
Challenges in Software Development for Multicore
System-on-Chip Development

Ian Gray, Neil C. Audsley
Real-Time Systems Research Group, Dept. of Computer Science, University of York, U.K.

Abstract—Multiprocessor Systems-on-Chip (MPSoC)-based
platforms are becoming more common in the embedded domain.
Such systems are a significant deviation from the homogeneous,
uniprocessor architectures that have been traditionally employed
by embedded designers, thereby making the software develop-
ment process to effectively target the platform more challenging.
Low-resource embedded systems rely on efficient implementa-
tions that are not well supported by traditional solutions based
on architecture virtualisation or middleware. Within this paper
we examine these challenges and discuss ways in which they can
be mitigated. In particular, we focus on the contributions made
by two recent approaches based on Model-Driven Engineering
(MDE). We also discuss challenges for future research.

Keywords-MPSoC, Embedded Systems, Model-Driven Engi-
neering, Real-Time Systems, MADES, Touchmore, T-CREST.

I. INTRODUCTION

Many modern embedded systems target Multiprocessor
Systems-on-Chip (MPSoC)-based platforms. The architectures
of these systems are becoming increasingly complex and are
poorly supported by existing languages and toolchains. This
paper explores the ways in which language and tool support
is lacking and enumerates some of the major challenges
facing the development of industrial MPSoC-based systems.
Motivated by this, the paper then describes two recent projects
that attempt to tackle these issues and the experience gained
from them.

The architectures of MPSoCc are a significant deviation
from the homogeneous, uniprocessor platforms that have tra-
ditionally been the main component of embedded architec-
tures. As MPSoCs become more common, this difference is
complicating the process of creating effective and efficient
software systems for the platform, which is vital given the tight
resource constraints of many embedded systems. In addition
to this, in many domains embedded software must be certified
before deployment (such as in the avionics or automotive
domains). This may require code which can be analysed for
worst-case execution time (WCET) and worst-case response
time (WCRT); that supports traceability from specification
to code; or that can be verified using techniques such as
model-checking or formal proof. Finally, the integration of
legacy code is important due to the high cost of redeveloping
and recertifying systems. Within this paper we examine these
software development challenges and examine how they are
being mitigated by current Model-Driven Engineering (MDE)

This work was supported by EU Framework 7 research contracts FP7-
248864, FP7-288008 and FP7-288166

approaches; and which significant challenges remain for future
research.

The move to such MPSoC-based designs has been driven
by large increases in transistor density coupled with rela-
tively modest increases in maximum clock rates [17]. This
has forced the exploration of multi-processor architectures
with heterogenous processing components in order to meet
increasing application performance requirements.

MPSoCs are differentiated from more simple multipro-
cessor architectures by their tendency to contain multiple,
heterogeneous processing elements [20], non-uniform memory
structures [1], and non-standard communication facilities such
as on-chip networks (e.g Network-on-Chip (NoC) communica-
tions structures seen on the Tilera 64-core TILEPro64 proces-
sor [35] and the Intel 48-core Single-Chip Cloud Computer
[21]). MPSoCs make extensive use of application-specific
hardware (i.e. DSP cores, function accelerators, or config-
urable processors [10]). For example, the recent OMAP 5
range of MPSoC from Texas Instruments [28] contains a dual-
core ARM Cortex A15, two other smaller ARM cores, DSPs,
and a GPU core. For MPSoCs there are no accepted standard
platform architectures, unlike previous uniprocessor / SMP
multiprocessor architectures. This means that MPSoCs are not
well-supported by the standard toolchains and languages that
have been developed over the past forty years or so.

The major challenges facing the development of industrial
MPSoC-based systems are explored in section II. Section III
then describes the experience of addressing some of these
challenges during two recent research projects, and section IV
discusses future challenges and how they may be solved.

II. MAJOR MPSOC CHALLENGES

The challenges detailed in this section have been identi-
fied through embedded systems research and over a range
of projects in collaboration with industry partners. This list
does not aim to be exhaustive, and is focussed towards the
development of software rather than the additional challenges
associated with hardware development and verification.

A. The Programming Model Gap

MPSoCs present unique challenges for software develop-
ment due to the change from uniprocessor to many or multi-
processors (implying parallelism) and non-uniform memory
structures. The following issues are identified.

