
Designing Resource-Constrained
Embedded Heterogeneous Systems to
Cope with Variability
Ian Gray
University of York, UK
Andrea Acquaviva
Politecnico di Torino, Italy
Neil Audsley
University of York, UK

ABSTRACT
As modern embedded systems become increasingly complex they also become susceptible to
manufacturing variability. Variability causes otherwise identical hardware elements to exhibit large
differences in dynamic and static power usage, maximum clock frequency, thermal resilience and
lifespan. There are currently no standard ways of handling this variability from the software
developer's point of view, forcing the hardware vendor to discard devices which fall below a certain
threshold.

This chapter first presents a review of existing state of the art techniques for mitigating the effects of
variability. It then presents the toolflow developed as part of the ToucHMore project, which aims to
build variability-awareness into the entire design process. In this approach, the platform is modelled
in SysML, along with the expected variability and the monitoring and mitigation capabilities that the
hardware presents. This information is used to automatically generate a customised variability-aware
runtime which is used by the programmer to perform operations such as offloading computation to
another processing element, parallelising operations, and altering the energy use of operations (using
voltage scaling, power gating etc.). The variability-aware runtime affects its behaviour according to
modelled static manufacturing variability and measured dynamic variability (such as battery power,
temperature, and hardware degradation). This is done by moving computation to different parts of the
system, spreading computation load more efficiency, and by making use of the modelled capabilities
of the system.

1 INTRODUCTION
It is becoming increasingly difficult to efficiently exploit complex Multiprocessor Systems-on-Chip
(MPSoC) architectures using existing programming languages and approaches. This is due to two
main issues:

1. Modern MPSoC platforms have a very complex programming model, but the languages
commonly used to develop software for them (C, C++ etc.) present a very simple view of
hardware. This is the “programming model gap”.

2. Hardware variability causes systems that were designed as regular architectures to become
irregular once they are manufactured, and to change over time.

Commonly used languages such as C, Java and C++ all assume a homogeneous implementation
architecture with a uniform, shared memory space. This is incompatible with the application-specific,
heterogeneous architectures of MPSoCs – specifically parallelism, non-uniform memory architectues
(NUMA) and non-standard communications (i.e. on-chip networks). This problem is compounded
when variability is considered.

Variability is the observation that as the manufacture of integrated circuits moves to lower and lower
process nodes, the transistors become increasingly variable. This gate-level variation leads to large
differences in the performance of the final design. Therefore, multiple copies of the same design may
exhibit considerable differences in static and dynamic power consumption, lifespan and clock
frequency. A system designed as a homogenous MPSoC will be heterogeneous after manufacturing
variability is considered. This is a major challenge for the development of both the hardware and
software of future embedded systems.

This chapter begins in Section 2 by describing in detail the kinds of variability that exist in modern
embedded systems. Section 3 then discusses existing approaches that attempt to mitigate the effects of
such variability. Sections 4, 5 and 6 detail the approach taken in the ToucHMore project, an EU FP7
research project which is focussed on the development of variability-aware systems. Finally, Section 7
summarises potential areas for future work in this area and Section 8 concludes.

2 BACKGROUND - VARIABILITY IN MULTICORE SYSTEMS
Due to the increasing demands placed on modern embedded devices, multicore devices are now
commonplace. They are deployed to address the high performance and energy efficiency requirements
imposed by audio, video, mobile telephony, and gaming applications. Moreover, multicore systems
are becoming widespread in the automotive infotainment and power-train domains; especially in the
context of hybrid and electric vehicles where energy efficiency is critical.

Technology scaling has traditionally offered advantages to embedded systems in terms of reduced
energy consumption and increased performance without requiring significant additional design effort.
Developers could expect performance improvements “for free”. However, scaling to and past the 22
nm and 14 nm technology nodes brings a number of problems. Random intra-die process variability,
reliability degradation mechanisms, and their combined impact on system-level quality metrics (i.e.
power consumption or maximum clock speed) are prominent issues that will need to be tackled in the
next few years. In particular, due to aggressive technology scaling, sub-65 nm CMOS technology
nodes are increasingly affected by variation phenomena, and multicore architectures are impacted in
many ways by the variability of the underlying silicon fabrics (Flamand, 2009) (Tiwari & Torrellas,
2008).

Variability causes significant perturbations to the performance and power consumption of multicore
platforms. This is of particular interest to multicore systems (Bowman, Alameldeen, Srinivasan, &
Wilkerson, 2007) (Humenay, Tarjan, & Skadron, 2007) (Sylvester, Blaauw, & Karl, 2006) because it
leads to systems that were designed as homogeneous multicore systems but in which each core runs at
a different speed and uses a different amount of power to do so. For example, a recent study
(Gottscho, Kagalwalla, & Gupta, 2012) found that supposedly identical DRAM chips from the same
wafer of the same production run may vary in write power consumption by up to 22%. Furthermore,
variations may increase at runtime due to aging and wear-out phenomena. This may cause failure of
single components, when the speed of the circuits becomes too slow to be properly sampled by the
clock signal. In the rest of this section we provide details about both static and dynamic sources of
uncertainty in modern multicore systems. In Section 3 we will outline current countermeasures
adopted to face these issues.

2.1 Static Uncertainty: Process Variability
The progress and scaling of CMOS technology has encountered a number of walls. The most obvious
is the fact that the dimensions of silicon devices are approaching the atomic scale and are hence
subject to atomic uncertainties. According to the International Technology Roadmap for
Semiconductors (ITRS, 2012), this becomes of concern at 45nm, and becomes critical at the 22nm
technology node and below. Other issues impair technology scaling even before this. Lithography
resolution, photo resist and electrical field limits (due to power supply voltage fluctuations, thin oxide
breakdowns, etc.) are critical issues for 65nm and 45nm technologies.

Two different types of process variations have different impacts on multicore architecture design.
Intra-die process variations result in significant core-to-core frequency variations (Cao & McAndrew,
2007) (Herbert & Marculescu, 2008) (Bowman, Alameldeen, Srinivasan, & Wilkerson, 2007).
Simultaneously, global variations lead to inter-die variability. The result is that overall performance
differs from the nominal design, and varies across multiple instances of the fabricated chips (Ndai,
Bhunia, Agarwal, & Roy, 2008). In the produced chips, critical paths can be faster or slower than
designed, meaning that the clock frequency of each core needs post-fabrication calibration. Faster

cores are overclocked and slower cores are clocked at a lower frequency.

Figure 1: (left) 3D simulation of a 35 nm MOSFET fabricated under the effects of variability. (right)
Illustration of the potential distribution in such a device (Fujitsu).

Statistical variability introduced predominantly by the discrete nature of the electron charge and the
granularity of matter has become a major limitation to MOSFET scaling and integration. It already
adversely affects the yield and reliability of SRAM, causes timing uncertainty in logic circuits and
exacerbates on-chip power dissipation problems. Figure 1 illustrates the variability introduced by
random discrete dopants and line edge roughness in a 35 nm gate length MOSFET.

2.2 Runtime Uncertainty: Wear-out effects
New technology nodes will also be increasingly affected by runtime uncertainty of performance and
power consumption values. This dynamic uncertainty is mainly due to wear-out phenomena and
temperature-related effects. Temperature itself may accelerate wear-out and chip degradation in a
non-uniform way, especially in the presence of hot-spots.

As a consequence, embedded MPSoCs fabricated in upcoming nanometer technologies will be
increasingly affected by aging mechanisms, leading to threshold voltage increase (Karl, Blaauw,
Sylvester, & Mudge, 2008) which implies circuit slowdown. Typically, guardbands (GB) are inserted
to compensate for circuit delay. These GB will shrink during core activity until their complete
consumption will lead to timing violations. In the absence of correction mechanisms, these violations
will result in system failure. In multicore platforms an additional reliability issue is that both the initial
GB margin and its consumption rate are not uniform across the cores. Thus, nominally homogeneous
cores will have drastically different lifetimes. Preventing the less reliable core from dictating the
entire system lifetime requires the GB consumption to be equalized as much as possible. At the
system level this can be obtained by monitoring the GB consumption (Agarwal, Paul, Zhang, & Mitra,
2007) (Eireiner, Henzler, Georgakos, Berthold, & Schmitt-Landsiedel, 2007) and slowing down the
aging process of less reliable cores (Tiwari & Torrellas, 2008).

