
Developing Predictable Real-Time Embedded
Systems using AnvilJ

Ian Gray
Real-Time Systems Group

University of York, York, U.K.
ian.gray@cs.york.ac.uk

Neil C. Audsley
Real-Time Systems Group

University of York, York, U.K.
neil.audsley@cs.york.ac.uk

Abstract—This paper proposes AnvilJ, a novel technology
developed to assist the development of software for predictable,
embedded applications. In particular, the work focuses on the
complexities of programming for heterogeneous embedded sys-
tems in an industrial context, in which the need for predictability
is an important requirement. AnvilJ converts architecturally-
neutral Java code into a set of target-specific programs, auto-
matically distributing the input software over the heterogeneous
target architecture whilst ensuring preservation of predictability.
During translation it generates a low- to zero-overhead runtime
that is tailored to the specific combination of input application
and target system, thereby ensuring maximum efficiency. AnvilJ
uses a technique called Compile-Time Virtualisation that allows
it to work with existing compilers and removes the need for
language extensions which can hinder certification efforts.

Keywords-Java, AnvilJ, Compile-Time Virtualisation, Embed-
ded Systems, Real-Time Systems, MADES.

I. INTRODUCTION

Modern embedded systems present unique challenges for
software development. The programming model of main-
stream languages (such as C or Java) assumes a homoge-
neous architecture with a uniform, shared memory space. This
model is incompatible with the trend in embedded systems
to use application-specific, heterogeneous architectures [16]
that contain multiple processing units of differing capabilities
(processors, DSPs, FPGAs, etc.) and multiple non-uniform
memory blocks of differing sizes, speeds, and technologies
(such as transactional or scratchpad memories [4]). This results
in a mismatch between the programmer’s conceptual model
and the underlying implementation.

The second challenge is that embedded systems are fre-
quently deployed in safety-critical or high-integrity domains.
This requires the systems to be predictable in terms of execu-
tion time and resource usage for correctness and schedulability
analysis. The growing size and complexity of embedded sys-
tems means that achieving state coverage (and therefore veri-
fication) using simulation- or measurement-based approaches
alone is difficult.

Languages like C, C++, or Java have started to allow
the developer limited capability to reason about the target
architecture and the way in which their software should be
mapped to it. For example, Java’s Real-Time Specification
[10] (RTSJ) and POSIX allow basic mapping of threads
to processors and to model physical memory, but largely

homogeneous architectures are still assumed. Developers must
rely on language extensions or extra-linguistic techniques (e.g.
custom tools and linker scripts) to fully exploit complex
hardware.

This paper argues there is a need for a form of lightweight,
low overhead, virtualisation which can hide the complexities of
developing software for non-standard embedded architectures,
whilst still maintaining predictability and industrial appli-
cability. Existing systems tend to either fail to effectively
exploit changing underlying architectures, introduce too much
overhead for resource-constrained systems, or introduce too
much unpredictability to the final implementation.

This paper introduces AnvilJ1, an approach for the pre-
dictable Compile-Time Virtualisation (CTV) [11] of heteroge-
neous architectures. AnvilJ provides predictable virtualisation
of complex architectures using Java as its input programming
language. AnvilJ is designed to preserve the predictability
of the input system, to not introduce non-determinism or
analytical complexity, and to produce a specially-tailored,
minimal-overhead implementation. The same architecturally-
neutral input code can be distributed over different target ar-
chitectures simply by updating the system model. Verification
is aided by CTV’s aggressive use of static rather than dynamic
behaviour, reuse of legacy code and existing tools, and the very
small size of its generated libraries and runtime.

Section II discusses previous work and introduces Compile-
Time Virtualisation. Section III describes AnvilJ and its system
model, and then section IV describes the way it is imple-
mented. Section V evaluates the overheads imposed by AnvilJ,
and finally section VI presents conclusions.

II. BACKGROUND

Existing attempts to target complex systems frequently
involve creating new programming languages with extended
programming models that specifically address a given prob-
lem. For example, languages for concurrency [7], non-uniform
memory [9] or data streaming [24]. The problem with such an
approach is that it is not amenable to the domain of high-
integrity industrial applications. In industry, legacy code is
important due to the cost of redevelopment and recertification.

1AnvilJ was developed as part of MADES - EU Framework 7 STREP
project FP7-ICT-2007 248864 (see section V).



Also, switching to new tooling (compilers, linkers, etc.) is
undesirable because compilers only attain “trusted” status after
many years of use in the field. Companies are forced to
either use trusted compilers, or to certify the output object
code rather than the input source code, increasing certification
effort.

Another common approach is to introduce a middleware or
OS layer to mask shortcomings of the input language without
a new compiler. However, such solutions [5], [20] introduce
a large overhead cost, both in terms of static codebase size
(which is a problem for certification) and runtime memory or
processor use. Most systems also require the software to be
manually partitioned into multiple input applications, rather
than the more flexible single-program model in which the
software is all one application and software elements (i.e. tasks
or threads) are mapped over the architecture.

In general, middleware systems are still bound by the
unpredictable programming model of their host languages. By
design they hide low-level hardware details, which can lead to
unpredictable timing behaviour, and must support undesirable
features inherited from their source language (such as C’s
assumption of a single global address space). These factors can
make such systems unsuitable for embedded real-time systems.

Compile-Time Virtualisation (CTV) is a technique devel-
oped to allow the exploitation of complex architectures from
existing programming languages without language extensions
or custom compilers. CTV replaces the inflexible layers of
virtualisation and abstraction present in normal software de-
velopment with a single virtualisation layer across the entire
architecture, termed the Virtual Platform (VP). The VP is
a compile-time concept, sitting between the input software
and the compiler and is implemented through a combination
of source-to-source translation and code generation. The VP
presents an idealised view of the underlying hardware and
target compiler, making it appear to the programmer that the
source language and toolchain can target the given embedded
architecture, where in reality it may not.

