
Automatic Development of Embedded
Systems Using Model Driven Engineering
and Compile-Time Virtualisation

Neil Audsley, Ian Gray, Dimitris Kolovos, Nikos Matragkas, Richard Paige
and Leandro Soares Indrusiak

Abstract The architectures of modern embedded systems tend to be highly
application-specific, containing features such as heterogeneous multicore pro-
cessors, non-uniform memory architectures, custom function accelerators and
on-chip networks. Furthermore, these systems are resource-constrained and
are often deployed as part of safety-related systems. This necessitates the lev-
els of certification and the use of designs that meet stringent non-functional
requirements (such as timing or power). This chapter focusses upon new tools
for the generation of software and hardware for modern embedded systems
implemented using Java. The approach promotes rapid deployment and de-
sign space exploration, and is integrated into a fully model-driven toolflow
that supports existing industrial practices. The presented approach allows the
automatic deployment of architecture-neutral Java code over complex em-
bedded architectures, with minimal overheads and a run-time support that
is amenable to real-time analysis.

1 Introduction

Due to their application-specific nature, the architectures of modern embed-
ded systems are commonly very different to that of more general-purpose
platforms. Such systems contain non-standard features that are poorly sup-
ported by existing languages and development flows, which can make embed-
ded design difficult, slow, and costly.

Good examples of this trend can be observed in recent smartphone devices.
The Apple iPhone 3G, released in 2008, contained two main heterogenous
processors (an application processor and a baseband processor), four differ-
ent memory technologies of different speeds and sizes (DDR SDRAM, serial

Department of Computer Science, University of York, UK

1

2 Audsley, Gray, Kolovos, Matragkas, Paige, Indrusiak

flash, NOR flash and SRAM), and a wide range of supplemental processing
devices such as touchscreen controllers and power management controllers
[10]. In later versions of the device the application processor itself became
a heterogeneous, multicore, system-on-chip containing two ARM Cortex-A9
CPUs with a SIMD accelerator, dual core GPU, and dedicated image pro-
cessing and audio processing cores. Developing software for such a system
is extremely challenging and requires large amounts of low-level, hardware-
specific software for each part of the system.

The difficulty of software development for complex architectures is com-
pounded by the observation that many embedded systems are deployed in
resource-constrained environments and so the efficiency of the final design is
a top priority. Also, many embedded systems are real-time systems and so
are required to be analysed and certified before deployment to ensure that
they are fit for purpose.

This chapter discusses these problems in detail and considers existing solu-
tions in section 2. An approach is then presented that is part of the MADES
project, an EU 7th Framework Project [40]. The MADES project uses model-
driven techniques to seamlessly integrate model transformation (section 3.2),
software generation (section 4) and hardware generation (section 5) flows
to promote rapid development, design space exploration, and increase the
quality of the final systems. A case study is then presented in section 6 to
show how these tool flows work in practice. Finally, the chapter concludes in
section 7.

2 Background

This section will discuss the unique challenges of embedded development and
some of the ways that they are currently addressed. Section 2.1 discusses
the complex hardware architectures found in embedded systems, section 2.2
discusses the problems faced by developers of safety-critical and high-integrity
systems, and section 2.3 describes industrial concerns.

2.1 Heterogenous Hardware Platforms

The hardware architectures of embedded systems are becoming increasingly
non-standard and application specific. Large increases in on-chip transistor
density coupled with relatively modest increases in maximum clock rates [21]
have forced the exploration of multi-processor architectures with heteroge-
nous processing components in order to meet increasing application perfor-
mance requirements. Consequentially, many modern embedded systems tar-
get Multiprocessor Systems-on-Chip (MPSoCs)-based platforms. These ar-

Development of Embedded Systems Using MDE and CTV 3

chitectures are a significant deviation from the homogeneous, uniprocessor
platforms that have traditionally been the main component of embedded ar-
chitectures.

Embedded architectures frequently contain multiple, heterogeneous pro-
cessing elements [25], non-uniform memory structures [3], and non-standard
communication facilities (e.g Network-on-Chip communications structures
are used on the recent Tilera 64-core TILEPro64 processor [44] and the In-
tel 48-core Single-Chip Cloud Computer [26]). Embedded systems also make
extensive use of application-specific hardware, such as DSP cores, function ac-
celerators, or configurable processors [13]. For example, Texas Instruments’
OMAP 5 range of devices [38] contain a dual-core ARM Cortex A15, two
other smaller ARM cores, DSPs, and a GPU core.

The lack of a ‘standard’ architecture means that such systems are not
well-supported by the standard toolchains and languages that have been pre-
viously developed. This is because the abstraction models of existing pro-
gramming languages were not developed to cope such variety and variability
of heterogeneous platforms. Early computer architectures were largely uni-
form and entirely static, consisting of a single processor with access to one
contiguous block of memory. As a result, the abstraction layers of program-
ming languages hid many architectural details to aid the programmer. This
approach has been inherited by modern languages, which increasingly rely
on the presence of middleware or a distributed operating system to allow the
programmer access to hardware features and architectural mapping. Access
to features such as complex memory or custom hardware can only be achieved
though the use of abstraction-breaking techniques (link scripts, inline assem-
bly, raw pointers etc.). These techniques are error-prone, difficult to port to
new architectures, and hard to maintain. Also, on resource-limited embedded
systems complex operating systems or middleware is infeasible.

2.2 Criticality

In addition to the problems described above, embedded systems are fre-
quently deployed in safety-related (i.e. safety-critical) environments, thereby
categorising them as hard real-time systems [6]. Such systems must be
amenable to worst-case execution time analysis so that their worst-case tim-
ing behaviour can be identified and accounted for. This requires predictability
at all stages of the design, from language choice (frequently a high-integrity
subset such as Ravenscar Ada [5] or Java [24]) through a real-time OS (such
as MARTE OS [34]) to real-time hardware features (such as the CAN bus,
or SoCBUS [45]).

The heterogenous hardware of embedded systems can often make guaran-
teeing worst-case timing or resource use very difficult. Many hardware fea-
tures have highly variable response times. For example, the response time

4 Audsley, Gray, Kolovos, Matragkas, Paige, Indrusiak

for a cache is relatively low for a cache hit but very high for a cache miss.
Characterising memory accesses as hits or misses at analysis time is an active
area of timing analysis research [33, 18], made even harder when multi-level
or shared caches are considered.

Once a suitable timing model of the hardware can be constructed that
allows analysis, restrictions must be imposed onto the programming model
that developers can use in order to support timing analysis of the application
software. The commonly used model [6] makes the following assumptions:

• The units of computation in the system are assigned a potentially dynamic
priority level.

• At any given time the executing thread can be determined from the pri-
orities in the system and the states of the threads. i.e. Earliest Deadline
First scheduling states that the thread with the nearest deadline has the
highest priority and should be executing, unless it is blocked.

• Priority inversion (deviations from the above point) in the final system
can be prevented, or predicted and bounded.

• Threads contain code with bounded execution times. This implies bounds
on loop iterations, predictable paths through functions, restrictions on
expected input data, and limitations on exotic language features like code
migration, dynamic dispatch, or reflection.

• Blocking throughout the system is bounded and deadlock free.

Finally, once predictable hardware and software are developed it is still
necessary for the highest levels of certification (such as the avionics stan-
dard DO-178B) to demonstrate traceability from requirements to software
elements. Currently this is not well supported by existing toolchains.

2.3 Industrial Applicability

Industry is generally reluctant to switch to new programming languages and
toolchains as this imposes a drastically different development approach with
implicit problems of risk, acceptance and difficulties with legacy systems.
In general, existing industrial methodologies must be supported rather than
supplanted. Model-driven engineering (MDE) is becoming more frequently
used in industrial projects [29] and represents a common way of tackling
the higher abstractions of modern embedded systems [20]. However, as with
programming languages it is desirable to remain with existing modelling stan-
dards (such as SysML [43] or MARTE [30]) and tooling wherever possible.
Another parallel with restricted programming languages is that UML and
profiles like MARTE are very complex and there are many different ways to
model the same concept, so restricted and more focussed subsets can help
with productivity.

Development of Embedded Systems Using MDE and CTV 5

2.4 Summary

In summary, the following issues are observed:

• Embedded systems employ complex, heterogeneous, non-standard archi-
tectures.

• Such architectures are poorly supported by existing programming method-
ologies which tend to assume ‘standard’ hardware architectures.

• Embedded systems are frequently real-time or safety critical systems. This
limits the programming model which can be used and the middleware or
operating systems that can be deployed.

• Complex embedded architectures are frequently very difficult to analyse
for worst-case timing behaviour.