The strategy to slow down the aging of cores depends on the considered aging effect. The main aging
phenomena affecting nanometer devices are Negative Bias Temperature Instability (NBTI) and Hot
Carrier Injection (HCI), for which wear-out takes place only during activity periods. In particular,
NBTI has gained much attention from recent research because it is considered a dominant effect
(Krishnan, Reddy, Chakravarthi, Rodriguez, John, & Krishnan, 2003). NBTI is due to the dissociation
of Si-H bonds along the silicon-oxide interface in presence of a negative bias (Vgs = −Vdd) on
PMOS transistors, which causes the generation of traps. These traps lead to the increase in the

threshold voltage. Recent studies demonstrate that NBTI leads to up to a 10% voltage increase over a
three year lifetime (Kang, Park, Roy, & Alam, 2007).

The NBTI degradation model is characterized by a recovery effect, caused by the reduction of
interface traps when the negative bias is removed. As a result, the threshold voltage decreases. Thus,
NBTI-induced aging can be partially compensated by imposing a virtual ground (i.e. a logical “1”) to
PMOS transistors gates for a certain period of time (the recovery period) where the core is idle from a
functional viewpoint. As a result, it is possible to slow-down GB degradation by interleaving core
activity with idle periods where the core is placed in a recovery state. The impact of NBTI does not
depend on the granularity and distribution of stress / recovery periods but only on their total duration
(Kumar, Kim, & Sapatnekar, 2006). This makes it possible to efficiently distribute the required
idleness with convenient granularity.

In Section 3 we will describe the main techniques used to compensate for NBTI through runtime task
allocation.

2.3 Runtime Uncertainty: Temperature effects
Aggressive MPSoC scaling exacerbates thermal effects. Power densities are increasing due to
transistor scaling, thereby reducing the chip surface available for heat dissipation. Also, in an MPSoC
the presence of multiple heat sources increases the likelihood of temperature variations over time and
chip area rather than just a uniform temperature distribution across the entire die (Mulas, D.Atienza,
Acquaviva, Carta, Benini, & De Micheli, 2009). Overall, it is critically important to control
temperature and bound the on-chip gradients to preserve circuit performance and reliability in
MPSoCs.

2.4 Challenges
Given the issues outlined above, the reality of modern multicore platforms is that each core must be
characterized by its own clock frequency, static power, and dynamic power, and that these values can
vary from the nominal value at runtime depending on wear-out and temperature conditions. Without
any compensation and knowledge at software and application level, the consequences on quality of
service (QoS) can be severe. Parallel algorithms for video processing, for instance, assume a
symmetric workload distribution amongst the cores. However, the heterogeneity caused by variations
will cause an asymmetric distribution of execution times of the various threads, leading to the
situation where the slowest thread, running on the slowest core, determines the overall execution time.

The next key challenge in this area, therefore, is to integrate process technology into the architecture
and system software tool flows. To achieve this target, a deep rethinking is needed of system
architectures and design methodologies. In particular, the software development flow should take into
account underlying platform uncertainties and at the same time exploit the presence of capabilities to
monitor them. Variation-tolerant multicore platforms require circuits to monitor static and dynamic
variations. The software must be able to decide when and how to apply compensation in response to
static and dynamic perturbations of the nominal operating characteristics.

Software counter-measures are effective in reshaping application workload to account for variability
in the underlying multiprocessor fabric. In this context, countermeasures at the software level have to
be taken to optimize QoS and energy consumption by selectively allocating workload to the more
efficient cores, depending on the target metric. However, such policies may greatly worsen platform
lifetime as a side effect, as the most used cores will age faster and dominate the Mean Time To
Failure (MTTF). Hence, workload allocation strategies are needed that optimize energy consumption

and performance while preserving reliability by adapting allocation to wear-out conditions. Such
compensation policies are presented in the following section.

3 CURRENT APPROACHES
The problems caused by variability must be addressed at multiple levels of abstraction, from the
circuit (Drake, Senger, Singh, Carpenter, & James, 2008) (Rebaud, Belleville, Beigne, Robert,
Maurine, & Azemard, 2009) to the architectural level (Mutyam, et al., 2009) (Palermo, Silvano, &
Zaccaria, 2009) (Verghese, Rouse, & Hurat, 2008). At the software level, a number of solutions have
been recently proposed. The aim of these approaches is to hide the effects of both static and runtime
variations on the running applications. Most existing systems are runtime-only and tend to be based
on a library or middleware layer. There are also "whole-stack" approaches that include the design and
compilation of the system. The ToucHMore approach, presented later in this chapter, is one such
example.

Research has led to the development of a number of approaches which may be characterized as
follows:

• Runtime approaches (Section 3.1) apply decisions at runtime, even if these decisions are
taken offline. For example, a scheduler may be created offline which can change the
allocation of tasks at runtime according to certain variability metrics.

• Compiler-assisted approaches (Section 3.2) extend this by bringing variability awareness into
another piece of the software development toolchain, customizing the compiler itself, or by
making code generation variability-aware.

• Finally whole-stack approaches (Section 3.3) go further still and involve all aspects of
software development.

3.1 Runtime approaches
To cope with variability, knowledge of platform degradation is of key importance. This implies that it
is possible to measure the GB degradation, static power and dynamic power for each core. While
static information about these quantities can be characterized at post-fabrication time, wear-out and
temperature effects require on-line monitors.

Such online monitors have been proposed to expose core-by-core variability in power and
performance at the software level (Drake, Senger, Singh, Carpenter, & James, 2008) (Rebaud,
Belleville, Beigne, Robert, Maurine, & Azemard, 2009). Consequently, policies exploiting these
monitors have been developed (Chandra, Lahiri, Raghunathan, & Dey, 2007) (Eyerman & Eeckhout,
2010). For instance, if the user has information about per-core frequency, they may change supply
voltage and clock frequency to improve system lifespan. However, this will greatly impact
performance because in many embedded platforms, core frequency selection is very coarsely-grained
and only provides a small selection of disparate speeds.

Another approach exploits task allocation. Tasks may be assigned to cores such that the amount of
workload executed by each core compensates for their degradation. This approach depends on the cost
function to be minimized. For example, when targeting performance, task allocation aims at
compensating for speed differences amongst cores by allocating the fastest core to the largest
workload. This avoids bottlenecks, but faster cores are also the most power consuming ones so this is
not the best solution to minimize energy use. Equally, a non-uniform workload allocation may result
in one core failing before the others because of wear-out effects. Policies which try to improve

lifespan are based on allocation of idleness to cores, such that more idleness is experienced by more
degraded cores.

In other work (Teodorescu & Torrellas, 2008), variation-aware task scheduling algorithms are
proposed with different power / performance objectives. In their study, the authors consider various
platform configurations in which processors may have differing clock frequencies and may or may
not support dynamic voltage and frequency scaling (DVFS). DVFS allows the voltage or core clock
frequency of processors to be altered during runtime. A core may be slowed down at times of low
system load to reduce overall power consumption and system wear. The work uses a ranking
approach where tasks are first ranked by either power consumption or Instructions Per Cycle (IPC)
and then mapped on the cores depending on the selected metric. Power consumption minimization is
achieved by mapping the most power-consuming threads onto the lowest power cores. Maximizing
performance is achieved by mapping the highest IPC threads to the highest frequency cores. When
DVFS is supported, the authors explore the possibility to maximize the performance with a given
power budget by an efficient distribution of voltage levels among cores. In particular, they formulate
the problem using linear programming, where the result is the best selection of N voltage levels for N
cores to maximize the throughput with a given power constraint. This policy however cannot be
applied online due to the time overhead to compute the solution. In similar approaches (Paterna,
Acquaviva, Papariello, Desoli, & Benini, 2009), a two-stage heuristic composed of a linear
programming step and a bin packing step was proposed which gives a suboptimal solution to the
allocation problem. However, the solution is again too expensive to be applied online.

