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ABSTRACT
The analysis of random replacement caches is an area that
has recently attracted considerable attention in the field of
probabilistic real-time systems. A major problem with per-
forming static analysis on such a cache is that the relatively
large number of successor states on a cache miss (equal to
the cache associativity) renders approaches such as Collect-
ing Semantics intractable. Other approaches must contend
with non-trivial behaviours, such as the non-independence
of accesses to the cache, which tends to lead to overly pes-
simistic or computationally expensive analyses.

Utilising techniques from the field of Lossy Compression,
where compactly representing large volumes of data with-
out losing valuable data is the norm, this paper outlines a
technique for applying compression to the Collecting Seman-
tics of a Random Replacement Cache. This yields a Must
and May analysis. Experimental evaluation shows that, with
appropriate parameters, this technique is more accurate and
significantly faster than current state-of-the-art techniques.

1. INTRODUCTION
Static deterministic timing analysis aims to provide a sin-

gle upper bound value for the Worst-Case Execution Time
(WCET) of a task which can then be used in higher level
schedulability analysis to determine if the task’s timing con-
straints, usually expressed as a deadline, will always be met.
However, in practice, for example in the avionics and auto-
motive industries, such absolute guarantees are not required,
rather, the failure rate must be below a certain threshold.
For example, ISO-26262 requires that Automotive Safety In-
tegrity Level (ASIL) D applications must have a failure rate
below 10−9 per hour (below 10−7 per hour for ASIL A). As-
suming that the maximum permitted failure rate for a task
is 10−9 per hour, and the task is executed every 20ms, then
this translates into a requirement that each invocation of
the task can fail with a probability of no more than 10−13,
provided that such failures are independent of each other.
In order to meet these requirements, analysis of probabilistic
real-time systems [1, 2, 3] provides a means to quantify the
probability of failure.

In order to achieve the necessary statistical properties, re-
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cent research [3, 4, 5] has focused on the use of randomised
hardware, in particular caches with a random replacement
policy. Approaches to Static Probabilistic Timing Analysis
(SPTA) of the random replacement cache fall into two cate-
gories. The first, such as the reuse-distance metric of Davis
et al. [5] is overly simplistic, resulting in high pessimism.
The second, such as the focus block approach of Altmeyer
and Davis [6], provides good accuracy, but is computation-
ally expensive. Hence current approaches can be thought
of as being extremes in the trade-off between accuracy and
tractability. Ideally, the competing concerns of accuracy and
tractability of analysis should be balanced, and effort only
expended when it yields an increase in accuracy.

Lossy Compression [7] is a branch of information theory
which outlines how one can identify a specific goal and then
discard data which is of low value to that goal. Famously,
lossy compression is used to great effect in audio/visual com-
pression, for example MP3 [8]. Recently, Griffin et al. [9]
used the principles of Lossy Compression to derive an ac-
curate and efficient analysis technique for the Pseudo Least
Recently Used (PLRU) cache, demonstrating how lossy com-
pression can be applied to collecting semantics [10] to yield
a new analysis technique. This paper applies the same prin-
ciples to the collecting semantics of the random replacement
cache, as defined by [6], to yield a full Must/May analysis
[11].

1.1 Related Work
Static Probabilistic Timing Analyses (SPTA) [2, 12, 3, 4,

5, 6] use a model of the system architecture and informa-
tion from the code of the task under analysis to derive their
results. SPTA methods have the goal of producing a proba-
bilistic Worst-Case Execution Time (pWCET) distribution
for the task. (See [13] for a discussion of the difference be-
tween pWCET and a probabilistic execution time (pET)
distribution). To accomplish this, methods for the analysis
of cache [5, 6] produce a Probability Mass Function (PMF)
for the number of cache hits and misses for a given sequence
of memory accesses. Such a distribution can be coupled
with the hit and miss latencies of the cache to give the over-
all contribution of the cache accesses to the pWCET of the
task.

Recently, Davis et al. [5] produced a simple analysis for
random replacement caches, which takes into account the
problems of dependencies between accesses due to the finite
size of a cache. Subsequently, this approach was proved to
be optimal [6] with respect to the limited information it used
(cache associativity and reuse distance).

In 2014, Altmeyer and Davis [6] introduced an enhanced
analysis which uses an additional high-accuracy mode, based
on collecting semantics. A set of focus blocks are identified,
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selected by a heuristic that identifies blocks with frequent
accesses. These focus blocks are analysed using collecting se-
mantics, with any non-focus blocks represented as unknown
memory accesses. For non-focus blocks, a lower-accuracy
mode, is employed based on re-use distances and the con-
cept of cache contention.

In the context of static deterministic timing analysis, the
terms Must and May analysis were first used by Mueller [11].
A Must Analysis determines which accesses to the cache are
guaranteed to be hits. A May Analysis is the inverse, deter-
mining which memory accesses are guaranteed to be misses.
These can be seen as providing upper and lower bounds on
the cache state respectively. A May analysis becomes impor-
tant when timing anomalies [14] are considered, as locally
maximal execution times may not feature in the true worst-
case.

Recently, Griffin et al. [9] introduced lossy compression
for static deterministic timing analysis and demonstrated its
use by providing a Must/May analysis for the PLRU cache.
The PLRU cache is typically hard to analyse due to the
complex behaviour it exhibits as an approximation of the
LRU cache. Previous attempts at PLRU cache analysis [15]
only provided partial analysis. However, by reasoning about
the types and value of information within each PLRU cache
state, Griffin et al. provided an efficient and accurate cache
analysis. This result demonstrates that lossy compression is
a useful technique to apply in determining suitable approx-
imations for use in static analyses, especially in handling
non-trivial behaviours.

1.2 Organisation
Section 2 begins with an overview of the collecting seman-

tics of the random replacement cache. This is then extended
via lossy compression techniques: a notion of uncertainty
is introduced which is used to implement compression via
multiple parameterisable methods. Examples of the com-
pression methods are given in Section 3. Section 4 takes the
ideas presented in Section 3 and constructs a formal defini-
tion of the analysis. Section 5 examines performance in re-
lation to existing solutions, in terms of both the accuracy of
the results and the runtime of the analysis. Finally, Section
6 summarises the work and presents conclusions regarding
the benefits of the new approach and possible future work.

