
same programming model of its host language. Its implementa-
tion can be written to support complex interconnect and memory
topologies, but this is not sufficient if the base language does not
support these features. For example, MCAPI’s C implementation
(the only implementation currently available) is limited by the fact
that standard C does not allow the programmer to specify multi-
ple threads of control. Therefore, it is frequently used alongside

a threading library, such as pthreads [18]. However, pthreads re-
quires the use of an OS kernel, which can create a bottleneck in the
system, requires a SMP-style memory layout, and does not map to
application-specific architectures.

Consequentially, programmers of complex embedded systems
are forced to manually split their single program into a set of coop-
erating programs, frequently one for each target CPU. These split
programs must then be manually mapped to the target architec-
ture with the use of driver code, low-level assembly, custom linker
scripts, and other techniques that are outside of the source lan-
guage’s programming model.

This multi-program approach allows fine-grained control over
architecture mapping, thereby reducing inefficiency and allowing
non-standard hardware features to be exploited (function acceler-
ators, DMA engines, scratchpad memories etc.). However it intro-
duces a number of problems:

e The code is entirely architecture-specific and cannot be easily
ported to another system. Equally, off-the-shelf components
from other systems must be rewritten before they can be used.

e Such low-level code is error-prone and requires extensive hard-
ware knowledge to produce.

e DSE is poor, as architectural changes can require large amounts
of the code to be changed. This leads to a development model
in which the hardware is designed before software is produced,
and then once software development has started hardware de-
velopment ceases. Iterative hardware development is not possi-
ble.

e A single-program model is more natural and fits better with
the way in which programmers describe and prototype their
systems.

The next section describes CTV, which allows the programmer
to map their single program without having to split it into subpro-
grams.

6. Compile-Time Virtualisation

The issues identified in section 3 and 5 mean that when developing
software for complex systems, MCAPI alone is not sufficient. This
paper combines MCAPI with a technique called Compile-Time
Virtualisation to provide better architectural mapping and there-
fore allow MCAPI applications to efficiently exploit non-standard
application-specific architectures. Compile-Time Virtualisation is
described in the rest of this section, and the way in which it is inte-
grated with MCAPI is detailed in sections 6.1 and 7.

Compile-Time Virtualisation (CTV) [13] is a virtualisation-
based technique that attempts to give the programmer a more
suitable abstraction model for developing software for complex,
application-specific architectures. CTV replaces the existing lay-
ers of virtualisation and abstraction that are present in standard
software development with a single virtualisation layer across the
entire architecture, termed the Virtual Platform (VP). The VP has
three main features:

Compatibility with the chosen programming model:

The VP is a high-level view of the underlying hardware that
presents the same programming model as the source language
to simplify development. For example, for languages such as C
it presents a single logical address space, hiding data migration,
updating and caching issues. The layer ensures that the program-
mer’s code operates correctly on a complex architecture without
low-level programmer intervention. The VP allows for code to be
architecturally-neutral.

[User code | Source code (C, Ada etc.) ‘
T
Y

‘ Target description U
T

Virtual platform Designer-Provided
Inter-process Standard RISC PU mappings
communications processors s
H/w accelerators
Threads Single, contiguous Hardware | [Channels
address space featurAes Memories
!
Y [[¥
[Virtualisation layer [Virtualising compiler H
1 1 [
\j \j T
Distributed NUMA v Custom hardware, function
code Heterogeneous accelerators
processors, custom ISAs
Target architecture, physical platform

Figure 4. Tools-oriented overview of CTV.

Flexible mappings from the virtual architecture to actual
hardware:

Every virtualisation-based system contains a set of virtualisation
mappings which map elements of the software and virtual hardware
onto the actual physical hardware. In run-time virtual machines
these mappings are implemented by a run-time system and are
largely opaque to the programmer. When using CTV the mappings
are directly exposed to the source code, allowing the programmer
to use their application-specific knowledge to influence the imple-
mentation of the code and control the placement of threads and
data. The VP ensures that the software will still operate correctly
however these are mapped; only the code’s non-functional proper-
ties will be affected.

Visibility of custom hardware elements:

Custom hardware elements are exported up to the programmer
through the VP at design-time and presented in a form that is
consistent with the source language’s programming model. This
allows these elements to be effectively exploited without extra
development effort and in a manner that is consistent with the
current programming model. The virtualisation system has enough
information to handle marshaling of data, synchronisation, data
copying issues etc.