An alternative approach uses an online technique to extract the process variation map of an MPSoC
(Zhang, Bai, Dick, Shang, & Joseph, 2009). The estimation is based on temperature and power
sensors. This information is exploited to perform task allocation to meet a time constraint and with
minimum energy consumption. The problem is formulated using integer linear programming. Even
though this is optimal, this solution cannot be computed online and thus cannot be applied on
embedded systems. Other similar task allocation approaches have been recently proposed (Hong,
Narayanan, & Kandemir, 2009) (Huang & Xu, 2010) (Huang, Yuan, & Xu, 2009) (Paterna,
Acquaviva, Papariello, Desoli, Olivieri, & Benini, 2009).

Finally, recent work (Paterna, Acquaviva, Papariello, Caprara, Desoli, & Benini, 2012) in the domain
of multimedia processing has applied information from runtime sensors but also application-level
time constraints to perform task allocation. A time-constrained, variability-aware, task allocation
methodology which compensates for core-level performance and power variations is applied to meet
the real-time constraints imposed by the frame rate of the multimedia system, whilst minimizing
energy as a secondary objective.

3.2 Compiler-assisted techniques
Compiler-level techniques introduce variability- and reliability-awareness into the compiler. In
particular, various approaches have been proposed to extend existing parallel compilers to make their
parallel decomposition variability-aware.

Consider the fork-join parallel processing model, in which each processing core works on a portion of
a data structure and must synchronize with the others on a barrier. OpenMP is the de-facto standard
for such a parallel execution model, and it features a number of MPSoC-suitable implementations
(Marongiu & Benini, 2009) (Jeun & Ha, 2007). In the OpenMP model, the compiler can manage
idleness insertion at the granularity of a single iteration (or chunks of iterations). This allows very fine
control over the actual duration of idle and active periods, and thus on the stress and recovery time

applied to cores. Longer idle periods are allocated to processors with smaller GB. The impact of the
inserted idleness on loop execution time can be evaluated so that iteration redistribution among the
cores can be exploited to minimize it. Performance loss can be compensated for by reallocation of
workload to cores depending on the idleness distribution.

3.3 Whole-stack approaches
Compiler-assisted approaches are promising, however recently more holistic approaches that exploit
code generation from a high-level system model have also been proposed (Gauthier, Gray, Larkam,
Ayad, Acquaviva, & Nielsen, 2013). This enables the insertion of variability-awareness throughout
the software and hardware development process. Such an approach is pursued in ToucHMore project,
in which variability and energy-aware information is used at all development stages, from system
modelling, to application software, to the runtime and compiler. The ToucHMore approach is
described in Section 4.

4 THE TOUCHMORE APPROACH
The ToucHMore project argues that the programming of heterogeneous MPSoCs cannot currently be
handled entirely at any one level of abstraction. Effectively targeting modern MPSoCs in the presence
of variability requires the use of a customisable tool flow-based approach. The approach combines
existing runtime and compile-assisted techniques with model-driven engineering (MDE), code
generation and customisable compilers.

A key contribution of the toolflow is the ability to make use of model-driven engineering to control
the implementation of software with regards to variability. The model-driven flow uses a set of
models to describe the target hardware, not just in terms of its architecture or topology, but in terms of
the variability aspects present in the system. The model also describes the variability mitigation
options that are available, such as voltage scaling or power gating capabilities. Equally, the input
software is modelled in a way that allows the programmer to express their optimisation metrics
(power saving, performance etc.) and to identify key areas of the software for special attention. From
this model, a customised, variability-aware runtime is generated that is specifically targeted towards
mitigating variability on the target platform for the modelled input application.

The toolchain of the project is shown in Figure 2.

Figure 2: The ToucHMore toolflow

The input to the flow is a SysML (Weilkiens, 2011) model which describes the target hardware and
the structure of the input software. The modelling aspects of the project are discussed in Section 5.
From this model, code generation is used to generate Java code. The toolflow may either generate the
full source code or simply an application structure, depending on the complexity of the input system
model. The software may then be completed using more traditional development methodologies. As is
also discussed in Section 5, the model is used to generate files that guide the customisation of the
runtime to support the application software. Finally, the generated code is processed through a custom

software flow, discussed in Section 6 in order to generate the output binaries for the target
architecture.

4.1 Running example
Throughout the rest of this chapter, a small example function called sum_data will be referred to in
order to show how various aspects of the toolchain operate. sum_data is a simple vector sum
operation, in which the input is an array of integers and the result of the operation is a single integer
which is the numerical sum of all the elements of the array. This function will be generated from the
system model (Section 5.1.4), offloaded to other processing cores (Section 6.3), parallelised (Section
6.4) and run in a power-saving mode (Section 6.5). This example is very simple for the purpose of
clarity, but through the context of the ToucHMore project the approach has also been successfully
applied to an automotive case study in which the computation of audio processing functions is moved
automatically in response to system temperature, and a large set of synthetic case studies including a
heterogeneous 12-core system built on the Xilinx Zynq-7000 SoC (Xilinx Corporation, 2014).

4.2 ToucHMore Methodology
The language used in this project is JSR302-compliant Java, known as Safety-Critical Java or SCJ
(Schoeberl, 2007). This is a form of Java that is applicable for use in embedded, safety-critical
software environments. These are the domains in which variability-awareness is currently most
important due to their tendency to use non-standard architectures, battery power, limited cooling, long
lifespans, and slower CPUs which demand efficient software. However, this methodology would also
be very applicable to almost any embedded development process.

The ToucHMore flow is based around the concept of operations. Operations are elements of the input
software which are modelled in the system model and represent the smallest unit of software of which
the programmer can control the implementation. Operations are allocated to processing elements for
execution. This model is illustrated in Figure 3.

Figure 3: ToucHMore Software Model

The input application is a set of Java classes. Each class may potentially contain a number of methods
that are modelled as operations. The target hardware is a set of processing elements, which are
defined as hardware capable of executing Java. (Note that in the ToucHMore project the Java code is
translated to C and compiled before deployment. Other approaches may choose to use a standard
JVM.) One of these processing elements is the master processing element which will host the Java

classes. Other processing elements are target processing elements which can optionally host a set of
operations. One target may contain multiple operations, and each operation can be mapped to a set of
targets. These mappings are specified by the programmer in the system model (discussed in Section
5.1.3) and carried into this toolflow as arguments to the @Offload annotation, discussed in Section
6.3.

Note that this computational model does not prevent multiple applications executing at the same time
on the same architecture. Indeed this is the most common model used to target complex MPSoCs
because most programming languages cannot describe a single application that can execute over a
heterogeneous architecture without shared memory (and Java is no different). Rather than attempt to
redefine the accepted industrial methodology, this approach seeks to augment it with variability-
awareness.

4.3 Operation Annotations
The operations of the input application may be tagged with three ToucHMore-specific annotations
which affect the way in which code should be generated. These annotations may be added manually
by the programmer, or carried into the code from the system SysML model (described in Sections
5.1.1 to 5.1.3). The meanings of these annotations are described later whilst this section concentrates
on the general transformation approach. The annotations are:

• @Offload (Section 6.3) - Applied to an operation (method) to mark the method as suitable
for offloading from the master to a target computation resource (such as a DSP).

• @Parallel (Section 6.4) - Applied to an operation tagged with @Offload to mark the
method as suitable for parallel offload.

• @Energy (Section 6.5) - Applied to an operation to allow the programmer to control the
energy usage characteristics of the operation.

All of these annotations are implemented with a combination of two approaches:

1. Bytecode transformation. The standard Java compiler is used to generate class files from the
Java source code. These class files are then parsed and transformed using the ASM bytecode
library (Bruneton, 2002) to change their behaviour. In the ToucHMore project, annotations do
not change the functional meaning of the code, only its non-functional properties. If all
annotations are removed the code will still produce the same result (assuming well-formed
code without data races).

2. Code generation. The annotations customise the behaviour of the ToucHMore runtime. The
runtime support required for each annotation is described in their respective sections.

5 MODEL-DRIVEN ENGINEERING IN TOUCHMORE
The ToucHMore project uses model-driven engineering to integrate variability-awareness into its
toolchain. The developer creates the following three models:

• A model of the target platform, describing its structure, communication, and the variability
aspects of the hardware (Section 5.1.1).

• A model of the source application (Section 5.1.2) in terms of the operation model described
previous in Section 4.2.

• A deployment model of the application on to the platform (Section 5.1.3).

