
Architecture-Awareness for Real-Time Big Data Systems

Ian Gray
Dept. of Computer Science

University of York, York, U.K.
ian.gray@york.ac.uk

Neil C. Audsley
Dept. of Computer Science

University of York, York, U.K.
neil.audsley@york.ac.uk

Yu Chan
Dept. of Computer Science

University of York, York, U.K.
yc522@york.ac.uk

Andy Wellings
Dept. of Computer Science

University of York, York, U.K.
andy.wellings@york.ac.uk

ABSTRACT
Existing programming models for distributed and cloud-

based systems tend to abstract away from the architectures
of individual target nodes, concentrating instead on higher-
level issues of algorithm representation (MapReduce etc.).
However, as programmers begin to tackle the issue of Big
Data, increasing data volumes are forcing developers to re-
consider this approach and to optimise their software heav-
ily. JUNIPER is an EU-funded project which assists Big
Data developers to create architecture-aware software in a
way that is suitable for the target domain, and provides
higher performance, portability, and real-time guarantees.

Categories and Subject Descriptors
C.3 [Special-Purpose and Application-Based Systems]:
Real-time and embedded systems; D.1.3 [Software]: Pro-
gramming Techniques—Concurrent Programming

General Terms
Real-Time, Big Data, JUNIPER, Real-Time, High Perfor-
mance Architectures, Cloud-Computing, FPGAs

1. INTRODUCTION
The volume of data being processed and stored by inter-

net applications is increasing exponentially. This issue has
been termed ‘Big Data’, referring to the observation that
the main challenge for such systems is the volume of data
that they must handle [9], rather than the processing that
is performed on individual data elements. Due to the scale
of these systems they display a large degree of heterogene-
ity in the servers upon which they are deployed. Systems

This work has received funding from the European Union’s
Seventh Framework Programme under grant agreement
FP7-ICT-611731

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
EuroMPI/ASIA ’14, September 9-12 2014, Kyoto, Japan
Copyright 2014 ACM 978-1-4503-2875-3/14/09 ...$15.00.
http://dx.doi.org/10.1145/2642769.2642798 .

are built from a range of commodity hardware up to high-
performance architectures and supercomputers. Finally the
deployment platforms for such systems are generally shared
between multiple users through hypervisors and virtual ma-
chines, causing further heterogeneity and design-time archi-
tectural uncertainty.

JUNIPER [2] is an EU Seventh Framework project which
believes that the unique challenges created by Big Data are
currently not well-addressed. Existing programming mod-
els are based on standard desktop programming languages
and so attempt to abstract hardware details (of both the
target node and the inter-node communications) in a way
which makes it difficult for the programmer to exploit the
full power of the underlying hardware. The hardware in-
formation that is available is presented at the wrong granu-
larity. As a solution, JUNIPER defines a new programming
model based around Java 8 [12] with the following core prin-
ciples:

• It is not possible to express an entire Big Data system
at the source-code level, so elements of model-driven
engineering (MDE) are employed to ease development,
portability, and deployment.

• Big Data programmers want the ability to optimise
their software to reduce latency and increase through-
put. It is necessary to provide access to architectural
features (CPUs, memory layout, caches, communica-
tions, and accelerators) in a portable way which is
suited towards the target domain.

• Part of this optimisation should include real-time re-
quirements and guarantees. The JUNIPER framework
allows the developer to reserve system resources (CPU
time, bandwidth) for high priority threads of their soft-
ware to maximise quality-of-service when the system
is under high demand.

This paper will introduce the main aspects of the JU-
NIPER programming model in section 2 and discuss how
this is augmented by MDE in section 2.3. Section 3 de-
scribes the ways in which the JUNIPER API aims to accel-
erate Big Data applications through exposing appropriate
architectural features, and shows some preliminary results
in this area. Finally, section 5 concludes.

1.1 Related work
Many Java-based, Big Data applications make use of the

Apache Hadoop framework [1], which enables processing

of large data sets across clusters of off-the-shelf comput-
ers using the MapReduce programming model [6]. How-
ever, Hadoop does not make it easy to exploit the full power
available on a single node. For example, each Hadoop map
or reduce task executes in a separate Java Virtual Machine
(JVM) by default, thus incurring a significant overhead for
every task start-up. The cloud infrastructure may invoke
Hadoop tasks at an unpredictable location in the cloud, and
so it is important for these tasks to react to the architecture
of their current host node. Support for this is not provided
by Hadoop. Finally, Hadoop requires manual configuration
files to describe its target cluster, which makes reconfigura-
tion and retargeting difficult.