An overview of the CTV system is shown in figure 4. By moving
the virtualisation to compile-time, run-time overheads are reduced
to a minimum. If the hardware design later changes (for example,
the addition of a CPU or a new memory layout) the programmer
simply needs to create a new set of VP mappings and the same
input code is automatically retargeted to use this new architecture.
The main disadvantage of CTV is it limits the run-time dynamism
of the system as the topology of the input code must be known at
compile-time.

CTV operates at compile-time by refactoring the programmer’s
input code according to the VP mappings and automatically gener-
ating communication libraries and drivers. The refactored code then
runs directly on the target hardware. The abstraction and virtuali-
sation layers aid development, but they are not present at run-time
and so do not add inefficiency. Also, because the layers are applied
by refactoring, CTV does not require new compilers and the source
language’s existing compiler and toolchain can still be used.

Virtual Platforms have seen some industrial use in simulation
and validation. The CoWare system [8] creates an executable simu-
lation of the target hardware and environment. Virtualisation helps

Program Concurrent Shared Shared
layer obJects objects data

Virtual Platform

Logical Clusters

Hardware
layer

model

Object
Managers

Cluster targets

Target
CPUs Channels}[Memory spaces }[External hardware }

layer
Target architecture /

Figure 5. The CTV system model.

the designer to inspect and debug the system, but is not used to
assist the programmability of the hardware as is the case with CTV.

6.1 System model

CTV’s system model (shown in figure 5) is composed of three
layers - the program layer, the logical layer and the target layer.
The program layer represents the input source code as three sets:

e Concurrent objects: Constructs from the source language with
an independent thread of control, such as threads, tasks or
processes.

Shared objects: Passive objects with a local state that export
a set of functions and procedures that can be remotely invoked
by the concurrent objects of the system. Shared objects are used
to coordinate the execution of concurrent objects, and to pass
data between then in a controlled and thread-safe manner. For
example, mutexes, monitors, mailboxes, Ada protected objects
etc.

Shared data: Language-level items of shared data. Compound
types like structures and arrays are represented by a single
shared data object.

The logical layer is used to implement dynamic systems with
thread and data migration. This is explored further in [14].

The implementation described in this paper is based on the
MCAPI example implementation [25] which is written in C. Con-
sequentially, the input language to the described system is unmod-
ified C which, due to the fact that C does not include primitives for
describing multiple threads of control, makes use of the POSIX
pthreads library to express parallelism and concurrency control.
Both the MCAPI and pthreads APIs are implemented on top of
the CTV communications layer, as shown in figure 6. Therefore,
threads are concurrent objects, mutexes and condition variables are
shared objects, and program variables are shared data objects.

The target layer represents architectures as:

e Processors: Processing elements of the target architecture.

e Communication channels: Hardware features that transfer
data between elements of set C', such as buses and on-chip
networks.

e Memory spaces: All distinct memory spaces in the system,
except caches, which are a feature of the processor — memory
space connection.

e Custom hardware elements: Unique hardware features, like
function accelerators and I/O channels, that are to be exported
up to the source language.

Application
pthreads
MCAPI (concurrency,

communications .
() coordination)

v v

Virtual Platform communications layer
(architecture transparency, shared data)

v

Hardware architecture

Figure 6. MCAPI is used alongside pthreads. Both are imple-
mented on the CTV communications layer.

In this implementation, each MCAPI node is mapped to a single
processor. Threads execute as part of any single node in the system
and must execute on the same processor as their host node. It is a
simple extension to also allow multiple nodes to exist on the same
physical processor. Nodes cannot be split across multiple proces-
sors. This is so that the communication topology of the system can
be fixed and known at compile-time. With nodes constrained to a
single processor it is clear at compile-time to which processor a
given message must be delivered, leading to lower run-time over-
heads and no ‘discovery phase’ to determine the location of a node
when sending messages. Endpoints are therefore effectively created
between processors, allowing for much easier mapping to the com-
munications fabric of the target architecture. Due to the fact that
CTV provides the compiler with architectural information, it can
be used to automatically apply MCAPI zero-copy communications
on systems that have shared memory.

MCAPI channels are not directly mapped to the channels of the
target hardware. Instead, the VP’s communications layer makes use
of the underlying hardware channels to implement MCAPI’s com-
munications. The mapping of higher-level communications over
hardware channels is performed inside the VP and described in
more detail in section 7.