1.3 Notation and Assumptions
To represent PMFs, or portions of PMFs, in the analysis,

a mapping function such a f is used. Such functions are
represented using the notation f(x) = p, denoting that the
probability of x events is p. For compactness, when f(x) =
0, i.e. there is zero probability of a certain number of events,
f(x) is not explicitly stated. Addition is defined on such map
functions as (f1 +f2)(x) = f1(x) +f2(x). Similarly, division

by a fixed number d is defined by ( f
d

)(x) = f(x)
d

.
To represent probability values, Fixed Precision Fractions

are used. A Fixed Precision Fraction is defined to be a frac-
tion of the form n

d
such that n and d are co-prime integers

less than the maximum available precision α. In the case

that n or d exceed α, the fraction is simplified to n′
d′ such

that n′
d′ provides an appropriate bound (upper or lower, de-

pending on context) of n
d

. Fixed Precision Fractions are used
instead of other representations, such as floating point, as
they provide control over simplification and avoid problems
such as floating point errors.

Two special symbols are used to represent the possible
contents of a cache line, in addition to memory blocks. First,
the symbol × represents the contents of an empty cache line.

Second, the symbol ∅ represents a memory block for which
no information is known. The concept of ∅, representing
complete uncertainty, is useful in defining lossy compression.

Throughout this paper, a fully associative cache is as-
sumed. We note that this restriction is easily lifted, as a
set-associative cache with N sets can be analysed as N par-
allel and fully independent fully associative caches.

2. COMPRESSING COLLECTING
SEMANTICS

In this paper, Lossy Compression is applied to the Col-
lecting Semantics [10] of a Random Replacement Cache [6]
to enable Must and May analysis. This section provides the
motivation for doing so, as well as an outline of how these
methods are derived. Collecting Semantics refers to a mini-
mal representation that describes the behaviours of a specific
system, utilising a map to show that all concrete states rep-
resenting the same logical behaviour are represented by the
same abstract state. The types of analysis desired, Must and
May analysis, refer to analyses which calculate upper bound
probability distributions for hits and misses respectively.

2.1 Collecting Semantics of the Random Re-
placement Cache

The Random Replacement Cache is a simple cache algo-
rithm which, on requiring an eviction, randomly selects a
cache line to evict. This behaviour means that aside from
the contents of the cache, the Random Replacement cache
stores no additional data. A cache may be specified in terms
of its behaviour via evictAndReplace and touch functions,
for a random replacement cache these functions are as fol-
lows:

• evictAndReplace(state, newLine): Select a cache line
in state at random and replace it with newLine.

• touch(line): Do nothing.

The simplicity of the cache’s data structures and
eviction/touch operations lends itself to a correspondingly
simple definition of collecting semantics. As the only data
stored in the cache structure is the contents of the cache
lines themselves, every cache line is equivalent. Hence, two
cache states will exhibit the same behaviours if and only if
they contain the same memory blocks. A näıve definition
of the collecting semantics would be to simply take the set
of memory blocks contained in a cache state to define the
behaviour of the cache state, and the probability of the state
occurring. However, this fails to take into account that due
to the finite size of the cache, accesses are not independent,
as outlined by Altmeyer and Davis [6]. Hence, it is not sound
to merely calculate the probability of each access being a hit
or a miss. Rather, in order to get useful results, it is neces-
sary to extend the definition of a state to include a history
as follows:

〈S, p, hist〉
Where S is the set of memory blocks contained in the cache
state, p is the probability of encountering the cache state,
and hist stores information on the probabilities of
hits/misses previously encountered.For example, in perform-
ing the analysis, hist assigns a probability to the number of
hits and misses based on the probabilities of predecessor
states where hits would have occurred. This is illustrated
via the examples in Section 3.

To merge states in the collecting semantics, it is sufficient
to combine the states which contain the same memory blocks
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(i.e. states which have the same S). The probability p of
being in the merged state is simply the sum of the p values
for the states that were combined to produce it. Similarly,
each individual h(x) value (representing the probability of a
certain number of observed events e.g. hits) for the merged
state is obtained by summing the corresponding h(x) values
for the states that were combined to produce it.

In performing a state exploration based static analysis
on a random replacement cache, such as collecting seman-
tics, the major issue to deal with is the number of successor
states required after an eviction. As an eviction could evict
any possible cache line, each eviction results in N successor
states, where N is the size of the cache. Hence an exhaustive
enumeration of j accesses would result in jN states. The col-
lecting semantics improves upon this, by ensuring that each
set of memory blocks is only represented once, resulting in
the binomial term jCk states, which has O(jN ) complexity.
As j is typically very large, this is still unacceptably high.

2.2 Applying Lossy Compression to Collect-
ing Semantics

In order to combat state explosion in the collecting seman-
tics, it is necessary to lose information which may be useful,
and hence it is necessary to introduce a notion of how use-
ful data may be. Given that a random replacement cache
results in any given observation having a probability of oc-
currence, it is easy to make a link between the probability
of a given observation and the usefulness of the observa-
tion to the analysis. Hence the assumption used in devising
compression is that any observation with a sufficiently low
probability of occurrence can be discarded.