From these models the developer uses automatic model transformations and code generation to
perform the following actions:

• Create Java code which implements the source application. This may be complete code
generation, or class and method stubs which are filled in manually.

• Generation of configuration files to customise the behaviour of the ToucHMore variability-
aware runtime.

• Generation of annotations for the Java code to mark that, for example, a given operation
should be offloaded to a slave, or executed in a low-power state.

The chosen modelling language is SysML. SysML is already well-established in industrial use and
models both hardware and software resources equally well. A commonly-cited weakness of UML is
that it was initially software-centric. MARTE (The Object Management Group, 2011) is another
common choice for embedded development but its specification is very large and complex. It covers
much greater detail than is required by the ToucHMore toolflow.

The next three sections briefly give examples of the three kinds of modelling in the project.

5.1.1 Target Platform Modelling
The aim of the target platform model is to describe three main elements:

• The processor cores in the platform (and their capabilities).
• The connections between the cores - in terms of shared memory, busses, or on-chip networks.
• The variability capabilities of the modelled hardware elements.

The target platform hardware is modelled using SysML blocks. In order to provide a generic way to
extend the hardware properties that can be modelled without the need for additional profiles,
inheritance is used to identify the subtype of a SysML block. Figure 4 shows this using an example of
a Block Definition Diagram (BDD) describing the GENEPY platform (Lemaire, Thuries, &
Heiztmann), a heterogeneous network-on chip-based architecture.

The BDD defines the existence of various hardware types and some simple value properties
representing hardware capabilities. It does not define how the more complex hardware types are
constructed from the SysML blocks. The SysML Internal Block Diagram (IBD) shows the internals of
a SysML block, potentially in terms of parts typed by other SysML blocks. An example IBD from the
GENEPY platform is shown in Figure 5.

The target platform model also describes hardware capabilities and variability. Capabilities currently
modelled by the ToucHMore flow are:

• Power saving capabilities of a component
o Clock gating
o Voltage gating
o Voltage or frequency scaling (DVFS)

• Sensing abilities to measure:
o Temperature.
o Supply voltage.
o Current power consumption.
o Memory latencies (core to memory).
o Communication latencies (core to core).
o Current maximum clock frequency (using wear sensing).
o Current battery levels (if present).

• Offload capabilities
o Ability to offload computation to this component.

Figure 6 shows how (a subset of) the capabilities are modelled in a SysML BDD.

Figure 4: Example of a SysML Block Definition Diagram describing the elements of the GENEPY
platform.

Figure 5: Example of a SysML Internal Block Definition

Figure 6: Subset of the capabilities described in the ToucHMore flow

5.1.2 Source Application Modelling
The ToucHMore approach does not restrict the modelling language used to model the source
application. The only requirement is that enough of the application is modelled such that a
Deployment mapping (described in Section 5.1.3) can be built. In practice, this means that all
offloadable computation (operations) should be modelled.

5.1.3 Deployment Modelling
A deployment map is used to identify which processor core types a given operation is built for and to
which it should be offloaded. Each map is represented by a stereotyped package with dependencies on
exactly one platform model and exactly one application model. Each map connects n elements, where
elements can be operations, classes or whole packages of the application, to m processor core

instances within the context of the target platform. This indicates that those n elements of the
application (and anything scoped by them unless another mapping overrides at a lower level) will be
built and deployed on each of the m processor cores of the target platform. It is also possible to map
operations to all processors of a given type, rather than individual processors.

Figure 7: Sample application mapping for the sum_data example

Figure 7 shows an example mapping for the sum_data example (Section 4.1) to an example
architecture. In this mapping, all operations of the class IcfxExample except sum_data are built
and deployed on the MIPS processor in the SMEP cluster at location 10. The operation sum_data is
built and deployed on the same MIPS processor but also built for the two Mephisto processors in the
SMEP cluster at location 10.

5.1.4 Model Transformation and Code Generation
There are two kinds of code generation that are used in the ToucHMore toolchain:

1. Generation of Java code for implementation on the target platform.
2. Customisation of the variability-aware runtime.

Generation of Java code is handled by standard model transformation tools which transform software
models into stub code for completion by the developer. The generated code is then passed to the
software toolchain described in Section 6.

Code generation also customises the variability-aware runtime according to the description of
variability in the platform (Section 5.1.1) and the deployment mappings (Section 5.1.3). An XML file
is generated which contains this information. This is then linked in to the runtime to customise its
behaviour. A complete description of this process is outside the scope of this chapter, but the
following list describes the kinds of features that are affected:

• The runtime handles offloading computation to remote processors. In order to do this, the
runtime must know the structure of the platform and the methods available (message passing,
shared memory etc.). The architecture XML contains this information.

• The user code merely needs to call an offloadable operation. The location of where to offload
and when (i.e. “always”, “only when power is below X%” etc.) is contained in the XML. To
change these mappings and conditions, only the model needs to be updated, the software
remains the same.

• The amount of work assigned to parallel operations is automatically scaled according to the
variability in the platform. In a platform without runtime monitoring, this is static according

to the model. If the XML details the presence of runtime monitoring sensors then this can be
dynamic.

• The ToucHMore API exposes to application software all the sensors that are described in the
XML, and all the power and clock gating features present.

Figure 8 shows a fragment of the generated XML for one of the ToucHMore project’s evaluation
architectures. Observe that the structure and variability of the architecture are both encoded into the
XML.

<Platform name="ToucHMore Platform" id="1">
 <Chip name="Chip1" type="GENEPY SoC" id="2">
 <Connector end1="3" end2="18" id="5" latency="none"
 Type="GENEPYNoC">
 <Router name="00" id="17"></Router>
 <Cluster name="SMEP00" type="SMEPcluster" id="21"
 IsClusterClockGatable="true"
 IsClusterClockScalable="true"
 IsClusterTemperatureMonitorable="false"
 IsClusterVoltageGatable="false"
 IsClusterVoltageScalable="false">
 <Core name="Mephisto1" type="Mephisto" id="28"
 ClockScalingDelay="none"
 CoreClockFrequencyCurrent="manufacture"
 ...
Figure 8: Edited fragment of generated architecture XML

6 THE TOUCHMORE SOFTWARE TOOLCHAIN
As was discussed in Sections 4.2 and 4.3, the ToucHMore project uses Java's annotation system to
annotate operations and thereby allow the programmer to configure the deployment and runtime
behaviour of code. These annotations impart information about variability-awareness to the software
toolchain.

The software flow is shown in Figure 9. Recall that the input application may be generated from the
system SysML model, or coded directly using traditional software development.

Figure 9: Customised compilation in the ToucHMore tool flow

6.1 Operations in Software
As can be seen in Figure 9, the input Java application is passed through a standard Java compiler and
then a string of transformations are applied to implement the ToucHMore variability annotations.

Operations are implemented as Java methods with the following restrictions:

• Static, non-variadic, methods only.
• No recursion.
• May only reference static fields from their own class.
• No dynamic memory allocation.
• No synchronization.
• Cannot throw exceptions.
• Arguments must be primitive types, or arrays thereof.
• May not call other @Offload-annotated methods. May call other methods if those methods

also obey these restrictions.

Arguments to operations can be annotated to assist with optimisation of data movement:

• Input arguments will be read, so their contents must be passed in to the operation. Without
this annotation the runtime may omit this copy phase.

• Output arguments will be generated by the operation, so their contents should be read out
after completion. Without this annotation the runtime may discard the contents of the
argument.

• InOut is the default state of an argument, and implies both input and output.

These transformations are applied by a tool called Java2Java.

6.2 Source Transformation - the Java2Java Tool
The Java2Java tool transforms Java class files using the ASM bytecode transformation framework. It
can support any Java code that conforms to the ToucHMore system model and that obeys the
restrictions listed in Section 6.1. It requires a minimal runtime, but this runtime is designed to be
compliant with Safety Critical Java and so has bounded execution time and memory use. In the
toolchain, after Java2Java is complete a Java to C compiler is used to create C code which is finally
compiled by a normal C compiler to produce target binaries.

Java2Java implements a master-slave computation model for computation offloading. The master
processing element is where the majority of the application's classes execute (see Section 4.2). A
slave is a processing element to which operations may be offloaded for calculation. Thus, Java2Java
transforms the user's annotated application into several executables; one version for the master and
one version for each of the designated targets for offloading.