• Industrial developers are reluctant to move to new tools or development
methodologies due to concerns over use of legacy code, certification, trust
in existing tools, and user familiarity.

3 Introduction to Model-Driven Engineering

The approaches introduced in this chapter will leverage Model-Driven En-
gineering (MDE) to attempt to mitigate some of the problems previously
described. This section will introduce MDE, metamodels, and model trans-
formations, and then describe the model transformation framework that is
used throughout the work described by this chapter.

MDE is a software development paradigm, which aims to raise the level
of abstraction in system specification and to increase the level of automation
in system development. In MDE, models, which describe different aspects
of the system at different levels of abstraction, are promoted to primary
artifacts. As such, models“drive” the development process by being subjected
to subsequent transformations until they reach a final state, where they are
made executable, either by code generation or model interpretation.

MDE relies on two facts [22]. First, any kind of system can be represented
by models and second, any model can be automatically processed by a set of
operators. Since, models need to be understood and processed by machines,
they need to conform to a metamodel. Metamodels are used as a typing sys-
tem to provide precise semantics to the set of models they describe. There-
fore, a metamodel is a model, which defines in a precise and unambiguous
way a class of valid models. The metamodel describes the abstract syntax of
a modelling language. The homogeneity of definition provided by metamod-
els enables engineers to apply operations on them such as transformations or
comparisons in an automatic and generic way. Figure 1 illustrates the basic
relations of conformance and representation between a system, a model and
its corresponding metamodel.

6 Audsley, Gray, Kolovos, Matragkas, Paige, Indrusiak

Metamodel

ModelSystem

conforms to

representation of

Fig. 1 Basic relations of representation and conformance in MDE (adapted from
[22]).

3.1 Model Transformations

Model transformations play a key role in model-driven development. Czar-
necki and Helsen [8] identify the following areas in which they are most ap-
plicable:

• Generating lower-level models and code from higher-level, more abstract
models;

• Mapping between different models;
• Querying and extracting information from models;
• Refactoring models;
• Reverse engineering of abstract models from concrete ones.

Model transformations are computer programs, which define how one or
more input models can be transformed into one or more output models. A
model transformation is usually specified as a set of relations that must hold
for a transformation to be successful. The input and output models of the
transformation have to conform to a metamodel.

A model transformation is specified at the metamodel level and establishes
a mapping between all the models, which conform to the input and output
metamodels. Model transformations in MDE follow the model transformation
pattern illustrated in figure 2. The execution of the rules of a transformation
program results in the automatic creation of the target model from the source
model. The transformation rules, as well as the source and target models con-
form to their corresponding metamodels. The transformation rules conform
to the metamodel of the transformation language (i.e. its abstract syntax),
the source model conforms to the source metamodel and the target model
conforms to the target metamodel. At the top level of this layered architecture
lies the meta-metamodel, to which all the other metamodels conform.

Development of Embedded Systems Using MDE and CTV 7

MetaMetaModel

Transformation
Language

Source
Language

Target
Language

Source
Metamodel

Transformation
Rules

Target
Metamodel

Source Model
Transformation

Engine
Target Model

<<instantiate>> <<use>> <<instantiate>>

<<instantiate>> <<instantiate>> <<instantiate>>

<<use>> <<use>>

<<instantiate>> <<instantiate>><<instantiate>>

Fig. 2 Model transformation pattern [4].

3.2 Epsilon Model Transformations

Model transformation languages are used to specify model transformations.
In general, model transformations may be implemented in different ways,
for example, by using a general purpose programming language or by using
dedicated, domain specific model management languages.

In the context of MADES, the model transformation language used is
the Epsilon Generation Language (EGL) [35], which is the model-to-text
transformation language of the Epsilon framework [9]. Epsilon (Extensible
Platform of Integrated Languages for mOdel maNagement) is a family of
consistent and interoperable, task-specific, programming languages which can
be used to interact with models to perform common MDE tasks such as code
generation, model-to-model transformation, model validation, comparison,
migration, merging and refactoring.

Epsilon consolidates the common features of the various task-specific mod-
elling languages in one base language and then develops the various model
management languages atop it. The Epsilon Connectivity Layer (EMC) ab-
stracts different modelling frameworks and enables the Epsilon task-specific
languages to uniformly manage models of those frameworks. The architecture
of the Epsilon framework is illustrated in figure 3.

The approach proposed by this chapter is not dependent on the model
management framework. However, Epsilon was preferred because of some
of its unique features simplify the implementation activities. Such features
include the support of Epsilon for interactive model transformations, the fine-
grained traceability mechanism of EGL, as well as the framework’s focus on
reusability and modularity. Moreover, Epsilon is a mature model management
framework with an active and large community.

8 Audsley, Gray, Kolovos, Matragkas, Paige, Indrusiak

Unit Testing Framework (Eunit)

Model-to-Text
Language (EGL)

Refactoring
Language (EWL)

Comparison
Language (ECL)

Merging
Language (EML)

Transformation
Language (ETL)

Validation
Language (EVL)

Migration Language (Flock)

Epsilon Object Language (EOL)

Epsilon Model Connectivity (EMC)

EMF (XMI 2.x) MDR (XMI 1.x) Z (CZT) XML

Fig. 3 Epsilon Framework Architecture.

4 Software Generation Using Compile-Time
Virtualisation

Given the problems highlighted in section 2, it can be seen that software
development for many modern embedded systems is very challenging. Any
solution to these problems must be industrially-acceptable so from the dis-
cussions in sections 2.3 and 2.2 the following requirements can be obtained:

• No new programming languages or tools because of certification require-
ments.

• No large runtime layers, or complex translated code.
• Integration with model-driven development to aid developers.

The MADES project therefore uses a model-driven approach which inte-
grates a technique called Compile-Time Virtualisation (CTV) [15, 16]. Sec-
tion 4.1 describes CTV and motivates its use while section 4.2.3 describes
how CTV is integrated into MADES.

4.1 Compile Time Virtualisation (CTV)

Compile Time Virtualisation (CTV) is a source-to-source translation tech-
nique that aims to greatly simplify the development of software for embed-
ded hardware architectures. It does this by integrating hardware virtuali-
sation to hide the complexities of the underlying embedded architecture in
a unique way that imposes minimal runtime overheads and is suitable for
use in real-time environments. CTV allows the developer to write software
for execution on a ‘standard’ desktop-style environment without having to
consider the target platform. This architecturally-neutral input software is
automatically translated to architecturally-specific output software that will

Development of Embedded Systems Using MDE and CTV 9

execute correctly on the target hardware. The output software is supported by
an automatically-generated, minimal-overhead, runtime that avoids the code
size increase of standard middleware technologies (such as CORBA [32]) and
run-time virtualisation-based systems (such as Java). CTV is a language-
independent technique that can be applied to a range of source languages.
It has currently been demonstrated in C [15] and Java [17]. The rest of this
chapter will discuss CTV as it is applied to Java, but the approach is broadly
the same in all languages.

Architecture-

neutral software

Virtual

Platform

Architecture-specific software

Exported

hardware

Executes on

Simple

programming

model

Virtualisation

mappings

Custom

hardware

Mappings

Executes on

Target Platform

Fig. 4 Compile-Time Virtualisation introduces a Virtual Platform to make software
development easier.

CTV introduces a virtualisation layer over the target hardware, called the
Virtual Platform (VP). This is shown in figure 4. The VP is a high-level view
of the underlying hardware that presents the same programming model as
the source language (in this case Java) to simplify development. For Java,
it presents a homogeneous symmetric multiprocessing environment with a
single monolithic shared memory, coherent caching, and a single uniform
operating system. This is equivalent to a standard desktop computer running
an operating system like Linux or Windows and is the environment in which
Java’s runtime expects to operate. Therefore, the developer can write normal,
architecture-independent Java code.

As its name implies, the VP is a compile-time only construct, it does not
exist at run-time. This is because the VP’s virtualisation is implemented
by a source-to-source translation layer that is guided by the virtualisation
mappings (that map threads to CPUs and data to memory spaces). This can
be seen in figure 5. The job of the source-to-source translation is to translate
the architecturally-independent input software into architecturally-specific

10 Audsley, Gray, Kolovos, Matragkas, Paige, Indrusiak

output code that will operate correctly on the target hardware, according
to the provided mappings.

Unlike a standard run-time virtual machine, the virtualisation mappings
are exposed to the programmer. This allows the programmer to influence the
implementation of the code and achieve a better mapping onto the archi-
tecture. For example, by placing communicating threads on CPUs that are
physically close to each other, or locating global data in appropriate memory
spaces to minimise copying. Such design space exploration can be performed
very rapidly because software can be moved throughout the target system
without recoding.