6.2 API

The MCAPI API does not have to be modified when combined with
CTV. It is the responsibility of the VP to ensure that compatibility
is assured. However, as the implementation described in this paper
is only preliminary, only a subset of the full API is currently
supported. Currently non-blocking operations, timeouts, and zero
copy operations are not supported, but these will be added as the
implementation is completed.

7. Implementation

The implementation described in this section distributes standard
C programs that use the POSIX pthreads library and the MCAPI
communications API over complex, multicore systems with het-
erogenous processors, non-standard memory layouts, arbitrary on-
chip communication topologies and application-specific hardware
features. This system relies heavily on CTV-based techniques. Full
details and worked examples of the CTV analysis and refactoring
processes are outside the scope of this paper and can be found in
existing CTV literature. This paper focuses on describing the addi-
tions required to implement MCAPI on top of CTV’s communica-

(=C)OM“ C_Jcru
Obj
OMs MaJ:;:;er

—» Request

|

Figure 7. The OM model allows simultaneous requests to execute
in parallel without centralised control.

tions fabric and the advantages that can be gained by doing so, but
a brief overview is given of all necessary topics.

7.1 CTV’s Object Manager model

The MCAPI system implements its channel- and datagram-based
communication with CTV’s existing communications layer, which
is called the Object Manager model. An overview of this model is
provided here.

The Object Manager model is a decentralised communication
and coordination model that allows CTV implementations to sup-
port future architectures of potentially thousands of cores without a
loss of scalability. The model is built around the concept of the Ob-
ject Manager (OM). An OM is a passive object mapped to a CPU
that provides services for the threads, shared objects and shared
data items which it manages. For example, the OM of a shared
data object handles read and write requests. By manipulating the
VP mappings the programmer defines the set of OMs, what they
manage, and maps the OMs to suitable locations in the target archi-
tecture.

During compilation, the threads of the system are refactored
so that when they need to interact with a managed object (mutex,
shared data item, etc.) they send their request over an appropri-
ate hardware communications channel to the CPU that hosts that
object’s OM. Drivers for communications hardware are automati-
cally brought in from a provided hardware support library and as-
sembled into a platform library which is linked into the final exe-
cutable. OMs are implemented as interrupt handlers in the CPUs
of the system and can be integrated with a kernel or OS if present.
Systems that provide coordination and shared memory using a sin-
gle OS model [1] may lead to bottlenecks; this is avoided by the
OM model, thereby leading to greater parallelism and scalability.
Hardware allowing, unrelated OM requests (i.e. sending MCAPI
messages between two different nodes or locking two different mu-
texes) happen in parallel (figure 7).

7.2 VP mappings

VP mappings are provided by the programmer through the use
of a simple architectural description language (ADL). This ADL
is used to describe the target architecture in terms of the system
model’s target layer (section 6.1). The ADL is also used to map
source language-level constructs over the target architecture. Fig-
ure 8 shows a simple ADL snippet that describes a multi-CPU setup
connected by mailbox communication channels and non-uniform
shared memory. The ADL uses an attribute notation to provide re-
quired implementation details (e.g. memory-mapped hardware ad-
dresses, interrupt vectors).

When used to implement MCAPI this ADL does not require
any extensions because, as described in the following section, map-
ping information for MCAPI nodes can be inferred from the source
code. Through the use of these mappings the programmer can ar-
range the threads and nodes of their MCAPI program over the

CPUO, CPU1, CPU2 : processor Microblaze;
shared01, memO, meml, mem2 : memory BlockRAM;
bus01 : channel Mailbox;

bus02 : channel Mailbox;

CPUO "memory = [mem0(0x00000000),
shared (0x40000000)] ;
CPU1"memory = [mem1(0x00000000),
shared (0x40000000)] ;
CPU2"memory = mem3;

busO1~endpoints = [CPUO(0x80000000),
CPU1(0x80000000)17 ;

bus02~endpoints = [CPUO(0x82000000),
CPU2(0x80000000)17 ;

Figure 8. ADL describing a complex three-core system.

architecture with a level of control that is not normally possi-
ble. The topology of both the software and hardware is known at
compile time in CTV, so the underlying communications drivers
and libraries can be automatically-generated. This allows very fast
design-space exploration as the input source code does not need to
be rewritten for different mappings.