On the master, Java2Java’s runtime implements a thread pool that it uses to implement parallel
method offloading. This means that the user's application will require more threads than are specified
in the initial source code. Any real-time schedulability analysis must be performed on the output of
Java2Java rather than the input. The thread pool implementation is compliant with Safety Critical
Java. For the slaves, Java2Java’s runtime only implements a minimal bootloader and so does not have
any significant effect on resource usage.

A full discussion of the internal operations of Java2Java is outside the scope of this chapter. However,
the following sections describe the specific transformations that are implementation by Java2Java in
more detail.

6.3 Annotations for Offloading - @Offload
As discussed in Section 6.1, there are a range of limitations on the Java code that may be part of an
@Offload-tagged method. In addition to these, for consistency with the input Java, the implemented
offloading mechanism uses a synchronous model in which the calling thread is blocked until the
operation completes.

The @Offload annotation is implemented by Java2Java in three main phases.

1. Modification of the class files containing the @Offload methods.
2. Generation of new class files for each target.
3. Generation of new native files for each target.

For each @Offload method, the transformation performs the following:

• The original @Offload method is transformed into a static method and is renamed. This part
will be executed by the slave side to perform the actual computation.

• A new native static method with the original @Offload method’s name is created. It embeds
generated C code to implement the master side of the offloading mechanism. This side makes
calls into the variability-aware runtime to determine whether or not an offload should take
place, and if so, to where the computation should be offloaded.

An example of this transformation for the sum_data example is shown in Figure 10.

/* Original user-annotated method */
public static sum_data([S[I)V
@Loffload/Offload;(targets={"Mips"},id=2201,sharedMemory=Loffload/Offload$S
haredMemory;.RUNTIME_DECISION)
 @Loffload/In;() // parameter
 @Loffload/Out;() // parameter
 L0
 LINENUMBER 51 L0
 ICONST_0
 ISTORE 2
 //bytecode continues...

/* Original method transformation */
public static native sum_data([S[I)V
@com.percpico.util.mc.NativeMethodImpl(nativeCode="native_implementation”)
@com.percpico.util.mc.NativeMethodDep(depends={@com.percpico.util.mc.Native
MethodDep.Dependency(clazz=SumData, methods={"sum_data_2201([S[I)V"})})
 @Loffload/In;() // parameter
 @Loffload/Out;() // parameter

public static sum_data_2201([S[I)V
@Loffload/Offload;(targets={"Mips"},id=2201,sharedMemory=Loffload/Offload$S
haredMemory;.RUNTIME_DECISION)
 @Loffload/In;() // parameter
 @Loffload/Out;() // parameter
 L0
 LINENUMBER 51 L0
 ICONST_0
 ISTORE 2
 //bytecode continues...
Figure 10: An example of @Offload-annotated method transformation. Original method (above)
and its transformation (below).

In addition to the transformation, a new C file is generated for each target. It contains a loop in which
it waits for incoming offload requests, calls the appropriate native function to perform the requested
computation, and returns the results. An example of this transformation is shown in Figure 11.

int do_offload_2201(int channel_id, jint shared_memory_flag) {
 // Receive arg1
 jobject arg1;
 if(shared_memory_flag) { // Receive only the array address:
 offload_receive(channel_id, &arg1, sizeof(arg1));
 } else { // Receive array length
 jint arg1_length;
 offload_receive(channel_id, &arg1_length, sizeof(arg1_length));
 if (arg1_length >= 0) {
 // Allocate array in local stack:
 // ...detail omitted...
 // Receive array content
 offload_receive(channel_id, arg1, arg1_length * sizeof(jshort));
 }

 // Receive arg2
 // ...detail omitted...

 //Call the actual offloaded code
 _pico_SumData2_sum_1data_12201___3S_3I(arg1, arg2);

 // Send back @Out parameters content
 if(!shared_memory_flag) {
 // Send back arg2
 offload_send(channel_id, arg2, PICO_arrayLength(arg2)*sizeof(jint));
 }

 // End
 return 0;
}
Figure 11: Native C function to implement offload communication on the target side for the
sum_data example

6.4 Annotations for Parallel Execution - @Parallel
The @Offload annotation does not imply parallel execution. During the execution of an operation
tagged with @Offload the thread of control moves from the host computing element to the target
element and only returns once the operation is complete. The purpose of @Parallel is to avoid this,
and to allow a single operation to be offloaded to multiple targets concurrently. The work of the
operation is split amongst the targets according to the variability parameters provided from the XML
generated in Section 5.1.4.

@Parallel may only be applied to methods tagged with @Offload. The restrictions that are
already applied to operations (discussed in the introduction to Section 6) are sufficient to ensure that
the translated code will maintain functional correctness. The developer, however, should be aware
that a single call to a @Parallel method may result in multiple threads of computation being
spawned throughout the application. They can control this through the deployment map in the system
model (Section 5.1.3).

6.4.1 Parallel Execution Model
The use of SCJ in the toolflow places some restrictions on the parallel execution model.

• Memory use is strictly controlled in SCJ. New object instances are created in specific
allocation contexts, each of which is specified with hard limits on their maximum size.
Overflowing any allocation context results in a runtime exception.

• Garbage collection is not present in an SCJ system, meaning that memory is only reclaimed
when an allocation context is destroyed.

• These points imply that the programmer must be able to analyse any library or framework
they use and statically analyse the total number of allocations made.

Consequentially, the parallel computation model is described as follows:

• The @Parallel annotation is used by the programmer to mark methods that are considered
for parallel execution. When @Parallel is applied to a method, every invocation of that
method may result in a number of concurrent invocations of the method at runtime.
Computation may be executed on other slaves of the architecture. Shared memory is neither
required nor assumed, but will be used if present to reduce communication overhead.

• These invocations are identical, except for their parameters. Scalar parameters are copied to
all invocations. Array parameters may be passed in their entirety, but more commonly they
will be passed as sub-arrays (termed chunks) with different invocations receiving different
chunks.

• At the point of the method invocation, the invoking thread is suspended and a set of threads
spawned to execute the concurrent invocations of the method. For clarity, these threads are
called threadlets.

• The variability-aware runtime is queried to determine how many threadlets should be used
(and therefore the number of chunks that array parameters are split into).

• The invoking thread remains suspended until all the threadlets have completed and the results
of the work have been aggregated (un-chunked). This is an implied barrier synchronisation on
the completion of the method.

Work-stealing is not used. Work is balanced by the variability-aware runtime at the point of
invocation but once execution has started it is not redistributed. This allows a much tighter bound on
the worst-case response time of an operation.

The presented model is designed to be small, predictable, and analysable. Consequentially it does not
allow the same rich parallel constructs available in the Java 8 concurrency framework. Instead it is
designed to be a first step to variability-aware, low-overhead concurrency in an embedded domain.

6.4.2 Method Parameters
Most parallel methods will operate on large arrays of data. Rather than pass the entire array to each
threadlet, it is usually optimal to split arrays into chunks and pass only a subset of the chunks to each
threadlet. The @Parallel annotation marks every array parameter with an integer chunkSize
which describes the smallest amount of each array which is required by any given threadlet. The
programmer can assume that after chunking, the length of array parameters to the @Parallel
method will be at least their chunkSize, but they are likely to be longer. The exact length will be a
multiple of the chunkSize, may vary between different invocations at runtime, and is adjusted by
the variability-aware runtime according to runtime parameters. For example, if the runtime is
offloading a parallel operation to two remote DSPs, it may choose to pass a larger volume of data to
the DSP which is cooler, or which due to design-time variability is slightly faster or has a lower power
usage than the other. Details of the kinds of schemes that may be implemented were described in
Section 3.

An example of the @Parallel annotation used to perform the sum_data example in parallel is
shown in Figure 12.

@Parallel
@Offload{targets = {"Mips"}}
public void sum_data(@In(chunkSize = 1) int[] input, int[] output) {
 for(int i = 0; i < input.length; i++) {
 output[0] = output[0] + input[i];
 }
 return total;
}

public void main(void) {
 //Create the arrays
 int[] input = ...
 int[] output = ...