Issue: Programming Model and Platform Mismatch
According to the TIOBE index [33], an informal ranking



of language popularity, the three most commonly-used pro-
gramming languages in the world are C, Java and C++.
In embedded and safety-critical settings, (subsets of) C and
C++ dominate. However, the programming model of all of
these languages assumes a homogeneous implementation ar-
chitecture with a uniform, shared memory space. This model
is incompatible with the application-specific, heterogeneous
architectures of MPSoCs. This results in a mismatch between
the programmer’s conceptual model and the underlying imple-
mentation.

These languages all make the following assumptions of uni-
versality, that are desirable to the programmer but are difficult
to implement in a highly-parallel, non-uniform MPSoC:

• Universal communications: Scope rules aside, most
languages assume it is possible to call functions or
methods in any part of the program from any other
part. On a multicore embedded system, this can be
difficult to implement as on-chip communications must
be considered. Even in a system where communications
between all nodes can be supported, latency and routing
are issues. Systems tend to employ weighty middleware
systems such as Real-time CORBA [37] to provide this,
or rely on the routing of an on-chip network.

• Universal memory: Related to the problem of universal
communications, these language models assume that data
is stored in a single, logical memory space which is
coherent and available at all points in the application.
Such a model does not scale to support large numbers of
memories/caches [3]. On application-specific embedded
platforms this is especially wasteful as the programmer
frequently only needs to keep a few small areas of
their target application coherent. Some recent work has
considered ways to limit this problem [8], [15] based
on limiting the programming model and allowing greater
programmer expressibility.

• Universal services: All standard languages assume the
availability of operating system services. For example,
Java assumes threading, synchronization, etc. and even
basic C assumes the presence of a memory allocator.
Maintaining a coherent view of such services over an
MPSoC requires a distributed OS [3] and can be very
expensive to implement without the programmer limiting
the required sharing and coherency [4].

Given the large number of processing cores on recent
MPSoCs, such as Tilera’s 64-core TILEPro64 processor [35]
or Intel’s 48-core Single-Chip Cloud Computer [21], scala-
bility is a huge concern for developers. These assumptions of
universality are a barrier to adopting scalable implementations
in the general case.

To attempt to reduce these assumptions, the Multicore
Association has proposed a set of programming APIs [14],
[30] aimed at embedded systems. The purpose of these APIs
is to extend the programming model of the source language
(normally C) to include multicore concepts (communication,
resource management etc.) in a more scalable way.

Issue: Virtual Platform Assumption
Aside from the universality assumptions, a further weakness
of existing programming models is that the programmer is
not able to argue about the mappings of their software to
the target architecture. Hardware features such as MMUs and
software OSs hide implementation details to present a simple
and uniform hardware model to aid software development.
However, this virtualisation also prevents the programmer
from accessing the actual hardware. Some languages have
started to allow this in a limited capability. For example, Java’s
Real-Time Specification [11] (RTSJ) and POSIX allow basic
mapping of threads to processors and to model physical mem-
ory, but as described above a largely homogeneous architecture
is still assumed. Developers must rely on language extensions
or extra-linguistic techniques (e.g. custom tools and linker
scripts) to fully exploit complex hardware.

New programming languages are often proposed as a way
of solving this problem. Languages exist to target complex
memory systems [9], highly-parallel architectures [6] and
many others. However, until these become a de facto standard
they are unlikely to be adopted by industry, and their new
languages and tools are a barrier to certification.

B. Rapid Design Space Exploration

A number of issues exist that slow the rate at which the
solution space can be explored in a MPSoC design cycle.

Issue: Unpredictable Design Performance
As systems become more complex, it is becoming harder to
reason about the optimal implementation of a given system.
Even after algorithms have been chosen and implemented
many factors still need to be considered. For example; the
location of tasks/threads, the use of communications or the
scheduling of computation and communications. Furthermore,
offline analysis of systems has not yet caught up with the
flexibility of the available architectures, so designers rely on
virtual implementation platforms [7], simulation, in-circuit
measurement, or designer intuition, to guide development.

Issue: Drivers and Low-Level Code
Design space exploration (DSE) is slowed due to the pro-
gramming model gap that requires developers to create large
amounts of “glue” code manually (drivers etc.), and to refactor
existing code for every reallocation. Co-design approaches
[26], [27] have attempted to automate this process to varying
degrees of success, however many suffer from the lack of
a suitable input specification. Co-design requires that the
units of the system can be implemented interchangeably as
either hardware or software. As discussed in section II-C
code translation poses problems for high-integrity industries
and section II-D describes how the use of new languages is
undesirable.

