
Dynamics for WCET

David Griffin and Alan Burns

Abstract
This paper examines the link between recent advances in dynamical systems, the mathematical study
of systems which evolve under a a fixed rule, and existing WCET analysis techniques. In particular
it focuses on the fact that all WCET techniques implicitly use a common dynamical system, through
which it is possible to translate information from one technique such that it is of use to another
technique.

1. Introduction

One of the basic principals that govern static analysis techniques is to model the state of a computer
system as it executes instructions based on what instructions are feasible from flow analysis; in fact
this is the direct approach of plain model checking [3], an exhaustive search over all possible states.
However, as this can very quickly lead to the state space explosion problem, many static analysis
techniques implement some kind of countermeasure, trading the tightness of the result for the ability
to consider many concrete states of the computer system with a single abstract state and thus arrive at
a result in a reasonable amount of time. Two such methods are abstract interpretation [2], which lazily
combines states at join points, and symbolic model checking [1], which uses a prespecified simplified
state space.

One unintended consequence of the different types of technique available is that they are not either
readily combinable or easily comparable. They are not combinable in the sense that whilst one method
could be used to derive a bound on the WCET for a subroutine and this embedded into the analysis
of a greater system using a different method, the embedding happens as a “black box” and hence it
is reasonable to assume that some information is lost. For instance, the subroutine may not be used
in a particular way by the calling routine, and hence a tighter bound could have been obtained with
this knowledge. The different techniques are not easily comparable in the sense that whilst there is
lively debate about the results and possible causes for the failures of a given technique on a certain
class of problems [6, 7], this discussion is based upon the observed results of each method and not by
comparing the inner workings of the methods as there is no common ground on which to conduct a
direct comparison.

Given that all of these techniques are solving the same problem using similar principals, the lack
of a common base upon which the methods can be combined or compared seems nonsensical. A
common base would enable, for example, the easy embedding of highly accurate model checking on
a bottlenecked subroutine within a greater program which used abstract interpretation for the majority
given the improved scaling. It would also enable to determine exactly where and when one technique
stops working as well as another, and hence may lead to more accurate comparison of the merits of
different techniques.

To rectify this the topic of dynamical systems is applied to the WCET problem. Dynamical systems

1



is a branch of mathematics that deals with how a deterministic system progresses with the passage
of time. However, current work by Giunti and Mazzola [4] indicates that time may be substituted
with any monoid, which in turn enables other the theory of dynamical systems to be applied to other
problems. Section 2 takes the current state of the art theory and applies it to computer systems and
specifically the WCET problem, defining a dynamical system for use in the WCET problem. Section
3 proceeds to show how abstract interpretation, model checking and symbolic model checking can all
be mapped into this dynamical system. Analysis of how techniques may be compared or combined is
presented in Section 4

2. Dynamics for WCET

Before any techniques can be explained in terms of dynamical systems, it is first necessary to define
an appropriate dynamical system. This section provides a brief introduction to and definitons of the
concepts necessary to define a dynamical system, in addition to the WCET dynamical system. A
dynamical system, as defined by Gientu and Mazzola [4], is defined as a tuple of three items:

• T : a monoid (typically written additively) defining a form of time for the system

• M : a set of states which the system may be in

• Φ : T ×M → M : a time evolution function which determines how states progress given the
passage of time

The first item to define is an appropriate definition of time. A monoid is a set T with a binary
operator + that has the properties of closure (∀a, b ∈ T, a + b ∈ T ), associativity ((a + b) + c =
a + (b + c)∀a, b, c ∈ T ) and an identity element (∃0 ∈ T such that a + 0 = a = 0 + a ∀a ∈ T ).
One important note is that the binary operator is written as + by convention of dynamical systems;
normally + is reserved for commutative (a + b = b + a ∀ a, b ∈ T ) operators, but this need not be
true in this case. Examples of monoids used in computer science are the natural numbers including
zero under addition or the transition monoid that can be used to describe a finite state automaton.

In WCET analysis, existing techniques essentially track the progression of a computer systems state as
the system executes a series of instructions. Hence the appropriate measure of “time” for the WCET
dynamical system is intuitively the lists of instructions being executed, as these are what advance the
computer systems state. With this in mind, a set T0 can be defined as the set of all lists of instructions,
and the addition operator + can be defined as list extension. It is then trivial to verify that T0 under +
is indeed a monoid:

Lemma 1. T = (T0,+) is a monoid.