 //Call the parallel method
 sum_data(input, output);

 //Total the collected return values
 int total = 0;
 for(int i = 0; i < output.length; i++) {
 total = total + output[i];
 }
}
Figure 12: An example of the @Parallel annotation

6.4.3 Implementation of @Parallel
The parallel annotation framework uses an application-wide static thread pool to spawn the threadlets
of the parallel method. After the transformation, these threadlets will execute concurrently and call
@Offload-tagged methods. The @Offload transformation will then transform these methods as
described in Section 6.3. Currently there is no standard thread pool in SCJ so the framework includes
an implementation of one. The thread pool uses instances of
javax.safetycritical.MangedThread, which is part of SCJ level 2. The size of the thread
pool is fixed, determined by the programmer, and specified during the build process. The thread pool
can serve threadlets to multiple concurrent parallel invocations.

The transformation process is as follows:

• Modify the main() method to create a global immortal instance of ThreadPool for use by
the parallel methods.

• For each @Parallel annotated method m:
o Rename m to _m_Threadlet
o Create a replacement method m which does the following:

§ Call the runtime to find out how many threadlets to use, n, and where to
offload each one to.

§ Split the input parameters of the parallel method into n sub-arrays.
§ Create an array of n Runnables where each:

• Recieves a split of each input parameter
• Calls _m_Threadlet passing the input parameters

§ Submit the Runnables to the global thread pool.
§ Collect the resulting work into output arrays.

The threadlet method is still annotated with @Offload after this transformation, which is then
processed as described in Section 6.3.

6.5 Annotations for Energy Awareness - @Energy
The deployment model (described in Section 5.1.3) can define the execution characteristics for
operations. These include goals such as ‘energy minimization’, ‘power minimization’ and ‘hotspot
reduction’. The @Energy code annotation captures these goals and passes them to the Java2Java
translator. The generation of customization information from the hardware platform model (described
in Section 5.1.4) allows the runtime to implement these goals based on decisions which depend on the
energy, power and thermal characteristics of the platform.

These features of the target platform are passed through the customization path of the toolchain (the
generated XML) and not through the @Energy annotation itself. The purpose of this annotation is to
define whether or not a certain method is to be given specific "care". The customization path provides
to the runtime the instruments which allow it to implement decisions in a platform-dependent way.
For example, the customization path may inform the runtime about average dynamic and static power
consumption of cores, presence and quantity of temperature sensors. This can then be used to offload
computation to minimise power use or similar. Since minimization of energy, power or temperature
may degrade performance, the flow allows the programmer to define bounds in terms of timing
constraints and QoS degradation. This information is passed through the annotation.

As with the other annotations in the presented toolflow, Java2Java processes the @Energy
annotation. The processing adds calls to the variability-aware runtime at the entry and exit of the
annotated method to set and reset execution characteristics that are specified by the programmer. An
example of this is shown in Figure 13 in which the sum_data example is annotated to be executed
with energy minimisation optimisations.

@Energy(energyMinimization=true)
@Offload(targets = {"Mips"}, id = 2201, sharedMemory = RUNTIME_DECISION)
public static void sum_data(@In short[] data, @Out int[] result) {
 TouchmoreRuntime.energy(true, false, false, 0, 0, 0);

 int sum = 0;
 for (int i = 0; i < data.length; i++) {
 sum += data[i];
 }
 result[0] = sum;

 TouchmoreRuntime.energy_end();
}

Figure 13: The sum_data example transformed by @Energy. The two italicised lines have been
added to pass energy optimisation information to the runtime.

If used alone, @Energy instructs the runtime to apply a frequency and voltage scaling policy. In
order to define the minimum frequency level, the runtime will exploit any time constraint information
that is passed in the @Energy annotation. Also, the @Energy annotation (when minimising energy
use) attempts to deactivate as many system components as possible. This relies on the variability-
aware runtime. The techniques that are employed are described in Section 3. Section 5.1.4 described
how the system model is transformed into an XML file which details the variability capabilities of the
system. This file is used by the variability-aware runtime to determine what system components can
have their power disconnected, which do not support it, and which do support it but are currently in
use (perhaps from an @Offload, or @Parallel method) and so they should be deactivated later.

When used together with @Offload and @Parallel, the @Energy annotation indicates to the
runtime how the decision of where to offload to must be performed. This impacts the target task
allocation. When using @Offload and @Energy, the target is selected to minimize energy or
minimize temperature hotspots. Energy and temperature optimization are not always the same. For
instance, a hotspot reduction policy may execute code in two cores which are physically far apart
from each other, even if this consumes more energy through communication than two closer cores.

The annotation supports deadline and QoS parameters that are used as inputs to the defined
optimizations. Frequency and voltage scaling and workload to core allocation are currently used, but
many other potential policies are possible, as discussed in Section 3.

Time constraints and QoS bounds are used to tune the aggressiveness of energy and temperature
policies. There is a trade-off between performance and energy or thermal optimisation because such
optimisation often requires clock frequency reduction or because it imposes additional delays for
component shut-down. Many state-of-the-art policies concerning joint variability and energy
optimization require some performance constraint information in order to achieve the best trade off
between energy and performance. The use of such an annotation can assist the programmer in the
investigation of this trade off because changing parameters and deployments requires only changing
the SysML model, no software needs to be altered.

7 FUTURE RESEARCH DIRECTIONS
There are a number of areas of future research that could be followed from the work discussed in this
chapter.

The purpose of the ToucHMore project was to investigate how to integrate variability-awareness into
the embedded development flow. Consequentially, the programming model used is not as expressive
as some existing systems. To extend the applicability of the toolflow, the following extensions could
be explored:

7.1 Asynchronous Offload Semantics
Currently offloaded methods are synchronous, meaning that when an offload is called, the caller is
blocked until the method completes. This is consistent with the basic Java model and so is the
approach taken. However, Java also has support for asynchronous method invocations through the use
of the Future interface (Oracle Corporation, 2013). Futures represent the result of a computation
that may not yet have completed. They are returned immediately from an asynchronous call, and will
be updated with the result asynchronously once the computation completes.

Asynchronous semantics may help the programmer to use their available hardware more fully, and are
used in a number of languages such as Go (Google, 2014) and Javascript (The jQuery Foundation,
2014). Interesting future work would investigate extending the programming model to support such
semantics.

7.2 Extending the Parallel Programming model
In order to better concentrate on the variability issues explored by the ToucHMore toolchain, the
current parallel programming model is very simple. In order to extend the applicability of the
approach, the model should be unified with an existing parallel programming framework such as
OpenMP (Chandra R. , 2001). The use of GPUs and other powerful accelerators could be tackled
through the integration of OpenACC (OpenACC-Standard.org, 2013). Neither of these frameworks
are currently variability-aware.

7.3 Online Energy Profiling
It is very challenging to develop accurate models of the power usage of modern embedded SoCs. This
is because of both their complexity, and because of industrial secrecy. Often the approach taken is to
attempt to measure the power consumption of a subset of operations (such as the opcodes of a
processor) and then develop a power model from those measurements. However this can be time-
consuming and inaccurate, and crucially does not account for variability between devices. Currently,
this limits the accuracy of the profiles implemented by the @Energy annotation.

A possible solution to this is to use online profiling to learn about how the target system is actually
performing, and then to feed this information back into the runtime for use by an adaptive energy
profile. This could lead to a power-aware runtime with greater accuracy and predictive power than
can be currently achieved.

8 CONCLUSIONS
Due to increasing consumer demands, modern embedded architectures are becoming increasingly
complex, leading to the adoption of designs based around the use of heterogeneous, multiprocessor
systems on chip. These designs require billions of transistors on a single die but with minimal power
consumption, thereby motivating the use of smaller and smaller fabrication processes. As fabrication
moved from the 90nm process, through 45nm, 32nm, 22nm and smaller, manufacturing variability
became an increasingly significant issue. At these smaller scales, the variation in transistors that
should be identical is so large that designs exhibit large deviations from their designed power
consumption, clock speed, and lifespan. It has therefore become necessary to design systems with
variability in mind.

This chapter has described the sources of variability in modern systems and summarised many
existing state-of-the-art approaches to addressing the problems that it causes. One such approach is
the customisable toolflow that is implemented as part of the ToucHMore project. The tool flow uses
model-driven engineering to describe the target architecture in terms of its variability, and to deploy
the user's application over it.