Also in contrast to run-time virtual machines, custom hardware can be
exported up to the programmer through the VP at design-time and presented
in a form that is consistent with the source language’s programming model,
thereby allowing it to be effectively exploited by the programmer.

Application

RTOS Application

Virtual
Platform

Virtual
Platform

Virtualisation layer

Communication framework

Target hardware

Refactored
Application

RTOS
Refactored
Application

Target hardware

Communication libraries

Compile-time view Run-time view

Virtual
machine

Fig. 5 Compile-Time Virtualisation hides complex hardware, but only at compile-
time.

Moving the virtualisation to compile-time rather than run-time helps to re-
duce run-time overheads. Such overheads in a CTV system are small because
all the work is done by the refactoring engine at compile-time. However, a
consequence of applying the refactoring at compile-time is that all necessary
analysis must be able to be be performed offline. This means that certain
aspects of the input language are restricted. However, as discussed in sec-
tion 2.2, in a real-time system such restrictions are already imposed (e.g. in
the Ravenscar [5, 24] and SPARK [19] real-time language subsets). For more
detail on this, see section 4.2.2. In general, the principle is that:

A system which is implemented using Compile-Time Virtualisation
trades runtime flexibility for predictability and vastly reduced overheads.

For examples of how this trade off can reduce overheads, see section 4.2.4.
Some additional benefits of the VP is that its use abstracts hardware

changes from the software developer. The developer only has to target the

Development of Embedded Systems Using MDE and CTV 11

VP rather than the actual hardware and if the hardware is changed at a later
date, the same software can be retargeted without any recoding or porting
effort. Similarly, because the VP is implemented to support development
in existing languages, developers do not have to be trained to use a new
language and existing legacy code can be more easily reused. Also, because
the architecture-specific output code is still valid Java, no new compilers or
tool need to be written. This is of vital importance to high-integrity systems
that require the use of trusted compilers, linkers, and other tools.

The CTV approach is different to techniques such as Ptolemy II [11] which
aim to provide new higher-level and more appropriate abstractions for pro-
gramming complex systems. CTV is instead designed to allow existing lan-
guages and legacy code to be used to effectively target such systems through
the use of very low-overhead virtualisation. The two different approaches
can actually be complementary and used together, with CTV used as a low-
overhead intermediary to bring legacy code or legacy programming languages
into an otherwise Ptolemy-defined system.

CTV is the name for the general technique. Section 4.2 will now dis-
cuss AnvilJ, the specific implementation of CTV that is implemented in the
MADES project.

4.2 AnvilJ

Section 4.1 gave a broad overview of CTV. However, CTV is a language-
independent technique that can be implemented to work with a range of input
languages. In the MADES project the chosen source development language
is Java (and its real-time variants [14, 24]), therefore MADES uses AnvilJ,
a Java-based implementation of CTV that is described in the rest of this
section. The AnvilJ system model is described in section 4.2.1. Whilst AnvilJ
can accept the majority of standard Java, a few restrictions must be imposed
and these are enumerated in section 4.2.2. The way that MADES integrates
AnvilJ into its model-based design flow is discussed in section 4.2.3, and
section 4.2.4 concludes with a discussion of how AnvilJ results in a system
which displays minimal runtime overheads.

4.2.1 AnvilJ System Model

AnvilJ is an implementation of CTV for the Java programming language
and its related subsets aimed at ensuring system predictability, such as the
RTSJ. The AnvilJ system model is shown in figure 6. Its input is a single
Java application modelled as containing two sets:

• AnvilJ Threads: A set of static final instances or descendants of
java.lang.Thread.

12 Audsley, Gray, Kolovos, Matragkas, Paige, Indrusiak

AnvilJ

Thread

AnvilJ Shared

Instance

Channel Memory

Endpoint Endpoint

Processing

node (JVM)

T
a

rg
e

t

a
rc

h
it

e
c
tu

re

In
p

u
t

a
p

p
li

c
a

ti
o

n

AnvilJ Instances

Fig. 6 The AnvilJ system model.

• AnvilJ Shared Instances: A set of static final instances of any other
class.

Collectively, AnvilJ Threads and Shared Instances are described using the
umbrella term AnvilJ Instances. AnvilJ Instances are static throughout the
lifetime of the system; they are created when the system starts and last until
system shutdown.

An AnvilJ Instance may communicate with any other AnvilJ Instance,
however the elements it has created may not communicate with the created
elements of other AnvilJ Instances. This restriction allows the communication
topology of the system to be determined at compile-time and the required
runtime support to be reduced, as discussed later. This approach is particu-
larly suited to embedded development because it mirrors many of the restric-
tions enforced by high-integrity and certification-focussed language subsets
(such as the Ravenscar subsets of Ada [5] and Java [24] or the MISRA-C
coding guidelines [41]).

In AnvilJ, the main unit of computation in the target hardware is the pro-
cessing node. A processing node models a Real-Time Java Virtual Machine
(JVM) [31] in the final system (or a standard JVM with accordingly reduced
predictability). The Java specification does not define whether a multicore
system should contain a single JVM for the entire system [37, 1] or one per
core. Therefore AnvilJ models the JVMs, rather than the processors. The
JVMs need not have similar performance characteristics or features. As with
all CTV implementations, every AnvilJ Instance is mapped to exactly one
node. AnvilJ Instances cannot migrate between processing nodes, but (if sup-
ported by the Java implementation) other instances can.

Nodes communicate using channels, which are the communication prim-
itives of the target architecture. AnvilJ statically routes messages across the
nodes of the system to present the totally-connected communications assumed
by Java. The designer provides drivers for the channels of the system. Mem-
ories represent a contiguous logical address space and endpoints connect

Development of Embedded Systems Using MDE and CTV 13

processing nodes to other hardware elements. Every AnvilJ Shared Instance
must be mapped to either exactly one node (on the heap of the JVM), or
exactly one memory where it will be available to all nodes connected to that
memory.

This model is compile-time static – the number of AnvilJ Instances does
not change at runtime. This is consistent with the standard restrictions that
are imposed by most real-time programming models (as discussed in sec-
tion 2.2. For example, Ravenscar Ada [5] forbids all dynamic task alloca-
tion, whereas AnvilJ only forbids dynamic AnvilJ Instances. This is in con-
trast to systems like CORBA which adopt a “dynamic-default” approach in
which runtime behaviour is limited only by the supported language features.
Such systems support a rich runtime model but the resulting system can
be heavyweight as they are forced to support features such as system-wide
cache coherency, thread creation and migration or dynamic message rout-
ing, even if not required by the actual application. The approach of CTV is
“static-default” in which the part of the application modelled is static. The
restricted programming model promises less, but the amount of statically-
available mapping information allows the required runtime support to be
significantly reduced.

Not all instances of java.lang.Thread need to be modelled as an AnvilJ
Instance. Equally, not all shared object instances need to be modelled at all.
Enough should be modelled to fulfill the constraint that program instances
created by an AnvilJ Thread t only communicate with other instances created
by t, or another AnvilJ Instance.

4.2.2 Restrictions on Input Code

In order to be correctly refactored, AnvilJ input programs must be written
to conform to a small set of restrictions which are detailed in this section.
These restrictions are consistent with those required by existing real-time
development processes (i.e. SPARK [19] or MISRA-C [41], see section 2.2)
and in most cases are less restrictive. They allow the system to operate with
hugely reduced runtime overheads (see section 4.2.4).

• AnvilJ threads and shared objects must be declared as static final

fields. This means that the refactoring engine can determine at compile-
time their location and number, which is not in general possible otherwise.

• All accesses to an AnvilJ object must directly refer to the field (using dot
notation if the reference is in another class). It is forbidden to ’leak’ a
reference to an AnvilJ object, for example by returning it from a method,
passing it to a method, or assigning it to a local variable of another class.
Any of these actions will be checked by the refactoring engine and pre-
vented.

14 Audsley, Gray, Kolovos, Matragkas, Paige, Indrusiak

• The arguments and return values of shared methods that are exported by
an AnvilJ thread or shared object must implement java.io.Serializable
interface.

• Threads on different nodes must only use other AnvilJ objects to commu-
nicate. Threads may perform any action that only affects the local JVM.
However, if it calls methods or accesses fields with an instance on a differ-
ent node that instance must be tagged as an AnvilJ Instance.