Proof. The following properties hold:

• Closure: For a, b ∈ T , a and b are lists of instructions, so a + b is a list of instructions, so
a + b ∈ T .

• Associativity: For a, b, c ∈ T , (a + b) + c is a list of the elements of a, followed by the
elements of b, followed by the elements of c. This is also a description of a + (b + c), hence
(a + b) + c = a + (b + c).

2



• Identity: The empty list [] provides an identity element as a + [] = a = [] + a ∀ a ∈ T . Hence
0 = [].

The second item of to define in a dynamical system is the set of states which the dynamical system
can occupy. Evidently this should be related to the set of states that the computer system can occupy.
The set of states for the dynamical system must also comprise some additional elements, as it must
also be able to provide input to the system. Hence, an appropriate set of states for the dynamical
system is as follows: M = {(p, i) p ∈ P, i ∈ I} with P being the set of all possible computer system
states, and I being the set of all lists of inputs to the system. This definition is enough to commence
work on defining the time evolution function.

The time evolution function Φ is the final item to define to create a dynamical system. The time
evolution function dictates how the system progresses given the passage of time; given that the time
that this system is using is the instructions that the system is executing, a simple definition of the the
time evolution function would be:

Φ(t, (x1, i1)) = (x2, i2)

with x2 the state of the computer system after executing the instructions in t, and i2 the list of inputs
that were not consumed by the instruction in t. Unfortunately, this simple definition does not take into
account flow analysis; it permits that at any point any instruction may be executed, when this is clearly
not the case. As static analysis cannot work without some notion of flow analysis, it is necessary to
include it here. To this end it is necessary to extend the set of states for the dynamical system so that
there is a notion of invalid states. Hence the final definition of the set of states M can be defined as
follows:

M0 = {(p, i) p ∈ P, i ∈ I}
M = M0 ∪ {X(p,i)(p, i) ∈M0}

where the states of the form X(p,i) are the invalid states, with X(p,i) resulting from trying to execute
an instruction which cannot be executed on the state (p, i).

Using the new states it is possible to define a time evolution function which takes into account program
flow as follows:

Φ([], (x1, i1)) = (x1, i1)

Φ(t, (x1, i1)) =



Φ(tail(t), (x2, i2)) if the instruction head(t)

could be executed on state (x1, i1),

where (x2, i2) is the result of
executing head(t) on (x1, i1)

X(x1,i1) otherwise
Φ(t,X(x1,i1)) = X(x1,i1)

3



This time evolution function has the property that attempting to execute an invalid instruction results
in the dynamic system entering a dead end, which is equivalent to how existing systems work. It only
remains to show that Φ meets the requirements to be a valid time evolution function, that is that it
respects both the 0 and the addition operator of T .

Lemma 2. Φ is a valid time evolution function

Proof. Φ(0,m) = m ∀ m ∈ M : If m = (x1, i1), given that 0 = [], then clearly not executing any
instructions must leave the computer system in the same state as it was before and it cannot have
processed any inputs. If m = X(x1, i1), Φ([],m) = m by definition. Hence Φ respects the 0 of T .

Φ(t2,Φ(t1,m)) = Φ(t1 + t2,m) ∀ t1, t2 ∈ T : Let x = Φ(t1,m). In the case that all the instructions of
t are valid, given the recursive definition of Φ, when evaluating Φ(t1+t2,m) after len(t1) applications
of Φ, the remainder of the calculation will be Φ(t2, x). If not all of the instructions are valid, with
the first invalid instruction being executed on state (xj, ij), then the result of both calculations will be
X(xj ,ij). Hence Φ(t2,Φ(t1,m)) = Φ(t1 + t2,m) ∀ t1, t2 ∈ T and Φ respects the addition operator of
T .

With the proof that Φ is a valid time evolution function, the following result is obvious:

Theorem 1. (T,M,Φ) is a dynamical system

Proof. Follows from previous results.

One important concept in dynamical systems which is useful for the WCET problem is that of Orbits.
In dynamical systems, orbits partition the state space; The common use of the word orbit in dynam-
ical systems is referred to as a periodic orbit. Importantly this means that when using a dynamics
based approach, the WCET problem can be split into finding the WCET of the orbits of the potential
starting states. This means that a large volume of possible states can be removed from consideration
altogether, in a similar fashion to the suggestions of Lim et. al. [5] who determined that narrowing
down the potential beginning and finishing states would result in a tighter WCET bound with a lower
computational cost. In addition, if it can be proved that two start states are not in the same orbit (that
is it is not possible for them to converge on a single processor state) it is possible to easily parallelise
computing the WCET whilst also having a guarantee that work will not be duplicated.