To determine observations which could have low probabil-
ities of occurrence, it is necessary to revisit the previously
introduced collecting semantics. This yields three primary
observations that can be made on cache states or sets of
cache states:

• O1: The probability that a given memory block is in
any given cache state under analysis

• O2: The probability of observing a given cache state
in the analysis

• O3: The probability of observing a given number of
hits in a cache state history

The basis for O1 being a target for compression is that af-
ter a number of accesses, the probability of a given memory
block remaining in the cache is increasingly remote. Simi-
larly, O2 is justified by observing that certain cache states
have a very small chance of occurring, due to the random
replacement caches inherent ability to reduce the probabil-
ity of pathological cases. Similarly, for O3 the probability
of observing a given number of cache hits may be similarly
low. However, the justification for O3 also reflects a prob-
lem inherent in the collecting semantics: as the length of
the traces grows, so does the length of the history. Hence,
the space complexity of the collecting semantics is bounded
by O(j ∗ s) where j is the number of accesses and s is the
number of states under consideration. As j grows, the cost
of updating after each access grows linearly, and hence the
time complexity of the analysis is of O(j2) with respect to
the length of the trace. As j is typically large, this is unac-
ceptable, and hence compression in line with O3 is useful in
bringing this complexity down.

In order to implement compression on O1, it is necessary
to use the idea of an unknown memory block, ∅. While in

a Must analysis an empty cache line provides a bounding
behaviour, this is not true with regards to a May analy-
sis as this could optimistically1 indicate more misses than
were possible[11]. Hence nothing can be assumed about a
memory block which has been compressed. A cache line con-
taining ∅ is defined such that the cache line could contain
anything but is not guaranteed to contain any single item;
therefore it cannot guarantee either a Hit or a Miss in Must
or May analysis. Noting this, ∅ can be used to replace any
sufficiently unlikely memory block and still have a sound ap-
proximation as this operation can only decrease the number
of guaranteed hits or misses.

Implementing O2 requires the use of a bounding state,
which can trivially be constructed by filling the cache con-
tents with ∅. However, the bounding state can be improved
by inserting the last memory block accessed into the state,
as this memory block is guaranteed to be in the cache. This
also provides a guarantee that should compression occur in-
between memory accesses to the same memory block, the
compression will not reduce the probability of a hit.

In order to perform the compression on probabilities for
O2 and O3, it is necessary to define how to simplify the
fixed precision fractions which represent the probabilities.
When a fraction a

b
exceeds the maximum available preci-

sion, the new denominator is set to b′ = b b
f
c where f is

the simplification factor. Then the numerator a′ is picked

such that a′
b′ < a

b
. This ensures that the approximation

is always pessimistic, by ensuring that the probability of an
event decreases. Any error that the simplification introduces
is combined into a single bounding state, with an appropri-
ate history.

Given these observations, we can now define the types of
compression used:

• Memory Block Compression: Memory blocks which
are sufficiently unlikely can be replaced with ∅; com-
presses O1.

• Cache State Compression: Cache states which are suf-
ficiently unlikely can be replaced with a bounding
state; compresses O2.

• History Compression: Results in a History which are
sufficiently unlikely can be replaced with a bounding
history; compresses O3.

In order to implement memory block compression it is nec-
essary to define a notion of how unlikely a memory block
is across all analysis states under consideration. Two such
methods are proposed:

• Hit Probability : Calculating the hit probability of each
memory block under analysis will naturally find mem-
ory blocks which are less likely. Hence all memory
blocks with a hit probability below a given threshold
can be discarded and replaced with ∅. However, this
may lead to memory blocks being kept under analysis
for longer than is reasonably required for Must analy-
sis e.g. in the case that no further accesses occur to a
memory block, which leads to a higher runtime for the
analysis.

• Forward Reuse Distance2: Defining the forward reuse
distance of a memory block to be the number of ac-
cesses before that memory block is reused, it is clear

1Assuming that there exists a timing anomaly where a miss
gives better overall performance than a hit.
2The term forward reuse distance is different to the term
reuse distance as used in previous work.
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[a, x]
p=1/16

h(0)=1/16

[a, b]
p=9/16

h(0)=3/16
h(1)=6/16

[a, c]
p=6/16

h(0)=2/16
h(1)=4/16

[b, x]
p=1/8

h(0)=1/8

[b, c]
p=6/8

h(0)=2/8
h(1)=4/8

[a, b]
p=1/8

h(0)=1/8

[a, c]
p=1/4

h(0)=1/4

[b, c]
p=2/4

h(0)=2/4

[c, x]
p=1/4

h(0)=1/4

[a, x]
p=1

h(0)=1

[b, x]
p=1/2

h(0)=1/2

[a, b]
p=1/2

h(0)=1/2

[x, x]
p=1

h(0)=1

a b c b a

Figure 1: Applying collecting semantics to a 2-way
cache for Must Analysis

that as the forward reuse distance increases, the min-
imum hit probability of the memory block decreases.
Hence when the forward reuse distance of a memory
block exceeds a certain threshold, it can be inferred
that the memory block will become sufficiently unlikely
to be retained before its next use, and hence can be
discarded and replaced by ∅ immediately. The effect
of this when compared to compression based on hit
probability is that the earlier discarding decreases the
runtime of the analysis, but by introducing ∅ to cache
states earlier provides a significant impediment to the
May analysis.

Implementing cache state compression and history compres-
sion is closely tied to the use of fixed precision fractions.
Specifically, in both cases when fixed precision fractions are
simplified, the difference between the original and simplified
values is accumulated across all simplifications and added
to an appropriate bounding state. For history compression,
this is the least number of hits or misses in the distribution
as appropriate. When applying cache state compression, it
is necessary to construct a bounding cache state. This com-
prises a cache contents which only contains the last memory
block accessed (as this provides a safe bound on all possi-
ble cache states) and a history which bounds all histories of
merged states. Discarding the least likely history outcomes
and cache states reduces the amount of information for the
analysis to consider, and hence reduces the runtime of the
analysis.

One side effect of utilising compression is that accesses
are introduced which cannot be classified as either a hit or a
miss. Hence it is necessary to change the representation of
the history, as the miss distribution can no longer be found
by treating every access not classified as a hit as a miss.
Therefore, in order to obtain an accurate miss distribution,
the history represented in the analysis must track both hits
and misses separately.