C. Criticality

Many MPSoCs are subject to real-time or safety-critical
constraints, and so their development must consider issues:



Issue: Predictability and Analytical Complexity
Hard real-time systems must be amenable to WCET and
WCRT analysis so that their worst-case timing behaviour can
be identified and accounted for. This requires predictability at
all stages of the design, from language choice (frequently a
high-integrity subset such as Ravenscar Ada [5] or Java [19])
through a real-time OS / kernel (such as MARTE OS) to real-
time hardware features (such as the CAN bus, or SoCBUS
[36]).

Safety-critical systems must be certified to the highest
levels, such as DO178-B in the avionics domain. This requires
code that can be statically-analysed, tested, or proved correct.
This is a great challenge on its own, but it is made even more
difficult in an MPSoC environment due to the programming
model gap detailed in section II-A. The architecture assumed
by the standard programming model is a homogeneous unipro-
cessor or SMP system with predictable, uniform, memory
timing, no bus contention, bounded blocking and a predictable,
coherent, OS layer that provides universal services. In reality,
the programmer must use low-level drivers and techniques
outside of the programming model (custom assembly, manual
memory allocation, code splitting etc.) to target the hardware.
This makes code analysis more challenging.

Also MPSoC hardware frequently includes unpredictable
elements. Caches are very difficult to analyse and real-time
network routing is still an area of highly active research [36].
Finally, the layers of middleware, virtualisation, or distributed
OSes introduce huge amounts of software to the system that
have to be analysed for timing, path coverage, functional
correctness or whatever is specified by the certification stan-
dard. For the highest levels of certification this is currently
infeasible.

Issue: Traceability
Related to the issue above, many high-level certification stan-
dards require traceability, which requires every source line
to be traceable back to the requirement (or model element)
that generated it. The “glue code” and layers of middleware
discussed in the previous section all lack this traceability
from the source specification, and so need to be considered
specially. This makes certification harder, and so their use is
minimised.

D. Industrial Applicability

Industry is generally reluctant to switch to new program-
ming languages and toolchains, as this imposes a revolution
in development approach, with implicit problems of risk,
acceptance and difficulties with legacy systems. Hence a key
issue is as follows:

Issue: Evolutionary Adoption of MPSoC Toolchains
For MPSoC platforms to be successfully exploited by industry
users, there is a need to evolve toolsets, programming lan-
guages and development approaches from the current unipro-
cessor biased approaches to having an MPSoC focus. This is
required because:

• Reuse of legacy code is important, as the development
and verification costs have already been paid. Switching
to a new language may require reimplementation and
retraining of developers.

• In a high-integrity domain, tools (compilers, linkers etc.)
have to reach a ‘trusted’ status before they can be used
for strict certification. This can be a problem for many
academic tools.

In general, existing industrial methodologies must be
supported rather than supplanted. Model-driven engineering
(MDE) is becoming more frequently used in industrial projects
[22] and represents a common way of tackling the higher
abstractions of modern embedded systems [16]. However, as
with programming languages it is desirable to remain with
existing modelling standards (such as SysML [34] or MARTE
[23]) and tooling wherever possible. Another parallel with
restricted programming languages is that UML and profiles
like MARTE are very complex and there are many different
ways to model the same concept, so restricted and more
focussed subsets can help with productivity.

III. TACKLING CHALLENGES USING MODEL DRIVEN
ENGINEERING

This paper will now describe experience gained from recent
efforts to overcome some of the challenges identified in sec-
tion II. MADES [29] and ToucHMore [32] are two EU Seventh
Framework projects that are using approaches based around
Model-Driven Engineering (MDE) to assist the development
of modern embedded systems. MADES is approaching final
review so will be concentrated on by this paper, whereas
ToucHMore is in its first year. Section III-A will describe the
MADES project, and section III-B will describe ToucHMore.
Then the following sections detail how the projects approach
the challenges of industrial applicability, complex architectures
and criticality.

A. The MADES Approach

The MADES approach [29] was developed as an EU
Seventh Framework project to provide a fully MDE approach
for the design, validation, simulation, code generation and de-
ployment of multi-processor embedded systems. In MADES,
high-level system models (in a combination of SysML [34] and
MARTE [23]) provide information about the target architec-
ture and the structure of the input software. MADES focusses
on verticality and applies all the way from requirements to
implementation. Input models and diagrams are transformed in
traceable and certifiable steps from initial specification to the
final deployed system using the Epsilon model transformation
tools [18].