For example, consider the C declaration:

int sharedarray[50];

The programmer can place this in shared memory in the ADL as
follows:

sharedarray : variable;
shared12”variables = [sharedarray];

On CPUQO, the code is refactored by Anvil to the following:

int sharedarray[50]
__attribute__((section ("shared12")));

and the following section added to CPU1’s link script:

SECTIONS
{
. = 0x20000000;
shared12 : {}
}

Accesses to sharedarray are then refactored to use Anvil’s
shared memory system which ensures coherency etc., discussed in
existing CTV literature.

7.3 Static analysis and refactoring

As with existing CTV implementations, the presented system uses
static analysis to determine offline the topology of the communi-
cations and nodes in the input program. The threads of the system
must be declared global and static so that they can be extracted
from the source code and mapped to processors of the target archi-
tecture. This places restrictions on the run-time variability of the C
code (no dynamic thread creation), but given the target domain of
high-integrity embedded systems these restrictions are reasonable.
A simple extension can allow threads to be dynamically created
within a node if this behaviour is required, but the overall system
topology must remain static.

The input code is parsed to an AST and the symbol table gener-
ated. Objects of type pthread_t are identified and data flow anal-
ysis is used to associate them with calls to pthread_create. This
allows the refactoring engine to determine which C functions are

void _anvil_send_to_cpu(int cpuid,
int *pkt, int len) {

int x;
for (x = 0; x < len; x++) {
switch(cpuid) {
case 1:
mbox_write(bus01, pkt[x]);
break;
case 2:
mbox_write(bus02, pkt[x]);
break;
default:
break;
}
}
}

Figure 9. Autogenerated part of the Anvil comms. layer.

used as thread bodies. If the programmer’s code is not statically
analysable then they must recode or manually annotate to provide
this data. From this information, the single input program can be
split into a set of output programs, one for each target processor
according to the VP mappings provided by the programmer. This
requires the creation of a new main function for each split pro-
gram that waits until it is woken by a pthread_create call from
elsewhere in the system before calling the thread body. Recall that
threads are mapped to the processors of the target architecture by
the programmer (section 7.2). Reachability analysis is used to de-
termine the code that is required in each split program.

The analysis system then determines which MCAPI nodes are
located upon which processors. Each node has an ID which is set
by the programmer in the input code. It is necessary to determine
how these node IDs relate to the processors of the target archi-
tecture. This is done by looking for calls to mcapi_initialize
and analysing the call’s parameters. The analysis has already deter-
mined which functions correspond to thread bodies, and the pro-
grammer has mapped threads to processors, so from this it can
determine which node will be initialised on which processor. For
example, if thread ¢ is mapped to processor p and ¢ makes the fol-
lowing call:

mcapi_initialize (200, &version, &status);

the analysis can determine that processor ¢ is assigned node ID
200 by the software. Again, if this information cannot be statically
determined then the programmer must reexpress their program to
make it so. This information is used to build a small private function
nodeid_to_cpuid that is used by the MCAPI library at runtime to
determine which processor to send a given MCAPI message to.
The CTV communication layer has already dynamically generated
architecture-specific functions for each processor that are used to
communicate with each other processor in the system, using on-
chip communications as appropriate. The MCAPI implementation
can make use of this. In the three-core example system in figure 8,
at compile-time the section in figure 9 is generated as part of the
communications layer.

Similar code is generated to manage interrupts and other hard-
ware. _anvil_send_to_cpu is used directly by the MCAPI im-
plementation to transport data between processors, assuring low-
overhead operation on varying hardware.

In the current implementation, each node stores its endpoints
in an array of fixed maximum size that is manipulated by the

mcapi_create_endpoint and mcapi_delete_endpoint func-
tions. The endpoint also maintains a set of transmit and receive
message buffers that use the underlying Anvil communications
layer as above.

Blocking (for example on message receipt) is implemented by
using a stub function of the Anvil layer. In systems with no kernel,
Anvil spin locks waiting to be interrupted. In systems with micro-
kernels the blocking features of that kernel are called so that other
threads may execute.

7.4 Messaging protocol

The VP implementation already defines an internal set of messages
that are sent between OMs to implement its various features. These
messages perform the following actions:

e Create, end and join threads.

e Wait for a mutex lock, query a mutex state, reply when lock is
obtained.

e Wait for a condition variable, signal a condition, signal all
(broadcast) a condition.

e Read and write shared variable data.