For example, C and C++ assume a single logical address
space, but this is not true for many systems. The VP will
expose a single address space and the programmer may code
as if it is the case. At compile-time, the VP translates the
input code into refactored code which uses the true memory
architecture and takes care of the low-level, hardware-specific
details.

CTV differs from existing virtualisation and translation-
based approaches in the way that the VP is realised. Its exis-
tence at compile-time (rather than runtime) results in a very
low-overhead system as required runtime support is generated
each compile for exactly the input code and architecture of the
system. CTV’s novelty is discussed in detail in existing work,
but can be summarised as follows:

• CTV operates on existing unmodified input code with
standard compilers using compile-time code refactor-
ing by providing a virtualisation layer that allows the
programming model of the input language (normally
homogeneous SMP or similar) to target heterogenous,

multicore, embedded systems with non-uniform memory
and arbitrary communications topologies.

• Virtualisation mappings (threads → CPUs, data → mem-
ory) are provided by the programmer, unlike in most
runtime systems.

• In contrast to most runtime systems, CTV’s compile-
time system model assumes the communications and
partitioning of the system is static and any dynamism
must be explicitly enumerated.

• Runtime systems also tend to allow fully dynamic be-
haviour of the input code (thread migration, dynamic
shared memory etc.). CTV’s system model places well-
defined restrictions on this model.

• Because of these restrictions, refactoring is predictable
and traceable and the required runtime support is very
small and timing predictable. Complex behaviour is only
provided if explicitly required by the program.

• Also, they allow the runtime support to be built minimally
for each program and architecture combination. Unused
features are optimised away, minimising overheads.

• Porting programs to different architectures requires no
code editing, only new virtualisation mappings.

CTV has already been used to target C code to heteroge-
neous FPGA-based architectures with hardware accelerators
[11], and to integrate with MCAPI and MRAPI – industry
standard APIs for embedded programming [12]. This work
presents an implementation of CTV that is based on targeting
Java (and its real-time subsets) at embedded architectures.

III. SYSTEM MODEL

The abstraction layers and models used in most program-
ming languages were developed to target fixed, uniform ar-
chitectures. As general-purpose architectures evolved they in-
troduced hardware features (e.g. Memory Management Units,
Hyperthreading [16]) to hide their underlying complexity and
emulate this simple model. However, these are frequently
absent from embedded hardware. Also, as hardware continues
to diverge from the basic model it is becoming impossible to
hide the differences in an efficient and predictable way without
assistance from the programmer.

As previously discussed, a system which supports legacy
code and standard languages is desirable. The system must
therefore introduce missing concepts to the programming
model which allow the designer to map software elements
to architectural elements and limit the implications of as-
sumptions made by the programming language. For Java, the
assumption of uniform shared memory makes most multi-core
JVMs (e.g. Terracotta [21] or Kaffemik [2]) provide distributed
shared memory over a uniform TCP/IP-based network. This
is acceptable for large-scale systems, but heavyweight for
embedded systems.

AnvilJ is an implementation of CTV that allows platform-
independent Java (and its subsets) to effectively exploit com-
plex, heterogeneous, embedded architectures with non-uniform
memory architectures. This section will detail the system
model of all CTV systems in section III-A, and then show



Concurrent 

objects

Shared 

objects
Shared data

Channel Memory

Endpoint Endpoint

Processing 

node

T
a

rg
e

t 

a
rc

h
it

e
ct

u
re

In
p

u
t 

a
p

p
li

ca
ti

o
n

Fig. 1. The CTV system model

how this model is refined for AnvilJ in section III-B. The as-
sumptions made by AnvilJ for developing predictable systems
are detailed in section III-C.

A. CTV System Model

CTV defines a language-neutral system model which rep-
resents a single input application and a deployment of that
software over a target architecture. The single-program input
allows great flexibility because the mappings of software to
hardware can be adjusted to explore the design space without
recoding the input program. Greater detail on this model is
available in existing CTV work and is illustrated in figure 1.

The input to a CTV system is a single application contain-
ing:

• Concurrent objects (CO): Active elements with a thread
of execution and local memory. These exist for the
duration of the system and may create other language
elements (tasks, data items, etc.) in the same computation
node (see below).

• Shared objects (SO): Passive elements that expose a
set of shared procedures that take arguments and return
values. Invoked by the COs of the system. May contain
state, stored in its memory space (see below). Implement
a synchronization lock that can optionally be used to
make its shared procedures mutually-exclusive.

• Shared data: Elements which merely contains state.
Provide no guarantees about access control or coherence.

A CO may communicate with any other COs or SOs,
however the elements it has created may not communicate
with the created elements of other COs or SO. This restriction
allows the communication topology of the system to be deter-
mined at compile-time and the required runtime support to be
reduced, as discussed later. This approach is particularly suited
to embedded development because it mirrors many of the re-
strictions enforced by high-integrity and certification-focussed
language subsets (such as the Ravenscar subsets of Ada [6]
and Java [14] or the MISRA-C coding guidelines [23]).

The COs in a CTV system are each mapped to exactly one
processing node in the target architecture. Nodes are hardware
elements that provide computation. They communicate with
other nodes using channels which are shared communication
resources that can be used to transfer messages. Channels have
at least one endpoint, which models the connection between

AnvilJ 

Thread

AnvilJ Shared 

Instance

Channel Memory

Endpoint Endpoint

Processing 

node (JVM)

T
a

rg
e

t 

a
rc

h
it

e
c
tu

re

In
p

u
t 

a
p

p
li

c
a

ti
o

n

AnvilJ Instances

Fig. 2. The AnvilJ system model

a node and a channel. Shared objects and data are mapped
to memory spaces which provide logically-contiguous data
storage with similar access patterns. A node may be connected
to arbitrary numbers of endpoints.