3. EXAMPLES
To illustrate the techniques outlined, we apply the follow-

ing sequence of accesses to a two-way random replacement
cache, with the effects of each technique being illustrated:

a, b, c, b, a

As this is a 2-way cache, the maximum number of hits that
can be observed for this sequence of accesses is 1. This is
due to the fact that the access to c will ensure that at best,
only one of a or b can remain in cache, and hence only one
of these can be a hit. For reference, Figure 1 illustrates
utilising the collecting semantics for analysis, and clearly
shows state explosion when observing the total length of
histories. However, as previously stated, utilising histories is
necessary as simply computing hit/miss probabilities based

[b, ∅]
p=1

h(0)=1

[∅, ∅]
p=1

h(0)=1

[∅, ∅]
p=1

h(0)=1

[b, ∅]
p=1/2

h(0)=1/2

[∅, ∅]
p=1/2

h(0)=1/2

[∅, ∅]
p=1

h(0)=1/2
h(1)=1/2

[∅, ∅]
p=1

h(0)=1/2
h(1)=1/2

a b c b

Figure 2: Applying Memory Block compression us-
ing forward reuse distance to a 2-way cache for Must
Analysis

Figure 3: Applying Memory Block compression us-
ing hit probability to a 2-way cache for May Analysis

on current states under analysis may result in an impossible
number of hits (in this case, 2) being assigned a non-zero
probability.

Figure 2 demonstrates forward reuse distance compression
on the same sequence of memory accesses, discarding any
memory block which is not reused within 4 accesses, This
causes the first access to a to be discarded, as well as the last
accesses to any memory block, resulting in smaller number
of states to explore. However, by discarding the first access
to a, the analysis must assume a hit probability of zero for
the second access, resulting in pessimism when compared to
the collecting semantics. However, we note that in case of a
May analysis, as ∅ is introduced immediately, forward reuse
distance is unable to determine any misses in this case.

Figure 3 demonstrates hit probability compression, dis-
carding all memory blocks whose hit probability is less than
1
2
. Note that in this example, it is the miss history that is

illustrated. While more states are encountered than with
forward reuse distance compression, ∅ is introduced much
later. In turn, this allows a May analysis to classify some
accesses to some states as misses, resulting in a much more
accurate miss distribution at the expense of a more compli-
cated analysis.

Figure 4 illustrates the use of Cache State and History
compression, using fixed precision fractions with a maximum
precision of 8 and simplification factor 4. After the final
access to a, the precision exceeds that which is available
and hence compression is applied. In comparison with the
collecting semantics (Figure 1), this results in the state [a,×]

[b, x]
p=1/8

h(0)=1/8

[b, c]
p=6/8

h(0)=2/8
h(1)=4/8

[a, b]
p=1/8

h(0)=1/8

[a, c]
p=1/4

h(0)=1/4

[b, c]
p=2/4

h(0)=2/4

[c, x]
p=1/4

h(0)=1/4

[a, x]
p=1

h(0)=1

[b, x]
p=1/2

h(0)=1/2

[a, b]
p=1/2

h(0)=1/2

[x, x]
p=1

h(0)=1

a b c b a

[a, ∅]
p=1/4

h(0)=1/4

[a, b]
p=2/4

h(1)=1/4

[a, c]
p=1/4

h(1)=1/4

Figure 4: Applying Cache State and History com-
pression to a 2-way cache for Must analysis
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being removed entirely and the probabilities and histories of
the other states being pessimistically simplified. Then the
bounding state [a,∅] is created which provides a safe bound
for all states which were simplified, and ensures that the
total probability obtained by summing all states remains
unchanged (i.e. remains equal to 1, since the cache has a
probability of 1 of being in some state). Due to low cache
associativity in this example, this does not change the total
number of states as only a single state is sufficiently unlikely.
However, in normal usage with higher cache associativity,
greater compression would be expected. Further, as can be
seen, the complexity of the histories attached to each state
are simplified, reducing the time taken in updating the cache
histories and the space complexity of the algorithm.

4. FORMALISM
Having demonstrated the compression methods, it now

follows to present the formal definition. Implementing the
novel step of the lossy compression approach requires a
method which utilises heuristics to determine the value of
data so it can be discarded and therefore mitigate the effect
of state explosion. In order to implement discarding, the
symbol ∅ is used to represent complete uncertainty of the
content of a memory block. Using the symbol ∅ it is possi-
ble to discard specific memory blocks from analysis, as well
as define a notion of a bounding state.

Three areas of the collecting semantics have been identi-
fied which yield three types of compression: Memory Block
Compression (removing sufficiently unlikely memory blocks
from analysis), Cache State Compression (removing suffi-
ciently
unlikely cache states from analysis) and History Compres-
sion (removing sufficiently unlikely history outcomes from
analysis). This section provides a detailed formalism of
how these methods can be implemented. Firstly, the sys-
tem model is introduced, which enabled the definition of
collecting semantics which can operate in the presence of un-
known information. Next, the three compression methods
are implemented on the set of states under analysis, with
hit probability and forward reuse distance based heuristics
for memory block compression. Due to the implementation,
these compression methods provide a sound approximation
by design. Finally, these functions are combined to give a
complete definition of the analysis, including its link to the
original collecting semantics.

4.1 System Model
To start the formalisation of our approach, it is necessary

to define the representation of the states of the analysis.
Given L, the set of possible memory blocks that may reside
in the cache, the abstract cache content, s, is represented as
on ordered tuple of size N equal to the cache associativity
as follows:

s = 〈s0...sN 〉si ∈ L ∪ {∅,×} (1)

Depending on context, the cache content is interchangeably
represented as s or 〈s0...sN 〉.