Whilst it is possible to use these messages solely to implement
other features, initial experiments confirmed that this results in
high latency as a large number of low-level messages need to be
processed for a single higher-level event. Instead, extra messages
are introduced into the communications layer to implement specific
MCAPI operations. The following messages are required:

e Request an endpoint from a remote node (and the reply mes-
sage).

e Send a datagram (connectionless message).

e Establish and close channels between two endpoints and send
data along a created channel.

e Request status and capability information from another node.

These messages increase the code footprint of the communications
layer slightly, but result in lower latency communications. Note that
large amounts of the MCAPI API do not require messages to be
defined (for example mcapi_create_endpoint) because they operate
only on the local node.

8. Evaluation

This section presents an initial evaluation of the combined MCAPI
and CTV implementation. As MCAPI is a new standard, there is
a lack of comparison points available to evaluate against. (MCAPI
only currently has one official implementation, and it cannot be
used on the complex architectures which this paper discusses.)
Therefore, this section cannot aim to demonstrate specific speed
or latency targets or speed-ups, but instead it aims to show the
benefits of programmer-directed architectural mapping that are af-
forded by the approach in this paper. Section 8.1 shows how ap-
plication knowledge can be used by the programmer to efficiently
exploit complex architectures better than would be possible with
an MCAPI system that does not use CTV. The same source code
is reimplemented over a complex architecture by changing the VP
mappings, resulting in different temporal properties but the same
functional properties. Section 8.2 discusses the overheads in the
implementation.

8.1 Architectural mapping

As established in section 5, the MCAPI specification and the pro-
gramming languages to which it is bound do not allow the pro-
grammer to reason about the mapping of their program to the tar-

Fast parallel

Core 0 [

Core 2

X

Corel | Slow
serial link

Figure 10. The implementation architecture

Application Before After Speed
moving moving up
FIR (1 pass) 918,549 815,922 1.13
FIR (2 pass) 1,159,384 1,056,500 1.1
Collatz (1k evals) 4,415,843 3,462,921 1.28
Collatz (2k evals) 10,204,554 7,004,586 1.46
3DES 1,729,640 1,544,322 1.12

Figure 11. Evaluation times for test applications (clock cycles)

get architecture. Consider the architecture in figure 10. The figure
shows a three-core architecture with no shared memory and het-
erogeneous inter-processor communication channels. Cores 0 and
1 are linked by a fast mailbox-style FIFO that can transfer data at
over 1MB/sec, whereas communications with core 2 requires the
use of a much slower serial link (approx. 300KB/sec) that also has
a higher transport latency. The architecture is implemented on a
Xilinx Spartan 3 4000 FPGA using the Microblaze soft processor
core [28].

Clearly the placement of threads throughout this system is
important to maximise application throughput. The programmer
should place tasks with lower communication requirements on
core 2, so that the slower link does not affect the overall system
as much. MCAPI’s node and endpoint model of communications
targets this architecture well, whilst the VP of CTV allows the pro-
grammer to perform deliberate and fast architectural mapping from
a single program. A number of example applications were built, all
using at least three threads of control so that all cores are active.
For this test, the threads with the highest communication require-
ments of each application were identified by profiling and from
application-specific knowledge. The results in figure 11 show the
effect of moving the thread with highest computation requirements
from core 2 to core 0. As expected, this reduces overall execution
time in all cases, but by differing degrees depending on the specific
benchmark. It must be observed that this move cannot be specified
in a normal C-based, embedded MCAPI implementation. In the
case of the FIR filter or 3DES programs, the controller core has
to pass large volumes of data so moving the dispatch thread to a
core where more outgoing links are faster has a positive effect. The
improvement is even more pronounced in the case of the Collatz
engine because it requires less computation per unit of dispatch
than FIR, so improving latency has a higher percentage effect (up
to 146%).

The important fact about this experiment is that in all cases the
application’s code does not need to be rewritten, as it would need
to be without the use of CTV. The programmer simply changes the
VP mappings to move the target thread and the refactoring engine
(section 7.3) inserts appropriate calls to the CTV communications
layer, which is automatically built according to the target architec-

ture. This shows the potential for rapid design-space exploration
enabled by the combination of MCAPI and CTV. CTV also allows
the seamless use of differing communication channels, and can tar-
get changing architectures without the need for code refactoring.
These topics are covered in existing CTV literature and augments
this work.