The MADES Consortium consisted of two major industrial
partners from the avionics and automotive domains, so they
are familiar with certification and real-time issues. As will
be detailed, this was key to gaining useful insight from the
project. All aspects of the toolflow are fully validated on
real-life case studies in the surveillance and avionic domains
by MADES’ industrial partners in order to ensure industrial



Hardware-independent 

software

Verification

Verification 

scripts

User 

input

Simulation 

scripts

Zot verification

MADES Language 

Design Models

MHS description

VHDL

Hardware description 

generation

Hardware 

architecture 

description

Hardware/

software 

mappings

Compile-Time Virtualisation

Platform-specific software

Embedded software generation

Fig. 1. Overview of the artifacts in the MADES approach

applicability (a challenge discussed in section II-D). MADES
incorporates three parallel toolchains for performing hardware
development, temporal verification/validation/simulation, and
software development. The benefits of each of these toolchains
will be discussed in terms of how they relate to the challenges
of MPSoC development.

B. The ToucHMore Approach

ToucHMore [32] is also an EU Seventh Framework project
focussed on using a model-driven approach to capture the
key characteristics of the platform in order that the toolchain
may be customised to meet its specific requirements. Given
the enormous potential variation in MPSoC architectures and
platforms and the inability of programming models to capture
this (the ‘programming model gap’ of section II-A), there
is a fundamental need to support customisable toolsets that
can target a wide range of such platforms. This supports
industry because no change is required in the toolset to target a
new platform, unlike today where new development processes,
modelling processes and tools must be built. The aim to
to provide a better programming model that supports the
challenge of providing rapid DSE (section II-B).

C. Evaluation Approach

In order to evaluate the effectiveness of these approaches,
the consortiums of both projects include industrial partners
who generate realistic, industrially-relevant case studies.

The Car Collision Avoidance System (CCAS) was one of
two major MADES case studies. The CCAS is a real-time,
safety-critical system that uses a car-mounted radar to apply
braking when a collision is imminent. The system has been
specified as a set of initial system requirements in the MADES
modelling language using requirements and use case diagrams.
These are refined to system class diagrams then to software,

hardware, and allocation specifications. These can then be
verified, and implemented, using the MADES approach.

The Avionics Weather System (AWS) is the second MADES
case study. The AWS is an avionics weather system which
uses radar imaging and computational models to create a GUI
image of the surrounding weather patterns. Unlike the CCAS,
the AWS is a simpler system designed to be deployed on a
single processor, although it has the same high certification
requirements. The AWS is also specified using the MADES
language.

In ToucHMore, the Audio Manager case study is a system
that provides complex audio management for automotive and
similar environments. The Audio Manager provides a multi-
channel mixer with dynamic, routable audio channels. The
application has strict timing requirements and low memory
constraints.

Numerous synthetic studies have also been developed in
order to specifically exercise individual sections of the respec-
tive toolflows. Experience gained from these case studies has
allowed the evaluation of the attempt to overcome MPSoC
development challenges. This is discussed in the following
sections.

D. Industrial Applicability

A key requirement of both approaches is that their results
must be usable by industry. This is a major challenge (dis-
cussed in section II-D) and indeed during the initial stages
of the MADES project the academic and industrial partners
had contrasting views. Academic partners did not appreciate
the value of adapting existing toolchains rather than replacing
them, and the industrial partners were not aware of the
potential benefits that can be gained by augmenting their
existing flow. The following points were most evident:

• Standards are essential for certification, but too permis-
sive. The MARTE profile was deemed far too large to
work with. Consequentially, a new modelling language
was developed as a subset of SysML and MARTE that
captured only the semantics required for the toolchain.
The aim was to deliberately restrict developers, thereby
reducing training time and assisting certification. This
subset is supported by an industrial-quality open-source
modelling tool, Modelio. A full discussion of the MADES
subset is outside the scope of this paper but can be found
in [25].

• Requirements capture is necessary for certification and
not handled well by UML/MARTE. This why SysML
concepts are included in the MADES language.

• Standardisation requires traceability from requirements
through model elements to output software. The traceable
model transformations of Epsilon allow a safety case to
be built in which all output software can be traced back
to the elements responsible for its creation.

These results have fed into the modelling used in the
ToucHMore project, which uses an entirely SysML-based
language subset that is restricted to only the concepts required
by the project. All tools developed also have strong traceability



Application

RTOS Application

Virtual
Platform

Virtual
Platform

Virtualisation layer

Communication framework

Target hardware

Refactored
Application

RTOS

Refactored
Application

Target hardware

Communication libraries

Compile-time view Run-time view

Virtual
machine

Fig. 2. Compile-Time Virtualisation hides complex hardware, but only at
compile-time.