As the analysis utilises additional information, it is also
necessary to track both probabilities of given cache contents
and their history. Hence, the states used by the analysis also
contains a probability, p, which represents the probability of
the state occurring and a portion of the overall history of all
cache states. As previously specified, probabilities are repre-
sented as fixed precision fractions with the parameters α, f
which control the precision of the representation also being
used to implement compression. The history of an analysis

state is a pair of maps h,m which map the probabilities,
again given as fixed precision fractions, of specified numbers
of hits and misses occurring respectively. These maps are
defined as portions of the PMF of all analysis states, and
hence adding all hit history maps h under analysis recovers
the complete hit history PMF. Hence an analysis state, st,
is represented by the tuple:

st = 〈s, p, h,m〉 (2)

Similarly to the cache content, the analysis states are rep-
resented interchangeably as st or 〈s, p, h,m〉. Initially, the
analysis starts with the state 〈〈×..×〉, 1, h(0) = 1,m(0) = 1,
i.e. with probability 1 the cache is empty, and with proba-
bility 1 no hits or misses have occurred.

4.2 Concretisation and Classification
The next step is to define the map between abstract cache

content and concrete cache contents. The concretisation
function needs to map any instance of ∅ to an appropri-
ate member of L ∪ {×}, such that no element other than
× can be repeated, and provide all permutations of such
tuples. Hence the concretisation function c can be defined
as:

c′(〈s1..sN 〉) =

{
〈x1..xN 〉

xi ∈
{
L ∪ {×} if si = ∅
{si} otherwise

xi = × or xi 6= xj , j ∈ [1, N ]
i ∈ [1, N ]

}
(3)

c(s) =
⋃{permutations(x) | x ∈ c′(s)} (4)

Note that the function c also defines the map between the
standard collecting semantics and concrete states, and is
only provided for completeness. In practice, one would use
only the function c′ to map from the compressed represen-
tation to the collecting semantics.

Given the concretisation function, it is trivial to define the
classification function on an abstract cache state 〈s, p, h,m〉.
For a given memory block l ∈ L, one of three possibilities
must be true. Firstly, if l ∈ s, the access is a hit. Alterna-
tively, if ∅ ∈ s, then it is not possible to classify if the access
is a hit or a miss as nothing is known about the memory
block represented by ∅; hence the classification must return
not classified (N.C.). Finally, if neither of these is true, the
access can be classified as a miss. Hence the classification
function cs can be defined as:

cs(〈s, p, h,m〉, l) =





hit if l ∈ s
N.C. if ∅ ∈ s
miss otherwise

(5)

4.3 Update Operations
Next we need to define the behaviour that the algorithm

must take in each of these cases. For clarity of presentation
each of these functions maps a single abstract state onto a set
of successor states. In the case of a hit, the cache contents
survives unchanged. Hence, the only action required is to
update the hit history h to take into account that a hit
must have occurred. Hence the hit function can be defined
as follows:

hit(〈s, p, h,m〉, l) = {〈s, p, h′,m〉h′(x+ 1) = h(x)∀x} (6)

Recalling that by the convention introduced earlier, as the
number of hits has incremented, the map h′ will return 0 for
any number of hits not possible and in particular h′(0) =
0. The miss and N.C. (not classified) actions share some
behaviour. In the case of a miss, a member of the cache
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is evicted leading to N successor states, each having their
probabilities multiplied by 1

N
as well as increasing the miss

history. In the case of N.C., the behaviour must bound both
a hit or a miss. In the case that the access is actually a miss,
then the behaviour defined for a miss without incrementing
the number of misses clearly provides a bound. In the case
that the access is actually a hit, this same behaviour provides
a bound as the actual outcome, a cache hit, has a probability
which is lower by a factor of 1

N
, and the probability of a

hit for any other element of the cache has been lowered by
the additional eviction. Hence the N.C. behaviour can be
soundly expressed as:

nc′(〈s1..sn〉, l) =

{
sort(〈s′1..s′n〉) s′i =

{
si if i 6= j

l if i = j
j ∈ [1, N ]

}

(7)

nc(〈s, p, h,m〉, l) = {〈s′, p
N
, h
N
, m
N
s′ ∈ nc′(〈s1..sk〉, l)} (8)

Where sort is a function that takes a tuple and returns a
tuple whose elements have been ordered, N is the size of
the cache and dividing a history by an integer represents all
probabilities in the history being divided by that integer.

As a miss shares the same successor cache contents as
N.C., the miss function only has to handle updating the
miss history appropriately. Hence the miss function can be
defined using nc (8) as follows, again noting that by conven-
tion m′(0) = 0:

miss(〈s, p, h,m〉, l) =

{
〈s′, p′, h,m′〉

〈s′, p′, h,m〉 ∈
nc(〈s, p, h,m〉, l)
m′(x+ 1) = m(x)∀x

}

(9)
For convenience, the function next can be defined which,
given an analysis state st and memory block access l, applies
the appropriate update operation:

next(st, l) =





hit(st, l) if cs(st, l) = hit

nc(st, l) if cs(st, l) = N.C.

miss(st, l) if cs(st, l) = miss

(10)

Similarly, next can be extended to accept a set of states as
follows:

nexts(S, l) =
⋃{next(st, l)st ∈ S} (11)

4.4 Combining Cache States
If two analysis states represent the same cache contents,

then they can be combined. Practically, this means that for
two analysis states 〈s1, p1, h1,m1〉 and 〈s2, p2, h2,m2〉, the
states can be combined if s1 = s2. Combining two states
simply takes the sum of their probabilities and history dis-
tributions. This is valid as each states’ history distribution
represents a portion of the overall history distribution, and
hence summing merely provides a method to condense the
data. Therefore the combining function cmb for a set of k
states representing the same cache contents can be written
as:

cmb(

{ 〈s1, p1, h1,m1〉
..

〈sk, pk, hk,mk〉

}
)=〈s1, p′, h′,m′〉

p′ =
k∑
i=0

pi

h′(x) =
k∑
i=0

hi(x)

m′(x) =
k∑
i=0

mi(x)

(12)
Defining the combining function to construct the minimal
set of states required to represent an arbitrary set of analysis
states S can be accomplished by splitting the analysis states

into sets sharing the same cache contents as follows:

same(S, sj) =

{
〈si, pi, hi,mi〉 si = sj

〈si, pi, hi,mi〉 ∈ S

}
(13)

cmbs(S) = {cmb(same(S, sj))〈sj, pj , hj ,mj〉 ∈ S} (14)

Together, the classification, update and combination func-
tions can be used to define the collecting semantics.