The toolchain allows the programmer the use of three special annotations to perform the following
actions:

• Optionally offload computation to a remote processing node, depending on variability
parameters.

• Parallelise multiple offloaded computations for simultaneous execution, adjusting parallelism
according to variability.

• Adjust the execution of software in response to features such as battery life, temperature, or
silicon wear.

These annotations are supported by a customisable ToucHMore runtime which is generated
automatically from the model-driven flow to be variability-aware. This means that the runtime can
affect the operation of the above features in response to manufacturing variability. For example, if in a
multicore system, one processor is slightly faster due to manufacturing variability (or runtime
degradation), then it may receive a correspondingly higher amount of computation from offloads and
parallel operations. Similarly, a programmer may provide multiple offload locations for a given
offloadable operation and allow the runtime to decide where to offload to given the variability of the
system.

Together, these approaches allow the programmer to target complex architectures in the presence of
variability in an efficient and portable way.

9 FURTHER READING
1) Andy Wellings, Concurrent and Real-Time Programming in Java. Published by Wiley, 2004,

ISBN 0-470-84437-X.

2) M. Faugère, T. Bourbeau, R. de Simone and S. Gérard, MARTE: Also an UML Profile for
Modelling AADL Applications, proceedings of ICECCS 2007, IEEE Computer Society,
Auckland, New Zealand, July 11-14, 2007.

3) N. Audsley, I Gray, N. Matragkas, L. S. Indrusiak, D. Kolovos, R. Paige, Embedded and Real
Time System Development: A Software Engineering Perspective, Springer-Verlag, 2014.
András Vajda, Programming Many-Core Chips, Springer, 2011.

4) Ahmed Jerraya, Wayne Wolf, Multiprocessor Systems-on-Chips, Morgan Kaufmann, 2004.
Michael Hübner and Jürgen Becker, Multiprocessor System-on-Chip: Hardware Design and
Tool Integration, Springer, 2010.

5) H. Aydin, R. Melhem, D. Mossé, and Pedro Mejia Alvarez, Dynamic and Aggressive
Scheduling Techniques for Power-Aware Real-Time Systems, Real-Time Systems
Symposium, London, England, Dec 2001.

6) M. Gottscho, A. A. Kagalwalla, and P. Gupta., Power Variability in Contemporary DRAMs,
IEEE Embedded Systems Letters.

7) L.A.D. Bathen and N.D. Dutt, E-RoC: Embedded Raids-on-Chip for Low Power Distributed
Dynamically Managed Reliable Memories, UC Irvine. Proc., IEEE/ACM 2011 Design,
Automation and Test in Europe.

8) C. Piguet, Ultra-Low Power Processor Design, Chapter 1 in High Performance Energy-
Efficient Microprocessor Design, Editor Vojin Oklobdzija and Ram Krishnamurthy, Springer
2006, pp. 1-30, ISBN-10: 0-397-28594-6.

9) L. Balmelli, D. Brown, M. Cantor, M. Mott, Model-driven systems development, IBM
Systems Journal, Volume 45 Issue 3, July 2006.

10) Chihhsiong Shih, Chien-Ting Wu, Cheng-Yao Lin, Pao-Ann Hsiung, Nien-Lin Hsueh, Chih-
Hung Chang, Chorng-Shiuh Koong, William C. Chu, A Model-Driven Multicore Software
Development Environment for Embedded System, Computer Software and Applications
Conference, Annual International, pp. 261-268, 2009 33rd Annual IEEE International
Computer Software and Applications Conference, 2009.

11) Xavier Guerin, Frederic Petrot, A System Framework for the Design of Embedded Software
Targeting Heterogeneous Multi-core SoCs, IEEE International Conference on Application-
Specific Systems, Architectures and Processors, pp. 153-160, 2009.

12) Schattkowsky, T.; Muller, W., Model-based design of embedded systems, Proceedings of
Object-Oriented Real-Time Distributed Computing, pp. 113-128 2004.

13) Poletti, F., Poggiali, A., Bertozzi, D., Benini, L., Marchal, P., Loghi, M., Poncino, M.,
Energy-Efficient Multiprocessor Systems-on-Chip for Embedded Computing: Exploring
Programming Models and Their Architectural Support, IEEE Transactions on Computers,
vol. 56, pp: 606-621 2007.

14) Mosterman, P., Model-Based Design of Embedded Systems, Proceedings of International
Conference on Microelectronic Systems Education 2007.

10 BIBLIOGRAPHY
Agarwal, M., Paul, B., Zhang, M., & Mitra, S. (2007). Circuit failure prediction and its application to
transistor aging. Proceedings of the 25th IEEE VLSI Test Symposium, (pp. 277-286).

Bowman, K. A., Alameldeen, A. R., Srinivasan, S. T., & Wilkerson, C. B. (2007). Impact of Die-to-
Die and within-Die Parameter Variations on the Throughput Distribution of Multi-Core Processors.
Procceedings of the ACM/IEEE International Symposium on Low Power Electronics and Design, (pp.
50-55).

Bruneton, E. (2002). ASM 4.0: A Java bytecode engineering library. Retrieved from
http://download.forge.objectweb.org/asm/asm4-guide.pdf

Cao, Y., & McAndrew, C. (2007). Mosfet Modeling for 45 nm and Beyond. Proceedings of the IEEE
International Conference on Computer-Aided Design, (pp. 638-643).

Chandra, R. (2001). Parallel programming in OpenMP. Morgan Kaufmann.

Chandra, S., Lahiri, K., Raghunathan, A., & Dey, S. (2007). System-on-Chip Power Management
Considering Leakage Power Variations. Proc. ACM/IEEE Design Automation Conference, (pp. 877-
882).

Drake, A., Senger, R., Singh, H., Carpenter, G., & James, N. (2008). Dynamic Measurement of
Critical-Path Timing. Proc. IEEE Conf. Integrated Circuit Design and Technology and Tutorial, (pp.
249-252).

Eireiner, M., Henzler, S., Georgakos, G., Berthold, J., & Schmitt-Landsiedel, D. (2007). Delay
characterization and local supply voltage adjustment for compensation of local parametric variations.
IEEE Journal of Solid-State Circuits , 42 (7), 1583-1592.

Eyerman, S., & Eeckhout, L. (2010). A Counter Architecture for Online DVFS Profitability
Estimation. IEEE Transactions on Computers , 59 (11), 1576-1583.

Flamand, E. (2009). Strategic Directions Toward Multicore Application Specific Computing. Proc.
IEEE Conf. Design, Automation and Test in Europe, (p. 1266).

Gauthier, L., Gray, I., Larkam, A., Ayad, G., Acquaviva, A., & Nielsen, K. (2013). Explicit Java
Control of Low-Power Heterogeneous Parallel Processing in ToucHMore. International conference
on Java Technologies for Real Time Embedded Systems.

Google. (2014). The Go Programming Language. Retrieved January 2014, from http://golang.org/

Gottscho, M., Kagalwalla, A., & Gupta, P. (2012). Power Variability in Contemporary DRAMs. IEEE
Embedded Systems Letters, 4.

Herbert, S., & Marculescu, D. (2008). Characterizing Chip-Multiprocessor Variability-Tolerance.
Proc. ACM Conf. Design Automation Conference, (pp. 313-318).

Hong, S., Narayanan, S., & Kandemir, M. (2009). Process Variation Aware Thread Mapping for Chip
Multiprocessors. Proceedings of IEEE Design Automation and Test in Europe, (pp. 821-826).

Huang, L., & Xu, Q. (2010). Energy-Efficient Task Allocation and Scheduling for Multi-Mode
MPSoCs under Lifetime Reliability Constraints. Proceedings of IEEE Design, Automation and Test,
Europe, (pp. 1584-1589).

Huang, L., Yuan, F., & Xu, Q. (2009). Lifetime Reliability-Aware Task Allocation and Scheduling
for MPSoC Platforms. Proceedings of IEEE Design, Automation and Test, Europe, (pp. 51-56).

Humenay, E., Tarjan, D., & Skadron, K. (2007). Impact of Process Variations on Multicore
Performance Symmetry. Proc. Conf. Design, Automation and Test in Europe, (pp. 1653-1658).