<<Allocated>>
<<SwSchedulableResource>>

<<mades_thread>>

readThread

<<Allocated>>
<<SwSchedulableResource>>

<<mades_thread>>

dctThread

<<Allocated>>
<<SwSchedulableResource>>

<<mades_thread>>

quantizeThread

<<Allocated>>
<<SwMutualExclusionResource>>

<<mades_sharedobject>>

OutputStage

<<HwComputingResource>>
<<mades_architecture>>

CaseStudy Dual CPU
Architecture

<<Allocated>>
<<HwProcessor>>

<<mades_processingnode>>

p1 : cpu1

<<Allocated>>
<<HwProcessor>>

<<mades_processingnode>>

p2 : cpu2

<<Allocate>>
Allocate<<Allocate>>
Allocate<<Allocate>> Allocate

<<Allocate>
> Allocate

Fig. 3. CTV is integrated into the MADES modelling toolchain

requirements to aid the certification of systems developed
using the approach. Sections III-E and III-F talk about how
other aspects of the MADES project were modified to retain
industrial applicability.

E. Software Generation Using Virtualisation

MADES attempts to tackle the programming model gap
challenge (section II-A) by using virtualisation to hide the
underlying complexity of the target architecture and allow
software developers to write code for a virtual architecture
that matches their programming model. However, through
discussion with industrial partners, the criticality challenge
(section II-C) mandates the following requirements:

• No new programming languages or tools because of
certification requirements

• No large runtime layers, or complex translated code
• Integration with model-driven development to aid devel-

opers
As a result, a virtualisation technique called Compile-Time

Virtualisation (CTV) is used. [12] CTV is a source-to-source
translation technique that provides the benefits of virtualisation
without the imposing a large runtime layer because its virtuali-
sation is applied only at compile-time (see figure2). AnvilJ, the
implementation of CTV used in MADES, has been shown to
be amenable to resource-constrained, high-integrity, real-time
systems. [13]

CTV is integrated fully into the MADES modelling lan-
guage. Figure 3 shows an allocation diagram that allocates
parts of legacy code from one of the MADES case studies to an

noAction

notifyDistance
[!![distance < 3]]

warning

criticalwarning

notifyDistance [[distance < 3]]

notifyDistance [[distance < 2]]

notifyDistance [[distance < 2]]

notifyDistance [!![distance < 3]]

Fig. 4. Constraints on Interaction Overview Diagrams allow the modeller to
provide verification properties

example implementation architecture. The designer can obtain
extremely rapid DSE because moving code and data through
the target architecture is a simple as editing an allocation
diagram. CTV works in the toolchain to insert “glue code”
and generate custom, minimally-sized microkernels for each
processor that implement the modelled system.

Considering certification, in general new languages are
avoided because their compilers must be certified (or trusted)
and this is frequently too difficult a task. With CTV, two
approaches can be taken. When compared to a compiler the
CTV refactoring engine is a lot simpler and certification is
believed to be more tractable. However, CTV’s main benefit
is that it only makes a few, small, traceable, readable, and
well-defined changes to the input code and so certification
effort remains the same. The only extra requirement is that
CTV’s microkernel must be certified. It is unavoidable that
some runtime must be included, but as shown perviously [13]
this runtime is minimal and is built to be amenable to many
kinds of correctness analysis.

Through the use of CTV, the MADES approach has allowed
the consortium to take code from the CCAS and other case
studies and deploy it in seconds over a range of architectures
without any refactoring or rewriting. Only the deployment
and hardware diagrams need to be changed. Analysis and
testing must still be performed on the final system, but this
significantly lowers the barrier to such work.

F. Verification and Simulation

Formal verification techniques are well-developed in aca-
demic literature, but have failed to become commonplace in
most industrial settings. This is due to their very high barrier
to entry as developers are usually not trained in their use.
However, such verification helps to tackle the challenge of
criticality (section II-C), so MADES attempts integrate formal
temporal verification with the model-driven development flow
in an industrially-relevant way.