At this point it hasn’t been specified exactly what is contained within the tracked state of the computer
system, other than it is comparable to what is tracked within existing systems. The state which should
be tracked is simply what needs to be simulated to devise a WCET bound. An important point is that
this does not contain a current “working” WCET bound for computation up until that state, as this
would mean that different WCET analyses produce different states if the estimate of WCET differs,
which is not desirable for combining techniques. Instead, each state should be associated with a
WCET bound derived from some technique. Then when combining techniques the WCET bound can
be taken as the lowest bound found thus far associated with that state.

4



Model
Checking

States

Direct Map

Direct Map

Direct MapAbstract
States

Concrete
States

Abstraction
Function

Inverse
Abstraction

Symbolic
Model Checking

States

Concrete
States

Dynamical System
STates

Map onto
class of states

Nearest
Sybolic State

Figure 1. Illustrating how to map existing techniques into a dynamical system

3. Existing Techniques as Dynamics

As previously mentioned, existing techniques are implicitly using dynamics to find WCET. This sec-
tion details how existing techniques may be translated to and from pure dynamical systems, therefore
enabling mixing of techniques without losing information.

Plain model checking [3] can be thought of a an exhaustive search which determines for each reach-
able state the property “it this state a part of the worst case”; if the property cannot be disproved,
then the search expands to all valid successor states until the wosrt case is found. This enables very
tight bounds to be computed at the expense of a potentially large problem. Plain model checking
is simply a direct map into the dynamical system, with any evaluated state being mapped onto the
corresponding state in the dynamical system. Similarly, to convert the dynamical system for usage in
model checking, any states which are required by the model checker can be used from the dynamical
system. However, the caveat with this conversion is that other methods may not produce as accurate
information as model checking alone could, and hence when converting from another method there
may be a drop in precision when compared against model cheking throughout the WCET estimation.

Symbolic model checking [1] defines a simplified abstract machine which represents many concrete
states in one symbolic state, but otherwise follows the same principals of model checking. This trades
the precision of the WCET bound for a decrease in the cost of performing the WCET estimation, with
the magnitude of the trade defined by the degree of abstraction. Data from symbolic model checking
can be converted to a dynamical system by first mapping the symbolic state into the concrete states it
defines, and mapping these concrete states into the dynamical system. Similarly the inverse method
would be to map the states of the dynamical system into concrete states and then construct abstract
states such that the estimated bound for the abstract state holds for all concrete states within the
abstract state.

Abstract interpretation [2] identifies sets of states in the analysis which are similar and performs an ab-
straction step which enables the states to be represented as a single abstract state, with a corresponding

5



loss of precision. In a sense this is similar to the approach used by symbolic model checking, but the
abstraction is performed may be performed in a lazy manner rather than prespecified. Hence a similar
approach to symbolic model checking in mapping is appropriate. When mapping to the dynamical
system, the abstract state is mapped onto the concrete states it represents and these states mapped into
the dynamical system. The inverse method needs to take into account the abstraction used by abstrac-
tion interpretation; hence the appropriate method is determine the relevant states in the dynamical
system, find the associated concrete states and on these perform any necessary abstractions.

4. Analysis

With the previous explanation of how to map some common WCET techniques into the dynamical
system, now follows an explanation of how to compare how the different techniques perform. As-
suming that all techniques are correct and therefore do not underestimate WCET, there are two main
parameters for measuring performance: the amount of effort spent to arrive at an answer, and the tight-
ness of the derived WCET bound. The latter of these is simple to compare between two techniques:
at a given point, whichever technique produces the lower bound is superior.

A measure of the amount of effort required can be obtained by examining the mapping into the
dynamical system. A one-one mapping, as is the case with model checking, indicates that all possible
states are being considered. Assuming that any abstraction does not add significant computational
overhead - a fair assumption given that if this were the case then there would be little point in applying
the abstraction - a one-many mapping implies that there is a degree of simplification in the state space.
The exact degree of simplification at any point can be determined by the average number of states in
the dynamical system that each state in the analysis map into. The higher this average, the greater the
reduction in complexity.