This model is compile-time static - the number of COs,
SOs, etc. does not change during runtime. This is in contrast
to systems like CORBA which adopt a “dynamic-default”
approach in which runtime behaviour is limited only by the
supported language features. Such systems support a rich
runtime model but the resulting system can be heavyweight
as they are forced to support features such as system-wide
cache coherency, thread creation and migration or dynamic
message routing, even if not required by the actual application
or architecture. The approach of CTV is “static-default” in
which the part of the application modelled is static, resulting
in a restricted programming model that promises less, but the
amount of statically-available mapping information means that
for most nodes of the system the required runtime can be
significantly reduced.

B. AnvilJ System Model

AnvilJ is an implementation of CTV for the Java program-
ming language and its related subsets aimed at ensuring system
predictability, such as the RTSJ. Accordingly, it presents a
system model (shown in figure 2) consistent with the CTV
model from section III-A but with some refinements and
clarifications. The input to AnvilJ is a single Java application
modelled as containing two sets:

• AnvilJ Thread: (CTV Concurrent objects) A
static final instance or descendant of
java.lang.Thread.

• AnvilJ Shared Instance: (CTV Shared objects) A
static final instance of any other class.

In Java, all data must be contained within an object instance
(or static in a class) so CTV shared data items are not
needed in the AnvilJ model. Collectively, AnvilJ Threads
and Shared Instances are described using the umbrella term
AnvilJ Instances. It is not strictly necessary to differentiate
between Threads and Shared Instances as merely instances
would suffice. Whilst this would better reflect the object-
oriented nature of Java, the differentiation is used so that
initial analysis and verification of mappings can be performed



without knowledge of the source program. It is clear from the
mappings which instances are active and which are passive.

The move to support Java necessitated one significant
change in the CTV system model. In CTV the architecture
is modelled in terms of processors, in AnvilJ it is in terms
of processing nodes. A processing node models a Real-Time
Java Virtual Machine (JVM) [19] in the final system (or a
standard JVM with accordingly reduced predictability). The
Java specification does not define whether a multicore system
should contain a single JVM for the entire system [2], [21]
or one per core. Therefore to support this, AnvilJ needs to
model the JVMs, rather than just the processors themselves.
The JVMs need not have similar performance characteristics
or features. As with CTV, every AnvilJ Instance is mapped to
exactly one node.

Nodes communicate using channels, which are the commu-
nication primitives of the target architecture. AnvilJ statically
routes messages across the nodes of the system to present
the totally-connected communications assumed by Java. The
designer provides drivers for the channels of the system (see
section IV-D). Memories and endpoints are as in the existing
CTV model. Every AnvilJ Shared Instance must be mapped to
either exactly one node (on the heap of the JVM), or exactly
one memory where it will be available to all nodes connected
to that memory.

Not all instances of java.lang.Thread need to be
modelled as an AnvilJ Instance. Equally, not all shared ob-
ject instances need to be modelled at all. Enough should
be modelled to fulfill the constraint (from the CTV model)
that program instances created by an AnvilJ Thread t only
communicate with other instances created by t, or AnvilJ
Instances. This is known as the ‘no dynamic shared data’
constraint and is discussed in detail in section III-E.

C. Assumptions

AnvilJ places some limits on the dynamic behaviour of the
input software and the way in which it is mapped to the target
architecture, as follows:

• The number of AnvilJ Instances is compile-time static.
• All statements of the input code which access an AnvilJ

Instance can be determined offline.
• The ‘no dynamic shared data’ constraint (see sec-

tion III-B).
These statements originate from CTV, and are translated

into Java-specific terms in section IV-A. In practice, these
restrictions are used because they are a natural way to develop
embedded software when using the single-program model (one
program to define the whole system, rather than the more
common one-program-per-processor).

When developing AnvilJ, an alterative to these restrictions
was considered. An ‘elaboration phase’ which executes on
start up to initialise the application structure by instantiating
threads and data structures can allow for predictable runtime
behaviour (after the elaboration phase). This may be better
for general-purpose frameworks because it limits the input
software less. However embedded developers are used to such

restrictions through coding guidelines and the use of static
analysis tools. Requiring the overall structure to be compile-
time static greatly simplified the implementation of the AnvilJ
refactoring tools, and enhanced the potential for minimisation
of runtime support.

AnvilJ does not require the use of the RTSJ because it aims
to be applicable to all embedded systems. This is why the
initial implementation uses standard Java (see section IV). If
AnvilJ is to be used to make predictable systems the following
additional assumptions are made:

• The computation model is that of coordinating threads,
sharing data using synchronized shared memory.

• Each thread is assigned a fixed priority level - the
executing thread is always the thread with the highest
priority which is not otherwise blocked.

• Priority inversion in the final system can be prevented, or
predicted and bounded.

• Threads contain code with bounded execution times.
• Blocking throughout the system (such as when accessing

synchronised methods) is bounded.
These assumptions are derived from the RTSJ and Raven-

scar Java. Note also the chosen hardware architecture should
contain processors, memories and channels which allow
bounded access times to be obtained. This paper will argue
that the AnvilJ transformation supports preservation of pre-
dictability. This means that if the input system conforms to
AnvilJ’s system model then the output system will remain as
predictable. 2

D. Running Example

The code skeleton example in figure 3 shows the classic
producer-consumer design pattern expressed in standard Java
with a producer thread and two worker threads. This example
will be revisited throughout the paper to demonstrate the way
in which AnvilJ’s refactoring operates, and that it preserves
the predictability of the input program. The target architecture
will be a dual processor node system with no shared memory,
and a single communications channel between the two nodes.
The main thread, w1, and wq are assigned to one node, w2 to
the other.