Apache Spark [3] is a framework developed in response
to Hadoop’s reliance on the batch processing, two-stage,
MapReduce paradigm. Spark is based on the same file sys-
tem as Hadoop (HDFS) but expands its computational model
to include more general computation stages, including stream-
ing data processing. Spark provides a computational frame-
work for other tools to be built on top of.

Storm [4] also attempts to extend past Hadoop’s limited
model by allowing the definition of a directed acyclic graph
of event-triggered transformations which describes the pro-
cessing required. This can then be deployed onto the target
cluster. Storm focuses on ‘realtime computation’, but in
this context ‘realtime’ means that a streaming (rather than
batch) processing model is used. Real-time guarantees are
not considered.

The JUNIPER project is based on version 8 of the Java
programming language. Java has enjoyed much acceptance
in the industry through the prevalence of Hadoop and bind-
ings to Spark and Storm. JUNIPER also makes use of the
Real-Time Specification for Java [8] to enable the devel-
opment of systems which can provide timing and response
guarantees. The volume of data in a Big Data system places
real-time constraints on the implementation, because it is
not possible to store all data in memory. Incoming data
must be processed and stored at a rate which can keep up
with the incoming data rate.

Java 8 [12] is the latest release of the Java programming
language, available since 2014. It adds a range of features
designed to make Big Data programming easier in the Java
ecosystem. Lambda expressions are the most visible addi-
tion to Java 8. They provide a concise way to express func-
tional programming concepts in Java [13]. A lambda can be
specified in place of a value whose type is a functional inter-
face (an interface with exactly one abstract method). This
can aid parallel programming because their limited interface
encourages a functional style of programming, in which data
dependencies are minimised and work is decomposed into
functional units. This maximises the available parallelism
in a given work load and aids the creation of data parallel
streaming pipelines. They have a much more compact syn-
tax than Java’s original approach which used anonymous
inner classes, motivating their use.

Java 8 also introduces the concept of a stream, which is a
sequence of elements that can be operated on. Streams can
be generated from collections and a pipeline of bulk data op-
erations [7] can be performed on it. Streams can be sequen-
tial or parallel. Operations on parallel streams are automat-
ically evaluated by the framework in parallel. Pipelines are
also evaluated lazily; only enough elements are consumed as
required by the terminal operation. Streams can be com-

Figure 1: A single server in a JUNIPER cluster.

bined with common parallel programming operations such
as map to provide a similar model to that of MapReduce, or
chained together to provide a dataflow model reminiscent of
Spark.

2. PROGRAMMING MODEL
A complete description of the programming model is out-

side of the scope of this paper, so this will instead provide an
overview of the main features and concepts of the JUNPER
programming framework. More details can be found in [5].

2.1 Scope
The JUNIPER programming framework aims to support

the development of data-centric applications in a way that is
general enough to cope with every need, but also allows com-
mon data processing patterns to be abstracted, modelled,
and optimally deployed. It is not meant to fully replace ex-
isting parallel processing frameworks, such as MapReduce
[6]. Instead, the layered design of the JUNIPER platform
(see figure 1) allows frameworks to be built on top of the JU-
NIPER framework through standard Java approaches (e.g.,
as a Java library) and thus benefit from the hardware ab-
straction features for real-time and large-scale parallel data
processing. This is similar to the approach taken in Apache
Spark (section 1.1).

Accordingly, the programming model does not aim to pro-
vide any specific paradigm but to provide a new frame-
work for building libraries to provide these paradigms in
a portable yet architecture-aware and real-time way.

The model has two levels, Application and Program. The
Application level considers the large-scale movement of data;
i.e. How does data enter the application, how does it move
from program to program, and where is it stored. It also
describes the requirements placed on the application (i.e.
response times or required throughput). At this level, com-
munication is implemented using MPI [11]. The programs
of the application use MPI for all coordination and data
transfer.

