
1

Model-based development of embedded systems -
the MADES approach

Neil C. Audsley, Ian Gray∗, Leandro Soares Indrusiak,
Dimitris Kolovos, Nikos Matragkas∗, Richard Paige

University of York, York, U.K.

Abstract—This paper discusses the goals of the
MADES project, which aims to use techniques of
model-driven development to assist the development
of complex embedded systems. Three main areas are
covered by MADES - the development of embedded
software; the development of embedded hardware; and
the verification and validation of the system. This paper
presents an early example of the MADES model trans-
formations being used to generate synthesisable VHDL
descriptions from high-level UML MARTE models.

Index Terms—Model Driven Engineering, Epsilon,
MADES, Embedded Systems, Real-Time Systems.

I. Introduction

The architectures of embedded systems are becoming
increasingly non-standard and application-specific. They
frequently contain multiple heterogenous processing cores,
non-uniform memory, complex interconnect or custom
hardware elements such as DSP and SIMD cores. However,
programming languages have traditionally assumed a sin-
gle processor architecture with a uniform logical address
space and have abstracted away from hardware implemen-
tation details. As a result, developing software for these
architectures can be challenging. Equally, such systems
are frequently deployed in high-integrity or safety-critical
systems which require the highest levels of predictability
and reliability.

The MADES Project is an EU-funded project that aims
to use model-driven techniques to enable the development
of the next generation of highly complex embedded sys-
tems, whilst reducing development costs and increasing
reliability and predictability. In this paper we provide
an overview of the MADES approach to model-driven
development of embedded systems.

II. MADES Project Goals

The MADES project aims to develop the elements of
a fully model-driven approach for the design, validation,
simulation, and code generation of complex embedded
systems to improve the current practice in the field.
MADES differentiates itself from similar projects in that
way that it covers all the phases of the development
process: from system specification and design down to code
generation, validation and deployment. Design activities
exploit a dedicated language developed on top of the

∗Supported by EU Framework 7 research contract FP7-248864

OMG standard MARTE (Modeling and Analysis of Real-
time and Embedded systems) [4], and foster the reuse
of components by annotating them with properties and
constraints to aid selection and enforce overall consistency.

Validation activities comprise the verification of key
properties of designed artifacts and of the transforma-
tions used throughout the development process, and also
the closed-loop simulation of the entire system. Code
generation addresses both conventional programming lan-
guages (e.g., C) and hardware description languages (e.g.,
VHDL), and uses the novel technique of Compile-Time
Virtualisation to smooth the impact of the diverse ele-
ments of modern hardware architectures and cope with
their increasing complexity.

All these aspects will be fully supported by prototype
tools integrated in a single framework, and will be thor-
oughly validated on real-life case studies in the surveillance
and avionic domains. The project also aims to develop a
handbook to provide detailed guidelines on how to use
MADES tools in the development of embedded systems
and promote their adoption.

III. The MADES Approach

A conceptual model of the inter-relationships between
the various artifacts of the MADES approach is illustrated
in figure 1.

One of the main characteristics of the MADES approach
is the use of model-driven transformations throughout the
entire design process. These transformations are used to
convert one or more input specifications into one or more
output specifications. Model transformation languages are
defined in a metamodel level and establish the relationship
between source metamodel elements and target meta-
model elements (see figure 2).

The MADES approach focusses on three areas:

• Generation of platform-specific embedded software
from architecturally-neutral software specifications.

• Generation of hardware descriptions of the modelled
target architecture.

• Verification of functional and non-functional proper-
ties.

Development effort starts with building design and anal-
ysis models using the MADES modelling language, which
is based on a combined subset of OMG MARTE [4] (a
UML profile for modelling real-time embedded systems)



2

Design Models

Platform-
agnostic

code Hardware
architecture
description

Hardware/
software
mappings

Compile-Time Virtualisation

Platform-specific code

Embedded software generation

Verification

Verification
scripts

User input
Simulation

scripts

Zot verification

MHS description

VHDL

Hardware description
generation

Fig. 1. Overview of the artifacts in the MADES approach

MetaMetaModel

Transformation
Language

Source
Language

Target
Language

Source
Metamodel

Transformation
Rules

Target
Metamodel

Source Model
Transformation

Engine
Target Model

<<instantiate>> <<use>> <<instantiate>>

<<instantiate>> <<instantiate>> <<instantiate>>

<<instantiate>>

<<use>> <<use>>

Fig. 2. MADES Mapping Scheme

and SysML [6] (a general-purpose modelling language for
systems engineering applications). The language aims to
overcome shortcomings of these existing languages and to
provide:

• Specifications of functionality in an architecturally-
neutral way.

• Descriptions of target hardware.
• Deployment diagrams that map functionality to hard-

ware/software.
• Timing and non-functional properties for early and

frequent verification.
• Code-reuse, component-based design, and maintain-

ability.

Verification and simulation play a key role in the
MADES approach. Such activities are present during:

• Verification of key properties on designed artifacts
(for example, whether a system will meet a specified
deadline, or be able to support a specified volume of
data).