4.2.3 Integration With Model-Driven Engineering

To aid the use of AnvilJ, MADES integrates it directly into the model-driven
engineering (MDE) flow of the project. This is not mandatory for AnvilJ,
which can be used independently. In order to integrate AnvilJ it is necessary
to provide the designer with a way of expressing a high-level view of the tar-
get hardware (in terms of the AnvilJ system model) and a high-level view
of relevant parts of the input software. Not all the input software needs to
be modelled, only the parts that are to be marked as AnvilJ Instances (sec-
tion 4.2.1). Also, the allocation of AnvilJ instances from the software model
to the processing nodes of the hardware model must be provided.

This information is then translated from the designer’s model into the form
which is required by the AnvilJ tool. The translation is implemented using
the Epsilon model transformation language, which is described in detail in
section 3.2. In the MADES framework, this information is provided by the
designer through the use of 13 stereotypes which are applied to classes in the
system model. These MADES stereotypes are described in table 1. The mod-
elling tool used in the MADES flow (Modelio [28]) supports two additional
diagram types that use the MADES stereotypes; the detailed hardware spec-
ification and the detailed software specification. Allocations are performed
with a standard allocation diagram. Working with these additional diagrams
aids the designer because the MADES stereotypes can be automatically ap-
plied.

For a more detailed look at how the modelling is performed to integrate
AnvilJ, section 6 presents a case study that shows the development of a
subcomponent of an automotive safety system.

4.2.4 Overheads

AnvilJ’s static system model allows most of the required support to be im-
plemented at compile-time, resulting in a small runtime support system, es-
pecially when compared with much larger (although more powerful) general-
purpose frameworks. As will be shown in this section, the main overhead in
an AnvilJ system is that of the Object Manager (OM). The OM is a micro-
kernel which exists on every processing node of the system and implements

Development of Embedded Systems Using MDE and CTV 15

Table 1 Brief description of the MADES stereotypes

Stereotype Description

«mades hardwareobject» Superstereotype for all hardware stereotypes.
«mades clock» Connected to «mades processingnode» instances and

«mades channel» instances to denote a logical clock
domain.

«mades channel» A communication resource i.e. bus
«mades ipcore» Additional hardware i.e function accelerator.
«mades memory» A single logical memory device.
«mades processingnode» A computation element of the hardware platform.

Commonly this is a single processor, but as described
in section 4.2.1, this corresponds to a JVM in the final
system.

«mades endpoint» Superstereotype of all endpoint stereotypes. Endpoints
connect processing nodes to other hardware and pro-
vide more information about the connection. i.e. an
ethernet endpoint may provide a MAC address.

«mades memorymedia» Connects a «mades processingnode» instance to a
«mades memory» instance.

«mades devicemedia» Connects a «mades processingnode» instance to a
«mades ipcore» instance.

«mades channelmedia» Connects a «mades processingnode» instance to a
«mades channel» instance.

«mades softwareobject» Superstereotype for all software stereotypes.
«mades thread» Represents an AnvilJ Thread.
«mades sharedobject» Represents an AnvilJ Shared Instance.

the AnvilJ system model. The OMs use a message-passing communications
model to implement shared memory, locks, remote method calls etc.

The full version of the OM compiles to approximately 34kB of class files in-
cluding debugging and error information. However it is also possible to create
smaller OMs which only support a subset of features for when the software
mapped to a node does not require them. For example, if a node contains
AnvilJ Shared Instances but no AnvilJ Threads then 5.7kB of support for
‘Thread creation and joining’ can be removed. If none of the shared methods
of a node are called then the shared methods subsection can be removed. The
advantage of AnvilJ’s offline analysis is that this can be done automatically
each time, based on the exact input application and hardware mappings.
Figure 2 shows a breakdown of some of the feature sets of the OM and their
respective code footprint.

Figure 7 compares this size to other similar systems. It should be noted
that this comparison is provided purely to contextualise the size metric and
demonstrate that AnvilJ’s size is small, relative to related embedded frame-
works. The other systems graphed, especially the CORBA ORBs, are built
to support general-purpose, unseen software and consequentially are much
more heavyweight.

16 Audsley, Gray, Kolovos, Matragkas, Paige, Indrusiak

Table 2 Class file sizes for OM features

Feature set Approx. size

Thread creation and joining 5.7 kB
Remote Object Locks 4.5 kB
Shared methods 8.4 kB
Sockets-based IComms (debug) 4.29 kB
Full OM 34 kB

OverheadsOverheads
 Each node has a minimal microkernel
◦ Compile-time information allows this to shrink

 Suitable for real-time WCET analysis

0

500

1000

1500

2000

2500

3000

Anvil AnvilJ Perc Pico uCLinux TAO ORB ZEN ORB

C
o

d
e

fo
o

tp
ri

n
t

in
k

B
(a

p
p

ro
x
.)

Max

Min

Fig. 7 The code footprint of the AnvilJ runtime compared to systems from a sim-
ilar domains. Anvil is a C-based implementation of CTV, Perc Pico [2] implements
safety-critical Java on systems without an OS, uClinux is a reduced Linux kernel for
microprocessors with MMUs, and TAO [36] and ZEN [23] are Real-Time CORBA
ORBs.

In addition to the small code size of the OM, its runtime memory footprint
is also modest. The full OM in a desktop Linux-based system uses approxi-
mately 648 bytes of storage when idle, which increases as clients begin to use
its features.

5 Hardware Generation Using Model Transformations

The MADES hardware generation flow transforms a detailed hardware spec-
ification diagram into an implementable hardware description. The gener-
ated hardware may be a complex, heterogeneous system with a non-uniform
memory architecture but it is supported and programmed by the software
generated by the code generation transformations described in section 4.

In order to best demonstrate the flexibility of the hardware generation
flow, the translations target Xilinx FPGAs. This is merely an implementa-

Development of Embedded Systems Using MDE and CTV 17

tion choice and does not reflect any part of the flow which inherently requires
Xilinx devices and tools (or FPGAs in general). Other implementation struc-
tures can also be supported. The transformation outputs a Microprocessor
Hardware Specification (MHS) file [47] which is passed to Xilinx Platgen, a
tool that is part of Xilinx’s Embedded Development Kit design tools [48].
Platgen is a tool which reads an MHS file and outputs VHDL [7] which can
then implemented on the target FPGA. This flow is illustrated in figure 8.

Detailed hardware
specification

MHS file

FGPA bitfile

FPGA design

Fig. 8 The hardware generation flow.

The hardware generation flow is implemented using the Epsilon Generation
Language (EGL) (see section 3.2). There are three main benefits gained from
generating hardware from the system model in this way:

• Very rapid prototyping and design space exploration can be achieved using
this method due to the fact that hardware architectures can be constructed
in the developer’s modelling environment rather than vendor tools.

• MDE allows a vendor-neutral way of modelling and generating architec-
tures. The same models could be used to target a wide range of FPGAs,
ASICs, or even other hardware description languages like SystemC, how-
ever such an approach would not support the full flexibility of these sys-
tems.

• The same model is used as a source for both the software generation and
hardware generation flows. These models share a consistent meta-model
and so have related semantics. This gives confidence in the final design,
because the software generation flow is refactoring code according to the
same hardware model used by the hardware generation flow. In essence,
the two flows ‘meet in the middle’ and support each other.

When creating the detailed hardware specification diagram, the hardware
only needs to be modelled at a high level of abstraction. The platform is

18 Audsley, Gray, Kolovos, Matragkas, Paige, Indrusiak

modelled as a class stereotyped with the stereotype «mades architecture».
Each detailed hardware specification contains exactly one such class. Prop-
erties in the «mades architecture» stereotype are used to guide the software
generation process by denoting the entry point class of the input application
and allocating the initial Main thread to a processing node.

The details of the architecture are modelled with the MADES hardware
stereotypes. Processing nodes («mades processingnode») are the elements
of computation in the platform. Each node supports a logical JVM. They
communicate with other nodes through the use of channels. Nodes connect
to channels using the «mades channelmedia» endpoint stereotype. Memories
(«mades memory») are data-storage elements and are connected to channels
using «mades memorymedia». Other hardware elements («mades ipcore»)
are connected to channels through the use of the «mades devicemedia» end-
point stereotype.

The top-level hardware stereotype «mades hardwareobject» defines a
property called iptype. This is passed to the hardware generation trans-
formation to specify the type of hardware which should be instantiated. Fur-
ther properties can also be passed depending on the value of iptype. For an
example of this see the case study in section 6.5.

Clock domains are modelled by classes stereotyped with the «mades clock»
stereotype. Clock synthesis is restricted by the capabilities of the implemen-
tation target and the IP cores used. A set of design rules are first checked
using model verification to ensure that the design can be realised. These are:

• The total number of clock domains is not higher than the limit for the
target FPGA.