At the Program level, a node of the cluster is programmed
using a single Java program running inside a single JVM (al-

Figure 2: A JUNIPER application is composed of
JUNIPER programs, which may be unique, or one
of a group of identical program instances.

though the cloud infrastructure may map multiple programs
to the same physical server). The program level focuses on
efficient exploitation of the machine through the use of ar-
chitecture patterns and locales (see section 3), and it makes
use of reservations to ensure real-time behaviour (section 4).

2.2 Applications and Programs
The processing model specifies the design of a JUNIPER

application. A JUNIPER application exists at the ‘clus-
ter’ or ‘cloud’ level and is comprised of a set of Java pro-
grams that use the JUNIPER API (henceforth called JU-
NIPER programs) to communicate and coordinate to solve
a problem. JUNIPER programs are mapped to the nodes
(servers) of the target cluster, potentially multiple programs
to a server.

The graph of communications in the model is fixed. Each
program has a fixed set of input data flows and output
data flows. These are modelled at the MDE level (see sec-
tion 2.3). The only dynamism in the model is for situations
where multiple identical instances of the same program are
required (such as the mappers of a MapReduce application).
A Program Group may be defined, which replicates a given
program a runtime-variable number of times (subject to op-
tional maximum and minimum bounds).

For example, consider a financial application in which in-
coming credit card transactions have to be scanned for sus-
picious activity before being approved or declined. The en-
tire solution is a JUNIPER application, which consists of
JUNIPER programs to read incoming requests, programs
to perform database access, programs to correlate past be-
haviour etc. The relationship between applications and pro-
grams is shown in figure 2.

JUNIPER programs communicate using a communica-
tions API built on the industry-standard MPI [11]. Raw
MPI is complex to use and must be updated as nodes are
added to and removed from the system. This complexity is
hidden through the use of MDE, as discussed in section 2.3.

2.3 Model-driven Engineering
As noted in section 1, existing programming languages

are designed to specify an individual program, not a large
distributed application. This can be seen in systems like
Hadoop or Spark where deployment information is encoded
outside of the language (in configuration files or launch con-
figurations). In the JUNIPER system, the overall struc-

Figure 3: Simplified view of the modelling concepts
of the JUNIPER modelling language.

Figure 4: Fragment of the model used to generate
the code in figure 5.

ture of the application and the deployment of that applica-
tion onto hardware is described using MDE. The JUNIPER
modelling language is based on a profile of SysML [14]. A
simplified view of its modelling concepts is shown in figure 3.

MDE is used for four main reasons. First, application
structure and deployment can be succinctly and rapidly de-
scribed in a modelling language without interference from
the node-level programming language. This description is
language-independent. Second, MDE encourages portability
and code reuse through the use of automatic code genera-
tion. The modelling tools automatically implement sections
of the JUNIPER API that would otherwise be in a ‘port-
ing layer’ for manual implementation, so that the node-level
code does not need to worry about cluster-level details. This
separation of concerns allows rapid redeployment of software
over changing architectures, as exemplified in section 2.4.
Third, MDE allows the designer to specify real-time con-
straints on aspects of the system, and so to analyse these
through development. This is discussed in section 4. Fi-
nally, not discussed in this paper is that the system model
provides a useful repository for online feedback and perfor-
mance monitoring. The JUNIPER approach includes mon-
itoring software to analyse how the system is performing.
This information is passed back to the user via the system
model.

2.4 Communications
An example of the code generation used in the JUNIPER

approach is shown in figure 5. As can be seen in figure 4,
the developer has modelled two communicating programs.

@objid("1342fb7a-1474-4e5c-8364-afb3dc330f78")
public class ConsumerProgram {

@objid("4d8d9176-631b-484c-8582-fff35463d57a")
public static final int RANK = 3;

@objid ("4db8f2b4-6aed-4110-8e4a-18e678a69178")
public static DataConnection dataConnectionImpl

= new DataConnection() {};

@objid("35dee53b-71b0-45c4-9e7f-6ffa3c4d4359")
public static void initProvidedInterfaces() {

Util.initProvidedInterface(
ProducerProgram.class, dataConnectionImpl);

}

@objid("dfa4077e-5340-408c-b5e7-7bfe5f151371")
public static void main(final String[] args) {

MPI.Init(args);
initProvidedInterfaces();
while (true) {

Thread.yield();
Util.processReceivedMessages();
if (execute()) break;

}
MPI.Finalize();

}

//...Further detail omitted

Figure 5: Fragment of code generated from the
model in figure 4.