4.5 Compression
Having defined the collecting semantics with histories, we

now define compression. The first form of compression,
memory block compression, operates by replacing memory
blocks with the unknown value ∅. A memory block is re-
placed when a given heuristic determines that it is not suffi-
ciently significant.The actual replacement can be defined by
the function r′, which compares each element of the cache
contents to a set of values which can remain, R, and replaces
any that do not match with ∅. To apply this to an analysis
state, the function r simply applies r′ to the cache contents
of the state:

r′(〈s1..sN 〉, R) = 〈s′1..s′n〉 s′i =

{
∅ if si 6∈ R
si otherwise

(15)

r(〈s, p, h,m〉, R) = 〈r′(s, R), p, h,m〉 (16)

The first family of heuristic functions under consideration
is prb, which keeps only those memory blocks deemed likely
enough to significantly affect the analysis. Given a thresh-
old, t, the prbt function identifies all memory blocks which
have a hit probability of greater than or equal to t and selects
these to keep under analysis. Hence, where L represents the
set of all possible memory blocks, prbt can be defined as
follows:

prbt(S) =

{
liΣ{p|〈s, p, h,m〉 ∈ S, li ∈ s} ≥ t, li ∈ L,

}
(17)

The second family of heuristics, frd, is based on the forward
reuse distance; given a forward reuse distance threshold d,
the function frdd discards all memory blocks whose forward
reuse distance exceeds d. Assuming a function nu which
returns the distance to the next use of a memory blocks, the
function frdd, which returns the set of memory blocks to
keep under analysis, can be defined as follows:

frdd(S,A) = {li li ∈ L, nu(A, li) ≤ d} (18)

Given parameters t and d for the functions prbt or frdd, and
the replacement function r (16), a function to define the first
form of compression comp1 regardless of chosen heuristic can
be defined as follows:

comp1(t,d)(S,A) = {r(s, frdd(S,A) ∩ prbt(S))s ∈ S} (19)

Noting that as using the functions frd∞ or prb0 will return
all memory blocks in S, comp1 is capable of implementing
both forms of compression.

Cache State compression is related to the probability val-
ues of each state. As probability values have fixed precision,
it is necessary to reduce the accuracy of the probability val-
ues soundly. If a probability value is reduced to zero due to
loss of accuracy, then the state can be removed and com-
bined into a common bounding state. Firstly, it is necessary
to define a function rpf(α,f) which inspects a fraction a

b
and

if b > α (where α is the maximum available precision), re-
duces the precision of a

b
. This is accomplished by setting

the new denominator as b b
f
c, where f is a fixed factor, and
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returning the greatest value possible using the new denomi-
nator which is still less than the original. As all probabilities
can be expressed3 as x

Ny , the factor f should be picked to
be sufficiently large to provide meaningful compression and
of the form Nz, to minimise unnecessary loss of accuracy. If
b ≤ α, then no action is required.

rpf(α,f)(
a
b
) =

{
max(

{
x

b b
f
c

x

b b
f
c <

a
b

}
) if b > α

a
b
otherwise

(20)

History compression is similar to cache state compression
in that it relates to compressing fractions, this time in the
histories. If an outcome requires too much precision to rep-
resent, it should have its precision reduced using the rpf
function. As with cache histories, if this would reduce the
fraction to 0, then the outcome can be removed in its entirety
and any error introduced combined and added to the number
of the least possible observed hits (or misses4) in a bounding
state which combines all other such errors. Therefore, the
history compression function rph(α,f), using the maximum
precision α and reduction factor f , can be defined as follows:

rph′(α,f)(h) = h′h′(x) = rpf(α,f)(h(x)) (21)

Given rpf and rph (i.e. (20), (21)), the Cache State and
History compression can be combined into a single function
applied to cache states, rps, as follows:

rps(α,f)(〈s, p, h,m〉) = 〈s, rpf(α,f)(p), rph(α,f)(h), rph(α,f)(m)〉
(22)

As stated before, a bounding cache content can be con-
structed from the last memory block to be accessed l and ∅,
by constructing a state which contains l and no other certain
values. Hence, for a cache associativity of N , the bounding
cache content after the last access l can be expressed as the
function bndcN :

bndcN (l) = 〈s1..sN 〉|si =

{
l if i = 1

∅ otherwise
(23)

To calculate the histories for the bounding analysis state, it
is necessary to find the amount that has been lost due to
rounding. This is performed by summing all probabilities in
all states and subtracting the result from one to determine
the amount not accounted for. This value is then assigned
to the minimum number of hits (or misses) present, and is
expressed by the function bndh which operates on a list of
histories.

smh(h) = Σ∞x=0h(x) (24)

minh(h1...hj) = min(

{
min(xh(x) 6= 0)i ∈ [1, k]

}
(25)

bndh(h1...hj) = h′h′(x) =





1− Σki=1smh(hi) if

x = minh(h1...hj)

0 otherwise

(26)

Similarly, the probability of the bounding state can be found
by subtracting the sum of the probabilities of all other states
from one. Hence, the bounding state which takes into ac-
count the errors from applying rps(α,f) to all states can be
defined as the result of the bndN function, which operates
on a list of all analysis states representing a cache of size N ,

3As a probability in the collecting semantics can be divided
by the cache size or added to another probability
4For May Analysis

as follows:

bndN

( 〈s1, p1, h1,m1〉
...

〈sk, pk, hk,mk〉
, l

)
=
〈bndcN (l), 1− Σki=1pi,
bndh(h1..hk), bndh(m1..mk)〉

(27)
As Cache State and History Compression both utilise the
same parameters, the function comp23(α,f), which applies
both methods to all elements of a set of analysis states, can
be defined as follows:

comp23′(α,f)(S) = {rps(α,f)(st)st ∈ S} (28)

comp23(α,f)(S) = comp23′(α,f)(S) ∪ {bnd(comp23′(α,f)(S))}
(29)

Where the function bnd is the appropriate bndN function
(27) for the cache under analysis. For convenience, the
comp1 (19) and comp23 (29) functions can be combined,
as follows:

comp(S,A)(t,d,α,f) = comp23(α,f)(comp1(t,d)(S,A, hr)) (30)

Where S is the set of analysis states to apply compression
to, A the remaining list of accesses, hr the heuristic function
used by comp1 and f and α the parameters for simplification
of fractions used by comp23.