8.2 Overheads

The largely static nature of CTV allows for the MCAPI implemen-
tation to be very lightweight. As discussed in section 7.3, MCAPI
nodes remain static throughout the execution of the program and
their locations are fixed to individual CPUs. This information can
be used by the MCAPI implementation to perform offline routing
of many packets, and therefore implement low-latency datagram
communications. CTV does allow for dynamic behaviour but this
overhead is only included when it becomes necessary, and commu-
nications between static nodes is unaffected. This also allows for
the code footprint to be kept small, as dynamic behaviour is only
linked in when required.

The CTV communications layer and pthreads implementation
are around 8.6kB of compiled Microblaze code, with the MCAPI
implementation adding another 3.6kB. This varies for different
target architectures as support for channels and peripherals are
linked in only as they are required. For comparison, Xilkernel [27],
a widely-used microkernel for FPGA-based architectures requires
22kB.

The scale of these sizes is highlighted by considering the mem-
ory footprint of run-time middleware solutions to perform com-
munication, such as CORBA ORBs. Although not directly com-
parable due to their differing feature sets, Real-Time CORBA is
aimed at deployment in real-time and embedded systems despite
the TAO ORB measuring 2075kB in size, and the ZEN Real-Time
ORB measuring approximately 2539kB [19]. This shows that the
approach in this paper can be implemented in a very small amount
of code, making it suitable for use on highly resource-constrained
systems.

The MCAPI layer can also be shown to display good perfor-
mance characteristics. The total latency and throughput for a given
message are primarily determined by the communication channel
in use, but it is possible to measure the latency through the MCAPI
and CTV communications layers. Between two Microblaze cores,
messages take up to 994 clock cycles to establish a connection and
then an average of 48 clock cycles (plus physical transfer time) per
byte to transfer from one core to the other. The layer therefore adds
on average 24 cycles on the sender side and 24 on the receiver size
once the channel is established. Clearly these numbers will vary on
different processors with different memory architectures and com-
pilers, but this shows that overheads in this implementation can
be kept to only small fractions of the actual physical transfer time
(which is outside the control of the software).

9. Conclusion

This paper has discussed the novel combination of an industry
standard communications API and Compile-Time Virtualisation
(CTV). The work argues that this technique allows for better ex-
ploitation of complex embedded architectures.

The Multicore Communication API (MCAPI) has been pro-
posed by the Multicore Association to provide a standardised API
for communication across multicore embedded architectures. It
provides lightweight, efficient communications and is used to al-
low standard languages to communicate efficiently in a heteroge-
neous, distributed architecture. As an API, MCAPI is required to
use the same programming model as the language to which it is
bound. However, existing programming languages are lacking in
their support for complex non-standard architectures. Specifically,

the programmer cannot express from their source code the map-
pings between elements of their code (i.e. threads and data struc-
tures) and the hardware features to which they should be mapped.
To solve this, the MCAPI implementation is combined with CTV.
CTV is a technique which introduces a Virtual Platform to hide ar-
chitectural complexities whilst still allowing programmer control
over program mappings. The virtualisation only exists at compile-
time, leading to very low overheads.

The MCAPI implementation is shown to be useful for target-
ing standard MCAPI programs that use the POSIX pthreads library
onto complex FPGA-based architectures. The programmer can per-
form design space exploration quickly without recoding. Due to
CTV’s compile-time nature, the layer is shown to perform well with
low message latency.

References

[1] J. Agron and D. Andrews. Building heterogeneous reconfigurable sys-
tems with a hardware microkernel. In Proceedings of CODES+ISSS
’09, pages 393-402, New York, NY, USA, 2009. ACM.

[2] Baumann et al. The Multikernel: a new OS architecture for scalable
multicore systems. In Proceedings of SOSP ’09, pages 29-44, New
York, NY, USA, 2009. ACM.

[3] R. Brukardt. The Ada95 language reference manual - Appendix
E, Distributed Systems (International Standard ISO/IEC 8652:1995).
http://www.adaic.org/standards/95lrm/html/RM-E.html.

[4] W. W. Carlson, D. E. Culler, and E. Brooks. Introduction to UPC and
language specification. CCS-TR-99-157, 1999.