In the MADES approach, system behaviour and timing,
and the properties to be verified are provided in Interaction
Overview Diagrams (IODs) [2] (see figure 4). These are inte-
grated into the normal modelling flow and supported natively
by the tools. These models need to be converted to input for a
temporal logic solver, in this case ZOT [24]. The input to Zot
is a complex Lisp-based format which encodes temporal logic
equations. In MADES, this complexity is hidden from the



Modelling tool

Verification
properties

Epsilon
transformation

Formal
model

Formal
verification
tool (Zot)

Model
diagrams

Epsilon
transformation

Verification result
(Satisfied or

counterexample)

Fig. 5. Consistent metamodels allow model transformations to integrate
verification

designer as the scripts are generated using Epsilon’s traceable
model transformations. This can be done because the IODs
and input scripts have a common and consistent metamodel
that the translation uses (see figure 5).

When the verification is started, the scripts are generated,
the verification tool runs, and the outputs from the tools are
then translated back into model elements, according to the
metamodel. This allows the integration of a useful verification
tool, that otherwise would be inaccessible to many developers.

MADES also integrates Modelica simulation using a sim-
ilar technique. Modelica is a textual modelling language for
modelling complex systems (e.g. electrical, thermal, hydraulic
or mechanical systems). The MADES co-simulation approach
uses Modelica to simulate the external environment and
provide stimulus to the ZOT verification. This allows for
verification of systems as they interact with the environment.

G. Variability Awareness

The manufacturing process for many- and multi-processor
MPSoC leads to variability in the capabilities of individual
chips - eg. due to fabrication variability the CPUs within
the chip may have different maximum clock speeds. Also,
embedded MPSoCs are frequently battery powered, and may
need to reduce their energy usage or thermal output (if
cooling is an issue). This can be achieved through a range
of techniques, including clock gating, dynamic frequency and
voltage scaling (DVFS), offloading processing to DSP cores,
and dynamic software that reacts to the design-time and run-
time variability of the system. Building awareness of such
variability into the design languages and toolchains with the
aim of decreasing time-to-market is a key challenge that is
currently being considered.

The ToucHMore approach is shown in figure 6. The input
software, target platform, and allocations are modelled in
SysML and provided alongside a software implementation of
the system. The input software may be provided as C, C++
or Java. A code generation phase then customises code in the
following ways:

• A ToucHMore runtime is generated for the target ar-
chitecture that consists of three layers. The API layer
is visible to the user program and includes variability
calls that support power scaling, power-aware algorithms,

Input SysML model
(software, hardware, & allocations)

Input source code
C, C++, Java (JSR302)

Code Generation

Customised
source code

Compilation

Customised
runtime

Target binaries

Fig. 6. The ToucHMore toolflow

DSP offload etc. The OS layer is a kernel that supports
the features of the user software. The communications
layer allows the OS layer to communicate with other
OSes on other cores of the architecture to provide system-
wide services. It is based on the Multicore Association’s
MCAPI [30] and MRAPI [14] APIs.

• User code (for example, methods that can be offloaded
to DSPs) is rewritten to call the appropriate functions of
the generated ToucHMore runtime.

The customised source code and runtime are then compiled
using a compilation process that is itself variability-aware.
Based on the architecture and allocations, the compiler will
produce different sets of binaries, marshal data for intracore
communications, and make use of DSPs, DMAs and shared
memory as available.

IV. CONCLUSIONS AND FUTURE CHALLENGES

This paper has enumerated some of the major challenges
that are encountered when developing embedded MPSoC
designs. In general, problems are encountered across the
entire development spectrum: requirements capture and system
modelling; the programming model of software languages;
analysis and verification of complex architectures; certifying
runtime systems and toolchains; and complex hardware im-
plementations. This must also all be tackled in a manner that
remains applicable to current industrial practice.

The MADES and ToucHMore projects have been described,
which provide model-driven engineering approaches to the de-
velopment of embedded systems. The approaches are designed
fundamentally to be used by industry and to tackle many of the
problems identified in the paper. Whilst the projects go some
way to providing solutions for the identified challenges, they
also highlight significant future challenges which are being
considered within other projects:

• Support for Predictability: Worst-case execution time
(WCET) analysis for complex embedded architectures is
a significant open problem. Almost all of the schedu-
lability and WCET analysis performed for uniprocessor
systems no longer applies to multiprocessor systems.
Furthermore, the architectures of MPSoCs tend to include
difficult to analyse hardware features (caches, networks
etc.). Worst-case analytical models of such systems are
still not accurate enough for real-world use due to the



amount of pessimism they introduce. These issues are
being considered within the T-CREST [31] project which
aims to build a time predictable NoC based multipro-
cessor architecture, with supporting compiler and WCET
analysis.