• All communications across clock boundaries use an IP core that is capable
of asynchronous signalling (such as a mailbox).

• All IP cores that require a clock are assigned one.

Each clock has a target frequency in the model and is implemented using
the clock manager cores of the target FPGA. As with all FPGA design,
the described constraints are necessary but not sufficient conditions. During
synthesis the design may use more clock routing resources than are available
on the device, in which case the designer will have to use a more powerful
FPGA or reduce the clock complexity of the design.

Currently, interfaces (IO with the outside world) have to be taken from the
IP library or manually defined in VHDL or Verilog. It is not the aim of this
approach to provide high-level synthesis of hardware description languages
such as in Catapult-C [27] or Spec-C [12], although such approaches can be
integrated by wrapping the generated core as an IP core for the Xilinx tools.

Development of Embedded Systems Using MDE and CTV 19

6 Case Study: Image Processing Subsystem

This section will present a case study to illustrate the benefits of the MADES
Code Generation approach and show how CTV/AnvilJ is integrated into the
design flow. This case study will detail the development of a subsection of an
automotive safety system called the Car Collision Avoidance System (CCAS).
The CCAS detects obstacles in front of the vehicle to which it is mounted and,
if an imminent collision is detected, applies the brakes to slow the vehicle. In
this case study we focus on a small part of the detection subsystem and show
how the MADES code generation allows architecture-independent software
to be generated to process the radar images without concern for the target
platform. Multiple hardware architectures can be modelled and the software
automatically deployed over auto-generated hardware.

Section 6.1 gives a block-level overview of the developed component and
section 6.2 discusses how the initial software is developed. The generation of
the software and hardware models is covered in sections 6.3 and 6.4. The gen-
eration of the target hardware is detailed in section 6.5 and finally section 6.6
discusses deploying the software to the generated hardware.

6.1 Subsystem Overview

Read Image DCT Quantization
Image input

(Radar / Camera)

Rest of the

system

Monitoring

output

Display

Inverse DCT

Fig. 9 Block diagram of the implemented subsystem. A monitoring output stage is
included to allow verification of the subsystem during system development.

The developed subsystem takes images from the radar (or camera) and
applies JPEG-style compression to reduce the size of the image and therefore
reduce the demand on on-chip communications. Once reduced in size, the
images are passed on to other parts of the system for feature extraction and
similar algorithms. The block diagram of the subsystem is given in figure 9.
The main stages of the subsystem are as follows:

20 Audsley, Gray, Kolovos, Matragkas, Paige, Indrusiak

• Read Image: Periodically reads images from the input to the system from
a radar or camera.

• DCT: A Discrete Cosine Transformation moves the representation of the
image from the spatial domain into the frequency domain.

• Quantization: Data in the frequency domain is selectively discarded to
compress the image.

• Inverse DCT: Moves the image back into the spatial domain. The result
is a (compressed) image that can be passed to the rest of the system, or
optionally fed to a monitoring output stage.

• Display: Used for monitoring and debugging, the output stage uses a
graphical user interface to display the image to the user.

6.2 Software Development

Developing the software for this subsystem is very simple when using AnvilJ
because the developer can develop as if the code will execute on a standard
desktop Java environment. However, the developer must observe the restric-
tions detailed in section 4.2.2. Also it is not possible to develop the low-level
drivers for the radar/camera input through AnvilJ directly, so for the purpose
of testing and initial development stub drivers should be used that operate
on the development platform. Final hardware interfacing must be done once
deployment is underway as is normal practice.

The main restriction imposed by AnvilJ is that AnvilJ Instances must
be static and only communicate through other AnvilJ Instances. This forces
the developer to consider the structure of their code carefully, as is the case
with all embedded development. The refactoring engine of AnvilJ allows the
entire operation of the subsystem to be detailed using a single Java program,
even though the final hardware platform may involve multiple heterogeneous
processing elements. The code was structured as follows:

• Each block of the subsystem (see figure 9) is implemented as a static

final thread. The threads are declared and started by a Main class that
is responsible for initialising the system.

• Each thread contains internal state that holds images passed into it from
the previous stage, and methods that allow the previous stage to pass in
images to process. The thread processes images in its work queue, and
passes completed images to the next thread.

• Each thread is designated as an AnvilJ Thread. This ensures that all com-
munications in the system go through AnvilJ Instances.

• The output stage is designated an AnvilJ Shared Instance.
• Standard implementations of the DCT and Quantize stages are used from

open source, freely-available code. This is one of the great advantages of
AnvilJ in that often legacy code can be integrated easily.

Development of Embedded Systems Using MDE and CTV 21

Having created the software, its functionality can be verified immediately
simply by executing the code in the development environment. It is not neces-
sary to use simulators, cross-compilation or similar. The result of the software
operating on a test image is shown in figure 10 and a listing of the Main class
can be found in figure 11. Note that the listing is standard Java code, no
extra-linguistic features are required.

Fig. 10 Example of the architecturally-neutral software operating in the develop-
ment environment on a test image. The right-hand image is after processing.

6.3 Software Modelling

In a model-driven development flow, the architecture-independent software
will be developed based on a software model. This model must be extended
with a MADES ‘Detailed Software Specification’ diagram (detailed in the
previous chapter) to inform the AnvilJ tool of the AnvilJ Instances that are
present in the input software. This diagram links elements of the software
model with the input software, using the concept of ‘bindings’.

Bindings are a way of uniquely identifying source code elements (classes, in-
stances, fields, methods etc.) and are defined by the Eclipse JDT project [39].
The developer obtains the binding for an AnvilJ Instance from the AnvilJ
GUI and adds it to the binding property of the «mades softwareobject»
stereotype in the software model. This links the instance in the detailed soft-
ware specification diagram to the source code.

Figure 12 shows the completed detailed software specification diagram.
The diagram is very simple as its only purpose is to add AnvilJ Elements to
the software model and link them to the source code with binding keys. Note
that the use of the «mades thread» and «mades sharedobject» stereotypes.

22 Audsley, Gray, Kolovos, Matragkas, Paige, Indrusiak

public class Main {
private f ina l stat ic int QUALITY = 20 ;

public stat ic f ina l ReadThread readThread =
new ReadThread () ;

public stat ic f ina l DCTThread dctThread =
new DCTThread(QUALITY) ;

public stat ic f ina l QuantizeThread quantizeThread =
new QuantizeThread (QUALITY) ;

public stat ic f ina l OutputStage outputStage =
new OutputStage (QUALITY) ;

public stat ic void main (St r ing [] a rgs) {
readThread . s t a r t () ;
dctThread . s t a r t () ;
quantizeThread . s t a r t () ;

readThread . j o i n () ;
dctThread . j o i n () ;
quantizeThread . j o i n () ;

}
}

Fig. 11 Listing of the Main class that initialises the implemented subsystem.

<<SwSchedulableResource>>

<<mades_thread>>

readThread

<<SwSchedulableResource>>

<<mades_thread>>

dctThread

<<SwSchedulableResource>>

<<mades_thread>>

quantizeThread

<<SwMutualExclusionResource>>

<<mades_sharedobject>>

OutputStage

+binding: Lcasestudy/

Main;.readThread)Lcasestudy/

ReadThread;

+binding: Lcasestudy/

Main;.dctThread)Lcasestudy/

DCTThread;

+binding: Lcasestudy/

Main;.quantizeThread)Lcasest

udy/QuantizeThread;

+binding: Lcasestudy/

Main;.outputStage)Lcases

tudy/OutputStage;

Fig. 12 The detailed software specification diagram for the case study subsystem.

6.4 Hardware Modelling

Having modelled the software, this section will now describe how the target
hardware platform is modelled for AnvilJ integration. Recall that according
to the AnvilJ system model from section 4.2.1, it is only necessary for the
hardware model to cover a high-level view of the capabilities of the target
platform; in terms of processing nodes, memories, channels, and application-
specific IP cores.

Development of Embedded Systems Using MDE and CTV 23

In this case study we will describe two target platforms and show how the
same input software can be automatically deployed without recoding. The
first presented architecture is a dual-processor system with a non-uniform
memory architecture, shown in figure 13.