This is reflected in the generated code; the developer does
not have to program the communications layer manually.

3. EXPOSING ARCHITECTURAL DETAILS
A goal of the JUNIPER programming model is that it pro-

vides an infrastructure in which the programmer can manage
the locality of the code and data of their system. Locality
is a measure of proximity for code and data throughout the
implementation architecture. The programmer can dynam-
ically discover the host architecture of their software and
respond accordingly by mapping the locality of their soft-
ware to ensure that code is placed onto a CPU that is close
to the memory in which its data is stored. The architec-
ture is represented as composed of architectural patterns, as
shown in figure 6.

The programmer calls the JUNIPER API to determine
the layout of their host hardware, which may be highly
dynamic in a cloud environment. They can then use lo-
cales (section 3) to tailor their application to the target by
binding threads and data accordingly. A locale has a range
of properties. They are the unit of allocation for mapping
threads and objects to the CPUs and memories of the ar-
chitecture. A locale is mapped to a subsection of the archi-
tecture (see ‘architectural patterns’ in the following section)
and the contents of that locale will remain in that subset. A
high-priority locale can request a guaranteed resource reser-
vation (CPU time, bandwidth etc.) that is the result of a
negotiation between the JVM and the host operating sys-
tem (see section 4). The heap, immortal and backing store
memory allocated to a locale are not allocated to any other
locale. Finally, locales can be offloaded to attached FPGA
accelerators (see section 3.4).

The approach taken is to provide factory methods to cre-

Actual architecture

Architecture patterns

Input software

Locales

SMP0 SMP1

NUMA0
map to

JUNIPER API

simplified
to

expressed
using

Figure 6: Architecture patterns used to assist soft-
ware development

ate threads (including real-time threads and asynchronous
event handlers) and memory areas in the RTSJ. Creation
of these objects outside of these factory methods have no
locality defined and can be located at the JVM’s discretion.

3.1 Architectural Discovery
Locales provide locality information; essentially that given

software elements should be located together and with a
given resource reservation. In the JUNIPER approach, lo-
cales may be mapped to a subset of the target hardware.
The JUNIPER hardware model (section 2.3) is based on
the idea of architecture patterns. Patterns are used because
programmers of Big Data systems are more concerned about
the class of architecture than its precise details. For exam-
ple, whether or not it has coherent caches, or whether or not
all memory is of equal speed. Architecture patterns capture
this well.

Given the large platforms used for big data systems, the
programmer does not require the low-level control afforded
by techniques such as affinities, in which each thread is
bound to a specific set of individual processors. This is
onerous for large systems and lacks portability. Instead of
having to individually map threads on a 100-core machine,
the programmer wishes to be able to express that a given
large group of threads should be located on a given large
group of SMP-coupled processors, at which point the run-
time and infrastructure can be trusted to schedule and place
these appropriately.

Given the above points, the patterns exposed by the JU-
NIPER API are:

• NUMA: Provides few guarantees. It will contain a sin-
gle address space, but caches may be incoherent and
memory access times are unknown.

• ccNUMA: Constrains the NUMA architecture with the
guarantee that caches will be kept coherent from the
point of view of the Java programmer. Memory access
speeds are still unknown and variable.

• SMP: Represents a tightly-coupled architecture in which
access times to memory are uniform within a reason-
able error bound. Variation is only due to bus con-
tention or cache effects, not because memory is a greater
‘distance’ from the processors.

3.2 Stored Collections
One major drawback of the built-in Java collections is that

all of their data must be in heap memory. The programmer

must at least partially populate the collection before use,
and this can be problematic in a Big Data system. Heap
memory is small compared to disk space, so for Big Data
computations there may not be enough heap memory to
load the entire dataset from disk. The programmer must
instead manage their use of memory carefully leading to un-
necessary complication. Furthermore, Java 8’s streams are
lazily evaluated, but no advantage can be gained from this
if the entire collection must be first loaded in memory.

To overcome these limitations, the JUNIPER API intro-
duces the Stored Collection which reads its data lazily from a
file on demand, thus eliminating the initial population step.
To support different data formats, several types of Stored
Collections are provided to support both Java’s primitive
types (int, char etc.) and serialized class instances.