E. Assigning AnvilJ Instances

The ‘no dynamic shared data’ constraint (section III-B)
allows the AnvilJ runtime to be drastically reduced from that of
a full distributed JVM because it relaxes restrictions imposed
by the Java programming model:

• It is not necessary to maintain expensive cache coherency
across all nodes of the system.

• Communications are defined offline and are static, there-
fore only offline routing is required.

• The runtime behaviour of the system can only communi-
cate between nodes at well-defined points, negating the

2The system will require feasibility analysis to determine response times
etc. but AnvilJ does not introduce unpredictability.



public static final int WORKCOUNT = 100;

static class WorkQueue {
synchronized Work getWork() {...};
synchronized void putWork(Work w) {...};}

static class Worker extends Thread {
public void run() {
for(int i = 0; i < WORKCOUNT / 2; i++) {
Work w = wq.getWork();
...}}}

final static Worker w1 = new Worker();
final static Worker w2 = new Worker();
final static WorkQueue wq = new WorkQueue();

public static void main(String[] args) {
w1.start();
w2.start();
for(int i = 0; i < WORKCOUNT; i++) {
...
Work w = createWork();
wq.putWork(w);}}

Fig. 3. Example code skeleton, to be revisited throughout this paper

Node (JVM) Node (JVM)

Java thread

AnvilJ thread

Java instance

AnvilJ instance

Valid access

Invalid access

Fig. 4. Valid and invalid accesses in an AnvilJ program

requirement for new object instances to be propagated
throughout the system.

This constraint represents the greatest challenge observed
in moving Java into the CTV system model. Java’s heavy use
of object allocation makes this hard to analyse at compile-
time. If the programmer does not designate enough instances
as AnvilJ Instances and the constraint is not met, then the
output programs may not have the same functional behaviour
as the input program. Unfortunately, it is not possible in
the general case to analyse the input program to ensure
compliance (although AnvilJ’s refactoring engine does check
many analysable cases). We approach this problem by defining
precisely under which circumstances incorrect behaviour will
be observed. First, all behaviour that only affects a single
node will execute correctly. Incorrect behaviour can only arise
when data is shared across nodes, as visualised in figure 4.
Specifically, any program state which is accessed by multiple
threads must either be mapped as an AnvilJ Shared Instance,
or be located on the same node as all its accessor threads.

Architecturally-neutral 

Java application

Target architecture 

specification (XML)

Auto-generated 

runtimes
Architecturally-specific 

Java programs

Architecturally-specific 

Java programs
uses

AnvilJ

One per 

target 

CPU

Fig. 5. The AnvilJ flow

Program state is defined as:
• The fields of an object instance
• The static fields of a class
• The state of an executing thread
• Object locks (from use of the synchronized keyword)
‘Accessing’ occurs when an instance invokes another in-

stance’s (static) method, (static) fields, or constructors. It can
be seen that a sufficient way to guarantee the constraint is
to ensure that all data shared between threads is marked as
an AnvilJ Instance. Identifying and controlling the mutually-
exclusive use of shared data for the elimination of race
conditions is a difficult but well-understood problem in parallel
programming. The use of analysable language subsets, model-
driven development, coding guidelines and similar software
engineering techniques mean that in practice the problem is
tractable.

This is not a necessary solution, i.e. instances may be
unnecessarily modelled, but because the AnvilJ runtime is very
lightweight this does not introduce an unacceptable overhead.
Calls to AnvilJ Instances from threads on the same node incur
no extra overhead at all (the refactoring process simply does
not invoke the runtime) so the only cost is that an extra entry in
the shared method table of the AnvilJ runtime. In practice this
is around 20 bytes, depending on the number of arguments.

In the running example of section III-D, w1, w2, and Main
are declared as AnvilJ Threads and wq is declared as an AnvilJ
Shared Instance.

IV. IMPLEMENTATION

The AnvilJ implementation flow is shown in figure 5.
The input to the flow is a single, architecturally-neutral Java
program, written under the restrictions of section IV-A, and an
architecture specification file (section IV-G) which describes
the input architecture and maps elements of the input program
over it. The result of the process is one architecturally-specific
Java program for each node of the system which is refactored
to use its own custom-built, minimal runtime library.

After refactoring and code generation, the output programs
have to be built to execute on the actual hardware. Discussion
of this is outside the scope of this paper but can involve
a special JVM for a target processor or a system such as
Perc Pico [3] to compile the output Java to native code. The
developer will also have to add hardware drivers, as detailed
in section IV-D.

Currently, AnvilJ operates on applications written in stan-
dard Java so that AnvilJ is applicable to general embedded



programming, and because it is well understood by the indus-
trial partners in the MADES project (see section V which
is important for evaluation of the work. However AnvilJ
will also support programs written using the RTSJ. The
method and implementation remain broadly the same as dis-
cussed in this paper. As the RTSJ’s RealtimeThread and
NoHeapRealtimeThread extend java.lang.Thread
they are already handled by AnvilJ. (Remember that the real-
time JVM performs the more complex scheduling and thread
dispatching of the RTSJ - AnvilJ merely has to refactor the
code to use the real-time JVM.) Support will have to be added
for the RTSJ’s high-resolution time classes, event handlers, and
the physical memory features as these require hooks adding
to the runtime. These extensions are left for a future paper,
although memory is discussed in section IV-H.

The rest of this section details the implementation of AnvilJ.
Section IV-A enumerates the restrictions that AnvilJ places
on its input Java code. Section IV-C then describes the
AnvilJ refactoring engine whilst section IV-B describes the
runtime generated by AnvilJ. The generated libraries are then
detailed, and the Architecture Specification files described in
section IV-G.