<<HwComputingResource>>
<<mades_architecture>>

CaseStudy Dual CPU Architecture

<<HwProcessor>>
<<mades_processingnode>>

p1 : cpu1

<<HwProcessor>>
<<mades_processingnode>>

p2 : cpu2

<<HwMedia>>
<<mades_channel>>

mb1 : cpu1membus

<<HwMedia>>
<<mades_channel>>

mb2 : cpu2membus

<<HwMemory>>
<<mades_memory>>

mem1 : cpu1mem

<<HwMemory>>
<<mades_memory>>

mem2 : cpu2mem

<<HwClock>>
<<mades_clock>>

clk : MainClock

<<HwMedia>>
<<mades_channel>>

mb : mainbus

<<clockassociation>>

<<HwProcessor>>

cpu1

<<HwProcessor>>

cpu2

<<HwMedia>>

cpu1membus

<<HwMedia>>

cpu2membus

<<HwClock>>

MainClock

<<HwMedia>>

mainbus

<<HwMemory>>

cpu1mem

<<HwMemory>>

cpu2mem

Fig. 13 The detailed hardware specification diagram for the case study target archi-
tecture. Not shown are properties in the classes that describe each hardware element
in greater detail.

Once the detailed hardware model is complete, the hardware generation
flow can be initiated.

6.5 Hardware Generation

The designer uses the MADES model transformations of section 3.2 to trans-
form the architecture modelled in section 6.4 into an implementable hardware
description. As discussed previously in section 5, the hardware generation flow
targets Xilinx FPGAs and uses the Xilinx IP libraries from Xilinx Embedded
Development Kit [48]. Accordingly, the hardware model must be augmented
to include enough details to instantiate these IP cores. This is done by adding
properties to the classes of the detailed hardware specification diagram. Full

24 Audsley, Gray, Kolovos, Matragkas, Paige, Indrusiak

details of these properties are outside the scope of this chapter and are given
in the MADES documentation [40].

Each of the MADES hardware stereotypes has a mandatory property called
iptype. This is used by the Epsilon model transformation to inform it which
Xilinx IP should be instantiated. Each supported IP has a set of attributes
that may be also set from the model. For example, the xps_uartlite IP core
is a serial transceiver and includes attributes such as C_BAUDRATE to set the
expected baud rate and C_USE_PARITY to switch on or off the use of parity
bits. The hardware generation flow checks for the presence of any mandatory
attributes and warns the user if they are not present.

PORT fpga 0 uart RX pin = fpga 0 uart RX pin , DIR = I
PORT fpga 0 uart TX pin = fpga 0 uart TX pin , DIR = O
PORT fpga 0 mainClk pin = c l o ck mainClk , DIR = I ,

SIGIS = CLK
PORT fpga 0 sys 1 r s t pin = sys r s t s , DIR = I ,

SIGIS = RST, RST POLARITY = 1

BEGIN microb laze
PARAMETER INSTANCE = cpu1
PARAMETER C USE BARREL = 1
PARAMETER HW VER = 8 . 20 .b
PARAMETER C DEBUG ENABLED = 0
BUS INTERFACE DPLB = plbbus
BUS INTERFACE IPLB = plbbus
PORT MB RESET = mb r e s e t
BUS INTERFACE ILMB = cpu1 ilmb
BUS INTERFACE DLMB = cpu1 dlmb

END

Fig. 14 Fragment of the MHS generated by transforming the case study architecture
of figure 13.

Once the model is completed with the required information, the user runs
the hardware transformation to produce a Xilinx MHS file. A fragment of
the MHS generated by transforming the case study architecture of figure 13
is shown in figure 14. This MHS file must be then converted into VHDL
using the Xilinx design tools. For the purpose of this case study, the target
will be a Xilinx Virtex 5 FPGA [46]. At the end of the implementation, an
FPGA bitfile will be created which can then be programmed to the device
for testing.

Development of Embedded Systems Using MDE and CTV 25

6.6 Code Deployment

After modelling the software and hardware, a deployment diagram can be
created that maps instances from the detailed software specification to the
detailed hardware specification. For this case study, the initial allocation will
locate the image reading thread to CPU1 and all other threads to CPU2. The
diagram that performs this allocation can be seen in figure 13.

<<SwResource>>

CaseStudy Software

<<Allocated>>
<<SwSchedulableResource>>

<<mades_thread>>

t1 : readThread

<<Allocated>>
<<SwSchedulableResource>>

<<mades_thread>>

t2 : dctThread

<<Allocated>>
<<SwSchedulableResource>>

<<mades_thread>>

t3 : quantizeThread

<<Allocated>>
<<SwMutualExclusionResource>>

<<mades_sharedobject>>

s1 : OutputStage

<<HwComputingResource>>
<<mades_architecture>>

CaseStudy Dual CPU
Architecture

<<Allocated>>
<<HwProcessor>>

<<mades_processingnode>>

p1 : cpu1

<<Allocated>>
<<HwProcessor>>

<<mades_processingnode>>

p2 : cpu2

<<Allocate>> Allocate

<<Allocate>> Allocate

<<Allocate>> Allocate

<<A
llo

cat
e>>

All
oc
ate

Fig. 15 An allocation diagram that deploys software from the detailed software
specification diagram of figure 12 to the detailed hardware specification of figure 13.

With the addition of the allocation diagram the is model is now complete,
so it is exported in XMI format for use in the Eclipse IDE. Once imported
to Eclipse, an Epsilon model transformation is used to create an AnvilJ ar-
chitecture description. This file is created from the hardware, software, and
allocation diagrams and is the input to the AnvilJ refactoring engine. It tells
AnvilJ what the structure of the input software will be, which elements are
AnvilJ Instances, the topology of the target platform, and how to place the
AnvilJ Instances throughout the platform. Figure 16 shows the architecture
description for the case study.

Once an architecture description is created, the AnvilJ refactoring en-
gine can be invoked at any time to refactor the architecturally-neutral Java
application (an Eclipse project) into a set of architecturally-specific output
programs, one for each processing node of the target platform as described
in the hardware diagram. As the case study architecture has two processing
nodes, two output projects will be created. AnvilJ is fully-integrated into the
Eclipse Development Environment. After refactoring is complete, the output

26 Audsley, Gray, Kolovos, Matragkas, Paige, Indrusiak

<a r c h i t e c t u r e name=”CaseStudy Dual CPU Arch i t e c tu r e ”
mainc lass=”casestudy .Main ” maincpuid=”0 ”>

<cpu name=”cpu1 ” id=”0 ”>
<thread binding=”Lcasestudy /Main ; . readThread)

Lcasestudy /ReadThread ; ”/>
</cpu>
<cpu name=”cpu2 ” id=”1 ”>

<thread binding=”Lcasestudy /Main ; . quantizeThread)
Lcasestudy /QuantizeThread ; ”/>

<sha r edob j e c t b inding=”Lcasestudy /Main ; . outputStage)
Lcasestudy /OutputStage ; ”/>

<thread binding=”Lcasestudy /Main ; . dctThread)
Lcasestudy /DCTThread ; ”/>

</cpu>
<channel name=”plbbus ”>

<endpoint cpu=”cpu1 ”/>
<endpoint cpu=”cpu2 ”/>

</channel>
</a r c h i t e c t u r e >

Fig. 16 The AnvilJ architecture description for the case study. Note the binding
keys correlate with those of the software diagram in figure 12.

applications can be verified by executing both. AnvilJ’s default implementa-
tion uses TCP sockets for inter-node communications, with the intent that
developers replace this with the actual communications drivers of the tar-
get platform. However, this default allows immediate testing on standard
networks. In this case, the two output projects coordinate as expected. The
node with ReadThread reads example radar images and passes them to the
other node now running in a separate JVM on which quantizeThread and
dctThread process them. outputStage displays the processed images. The
two output binaries can be placed on separate networked computers with the
same functional behaviour. The single input program has been automatically
converted into a networked program according to the allocation diagram in
the system model.

6.7 Analysis of Deployed Code

During refactoring, AnvilJ constructs a minimal runtime to support each
output project and refactors the code to use this runtime. The refactoring
engine reports all changes it is making to the input code for each output
project so that the generated code can be traced back to the input code. These
changes are very small and only occur at well-defined points. For example,
these lines appear at the start of the run() method of the Main class of the
input software:

Development of Embedded Systems Using MDE and CTV 27

readThread . s t a r t () ;
dctThread . s t a r t () ;
quantizeThread . s t a r t () ;

After refactoring this becomes:

// I n s t a n t i a t e the Object Manager f o r node id 0
a n v i l j . r e f a c t o r e d . Globals .om = new a n v i l j . ObjectManager (

new a n v i l j . S e t t i n g s (true , false , fa l se) , 0 ,
new a n v i l j . socketcomms . SocketComms (0) ,
new a n v i l j . r e f a c t o r e d . Arch i t e c tu r e () ,
new a n v i l j . r e f a c t o r e d . ThreadCreator () ,
new a n v i l j . r e f a c t o r e d . SharedMessages () ,
new a n v i l j . r e f a c t o r e d . Routing ()) ;

a n v i l j . r e f a c t o r e d . Globals .om. s t a r t () ;

readThread . s t a r t () ;
// S t a r t thread id 1 on node id 1
a n v i l j . r e f a c t o r e d . Globals .om. startThread (1 , 1) ;
// S t a r t thread id 2 on node id 1
a n v i l j . r e f a c t o r e d . Globals .om. startThread (1 , 2) ;

This code sets up and initialises the Object Manager (OM, AnvilJ’s run-
time support) for the current node. The implementation of the OM is au-
tomatically generated in the anvilj.refactored package and is unique to
each processing node of the final system. For example, the AnvilJ Routing

object contains routes to the other nodes of the system with which this OM
will need to communicate. Nodes that it does not communicate with are not
detailed. If the code is updated then more or fewer routes may be added, but
this will always be a minimal size. Routes are planned offline according to
the detailed hardware specification diagram.