• Closed-loop simulation based on detailed models of

the environment (for functional testing and early
validation).

• Verification of designed transformations (from high-
level system models down to low-level hardware/soft-
ware implementations).

In order to provide verification and simulation in the
MADES toolset, the Zot tool [5] is used. The verification
phase aims to provide rapid and early verification of the
system to reduce design time and guarantee correctness of
the final system.

The MADES code generation phase allows the designer
to model the target hardware at a high-level of abstraction
and use deployment diagrams to map the input code
(which is provided in an architecturally-neutral form)
to elements of the target hardware. A technique called
Compile-Time Virtualisation (CTV) [1], [2] is used to
hide the complexity of embedded software development
through the provision of a Virtual Platform (VP). The
VP is an idealised view of the underlying hardware which
provides a simple programming model that is compatible
with the chosen source language. The result of this is that
the programmer can write code as if it is to be executed
on the VP, and CTV will then automatically retarget this
code for execution on the actual platform. If the actual
platform changes during development (for example, due
to hardware redesign or changing requirements) the same
input code can be automatically retargeted to the new
hardware and does not manually ported.

Finally, the MADES approach also considers generation
of synthesisable hardware descriptions from the hardware
model. The deployment mappings of the code generation
phase use a high-level description of the capabilities of
the desired target architecture (for example, “three proces-
sors connected with a common bus, two banks of shared
memory”). This can be reified into an unambiguous hard-
ware description for implementation using the MADES
approach.

The Epsilon platform [3] is used to implement both the
model-to-model and model-to-text transformations used
in the MADES approach. Epsilon (Extensible Platform
of Integrated Languages for mOdel maNagement) is a
platform for building consistent and inter-operable task-
specific languages for model management tasks such as
model transformation, code generation, model compar-
ison, merging, refactoring and validation. Epsilon can
provide traceability information produced by the various
transformations, which is of paramount importance for
embedded systems design due to the need to comply to
particular standards such as the DO-178B Standard.

IV. Hardware generation example

This section presents the preliminary implementation of
one of the three main areas of the MADES project, that of
model-directed hardware generation. Following papers will
discuss the areas of software development and verification.

The hardware generation approach is shown in figure 3.
In this implementation, FPGAs are used to implement



3

Hardware
architecture
description

Templates

Code generation MHS description Xilinx Platgen

VHDL

Fig. 3. MADES hardware generation

H2

H1

H0

Topology not
modelled, totally-
connected network
assumed

CPU

CPU

Mem

Comms

Mem

CPU

Topology modelled,
untimed, simple
functional model
reduces accuracy of
simulation

Arm 9

DCache

CAN bus

DDR2

Complete hardware
model, allows
verification

Transaction-
level

Simulation
level

Functional

Cycle-
accurate

Model Modelling level

Fig. 4. MADES hardware models

and test the generated architectures. The hardware ar-
chitecture description is provided using a set of MADES
hardware modelling languages. These languages are briefly
described below and detailed in figure 4, later papers will
formally define these languages:

• H2: A high-level model of the target architecture. Its
constituent elements are processors, memory spaces,
communication channels, clocks, and custom hard-
ware elements. Architectural links (for example CPU
→ Memory) are used to connect elements. This model
does not describe any lower-level details (such as bus
topologies).

• H1: A refinement of H2, H1 is a lower-level model
which codifies the bus topology of the system and
specifies I/O. It still contains all information from H2,
it is a true refinement. H1 does not define the specific
types of each hardware instance. For example, at this
level the model will still denote ‘processor’ rather than
‘Arm9’.

• H0: H0 instantiates the H1 model in terms of the MHS
language (see below). Generated by model-to-model
transformation from H1 using transformation rules
and in-place refinement, known as ‘polishing rules’.

H0 demonstrates an equivalent level of abstraction to
that of the Microprocessor Hardware Specification (MHS)
language [9] used by Xilinx Corporation’s FPGA Develop-

MARTE stereotype H2 class

«hwProcessor» Processor
«hwMemory» Memory
«hwClock» Clock
«hwResource» Channel
«hwComponent» OtherHardware
«hwProcessor»→ «hwMemory» CPUMemoryLink
«hwProcessor»→ «hwResource» CPULink
«hwProcessor»→ «hwComponent» CPULink

TABLE I
MARTE to H2 mappings. A right arrow (→) denotes an

association between two classes.

ment Tools. MHS files are generated by the MADES tools
from an H0 model using model-to-text transformation.
The Xilinx tool ’platgen’ [8] is then used as an underlying
HDL generator, as it can take an MHS description and
generate a set of synthesisable VHDL files for implementa-
tion on an FPGA. This allows the generated architectures
to be realised and tested. The development process is
therefore:

1) Initial hardware model is specified in a high-level
UML MARTE model.

2) This model is translated using the Epsilon toolchain
with a model-to-model transformation into H2. The
mappings for this are shown in table I.