A. Code Restrictions
The following restrictions must be observed by AnvilJ’s

input code to ensure that communications occur at statically-
defined points and predictability can be maintained. Code that
does not communicate with other nodes can use all features
of the language. As previously mentioned, a more general
solution may remove the static final constraints and
use an ‘elaboration phase’ that sets up the AnvilJ Instances.
This was not done because in general a more restrictive and
predictable Java subset (such as Ravenscar Java [14]) will
be used, in which case many of these are already effectively
mandated.

AnvilJ Instances must be static final fields
Makes the instances compile-time static and ensures they have
a static initialiser, thereby allowing the refactoring engine to
determine the expression used to create it.

AnvilJ Instances must be accessed by direct static reference
Use dot notation (package.class) if the instance is in
another class. It is forbidden to ‘leak’ a reference to an AnvilJ
Instance (e.g. returning it from a method, passing it to a
method, or assigning it to a field). These actions are checked
and prevented.

Arguments and return values of shared methods must be
serialisable
The arguments and return values of shared methods that are
exported by an AnvilJ Instance must be serialisable by the
Java Object Serialization API [18].

AnvilJ also requires that fields of AnvilJ Instances are
accessed through method calls, but it will automatically-
generate ‘getter’ and ‘setter’ methods if required.

The first two restrictions could have been removed through
the use of ‘wrapper classes’. AnvilJ could inject new classes

Refactored user code

Object Manager

IComms

Hardware 

drivers

ISharedMessages IThreadCreator

Generated runtime code

Hardware

Processing node

Fig. 6. Structure of the AnvilJ runtime

Object Manager

Message
parsing

Shared
method
thread
pool

Internal
locks

Message
serialisation

Shared methods

Channels

Usercode-facing methods

IComms implementation

Message
handling

Fig. 7. Structure of the AnvilJ Object Manager

into the system which replace the classes of shared instances
but call the runtime when their methods are accessed. This
would remove the requirement for the refactoring engine to
determine every shared instance reference, but as it would
result in less predictable runtime behaviour the decision was
taken to impose this restriction.

B. AnvilJ Runtime

As with all CTV-based systems, AnvilJ’s runtime is com-
posed of a set of interacting Object Managers (OMs). An OM
is a microkernel (written in Java) that implements a minimal
set of features that would normally be provided by a distributed
OS. Full details of the OM model can be found in existing
CTV literature [11]. After refactoring, each node in the target
architecture contains exactly one OM. The OMs of the system
exchange messages to implement the following features:

• Minimal distributed threading support (start, stop, join
etc. AnvilJ Threads located on other JVMs)

• Remote method calls to allow threads of a node to invoke
methods from AnvilJ Instances

• Remote monitor locks and thread synchronisation
• Routing of messages (to enable universal communications

on non-uniform network topologies)
The runtime can be split into two sections; code which

is common to all nodes, and code which is automatically-
generated and specific to the exact node and the code that is
mapped on to it. The runtime structure of the system is shown
in figure 6. Three Java interfaces define the boundary between
common code and generated code; IComms (section IV-D),
ISharedMessages (section IV-E) and IThreadCreator
(section IV-F).



The structure of the OM itself is shown in figure 7. The OM
exposes a set of usercode-facing methods (which are invoked
by the refactored input code) to send messages to other
nodes, invoke remote shared methods, lock remote objects etc.
Alongside this is a message processing thread which handles
all messages that arrive from the hardware channels attached
to this node. Most of these messages are handled directly by
the handling thread (as they do not block). The two types of
message handler that may block are messages to create AnvilJ
threads and to invoke shared methods. When these arrive, they
are passed to an internal thread pool for execution so that
message handling cannot be delayed.

C. Refactoring

AnvilJ is implemented as a set of Eclipse plugins, which
allows it to use proven Java parsers, analysis tools, and code
generators. Full details of the refactoring process are outside
of the scope of this paper but more details and examples of
the refactoring are in the following sections.

D. The IComms Interface

The IComms interface defines the interface between the
OM and the low-level hardware drivers. It provides methods
to send and receive messages from other nodes. Routing is
implemented using Dijkstra’s algorithm with the generated
runtime of each node containing static routing information.
AnvilJ cannot automatically generate hardware drivers, so
it is up to the developer to provide an implementation of
sendMessage() which correctly uses the low-level chan-
nels, for example:
synchronized public void sendMessage

(ObjectManager om, Message message) {
switch(om.omIDtoChanID(message.targetOM)) {
case 0: sendOverMailbox(message); break; //Driver
case 1: sendOverEthernet(message); break; //Driver
...

The omIDtoChanID method of the OM maps target
OMs to the channel used to communicate with them so that
drivers can be independent of architecture, simplifying driver
development. AnvilJ provides a default Berkeley sockets-
based implementation of IComms which works on any OS
that provides sockets and is useful for functional testing and
debugging.

E. The ISharedMessages Interface

The ISharedMessages interface allows the OM to com-
municate with generated runtime code for executing shared
methods. When an OM receives a message to execute a
shared method from elsewhere in the system it must correctly
unpack the arguments from the input byte stream, invoke the
appropriate method, and return the result.
ISharedMessages contains data structures which de-

scribe the arguments and return types for all shared methods
of all AnvilJ Instances located on this node. These structures
are initialised in a static initialiser in the generated code for
each OM, as the following output for the running example of
section III-D shows:

static {
...
//AnvilJ shared instance "wq"
temp=new HashMap<Integer, ArgType[]>();
//getWork
temp.put(0, new ArgType[] { });
//putWork
temp.put(1, new ArgType[]

{ ArgType.INTEGER, ArgType.SERIALIZED });
argumentMap.put(0, temp);
...