Note that two of the calls to Thread.start() have been rewritten by the
refactoring engine to calls into the OM. This is because the threads dctThread
and quantizeThread are allocated to another processing node, so they are
started by calling into the AnvilJ runtime. The runtime sends a ‘start thread’
message to the processing node that hosts the given thread. The call to start
thread readThread has not been translated, however, because it is allocated
to the current node. If the allocation diagram is altered and AnvilJ is rerun,
the refactored calls will change.

6.8 Retargeting for New Platforms

Retargeting the case study for a new architecture is simply a case of preparing
a new detailed hardware specification diagram and amending the allocation
diagram. Figure 17 shows a revised target architecture. This is the same as the
original case study architecture (shown in figure 13) however a third processor
has been added. The revised allocation diagram allocates the threads more
evenly and can be seen in figure 18.

28 Audsley, Gray, Kolovos, Matragkas, Paige, Indrusiak

<<HwComputingResource>>
<<mades_architecture>>

CaseStudy Triple CPU Architecture

<<HwProcessor>>
<<mades_processingnode>>

p1 : cpu1

<<HwProcessor>>
<<mades_processingnode>>

p2 : cpu2

<<HwMedia>>
<<mades_channel>>

mb1 : cpu1membus

<<HwMedia>>
<<mades_channel>>

mb2 : cpu2membus

<<HwMemory>>
<<mades_memory>>

mem1 : cpu1mem

<<HwMemory>>
<<mades_memory>>

mem2 : cpu2mem

<<HwClock>>
<<mades_clock>>

clk : MainClock

<<HwMedia>>
<<mades_channel>>

mb : mainbus

<<clockassociation>>

<<HwProcessor>>

cpu1

<<HwProcessor>>

cpu2

<<HwMedia>>

cpu1membus

<<HwMedia>>

cpu2membus

<<HwClock>>

MainClock

<<HwMedia>>

mainbus

<<HwMemory>>

cpu1mem

<<HwMemory>>

cpu2mem

<<HwProcessor>>
<<mades_processingnode>>

p3 : cpu3

<<HwMedia>>
<<mades_channel>>

mb3 : cpu3membus

<<HwMemory>>
<<mades_memory>>

mem3 : cpu3mem

<<HwProcessor>>

cpu3

<<HwMedia>>

cpu3membus

<<HwMemory>>

cpu3mem

Fig. 17 Revised hardware specification diagram for the case study target architec-
ture.

<<SwResource>>

CaseStudy Software

<<Allocated>>

<<SwSchedulableResource>>

<<mades_thread>>

t1 : readThread

<<Allocated>>

<<SwSchedulableResource>>

<<mades_thread>>

t2 : dctThread

<<Allocated>>

<<SwSchedulableResource>>

<<mades_thread>>

t3 : quantizeThread

<<Allocated>>

<<SwMutualExclusionResource>>

<<mades_sharedobject>>

s1 : OutputStage

<<HwComputingResource>>

<<mades_architecture>>

CaseStudy Triple CPU

Architecture

<<Allocated>>

<<HwProcessor>>

<<mades_processingnode>>

p1 : cpu1

<<Allocated>>

<<HwProcessor>>

<<mades_processingnode>>

p2 : cpu2

< < A l l o c a t e > > A l l o c a t e

< < A l l o c a t e > > A l l o c a t e

< < A l l o c a t e > > A l l o c a t e

< < A l l o c a t e > > A l l o c a t e

<<Allocated>>

<<HwProcessor>>

<<mades_processingnode>>

p3 : cpu3

Fig. 18 Revised allocation diagram for the case study.

Once the model has been updated, it is re-exported as XMI and AnvilJ
re-run. As the hardware diagram now contains three processing nodes, this
produces three output projects with the AnvilJ Instances distributed as de-
scribed by the allocation diagram. Once again, initial functional verification
can be performed by executing the three output projects and observing that
the functional behaviour is again identical.

Development of Embedded Systems Using MDE and CTV 29

7 Conclusions

This chapter has presented some of the major problems encountered when
developing complex embedded systems. The hardware architectures of such
systems are characterised by the use of non-standard, application-specific fea-
tures, such as multiple heterogeneous processing units, non-uniform memory
architectures, complex interconnect, on-chip networks, and custom function
accelerators. These features are poorly supported by the programming lan-
guages most commonly used by industry for embedded development (such as
C, C++ and Java) because these languages assume a ‘standard’ architecture
with a simple programming model. Furthermore, many embedded systems
are real-time or safety-critical systems and so are subject to many additional
restrictions that affect the development process. Existing approaches to solve
these problems tend to lack industrial support; either because they compli-
cate certification through the use of new languages and tools; because they
prevent the use of legacy code; or because they are not integrated well enough
into existing development processes.

The chapter then described AnvilJ, a novel approach for the development
of embedded Java. Unlike most virtualisation systems that operate primarily
at runtime, AnvilJ operates primarily at compile-time and uses a restricted
programming model based on a technique called Compile-Time Virtualisa-
tion. This restricted model allows AnvilJ to operate with vastly reduced run-
time support that is predictable and bounded. In addition, whilst the CTV
model imposes restrictions on the programmer, these are shown to be less
than is imposed by most real-time development processes.

In order to aid industrial acceptance, AnvilJ is integrated into a model-
based engineering tool flow as part of the MADES project using trace-
able model transformations implemented in the Epsilon framework. MADES’
modelling language is augmented with a small set of stereotypes to provide
the additional modelling information required. The use of these transforma-
tions allows AnvilJ to be used by modellers and designers without manual
intervention.

The use of model-driven engineering also allows the presented approach to
automate the process of hardware development. An approach is shown which
translates the hardware diagrams from the system model into VHDL, a hard-
ware description language suitable for implementation on FPGAs. Whilst
this does not expose the full flexibility of VHDL or the chosen implemen-
tation fabric, it can be used for rapid prototyping, functional verification,
and design-space exploration. Due to the fact that the hardware generation
transformation and the software generation transformation are described by
the same metamodel, the generated software will execute correctly on the
generated hardware.

To demonstrate the approach, the chapter showed a case study based on
the vision subsystem of an automotive safety system. The required models

30 Audsley, Gray, Kolovos, Matragkas, Paige, Indrusiak

are developed and passed to AnvilJ, which refactors the input code to target
two different complex architectures without any code writing.

The use of AnvilJ does not make an unpredictable system predictable,
however when used in an otherwise real-time development process it will
not make the system less predictable. In general, worst-case execution time
(WCET) analysis for complex embedded architectures is a significant open
problem. Almost all of the schedulability and WCET analysis performed for
uniprocessor systems no longer applies to multiprocessor systems and many
worst-case analytical models of complex embedded hardware are still too
pessimistic for real-world use. These issues are being considered within the
T-CREST [42] project which aims to build a time predictable NoC based
multiprocessor architecture, with supporting compiler and WCET analysis.

References

1. J. Andersson, S. Weber, E. Cecchet, C. Jensen, and V. Cahill. Kaffemik – A
distributed JVM on a single address space architecture, 2001.

2. Atego. Perc Pico. http://www.atego.com/products/aonix-perc-pico/, 2011.
3. R. Banakar, S. Steinke, B.-S. Lee, M. Balakrishnan, and P. Marwedel. Scratchpad

memory: design alternative for cache on-chip memory in embedded systems. In
CODES ’02, pages 73–78, 2002.

4. J. Bezivin. In Search of a Basic Principle for Model-Driven Engineering. UP-
GRADE - The European Journal for the Informatics Professional, 2004.

5. A. Burns, B. Dobbing, and G. Romanski. The Ravenscar Tasking Profile for
High Integrity Real-Time Programs. In Ada-Europe ’98, pages 263–275. Springer-
Verlag, 1998.