• Simulation and Debugging: For lower-criticality sys-
tems, simulation and testing can be sufficient. For these
systems, simulation and debugging support is essential.
Recent advances, such as hybrid simulation or high-
level simulation models have helped this, but current
approaches must balance accuracy with speed. Future
challenges will involve the use of programming models,
architecture designs, and simulation systems that are
amenable to the slight inaccuracies of high-level simu-
lation and can maintain confidence in the obtained result.

REFERENCES

[1] R. Banakar, S. Steinke, B.-S. Lee, M. Balakrishnan, and P. Marwedel.
Scratchpad memory: design alternative for cache on-chip memory in
embedded systems. In CODES ’02, pages 73–78, 2002.

[2] L. Baresi, A. Morzenti, A. Motta, and M. Rossi. Towards the
UML-Based Formal Verification of Timed Systems. In B. Aichernig,
F. de Boer, and M. Bonsangue, editors, Formal Methods for Components
and Objects, volume 6957 of Lecture Notes in Computer Science, pages
267–286. Springer Berlin / Heidelberg, 2012.

[3] Baumann et al. The Multikernel: a new OS architecture for scalable
multicore systems. In Proceedings of SOSP ’09, pages 29–44, New
York, NY, USA, 2009. ACM.

[4] S. Boyd-Wickizer, H. Chen, R. Chen, Y. Mao, F. Kaashoek, R. Morris,
A. Pesterev, L. Stein, M. Wu, Y. Dai, Y. Zhang, and Z. Zhang. Corey:
an operating system for many cores. In Proceedings of the 8th USENIX
conference on Operating systems design and implementation, OSDI’08,
pages 43–57, 2008.

[5] A. Burns, B. Dobbing, and G. Romanski. The Ravenscar Tasking Profile
for High Integrity Real-Time Programs. In Ada-Europe ’98, pages 263–
275. Springer-Verlag, 1998.

[6] B. Chamberlain, D. Callahan, and H. Zima. Parallel Programmability
and the Chapel Language. Int. J. High Perform. Comput. Appl.,
21(3):291–312, 2007.

[7] CoWare, Inc. CoWare Virtual Platform - Hardware/-
Software Integration and Testing...Without Hardware.
http://www.coware.com/products/virtualplatform.php (Accessed Aug
09).

[8] N. D. Enright Jerger, L.-S. Peh, and M. H. Lipasti. Virtual tree
coherence: Leveraging regions and in-network multicast trees for scal-
able cache coherence. In MICRO ’08: Proceedings of the 2008 41st
IEEE/ACM International Symposium on Microarchitecture, pages 35–
46, Washington, DC, USA, 2008. IEEE Computer Society.

[9] K. Fatahalian et al. Sequoia: programming the memory hierarchy. In
SC ’06, page 83, 2006.

[10] R. Gonzalez. Xtensa: a configurable and extensible processor. Micro,
IEEE, 20, Issue 2:60–70, 2000.

[11] J. Gosling and G. Bollella. The Real-Time Specification for Java.
Addison-Wesley Longman Publishing Co., Inc., 2000.

[12] I. Gray and N. Audsley. Exposing Non-Standard Architectures to
Embedded Software Using Compile-Time Virtualisation. International
Conference on Compilers, Architecture, and Synthesis for Embedded
Systems (CASES ’09), 2009.

[13] I. Gray and N. C. Audsley. Developing Predictable Real-Time Embedded
Systems using AnvilJ. In Proceedings of The 18th IEEE Real-Time
and Embedded Technology and Applications Symposium (RTAS 2012)
Beijing China, April 17-19 2012, 2012.

[14] J. Holt. Designing an Industry Standard API to Man-
age Multicore System Resources. http://www.multicore-
association.org/webinar/090811 MRAPI.pdf, August 2009.

[15] H. Huang, N. Yuan, W. Lin, G. Long, F. Song, L. Yu, Y. Liu,
L. Liu, Y. Zhou, X. Ye, J. Zhang, D. Fan, and Z. Tang. Architecture
Supported Synchronization-Based Cache Coherence Protocol For Many-
Core Processors. Chinese Journal of Computers, 8:1618–1630, 2009.

[16] J. Hutchinson, J. Whittle, M. Rouncefield, and S. Kristoffersen. Em-
pirical assessment of MDE in industry. In Proceedings of the 33rd
International Conference on Software Engineering, ICSE ’11, pages
471–480, New York, NY, USA, 2011. ACM.