Generation of the return types data structure is similar.
Support is built in to the refactoring framework to pack and
unpack Java’s native types to byte streams for transmission
over channels. For other types, Java’s serialisation API is used.
Serialisation can result in a large amount of traffic so explicit
support is added for a few commonly used classes (such as
java.lang.String) and the user can also add their own
serialisation routines.
ISharedMessages.messageReceived() is invoked

by the runtime when a shared method is invoked on this node
from elsewhere. An initial pass of the input code is made
to ensure that all shared methods are public and so can
be called. (In the running example WorkQueue#getWork
and WorkQueue#putWork are altered.) This does not break
visibility rules as the input program must be correct before
refactoring takes place. A fragment of messageReceived
from the running example is as follows:
public Object messageReceived(int SOID,
int msgID, Object[] args) throws Throwable {
switch (SOID) {
case 0:
switch (messageID) {
case 0: return main.wq.getState();
...

Exceptions in shared methods are handled by the host
OM sending a return message which indicates an unhandled
exception and contains a serialised exception instance. This is
deserialised by the calling OM and thrown so that it is caught
in the user code as expected.

In the input code, calls of the shared methods are replaced
as in the following fragment from the running example:
//Input code
Work w = wq.getWork();
//After refactoring
rv = (Work) anvilj.SharedMessageStubs.

main_wq_getWork(0, 1, 0, new Object[] {}));

The SharedMessageStubs package contains a generated
stub for each method which sends ‘invoke remote method’
messages to the host node of the target shared object with the
appropriate arguments passed in an Object array.

F. The IThreadCreator Interface
The IThreadCreator interface allows the OM to invoke

the generated code which creates and starts the AnvilJ Threads
on its node, when instructed to by remote nodes. The refac-
toring finds the initialisation of the AnvilJ Thread (required
because it is static final) and then adds a new method in
the host class which performs the same operations and returns
the created instance.



<architecture name="Runningexamplearch"
mainclass="main.Main" maincpuid="0">

<cpu name="CPU0" id="0">
<thread binding=
"Lmain/Main;.w1)Lmain/Main/Worker;"/>

<sharedobject binding="Lmain/Main;.wq;"/>
</cpu>
<cpu name="CPU1" id="1">
<thread binding=
"Lmain/Main;.w2)Lmain/Main/Worker;"/>

</cpu>
<channel name="chan0">
<endpoint cpu="CPU0"/> <endpoint cpu="CPU1"/>

</channel>
</architecture>

Fig. 8. Architecture Specification for the running example

//Input code (from running example)
final static Worker w1 = new Worker();
//Refactored method
public static Worker anviljCreate_w1() {
return new Worker();}

These generated methods are then called from a generated
stub as part of the IThreadCreator implementation:
public Thread createThread(int threadID) {
switch (threadID) {
case 0:
return Main.anviljCreate_w1();
...

IThreadCreator#createThread can then be used
by the OM to create threads in response to a ‘create thread’
message from remote nodes. On all other nodes the refactoring
engine removes the static final instance w1 (in the case
of the example) and replaces any old calls to w1.start()
with:
anvilj.om.startThread(0, 1); //(node 0, threadID 1)

startThread sends the appropriate ‘create thread’ message
to the target node using the IComms interface. Other refer-
ences to w1 are similarly replaced.

G. Architecture Specification

AnvilJ uses XML-based Architecture Specifications. Fig-
ure 8 shows the architecture specification for the running
example of section III-D.

The main element of the specification is architecture
which has attributes to provide a name, identify the main Java
class in dot notation (Class.Package) and map the main
thread to a node. cpu elements model processing nodes and
have name and id attributes, both of which must be globally-
unique. thread and sharedobject elements must have a
binding attribute which associate the thread or shared object
with a static final instance in the input application.
Bindings uniquely identify classes, fields, and methods in input
source code. They are defined in the Eclipse JDT project
[22] and a full description is outside the scope of this paper.
AnvilJ’s tooling provides the designer with easy ways to obtain
the binding keys of source code elements.
channel and memory elements must contain at least

one endpoint element that defines the connections between

Design Models
SysML/MARTE

Platform-
independent

code
Architecture
specification

HW/SW
mappingsEmbedded

software
generation

VerificationHardware
generation

Epsilon
Traceable model transformations

Compile-Time Virtualisation - AnvilJ

Platform-specific code

Fig. 9. Overview of the artifacts in the MADES approach

the channel or memory and the CPU nodes of the system.
endpoint nodes contain a mandatory cpu attribute which
is the name of the cpu element to which they are attached.
AnvilJ checks that these attributes are all correctly set.

Extra information may be added to any node using attr
elements. This information is not required for the base AnvilJ
implementation, but is made available to drivers (see sec-
tion IV-D).

H. Shared memory

As detailed in section III-B, the AnvilJ system model
allows the definition of shared memory areas into which
AnvilJ Shared Instances may be mapped. This is implemented
differently according to the input language. Java using standard
JVMs does not natively support multiple memory spaces.
Therefore when Java is used such a mapping must be reduced
to simply map the instance to one of the nodes that are
connected to the shared memory. The refactoring engine warns
the user that such mappings are not fully supported with this
input language. Functional correctness is maintained, however.

However, the RTSJ allows the specification of more com-
plex memory architectures with its physical memory frame-
work which allows the programmer to place objects in specific
memory locations and implement shared memory. Recent
work [15] has shown how such features can be used to control
memory access in a non-uniform memory architecture. As
discussed in section III-B, AnvilJ does not support refactoring
RTSJ code at the time of writing, but this is ongoing work.

V. EVALUATION

AnvilJ is developed as part of MADES [1], an EU Sev-
enth Framework project which is developing a fully model-
driven approach for the design, validation, simulation, and
code generation and deployment of systems. In the MADES
framework, high-level system models (in a combination of
SysML [25] and MARTE [17]) provide information about
the target architecture and the structure of the input software.
UML deployment diagrams are used to provide virtualisation
mappings. These models and diagrams are transformed in
traceable and certifiable steps from initial specification to the
final deployed system using the Epsilon model transformation
tools [13].