6. A. Burns and A. J. Wellings. Real-time systems and their programming lan-
guages. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1990.

7. J. Charles H. Roth. Digital systems design using VHDL. Pws Pub. Co., 1998.
8. K. Czarnecki and S. Helsen. Feature-based survey of model transformation ap-

proaches. IBM Systems Journal, 45(3), 2006.
9. L. R. . R. F. P. D. S. Kolovos. Extensible Platform for Specifi-

cation of Integrated Languages for mOdel maNagement (Epsilon).
http://www.eclipse.org/gmt/epsilon, 2010.

10. EE Times. Under the Hood - Update: Apple iPhone 3G exposed, December
2008. http://www.eetimes.com/design/microwave-rf-design/4018424/Under-the-
Hood–Update-Apple-iPhone-3G-exposed.

11. J. Eker, J. Janneck, E. A. Lee, J. Liu, X. Liu, J. Ludvig, S. Sachs, and
Y. Xiong. Taming heterogeneity - the Ptolemy approach. Proceedings of the
IEEE, 91(1):127–144, January 2003.

12. D. D. Gajski, J. Zhu, R. Domer, A. Gerstlauer, and S. Zhao. SpecC: Specification
Language and Design Methodology. Kluwer Academic Publishers, 2000.

13. R. Gonzalez. Xtensa: a configurable and extensible processor. Micro, IEEE, 20,
Issue 2:60–70, 2000.

14. J. Gosling and G. Bollella. The Real-Time Specification for Java. Addison-Wesley
Longman Publishing Co., Inc., 2000.

15. I. Gray and N. Audsley. Exposing Non-Standard Architectures to Embedded
Software Using Compile-Time Virtualisation. International Conference on Com-
pilers, Architecture, and Synthesis for Embedded Systems (CASES ’09), 2009.

Development of Embedded Systems Using MDE and CTV 31

16. I. Gray and N. Audsley. Supporting Islands of Coherency for highly-parallel
embedded architectures using Compile-Time Virtualisation. In 13th International
Workshop on Software and Compilers for Embedded Systems (SCOPES), 2010.

17. I. Gray and N. C. Audsley. Developing Predictable Real-Time Embedded Systems
using AnvilJ. In Proceedings of The 18th IEEE Real-Time and Embedded Tech-
nology and Applications Symposium (RTAS 2012) Beijing China, April 17-19
2012, 2012.

18. N. Guan, M. Lv, W. Yi, and G. Yu. WCET Analysis with MRU Caches: Chal-
lenging LRU for Predictability. In Proceedings of the IEEE 18th Real-Time and
Embedded Technology and Applications Symposium (RTAS’2012), 2012.

19. S. Gupta, N. Dutt, R. Gupta, and A. Nicolau. SPARK: a high-level synthesis
framework for applying parallelizing compiler transformations. In VLSI Design,
2003. Proceedings. 16th International Conference on, pages 461–466, Jan. 2003.

20. J. Hutchinson, J. Whittle, M. Rouncefield, and S. Kristoffersen. Empirical assess-
ment of MDE in industry. In Proceedings of the 33rd International Conference
on Software Engineering, ICSE ’11, pages 471–480, New York, NY, USA, 2011.
ACM.

21. ITRS. International Technology Roadmap for Semiconductors, 2007 Edition.
http://www.itrs.net/, 2007.

22. F. Jouault, J. Bézivin, and M. Barbero. Towards an advanced model- driven
engineering toolbox. In Innovations in Systems and Software Engineering, 2009.

23. R. Klefstad, M. Deshpande, C. OŠRyan, A. Corsaro, A. S. Krishna, S. Rao,
and K. Raman. The Performance of ZEN: A Real Time CORBA ORB using
Real Time Java. In Proceedings of Real-time and Embedded Distributed Object
Computing Workshop. OMG, September 2002.

24. J. Kwon, A. Wellings, and S. King. Ravenscar-Java: A High Integrity Profile
for Real-Time Java. In In Joint ACM Java Grande/ISCOPE Conference, pages
131–140. ACM Press, 2002.

25. P. Marwedel. Embedded System Design. Springer-Verlag New York, Inc., Secau-
cus, NJ, USA, 2006.

26. T. Mattson, R. V. der Wijngaart, M. Riepen, T. Lehnig, P. Brett, W. Haas,
P. Kennedy, J. Howard, S. Vangal, N. Borkar, G. Ruhl, and S. Dighe. The 48-
core SCC processor: the programmerŠs view. In International Conference for
High Performance Computing, Networking, Storage and Analysis (SC), 2010,
2010.

27. Mentor Graphics. Catapult-C Synthesis. http://www.mentor.com/catapult,
2009.

28. Modeliosoft. Modelio - The Open Source Modeling Environment.
http://www.modeliosoft.org/, September 2012.

29. P. Mohagheghi and V. Dehlen. Where Is the Proof? - A Review of Experiences
from Applying MDE in Industry. In I. Schieferdecker and A. Hartman, editors,
Model Driven Architecture Ű Foundations and Applications, volume 5095 of Lec-
ture Notes in Computer Science, pages 432–443. Springer Berlin / Heidelberg,
2008.

30. Object Management Group. UML Profile for MARTE: Modeling and Analysis
of Real-Time Embedded Systems. http://www.omgmarte.org/, November 2009.

31. F. Pizlo, L. Ziarek, and J. Vitek. Real Time Java on resource-constrained plat-
forms with Fiji VM. In Proceedings of JTRES, JTRES ’09, pages 110–119, New
York, NY, USA, 2009. ACM.

32. A. L. Pope. The CORBA reference guide: understanding the Common Object
Request Broker Architecture. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 1998.

33. J. Reineke, D. Grund, C. Berg, and R. Wilhelm. Timing predictability of cache
replacement policies. Real-Time Systems, 37:99–122, 2007. 10.1007/s11241-007-
9032-3.

32 Audsley, Gray, Kolovos, Matragkas, Paige, Indrusiak

34. M. Rivas and M. González Harbour. MaRTE OS: An Ada Kernel for Real-Time
Embedded Applications. In D. Craeynest and A. Strohmeier, editors, Reliable
SoftwareTechnologies Ů Ada-Europe 2001, volume 2043 of Lecture Notes in Com-
puter Science, pages 305–316. Springer Berlin / Heidelberg, 2001.

35. L. M. Rose, R. F. Paige, D. S. Kolovos, and F. A. Polack. The Epsilon Generation
Language. In ECMDA-FA ’08: Proceedings of the 4th European conference on
Model Driven Architecture, pages 1–16, Berlin, Heidelberg, 2008. Springer-Verlag.

36. D. C. Schmidt, D. L. Levine, and S. Mungee. The design of the TAO real-time
object request broker. Computer Communications, 21(4):294 – 324, 1998. Quality
of Services in Distributed Systems.

37. Terracotta Inc. The Definitive Guide to Terracotta - Cluster the JVM for Spring,
Hibernate and POJO Scalability. Apress, 2008.

38. Texas Instruments Inc. OMAP5430 mobile applications platform.
http://focus.ti.com/pdfs/wtbu/OMAP5 2011-7-13.pdf, July 2011.

39. The Eclipse Foundation. Eclipse Java development tools.
http://www.eclipse.org/jdt/, 2011.

40. The MADES Consortium. The MADES Project. http://www.mades-
project.org/, 2011.

41. The Motor Industry Software Reliability Association. Guidelines for the Use of
the C Language in Critical Systems. MISRA Ltd., 2004.

42. The T-CREST Consortium. The T-CREST Project. http://www.3sei.com/t-
crest/, 2012.

43. T. Weilkiens. Systems Engineering with SysML/UML: Modeling, Analysis, De-
sign. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2008.

44. D. Wentzlaff, P. Griffin, H. Hoffmann, L. Bao, B. Edwards, C. Ramey, M. Mattina,
C.-C. Miao, J. Brown, and A. Agarwal. On-chip interconnection architecture of
the tile processor. Micro, IEEE, 27:15–31, Sept-Oct 2007.

45. D. Wiklund and D. Liu. SoCBUS: Switched Network on Chip for Hard Real
Time Embedded Systems. In IPDPS ’03, page 78.1, 2003.

46. Xilinx Corporation. Virtex-5 FPGA Configuration User Guide. Xilinx User
Guides, UG191, 2006.

47. Xilinx Corporation. Embedded System Tools Reference Guide - EDK 11.3.1.
Xilinx Application Notes, UG111, 2009.

48. Xilinx Corporation. Platform Studio and the Embedded Development Kit (EDK).
http://www.xilinx.com/tools/platform.htm, June 2012.