Combining the two parameters in comparison is where difficulties lie. This is because whilst tighter
WCET bounds are desirable, if a WCET bound cannot by a particular method due to the computa-
tional or time resources available to the tester being insufficient, the technique is useless. For this
reason there needs to be an acceptance of the trade off between the desired tightness of the bound and
the amount of resources available to compute that bound.

To maximise the usage of resources available, combining WCET estimation techniques may be de-
sirable. Frequently a program will have bottlenecks which account for a large proportion of the total
execution time of the program despite being a relatively small proportion of the program code. The
proposed use of dynamical systems enables a common language that all techniques can be converted
to and from. This means that a computationally inexpensive technique can be used to derive esti-
mation of the state and WCET bounds for the majority of the program, with a more accurate but
computationally expensive technique used for any bottlenecks.

For example, a monitoring system may spend much of its time in executing a small amount of code
that collects measurements from various sensors, but has many ways in which it could be required to
process that data. Given the size of the program, it is infeasible to perform model checking on the
entire program. Instead, another technique which scales better, such as abstract interpretation could
be used to find the initial conditions for the measuring code. Then, the abstract start states could be
converted to a form appropriate for model checking, and then model checking used to find a tight
bound on the measuring code. Finally, to complete the analysis the end states found by model check-
ing could be converted to abstract states and used to resume abstract interpretation of the program

6



after the model checking analysis of the measuring code has completed.

Initial comparison of the techniques examined in this paper reveals that abstract interpretation and
symbolic model checking are perhaps more similar than current discussion would suggest. Given that
both techniques operate in an abstracted state space, the major difference between the two techniques
is how the abstracted state space comes into existence. In symbolic model checking, the abstracted
state space is defined before analysis is started, whereas in abstract interpretation it is lazily computed
depending on the abstraction rules available. The approach used in symbolic model checking has
the advantage that it is possible to specify the level of complexity of the abstract space in advance.
Lazy construction as in abstract interpretation has the advantage that the specification is simpler to
construct and has the potential for simplification to happen on an “as necessary” basis, potentially
increasing accuracy.

5. Conclusion and Further Work

This paper looked at addressing the disconnect between the various WCET analysis techniques by
using recent advances in mathematics to provide a definition of the problem space in which all WCET
techniques must operate. This was accomplished by defining the WCET problem as a dynamical
system. A consequence of this is that as all WCET techniques can be expressed in terms of this
dynamical system, it is possible to directly compare different techniques. An initial comparison
suggests that current state of the art static analysis techniques have more in common than present
literature would suggest.

Further work needs to be carried out on analysing the WCET problem from a pure dynamical systems
point of view. Given that dynamical systems are used in many fields, there is a large number of
results which may be applicable. One promising area in this regard is the application of chaos theory,
as modern computer systems would appear to meet the requirements for considering a chaos theory
perspective: that they are indeed sensitive to their initial conditions.

References

[1] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J. Hwang. Symbolic model
checking: 1020 states and beyond. Inf. Comput., 98(2):142–170, 1992.

[2] P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static analysis of
programs by construction or approximation of fixpoints. In Conference Record of the Fourth
Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pages
238–252, Los Angeles, California, 1977. ACM Press, New York, NY.

[3] E. A. Emerson and E. M. Clarke. Characterizing correctness properties of parallel programs using
fixpoints. In Proceedings of the 7th Colloquium on Automata, Languages and Programming,
pages 169–181, London, UK, 1980. Springer-Verlag.

[4] M. Giunti and C. Mazzola. Dynamical systems on monoids: Toward a general theory of deter-
mistic systems and motion. 2010.

[5] S. Lim, Y. H. Bae, G. T. Jang, B. Rhee, S. L. Min, C. Y. Park, H. Shin, K. Park, S. Moon, and
C. S. Kim. An accurate worst case timing analysis for risc processors. IEEE Trans. Softw. Eng.,
21(7):593–604, 1995.

7



[6] A. Metzner. Why model checking can improve WCET analysis. In Computer Aided Verification,
volume 3114 of Lecture Notes in Computer Science, pages 334–357. Springer Berlin / Heidelberg,
2004.

[7] R. Wilhelm. Why AI + ILP is good for WCET, but MC is not, nor ILP alone. In B. Steffen and
G. Levi, editors, VMCAI, volume 2937 of Lecture Notes in Computer Science, pages 309–322.
Springer, 2004.

8