[17] ITRS. International Technology Roadmap for Semiconductors, 2007
Edition. http://www.itrs.net/, 2007.

[18] D. S. Kolovos, R. F. Paige, and F. A. C. Polack. Eclipse Development
Tools for Epsilon. In In Eclipse Summit Europe, Eclipse Modeling
Symposium, 2006.

[19] J. Kwon, A. Wellings, and S. King. Ravenscar-Java: A High Integrity
Profile for Real-Time Java. In In Joint ACM Java Grande/ISCOPE
Conference, pages 131–140. ACM Press, 2002.

[20] P. Marwedel. Embedded System Design. Springer-Verlag New York,
Inc., Secaucus, NJ, USA, 2006.

[21] T. Mattson, R. V. der Wijngaart, M. Riepen, T. Lehnig, P. Brett, W. Haas,
P. Kennedy, J. Howard, S. Vangal, N. Borkar, G. Ruhl, and S. Dighe.
The 48-core SCC processor: the programmers view. In International
Conference for High Performance Computing, Networking, Storage and
Analysis (SC), 2010, 2010.

[22] P. Mohagheghi and V. Dehlen. Where Is the Proof? - A Review of
Experiences from Applying MDE in Industry. In I. Schieferdecker
and A. Hartman, editors, Model Driven Architecture Foundations and
Applications, volume 5095 of Lecture Notes in Computer Science, pages
432–443. Springer Berlin / Heidelberg, 2008.

[23] Object Management Group. UML Profile for MARTE: Modeling and
Analysis of Real-Time Embedded Systems. http://www.omgmarte.org/,
November 2009.

[24] M. Pradella, A. Morzenti, and P. San Pietro. The symmetry of the
past and of the future: bi-infinite time in the verification of temporal
properties. In ESEC-FSE ’07, pages 312–320, New York, NY, USA,
2007. ACM.

[25] I. R. Quadri, A. Sadovykh, and L. S. Indrusiak. MADES: A SysML/-
MARTE high level methodology for real-time and embedded systems.
In ERTS2 2012: Embedded Real Time Software and Systems, 2012.

[26] F. Siebert. JEOPARD – Java Environment for Parallel Real-Time
Development. Object-Oriented Real-Time Distributed Computing, IEEE
International Symposium on, 0:28–36, 2009.

[27] E. T. Silva Jr., D. Andrews, C. E. Pereira, and F. R. Wagner. An
Infrastructure for Hardware-Software Co-Design of Embedded Real-
Time Java Applications. Proceedings of the 2008 11th IEEE Symposium
on Object Oriented Real-Time Distributed Computing, pages 273–280,
2008.

[28] Texas Instruments Inc. OMAP5430 mobile applications platform.
http://focus.ti.com/pdfs/wtbu/OMAP5 2011-7-13.pdf, July 2011.

[29] The MADES Consortium. The MADES Project. http://www.mades-
project.org/, 2011.

[30] The Multicore Association. Multicore Communications
API Specification V1.063 (MCAPI). http://www.multicore-
association.org/workgroup/mcapi.php, March 2008.

[31] The T-CREST Consortium. The T-CREST Project.
http://www.3sei.com/t-crest/, 2012.

[32] The ToucHMore Consortium. The ToucHMore Project.
http://www.touchmore-project.eu/, 2012.

[33] TIOBE Software BV. TIOBE Program-
ming Community Index for May 2012.
http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html,
May 2012.

[34] T. Weilkiens. Systems Engineering with SysML/UML: Modeling, Anal-
ysis, Design. Morgan Kaufmann Publishers Inc., San Francisco, CA,
USA, 2008.

[35] D. Wentzlaff, P. Griffin, H. Hoffmann, L. Bao, B. Edwards, C. Ramey,
M. Mattina, C.-C. Miao, J. Brown, and A. Agarwal. On-chip inter-
connection architecture of the tile processor. Micro, IEEE, 27:15–31,
Sept-Oct 2007.

[36] D. Wiklund and D. Liu. SoCBUS: Switched Network on Chip for Hard
Real Time Embedded Systems. In IPDPS ’03, page 78.1, 2003.

[37] V. F. Wolfe, L. C. DiPippo, R. Ginis, M. Squadrito, S. Wohlever, I. Zykh,
and R. Johnston. Real-time CORBA. In RTAS ’97: Proceedings of the
3rd IEEE Real-Time Technology and Applications Symposium (RTAS
’97), page 148, Washington, DC, USA, 1997. IEEE Computer Society.