4.6 Complete Analysis
Having defined the behaviour of the collecting semantics

and the compression functions, all that remains is to com-
bine all of these to define the complete analysis. The com-
plete analysis use the rules of the collecting semantics to
update the current cache state with the next access, before
applying compression to the resulting cache states and fi-
nally combining cache states which represent the same items.
Once all accesses have been completed, all the partial histo-
ries attached to each cache state are combined to give the
overall history for the analysis, and hence the hit/miss dis-
tributions determined by the analysis.

Hence, using the previously defined functions nexts (11),
which returns the set of next states for a given memory block
access), cmbs (14), which combines analysis states represent-
ing the same cache items, and comp = comp(t,d,α,f) (30),
which performs compression on the cache, with fixed pa-
rameters t, d, α, f), the analysis step function step can be
defined recursively as:

step(S,A, comp) =





S if A = []

step(cmbs(comp(nexts(S, head(A)),

tail(A))), tail(A), comp)

(31)
Where the function head(A) returns the first element of A
and tail(A) returns all other elements of A.

Once the step function returns the final set of analy-
sis states, the partial histories can be extracted and com-
bined to find the overall hit and miss distributions, using
the cmb function (12); Note that unlike cmbs, cmb com-
bines all states presented regardless of the items that they
represent):

dists(S) = 〈h′,m′〉〈s′, p′, h′,m′〉 = cmb(S) (32)

Hence, the hit and miss distributions, for a given sequence
of memory block accesses A, with compression parameters
given by the function comp, is given by:

analyse(A) = dists(step({i}, A, comp)) (33)

Where i represents the initial state 〈〈s0..sk〉, 1, h0,m0〉, with
si = ×∀i, h0(0) = m0(0) = 1. For completeness, a spe-
cial case is where comp = comp(0,∞,∞,1). In this case, no
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compression is performed and hence the analyse function
implements the collecting semantics.

5. EVALUATION

5.1 Experimental Setup
For evaluation, two new families of algorithms are de-

fined, based on the lossy compression techniques introduced
in this paper. The FRD(r) family uses the forward reuse
distance heuristic frd with reuse threshold r (implemented
using comp1(r,0), and the PRB(t) family uses the hit prob-
ability heuristic prb with threshold t (implemented using
comp1(∞,t). In both cases, the parameters α = 231 and

f = 26 were used for the fixed precision fraction compres-
sion, giving an accuracy of approximately 10−9 for this anal-
ysis. If greater precision were required, this could be ob-
tained by picking larger values for α and f . For Must anal-
ysis, the methods were compared against the result of 109

simulations. The hit/miss distributions from a large number
of simulations will converge on the worst case distribution
of the benchmark, as due to the single path nature of the
benchmark there is only a single behaviour it can exhibit.
Hence it can be inferred that simulations will also converge
onto the uncompressed collecting semantics. In addition,
the current techniques of reuse distance rd from Davis et al.
[5], and the focus blocks scheme with x focus blocks, FB(x),
from Altmeyer and Davis [6] are also compared against. As
no previously existing method can perform a May analy-
sis, the methods introduced in this paper are only compared
against simulations in that case.

Experiments were performed on traces from a subset of the
Maladärlen benchmarks [16], as in Altmeyer and Davis’ work
[6]. In order to test the performance on both smaller and
larger traces, 4 of the traces contained system calls which
increase the size of the trace substantially. The cache simu-
lated was a 16-way random replacement cache with a cache
line size of 8.

Results are presented as a graph plotting the complement
of the cumulative distribution function (1−CDF ) produced
by the analysis, giving the number of hits (for Must analy-
sis) or the number of misses (for May analysis). This differs
from previous works [5, 6], which effectively show the num-
ber of misses for a Must analysis; technically, this is slightly
misleading, as the analysis used does not predict the num-
ber of guaranteed misses, but rather the number of accesses
not guaranteed to be a hit. Hence in this paper, an opti-
mistic analysis would produce a result greater than that of
the simulation, rather than less than that of the simulation
as in previous works. During testing, optimism when com-
pared against the results of the simulation was specifically
tested for and not observed, validating that the compression
employed only introduces pessimism.

5.2 Results
Figure 5 shows the results for the insertsort benchmark.

The results show that, in this case, FRD(24), PRB(0.6)
and FB(12) all produce roughly equivalent results, although
FRD(24) takes noticeably less time to complete than other
approaches at this accuracy. As expected, higher accuracy
is obtained by PRB(0.5) and FRD(116), with FRD(116)
being nearly identical to the simulation, and hence the un-
compressed collecting semantics, although noticeably faster.
While there is a significant difference in parameter between
the two FRD methods, this is because the parameters in-
between the two do not produce additional accuracy. Due
to the nature of the approach, this also means that, for ex-
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Figure 5: Comparison of approaches for Must anal-
ysis on the insertsort benchmark

ample FRD(80) takes the same amount of time to analyse
the trace as FRD(24), as no additional work is performed.
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Figure 6: Comparison of approaches for Must anal-
ysis on the fir benchmark

Figure 6, shows the results for the longer fir benchmark,
which demonstrates a property of applying this form of com-
pression: compression artefacts. Over a large number of
accesses, compression artefacts accrue due to the rounding
error when simplifying finite fractions; these can be seen as
the lines for the FRD and PRB approaches are pessimistic
at high probabilities (e.g. 10−1 to 10−2) when compared to
FB. While not shown, an example of this is that PRB(0.5)
predicts less than 1000 hits at a probability of 10−1. As these
artefacts come from rounding error, which has been designed
to be pessimistic, the compression artefacts do not affect the
soundness of the analysis. While this results in poor perfor-
mance for high probabilities when compared with the FB or
rd methods, at the lower probability levels of interest (e.g.
10−9), FRD and PRB yield higher accuracy.