MADES incorporates three parallel toolchains for perform-
ing hardware development, temporal verification/validation,
and software development (of which AnvilJ is the main
component, shown in figure 9). All these aspects, including
AnvilJ, will be fully validated on real-life case studies in the
surveillance and avionic domains by MADES’ industrial part-
ners. The evaluation in this paper focuses on the predictability
of the AnvilJ output programs, and the size of the overhead
introduced by AnvilJ’s runtime.

A. Preservation of predictability

An important requirement of AnvilJ is that the refactor-
ing engine preserves the latent predictability of the input
code, meaning that AnvilJ does not introduce unpredictable
behaviour. To evaluate this it is necessary to examine the
translations that AnvilJ makes when transforming a single
processor shared memory model to a message passing model.

Runtime
The AnvilJ runtime (section IV-B) observes the predictability
assumptions of the input. The majority of user-facing methods
are straight-line code with no blocking so their execution time
can be bounded. Only three features are not, and must be
considered separately.

Firstly, user code invoking the OM to obtain a remote
monitor lock can cause blocking, but this is bounded accord-
ing to the input assumptions of the system (section III-C).
Network overhead is added to remote locks, but again
this is assumed to be bounded by the input model. The
refactoring engine only inserts such invocations when the
user uses a synchronized statement, or calls a remote
synchronized method. AnvilJ’s static programming model
means that it is always possible to assess when input code
assess a remote AnvilJ Instance, therefore the effect of this is
bounded.

Second is the OM’s message handling thread which must
be added to the analysis of the input system and modelled.
By design, all AnvilJ message handlers cannot block (apart
from the two discussed below) so their effect on the node is
bounded by the communications to that node, which is also
bounded from the input assumptions.

Finally, the thread pool for executing remote shared methods
or remote thread initialisation. From the input assumptions it is
possible to bound the computation due to remote invocations
of any AnvilJ Instance’s shared method. This computation,
which was previously located on the accessor node must be
modelled as computation on the host node. Also, it is necessary
to demonstrate that the thread pool is of sufficient size such
that a thread is always available when a shared message is
invoked. A trivial worst case for this is obtained by summing
the total number of threads that may call each shared method
for the node. The assumptions state that the input code may
be bounded, so this number of threads can be also. This naive
test may be pessimistic; and further work will refine it.

Generated runtime
All methods of the generation runtime are straight-line code

Feature set Approx. size

Thread creation and joining 5.7 kB
Remote Object Locks 4.5 kB
Shared methods 8.4 kB
Sockets-based IComms (debug) 4.29 kB
Full OM 34 kB

Fig. 10. Class file sizes for OM features

made of switch statements and stub methods. The predictabil-
ity of the system however is reliant on a real-time network or
communications infrastructure being available on the platform
which exhibits bounded timing behaviour, which is outside the
scope of AnvilJ’s analysis.

Output code
The output code is identical to the input code apart from a few
well-defined points. First, all invocations of AnvilJ Instance
methods which are located on a remote node are refactored to
send a message. Due to AnvilJ’s static model these locations
can be determined offline. Complexity occurs when a node
is used as part of a multi-hop route. Then, time must be
provisioned on both the sender, receiver and the intermediary,
however these routes are calculated offline. The other part of
the input code which is altered to inject communications is
when a synchronized statement is used to obtain the lock
of a remote AnvilJ Instance.

It is worth reiterating that AnvilJ does not guarantee a
schedulable output system, as it can be used to target archi-
tectures which are so complex that their analysis is infeasible.
However, this section argues that if the input code follows the
assumptions in section III-C then the effect of the translation
is bounded and the code is made no less predictable.

Equally, the assumptions made in this paper assume that
AnvilJ generates the only application on the target hardware.
It is further work to analyse the effect of executing an AnvilJ
applications alongside other application on the same hardware
under real-time constraints.

B. Overheads

The AnvilJ runtime only imposes small overheads, es-
pecially when compared with much larger (although more
powerful) general-purpose frameworks. The main overhead
in an AnvilJ system is that of the OM; the full version of
which compiles to approximately 34kB of class files including
debugging and error information. It is also possible to create
smaller OMs which only support a subset of features for when
the software mapped to a node does not require them. The
advantage of AnvilJ’s system model and offline analysis is that
this can be done automatically each time, based on the exact
input application and hardware mappings. Figure 10 shows a
breakdown of some of the feature sets of the OM and their
respective code footprint.

In addition to the small code size of the OM, its runtime
memory footprint is also modest. Measurements vary between
JVM, OS, and target system, but the full OM in a desktop



Feature Approx. size

Full OM 648 bytes
Hosted Thread 32 bytes
Hosted Shared Instance 32 bytes
Each hosted shared method 20 bytes
Sockets-based IComms (debug) 360 bytes

Fig. 11. Dynamic memory footprints for OM features

Linux-based system uses approximately 648 bytes of storage
when idle, which increases as clients begin to use its features.
Dynamic sizes are shown in figure 11. In a real-time imple-
mentation, all dynamic memory (queues, buffers, etc.) can be
capped at a fixed size that is determined by the designer and
offline analysis.

Clearly when an AnvilJ Instance is shared on a remote node,
accessing it will involve the transfer of messages and this could
be considered an overhead. However, in such a system this
is unavoidable. Exploring system mappings to minimise such
transfer is outside of the scope of this paper.