Aside from avoiding collection population, the main ad-
vantage of Stored Collections is that they can internally
make use of JUNIPER’s architecture discovery to tune their
data access to best utilize the storage medium. On a normal
hard disk, the Stored Collection will serialise and coalesce
data accesses because this is the fastest way to operate a
hard disk. If the data is stored on a high performance par-
allel file system (such as Lustre [15]) then reads will use an
appropriate level of parallelism to maximise throughput.

Stored Collections have been shown [5] to increase execu-
tion times of disk-bound programs by 44% and reduce heap
usage by very large amounts (up to 84% when compared
with in-memory collection programs). MapReduce work-
loads are shown to be at least 24% faster than equivalent
Hadoop programs when only looking at the performance of
individual nodes, and in some pathological cases over 8 times
faster.

3.3 Locality in Java Streams
The JUNIPER project has also used the concept of Stored

Collections to provide Java streams with locality. In stan-
dard Java 8 programs, a pipeline of stream operations is
executed without regard to the physical layout of the target
system. In a large SMP system, different cores can have
very different access times to different memory banks [10].
Optimal performance is obtained by splitting data through-
out the memory of the system and then scheduling threads
that need that memory onto the nearest processing cores.
Java’s stream pipelines provide enough semantic informa-
tion to be able to do this, but existing implementations do
not implement it.

In JUNIPER, the implementation of Stored Collections
attempts to maximise locality by leveraging its lazy eval-
uation. Rather than rely on a single large disk buffer (as
in a naive implementation) smaller buffers are allocated on-
demand by the threads that are executing the stream pipeline.
In large architectures combined with a NUMA-aware allo-
cator, this maximises the chance that data can be allocated
near to where it is required. Preliminary results have shown
success with this approach, as shown in figure 7. The fig-
ure shows the execution times of 200 executions of a simple
benchmarking program that uses Stored Collections, run-
ning on a 16-core (4×4) AMD Opteron NUMA machine, ex-
pressed as a cumulative frequency graph. The affinity-aware
implementation of Stored Collections can be disabled, bound
to individual cores, or to individual NUMA nodes. As can
be seen, affinity-awareness decreases the execution time over
the naive implementation due to greater use of caching and

28.70 28.75 28.80 28.85 28.90
Time (s)

0

50

100

150

200

Cu
m

ul
at

iv
e

fre
qu

en
cy

No affinity Core affinity NUMA node affinity

Figure 7: Stored Collections with, and without,
locality-aware allocation of buffers

lower memory contention. However, it must also be noted
that in other situations and for other benchmarks, affinity
was not observed to significantly increase performance, and
so work continues to characterise this effect.

3.4 FPGA acceleration
The final area in which the JUNIPER project is encour-

aging architecture-awareness is in the use of FPGA accel-
eration. The JUNIPER framework has support for FPGA
boards to be connected to the nodes in the target cluster.
The framework attempts to make use of these FPGAs easy,
without knowledge of FPGA design.

To do this, the project leverages the fact that Locales al-
ready provide the programmer with a way of expressing their
software in terms of sections of relatively self-contained, tightly-
coupled, functionality. Locales are therefore ideal as the unit
of offload to the FPGA. The JUNIPER project uses a Java
to C compiler, and then a C to hardware description lan-
guage tool to automatically create FPGA components that
implement parts of the input software. This flow is shown
in figure 8.

It is not possible to translate general Java to hardware
efficiently. However, JUNIPER already includes the use
of the RTSJ which removes garbage collection with scoped
memory management, and JUNIPER implements its own
communications based on MPI. Therefore the JUNIPER
API defines an AcceleratableLocale class, which is a
restricted form of Locale which can be supported by the
FPGA design tools. A full description of this process is out-
side of the scope of this paper, but the main restriction is
that AcceleratableLocale includes an abstract method
called initialise which creates all of the threads that will
be allocated inside that locale. The initialise method is
analysed and used to begin constructing the hardware com-
ponent.

The project defines support for both static and dynamic
acceleration. In the static scheme, the specific subset of Ac-
celeratable Locales which will be offloaded is defined ahead
of time. In the dynamic scheme, the JUNIPER framework
uses online monitoring and feedback to swap Locales in and
out of the FPGA at system run time.

Figure 8: The FPGA acceleration tool flow

4. REAL-TIME CONSIDERATIONS
A full discussion of timing analysis in JUNIPER is outside

of the scope of this paper. This section provides a brief
overview.