Figure 7 again illustrates the sensitivity of the threshold
for forward reuse distance. As the reuse distances in the
bs benchmark are relatively high, it is necessary to select
a relatively high threshold. As expected, this increases the
execution time and memory usage of the analysis substan-
tially. In particular, one weakness is highlighted in that as
the reuse distances of bs fall into a very tight range, the
difference between FRD(24) and FRD(28) is so substantial

Static Probabilistic Timing Analysis of Random Replacement Caches using Lossy Compression

296 RTNS 2014



30 40 50 60 70 80 90
Hits

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

1 
- C

DF

simulation

FRD(28)

FB(12)

FRD(24)

rd

PRB(0.5)

Figure 7: Comparison of approaches for Must anal-
ysis on the bs benchmark
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sis of iterations of fibcall

that FRD(24) performs relatively poorly while FRD(28)
is nearly equivalent to performing the collecting semantics
without compression.

Figure 8 compares the runtime of the analysis for
FRD(12), FRD(20), PRB(0.5) and FB(12) on repeated
iterations of the fibcall benchmark; the parameters for the
methods were picked as they all produce similar distribu-
tions. In addition, FB(8) is presented for comparison, al-
though this gives a noticeably more pessimistic distribution.
Due to the use of finite precision fractions throughout lossy
compression based analysis, a cache state has a fixed size.
As expected, Figure 8 reflects this, as the runtime of the
lossy compression based analyses for a given set of param-
eters varies approximately linearly with the length of the
supplied trace. Further, with respect to the threshold, the
complexity is at most exponential; however, if the threshold
given is set to a value which gives no additional accuracy,
there is little or no penalty with respect to analysis runtime,
as seen with FRD(12) and FRD(20). The focus block ap-
proaches, FB(8) and FB(12) (which is of similar accuracy to
FRD(12)), do not observe this linear relationship with the
size of the trace, as they use histories with potentially un-
bounded size. This comparison was also attempted with the
larger fir benchmark, but memory usage prohibited FB(12)
from completing.
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Figure 9: Comparison of approaches for May analy-
sis on the insertsort benchmark

0 200 400 600 800 1000 1200
Misses

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

1 
- C

DF

simulation

PRB(0.5)

PRB(0.7)

FRD(20)

Figure 10: Comparison of approaches for May anal-
ysis on the statemate benchmark

Figure 9 shows the performance of May analysis on the
insertsort benchmark. Despite FRD(116) providing a
highly accurate Must analysis, it is beaten by PRB(0.5) on
the May analysis. This is as expected, as the FRD method
is more aggressive in discarding information. To illustrate
the problem of FRD for May analysis, FRD(24) which pro-
vided an acceptable Must analysis is unable to predict a
single cache miss. While the PRB technique takes longer to
perform, it is able to provide an effective May analysis.

Unfortunately, Figure 10 indicates the difficulty of scaling
the PRB approach to larger traces. As the distance between
consecutive accesses to the same memory block grows, the
probability threshold used by PRB has to be set lower. As
the probability threshold decreases, the time taken for anal-
ysis grows, and hence conducting an accurate May analysis
on larger benchmarks proves intractable.

6. SUMMARY & CONCLUSIONS
This paper introduced the idea of applying lossy compres-

sion to the collecting semantics of the random replacement
cache, identifying three separate types of information which
could be approximated with low impact on the accuracy of
the analysis. It utilised two different heuristics to implement
the compression, (i) based on hit probability and (ii) based
on forward reuse distance, yielding two different analyses.

In comparison with the approach of Altmeyer and Davis
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[6], then with appropriate choice of parameter, the new ap-
proach using the forward reuse distance heuristic yields a
superior Must analysis. Further, when a parameter is se-
lected that provides comparable accuracy to Altmeyer and
Davis’s approach, this new approach produced a speed-up
of between two and fourteen times depending on the length
of the trace, with greater speed-ups anticipated for longer
traces. This is due to the fact that lossy compression ensures
a linear relationship between the runtime of the analysis and
the length of the trace, improving upon the quadratic rela-
tionship of previous work. Further, parameter selection is
aided by the fact that the parameter controls the maximum
precision available, and hence increasing the parameter only
increases the runtime of the analysis if the accuracy of the
analysis would also increase. The drawback of the forward
reuse distance heuristic is that its aggressiveness yields a
poor May analysis.

The new approach using the hit probability heuristic re-
sults in Must analysis that is slower than using the forward
reuse distance heuristic; however, it maintains a linear rela-
tionship with the length of trace, and hence for sufficiently
long traces is shown to outperform previous work in terms
of its runtime for comparable accuracy. The May analysis
is shown to be useful for smaller traces, although due to
increased reuse distances it loses accuracy in larger traces.

We note that May analysis bounding the number of cache
misses is only required for systems with timing anomalies,
where misses could sometimes contribute more to the over-
all probabilistic worst-case execution time than hits. For
systems without timing anomalies, only Must analysis is
needed. The lossy compression based techniques introduced
in this paper improve upon the state-of-the-art Must analy-
sis in terms of both precision and runtime.

6.1 Future Work
In order for the analysis to be relevant for more compli-

cated systems, it is necessary to extend the analysis to han-
dle multiple paths. Further, lossy compression can typically
be used to define two major modes of compression. This pa-
per has looked at constant quality compression, where results
are guaranteed to be of a fixed quality specified by a param-
eter. An alternative is fixed effort compression (analogous
to fixed bitrate compression [7]), where a metric is specified
for the amount of effort that can be expended. With the
amount of effort fixed, the compression strength is varied
such that the best result is achieved without exceeding the
effort limit given. Given that this allows control over the
runtime of the analysis, fixed effort compression could be
useful in many situations.
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