It is not appropriate to attempt to directly measure perfor-
mance overheads because no fair comparison can be made.
CTV-based systems achieve very low overheads by sacrificing
runtime flexibility. Systems like CORBA or Teamster [8] do
the opposite, achieving flexibility but at the expense of a larger
impact on the system. However for reference, most Real-
Time CORBA ORBS are larger than 2000kB in static code
size but are still used for embedded systems, and embedded
Linux kernels (such as uClinux) whilst varying greatly are
often between 900kB and 1400kB. Perc Pico [3] (a real-time
Java runtime based on translation to C) requires 256-512kB of
memory. It can therefore be said that AnvilJ’s overheads are
relatively small.

VI. CONCLUSION

This paper has described AnvilJ, a novel approach for the
development of software for non-standard, embedded architec-
tures in Java. Most general-purpose systems that are designed
to aid the development of software for complex architectures
operate primarily at runtime. They are very flexible, but must
support the full variability of the input language and target
architecture. AnvilJ operates primarily at compile-time and
uses a restricted system model based on a technique called
Compile-Time Virtualisation. This restricted model allows
AnvilJ to operate with vastly reduced runtime support that
is predictable and bounded.

The paper has described how the implementation extends
to use the Real-Time Specification for Java, and focuses on
the development of a predictable system such that neither
its compile-time nor runtime transformations introduce non-
determinism. Unlike most existing runtime frameworks, the
runtime and supporting libraries are generated during com-
pilation for each specific combination of input program and
target architecture. This ensures minimal overheads and that
the final system exhibits static, analysable behaviour.

When programs are written according to a defined set of
input assumptions concerning predictability and worst-case
behaviour, this paper argued that after the AnvilJ translation
the final system will be equally analysable. Predictability is
preserved, making AnvilJ suitable for the development of real-
time embedded systems.

REFERENCES

[1] The MADES Project. http://www.mades-project.org/, 2011.
[2] J. Andersson, S. Weber, E. Cecchet, C. Jensen, and V. Cahill. Kaffemik

– A distributed JVM on a single address space architecture, 2001.
[3] Atego. Perc Pico. http://www.atego.com/products/aonix-perc-pico/,

2011.
[4] R. Banakar, S. Steinke, B.-S. Lee, M. Balakrishnan, and P. Marwedel.

Scratchpad memory: design alternative for cache on-chip memory in
embedded systems. In CODES ’02, pages 73–78, 2002.

[5] Baumann et al. The Multikernel: a new OS architecture for scalable
multicore systems. In Proceedings of SOSP ’09, pages 29–44, New
York, NY, USA, 2009. ACM.

[6] A. Burns, B. Dobbing, and G. Romanski. The Ravenscar tasking profile
for high integrity real-time programs. In Ada-Europe ’98, pages 263–
275. Springer-Verlag, 1998.

[7] B. Chamberlain, D. Callahan, and H. Zima. Parallel programmability and
the Chapel language. Int. J. High Perform. Comput. Appl., 21(3):291–
312, 2007.

[8] J.-B. Chang, C.-K. Shieh, and T.-Y. Liang. A transparent distributed
shared memory for clustered symmetric multiprocessors. The Journal
of Supercomputing, 37(2):145–160, 2006.

[9] K. Fatahalian et al. Sequoia: programming the memory hierarchy. In
SC ’06, page 83, 2006.

[10] J. Gosling and G. Bollella. The Real-Time Specification for Java.
Addison-Wesley Longman Publishing Co., Inc., 2000.

[11] I. Gray and N. Audsley. Exposing non-standard architectures to
embedded software using Compile-Time Virtualisation. CASES ’09,
2009.

[12] I. Gray and N. Audsley. Targeting complex embedded architectures by
combining the multicore communications API (MCAPI) with Compile-
Time Virtualisation. In LCTES’11, 2011.

[13] D. S. Kolovos, R. F. Paige, and F. A. C. Polack. Eclipse development
tools for epsilon. In In Eclipse Summit Europe, Eclipse Modeling
Symposium, 2006.

[14] J. Kwon, A. Wellings, and S. King. Ravenscar-Java: A high integrity
profile for Real-Time Java. In In Joint ACM Java Grande/ISCOPE
Conference, pages 131–140. ACM Press, 2002.

[15] A. H. Malik, A. Wellings, and Y. Chang. A locality model for the real-
time specification for Java. In JTRES ’10, pages 36–45, New York, NY,
USA, 2010. ACM.

[16] P. Marwedel. Embedded System Design. Springer-Verlag New York,
Inc., Secaucus, NJ, USA, 2006.

[17] Object Management Group. UML profile for MARTE: Modeling and
Analysis of Real-Time Embedded Systems. http://www.omgmarte.org/,
November 2009.

[18] Oracle. Java object serialization specification v 1.5.0.
http://download.oracle.com/javase/1,5.0/docs/guide/serialization/, 2004.

[19] F. Pizlo, L. Ziarek, and J. Vitek. Real Time Java on resource-constrained
platforms with Fiji VM. In Proceedings of JTRES, JTRES ’09, pages
110–119, New York, NY, USA, 2009. ACM.

[20] A. L. Pope. The CORBA reference guide: understanding the Common
Object Request Broker Architecture. Addison-Wesley Longman Publish-
ing Co., Inc., Boston, MA, USA, 1998.

[21] Terracotta Inc. The Definitive Guide to Terracotta - Cluster the JVM for
Spring, Hibernate and POJO Scalability. Apress, 2008.

[22] The Eclipse Foundation. Eclipse Java development tools.
http://www.eclipse.org/jdt/, 2011.

[23] The Motor Industry Software Reliability Association. Guidelines for the
Use of the C Language in Critical Systems. MISRA Ltd., 2004.

[24] W. Thies et al. StreamIt: A compiler for streaming applications,
December 2001. MIT-LCS Technical Memo TM-622, Cambridge, MA.

[25] T. Weilkiens. Systems Engineering with SysML/UML: Modeling, Anal-
ysis, Design. Morgan Kaufmann Publishers Inc., San Francisco, CA,
USA, 2008.