ITRS. (2012). Retrieved from The International Technology Roadmap for Semiconductors - 2012
Update: http://www.itrs.net/Links/2012ITRS/Home2012.htm

Jeun, W.-C., & Ha, S. (2007). Effective OpenMP implementation and translation for multiprocessor
system-on-chip without using OS. Asia and South Pacific Design Automation Conference, ASP-DAC,
(pp. 44-49).

Kang, K., Park, S., Roy, K., & Alam, M. (2007). Estimation of statistical variation in temporal NBTI
degradation and its impact on lifetime circuit performance. ICCAD 2007: Proceedings of the 2007
IEEE/ACM international conference on Computer-aided design, (pp. 730-734).

Karl, E., Blaauw, D., Sylvester, D., & Mudge, T. (2008). Multi-mechanism reliability modeling and
management in dynamic systems. IEEE Transactions on Very Large Scale Integration (VLSI) Systems
, 16 (4), 476-487.

Krishnan, A., Reddy, V., Chakravarthi, S., Rodriguez, J., John, S., & Krishnan, S. (2003). NBTI
impact on transistor and circuit: models, mechanisms and scaling effects. Technical Digest. IEEE
International Electron Devices Meeting, (pp. 14.5.1–14.5.4).

Kumar, S., Kim, C., & Sapatnekar, S. (2006). An analytical model for negative bias temperature
instability. ICCAD 2006: Proceedings of the 2006 IEEE/ACM international conference on Computer-
aided design, (pp. 493-496).

Lemaire, R., Thuries, S., & Heiztmann, F. A flexible modeling environment for a NoC-based
multicore architecture. High Level Design Validation and Test Workshop (HLDVT), 2012 IEEE
International, (pp. 140-147). Huntington Beach, CA, USA.

Marongiu, A., & Benini, L. (2009). Efficient OpenMP support and extensions for MPSoCs with
explicitly managed memory hierarchy. Proceedings of the 12th International Conference on Design,
Automation and Test in Europe, (pp. 809–814).

Mulas, F., D.Atienza, Acquaviva, A., Carta, S., Benini, L., & De Micheli, G. (2009). Thermal
Balancing Policy for Multiprocessor Stream Computing Platforms. In Transactions on Computer-
Aided Design of Integrated Circuits And Systems , 28.

Mutyam, M., Wang, F., Krishnan, R., Narayanan, V., Kandemir, M., Xie, Y., et al. (2009). Process-
Variation-Aware Adaptive Cache Architecture and Management. IEEE Transactions on Computers ,
58, 865-877.

Ndai, P., Bhunia, S., Agarwal, A., & Roy, K. (2008). Within-Die Variation-Aware Scheduling in
Superscalar Processors for Improved Throughput. IEEE Transactions on Computers , 57, 940-651.

OpenACC-Standard.org. (2013, June). The OpenACC Application Programming Interface, Version
2.0.

Oracle Corporation. (2013). Java Platform, Standard Edition 7 API Specification - Future Interface.
Retrieved from http://docs.oracle.com/javase/7/docs/api/java/util/concurrent/Future.html

Palermo, G., Silvano, C., & Zaccaria, V. (2009). Variability-Aware Robust Design Space Exploration
of Chip Multiprocessor Architectures. Proceedings of the IEEE Asia and South Pacific Design
Automation Conference, (pp. 323-328).

Paterna, F., Acquaviva, A., Papariello, F., Caprara, A., Desoli, G., & Benini, L. (2012). Variability-
Aware Task Allocation for Energy-Efficient Quality of Service Provisioning in Embedded Streaming
Multimedia Applications. IEEE Transactions On Computers .

Paterna, F., Acquaviva, A., Papariello, F., Desoli, G., & Benini, L. (2009). Variability-Tolerant
Workload Allocation for MPSoC Energy Minimization under Real-Time Constraint. Proc. IEEE
Workshop Embedded Systems for Real-Time Multimedia, (pp. 134-142).

Paterna, F., Acquaviva, A., Papariello, F., Desoli, G., Olivieri, M., & Benini, L. (2009). Adaptive
Idleness Distribution for Non-Uniform Aging Tolerance in Multiprocessor Systems-on-Chip. Proc.
IEEE Conf. Design, Automation and Test in Europe, (pp. 906-909).

Rebaud, B., Belleville, M., Beigne, E., Robert, M., Maurine, P., & Azemard, N. (2009). An
Innovative Timing Slack Monitor for Variation Tolerant Circuits. Proc. IEEE Conf. IC Design and
Technology, (pp. 215-218).

Schoeberl, M. (2007). A Profile for Safety Critical Java. 10th IEEE International Symposium on
Object and Component-Oriented Real-Time Distributed Computing, ISORC '07, (pp. 94-101).

Sylvester, D., Blaauw, D., & Karl, E. (2006). Elastic: An Adaptive Self-Healing Architecture for
Unpredictable Silicon. IEEE Design and Test of Computers, 23, pp. 484-490.

Teodorescu, R., & Torrellas, J. (2008). Variation-Aware Application Scheduling and Power
Management for Chip Multiprocessors. ACM SIGARCH Computer Architecture News , 36 (3), 363-
374.

The jQuery Foundation. (2014). The jQuery API Documentation - Deferred. Retrieved January 2014,
from http://api.jquery.com/jQuery.Deferred/

The Object Management Group. (2011, June). UML Profile for MARTE: Modeling and Analysis of
Real-Time Embedded Systems. Retrieved from http://www.omg.org/spec/MARTE/1.1/PDF/

Tiwari, A., & Torrellas, J. (2008). Facelift: Hiding and Slowing Down Aging in Multicores.
Procceedings of the IEEE/ACM International Symposium on Microarchitectures, (pp. 129-140).

Verghese, N., Rouse, R., & Hurat, P. (2008). Predictive Models and CAD Methodology for Pattern
Dependent Variability. Proceedings of the IEEE Asia and South Pacific Design Automation
Conference, (pp. 213-218).

Weilkiens, T. (2011). Systems engineering with SysML/UML: modeling, analysis, design. Burlington,
MA, USA: Morgan Kaufmann.

Xilinx Corporation. (2014, January). Zynq-7000 All Programmable SoC. Retrieved from
http://www.xilinx.com/products/silicon-devices/soc/zynq-7000/

Zhang, L., Bai, L., Dick, R., Shang, L., & Joseph, R. (2009). Process Variation Characterization of
Chip-Level Multiprocessors. Proceedings of the ACM Conference of Design Automation, (pp. 694-
697).

11 KEY TERMS AND DEFINITIONS

Code Generation – The automatic generation of software (or another form of computer input
language) from a higher-level description. Used to accelerate development by reducing the effort
required by developers, and reducing the possibility for errors.

Embedded System – A generic term for a computer system that is part of a larger system. Unlike a
desktop or laptop computer, an embedded system will operate either wholly or partly as a component
of a larger device, for example an aeroplane or car. Embedded systems are generally size, cost, and
power constrained.

Guardband – In semiconductor manufacture, one way of accounting for uncertainty in the design and
manufacturing process is to weaken the guarantees on certain design criteria (such as power
consumption or minimum clock speed). This weakening creates a ‘margin of error’ known as a
guardband.

Model-Driven Engineering – A development process which makes use of high-level abstract models
to aid development and communication between team members, rather than focussing solely on the
creation of software and hardware.

SysML - Systems Modelling Language. A general-purpose modelling language for systems
engineering applications. SysML supports the specification, analysis, design, verification and
validation of a broad range of systems.

Technology Node – A term used in semiconductor device fabrication to describe the size of the
features in the finished product. Quoted in terms of nanometres (or larger for earlier nodes), the node
name refers to half the distance between identical features in a memory cell. However, for many
process nodes this is not a precise measurement and should be understood to be indicative only.
Smaller nodes are more recent.

Variability – The observation that features in fabricated silicon devices that were designed as
identical will not be identical after manufacture. A wide range of effects contribute to variation in the
features’ power consumption, maximum clock frequency, and lifespan.

Yield – In semiconductor manufacture, after manufacture and testing, the ratio of products which
meet their designed specification against the total number produced. A high yield is important to
ensure minimal wastage and a cost-efficient design.