[5] B. Chamberlain, D. Callahan, and H. Zima. Parallel programmabil-
ity and the Chapel language. Int. J. High Perform. Comput. Appl.,
21(3):291-312, 2007.

[6] R. Chandra et al. Parallel programming in OpenMP. Morgan Kauf-
mann, 2001.

[7] P. Charles, C. Grothoff, V. Saraswat, C. Donawa, A. Kielstra,
K. Ebcioglu, C. von Praun, and V. Sarkar. X10: an object-oriented
approach to non-uniform cluster computing. In Proceedings of OOP-
SLA ’05, pages 519-538, New York, NY, USA, 2005. ACM.

[8] CoWare, Inc. CoWare Virtual Platform - hardware/-

software integration and testing...without hardware.
http://www.coware.com/products/virtualplatform.php (Accessed
Aug 09).

[9

—

P. Dibble and A. Wellings. JSR-282 status report. In Proceedings of
the 7th International Workshop on Java Technologies for Real-Time
and Embedded Systems, ACM International Conference Proceeding
Series, pages 179-182, New York, NY, USA, 2009. ACM.

[10] K. Fatahalian et al. Sequoia: programming the memory hierarchy. In
SC 06, page 83, 2006.

[11] M. B. Gokhale, J. M. Stone, J. Arnold, and M. Kalinowski. Stream-
oriented FPGA computing in the Streams-C high level language. In
FCCM ’00, 2000.

[12] J. Gosling and G. Bollella. The Real-Time Specification for Java.
Addison-Wesley Longman Publishing Co., Inc., 2000.

[13] I. Gray and N. Audsley. Exposing non-standard architectures to
embedded software using Compile-Time Virtualisation. International
Conference on Compilers, Architecture, and Synthesis for Embedded
Systems (CASES °09), 2009.

[14] 1. Gray and N. Audsley. Supporting islands of coherency for highly-
parallel embedded architectures using Compile-Time Virtualisation.
In 13th International Workshop on Software and Compilers for Em-
bedded Systems (SCOPES), 2010.

[15] W. Gropp, E. Lusk, and A. Skjellum. Using MPI: portable parallel
programming with the message-passing interface. MIT Press, Cam-
bridge, MA, USA, 1994.

[16] M. C. Gthe, D. Wengelin, and L. Asplund. The distributed Ada run-
time system DARTS. Software: Practice and Experience, 21:1249—
1263, 1991.

[17] J. Holt. Designing an industry standard api to man-
age multicore system resources. http://www.multicore-
association.org/webinar/090811_MRAPI.pdf, August 2009.

[18] Institute of Electrical and Electronics Engineers. POSIX.lIc, threads
extensions (IEEE Std 1003.1¢-1995), 1995.

[19] R. Klefstad, M. Deshpande, C. ORyan, A. Corsaro, A. S. Krishna,
S. Rao, and K. Raman. The performance of ZEN: A real time CORBA
ORB using real time java. In Proceedings of Real-time and Embedded
Distributed Object Computing Workshop. OMG, September 2002.

[20] J. Maloy. TIPC: Providing communication for linux clusters. In
Proceedings of the Linux Symposium - Volume 2, pages 347-356,
2004.

[21] A. Munshi, editor. The OpenCL Specification. Khronos OpenCL
Working Group, 2008.

[22] A. L. Pope. The CORBA reference guide: understanding the Com-
mon Object Request Broker Architecture. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 1998.

[23] J. Reinders. Intel Threading Building Blocks. O’Reilly & Associates,
Inc., Sebastopol, CA, USA, 2007.

[24] S. Sharma, G. Gopalakrishnan, E. Mercer, and J. Holt. Mcc - a runtime
verification tool for mcapi user applications. In Proceedings of Formal
Methods in Computer Aided Design 2009 (FMCADO09), 2009.

[25] The Multicore Association. Multicore communications
API specification V1.063 (MCAPI). http://www.multicore-
association.org/workgroup/mcapi.php, March 2008.

[26] W. Thies et al. Streamlt: A compiler for streaming applications,
December 2001. MIT-LCS Technical Memo TM-622, Cambridge,
MA.

[27] Xilinx Corporation. Xilkernel.
http://www.xilinx.com/ise/embedded/edk91i_docs/
xilkernel_v3_00_a.pdf, December 2006.

[28] Xilinx Corporation. Microblaze processor reference guide. UGO081
v9.0, 2008.