In most Big Data contexts, the term ‘real-time’ means
that any required processing occurs as data arrives, rather
than as a batch job at a later time. In JUNIPER, ‘real-
time’ also means that parts of the application may be given
true real-time constraints and supporting scheduling analy-
sis will be used to determine that these timings constraints
are met. Clearly, due to the uncertainty in internet-based
communications the analysis performed is not hard real-time
(in which no deadline may be ever missed) but rather that
a suitably high quality-of-service (QoS) can be maintained
by the system under expected conditions.

The system model (section 2.3) is used to provide timing
requirements. Requirements are placed on the communi-
cation channels of the system. If program A uses the JU-
NIPER API to send data to program B, then there exists
a communication channel A → B. Channels are marked as
periodic or sporadic and therefore have either a period or
inter-arrival time. Also they are typed with a Java type and
describe the size and burst size of the data. This informa-
tion is then used to derive timing requirements for individual
nodes in the system, which can then be analysed separately.

The system designer uses locality (section 3) to reduce
pessimism in the analysis of their code. Further, Locales
can be given reservations to guarantee that the real-time
part of the system receives the resources it requires to at-
tain a suitable QoS. The JUNIPER infrastructure (including
schedulers and OS support) is then responsible for manag-
ing system resources (processor time, communications and
disk bandwidth) to ensure that the reservations are met.

5. CONCLUSIONS
This paper has discussed how the programming model de-

veloped in the JUNIPER project is targeting future, cloud-
based, distributed architectures. The extreme demands im-
posed on systems due to Big Data mean that efficiency and
real-time considerations are paramount. Developers are re-
quired to optimise their software for the architectures of
their target systems. However, due to the uncertainty in-

troduced by virtualisation and cloud-computing middleware
layers, existing techniques for optimising against architec-
tural details are inappropriate.

The JUNIPER approach uses model-driven engineering to
introduce a higher-level view of the system. This allows the
introduction of real-time constraints, and the use of auto-
matic code generation for rapid deployment. At the node
level, an API is introduced that provides a range of abstrac-
tions that aid the developer to write code which can react
appropriately to the underlying architecture. Java 8 is used,
and extended with a new set of Collections to better fulfil the
requirements of Big Data. The approach is already showing
some promising results.

6. REFERENCES
[1] Apache Hadoop Website. http://hadoop.apache.org/,

2011.

[2] The JUNIPER project.
http://www.juniper-project.org, July 2014.

[3] Apache Software Foundation. Apache Spark –
Lightning-Fast Cluster Computing.
http://spark.apache.org/.

[4] Apache Software Foundation. Apache Storm –
Distributed and fault-tolerant realtime computation.
http://storm.incubator.apache.org/.

[5] Y. Chan, I. Gray, A. Wellings, and N. Audsley.
Exploiting multicore architectures in big data
applications: The JUNIPER approach. In Proceedings
of MULTIPROG 2014 : Programmability Issues for
Heterogeneous Multicores, 2014.

[6] J. Dean and S. Ghemawat. Mapreduce: simplified
data processing on large clusters. Commun.,
51,1:107–113, 2008.

[7] M. Duigou. JEP 107: Bulk Data Operations for
Collections. http://openjdk.java.net/jeps/107,
Sepetmber 2011.

[8] J. Gosling and G. Bollella. The Real-Time
Specification for Java. Addison-Wesley Longman
Publishing Co., Inc., 2000.

[9] A. Jacobs. The pathologies of big data.
Communications of the ACM, 52(8):36–44, 2009.

[10] S. Kim. Node-oriented dynamic memory management
for real-time systems on ccNUMA architecture
systems. PhD thesis, Department of Computer
Science, University of York, UK, 2014.

[11] Message Passing Interface Forum. MPI: A
message-passing interface standard, version 2.2.
Specification, September 2009.

[12] Oracle Corporation. JDK 8 Schedule and status.
http://openjdk.java.net/projects/jdk8/, September
2013.

[13] Oracle Corporation. Project Lambda.
http://openjdk.java.net/projects/lambda/, December
2013.

[14] T. Weilkiens. Systems Engineering with SysML/UML:
Modeling, Analysis, Design. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 2008.

[15] Xyratex Ltd. The Lustre file system.
http://www.lustre.org, December 2013.