3) H2 model is refined through H1 to an H0 model using
the Epsilon framework.

4) The H0 model is converted to an MHS file using a
model-to-text transformation.

5) The MHS file can then be passed to the Xilinx tools
to generate VHDL.

6) The generated VHDL is then synthesised and imple-
mented using the tools of the FPGA vendor.

The use of MHS files and Xilinx FPGAs is not required
by the MADES toolchain, but it is a useful language to
work with as it already has robust industrial-quality tool
support available. If a different language or implementa-
tion fabric is required, another model-to-text transforma-
tion can be used. The modularity of the Epsilon framework
assists the development of multiple output translations
without affecting the high-level models.

Figure 5 shows an example result of the MARTE to H2
transformation. As can be seen, this translation maintains
the same level of information as its classes correspond to
MARTE’s hardware stereotypes (annotations and proper-
ties can also be carried over) and is used to convert the
model into a form that can be used in the rest of the
Epsilon-based MADES toolchain.

More translation work is required in the H2 to H0
translation as H0 contains a greater amount of information
than H2. This information is filled in using a template-
based solution. For example, instances of H2’s processor
class can be assigned a ‘type’ property that informs the
translation process which specific processor type should
be used to implement it. If this is set to a Microblaze soft
processor [7] then the translation process will instantiate
the Microblaze template. Templates are composed of MHS



4

MARTE model

H2 model (via Epsilon M2M)

Fig. 5. Transformation example between MARTE and H2

segments that describe a the hardware element in question
and any additional support peripherals that it requires.
(The Microblaze example also instantiates an interrupt
controller and clock generation logic.)

Templates are also used to specify bus topologies. The
default template instantiates a single peripheral bus for
each processor of the target architecture. If a peripheral is
connected to multiple processor buses but only supports
a single bus interface than a new shared peripheral bus is
created and bus bridges used. The list of supported tem-
plates is currently small, but is being constantly expanded.

Processor address maps can be automatically de-
termined (by successively assigning addresses from
0x00000000 upwards) or specified by the designer using
properties in the MARTE model which are then carried
into the M2 model by the transformation.

This preliminary implementation of the MADES hard-
ware generation system is currently being used to assist de-
velopment of the MADES modelling languages. Through
experimentation it can be determined which hardware

modelling features are important and if there are any
features that are not already covered by MARTE.

V. Conclusion

The MADES project aims to use model-driven engi-
neering techniques to aid the development of embedded
systems. It uses a systems modelling language based on
MARTE and SysML that allows the developer to ex-
press their system at a high-level of abstraction, and
then to iteratively refine their design to reach the final
implementation. MADES differentiates itself from similar
work through three unique features. First, extensive use
of model transformations is used to facilitate development
and provide traceability. Second, verification and valida-
tion are key parts of the MADES design flow, allowing
early and frequent verification of the system being devel-
oped. Third, Compile-Time Virtualisation (CTV) is used
to assist the development of embedded software.

This paper has shown how the MADES model transfor-
mation framework is being used to generate synthesisable
hardware descriptions of non-standard embedded systems.
Whilst only a preliminary implementation, the transla-
tions can already produce complex hardware descriptions
quickly from high-level system models with only minimal
designer input. Model transformation techniques are also
being applied in the MADES project to assist the mapping
of software to the generated architecture.

References

[1] I. Gray and N. Audsley. Exposing non-standard architectures to
embedded software using Compile-Time Virtualisation. Interna-
tional Conference on Compilers, Architecture, and Synthesis for
Embedded Systems (CASES ’09), 2009.

[2] I. Gray and N. Audsley. Supporting islands of coherency for
highly-parallel embedded architectures using Compile-Time Vir-
tualisation. In 13th International Workshop on Software and
Compilers for Embedded Systems (SCOPES), 2010.

[3] D. S. Kolovos, R. F. Paige, and F. A. C. Polack. Eclipse
development tools for epsilon. In In Eclipse Summit Europe,
Eclipse Modeling Symposium, 2006.

[4] Object Management Group. UML profile for MARTE:
Modeling and Analysis of Real-Time Embedded Systems.
http://www.omgmarte.org/, November 2009.

[5] M. Pradella, A. Morzenti, and P. San Pietro. The symmetry
of the past and of the future: bi-infinite time in the verification
of temporal properties. In ESEC-FSE ’07, pages 312–320, New
York, NY, USA, 2007. ACM.

[6] T. Weilkiens. Systems Engineering with SysML/UML: Model-
ing, Analysis, Design. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 2008.

[7] Xilinx Corporation. Microblaze processor reference guide. UG081
v9.0, 2008.

[8] Xilinx Corporation. Embedded system tools reference guide -
EDK 11.3.1. Xilinx Application Notes, UG111, 2009.

[9] Xilinx Corporation. UG642: Platform specification format refer-
ence manual. http://www.xilinx.com/support/documentation/
sw manuals/xilinx11/psf rm.pdf, September 2009.


