
Lossy Compression for Worst-Case Execution Time
Analysis of PLRU Caches

David Griffin
University of York, UK

david.griffin@york.ac.uk

Benjamin Lesage
University of York, UK

benjamin.lesage@york.ac.uk

Alan Burns
University of York, UK
alan.burns@york.ac.uk

Robert I. Davis
University of York, UK
rob.davis@york.ac.uk

ABSTRACT
This paper outlines how Lossy Compression, a branch of
Information Theory relating to the compact representation
of data while retaining important information, can be ap-
plied to the Worst Case Execution Time analysis problem.
In particular, we show that by applying lossy compression
to the data structures involved in the collecting semantics
of a given component, for example a PLRU cache, a use-
ful analysis can be derived. While such an analysis could
be found via other means, the application of Lossy Com-
pression provides a formal method and eases the process of
discovering the analysis. Further, as the compression and
its application are formally specified, such an analysis can
be made correct-by-construction rather than relying on an
after-the-fact proof.

1. INTRODUCTION
Real-time systems [7] are characterised not only by the

need for functional correctness, but also the need for tem-
poral or timing correctness. Real-time systems continually
monitor and respond to stimuli from the environment and
the physical systems that they control. In order for such
systems to behave correctly, they must not only execute the
correct computations, but also do so within predefined time
constraints. These time constraints are typically expressed
in terms of end-to-end deadlines on the elapsed time between
a stimuli and the corresponding response. Applications in
real-time systems may be classified as hard real-time, where
failure to meet a deadline constitutes a failure of the ap-
plication; or soft real-time, where latency in excess of the
deadline leads only to a degraded quality of service. Today,
hard real-time systems are found in many diverse application
areas including; automotive electronics, avionics, space sys-
tems, medical systems, household automation, and robotics.

Worst Case Execution Time Analysis is one of the major
areas of research in the real-time systems field. The Worst
Case Execution Time (WCET) of a task is defined as the
maximum amount of time which that task may require to
execute. Worst Case Execution Time analysis is the problem
of placing a bound on the execution time of a task. The term
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
RTNS 2014 , October 8 - 10 2014, Versailles, France
Copyright 2014 ACM 978-1-4503-2727-5/14/10 ...$15.00.
http://dx.doi.org/10.1145/2659787.2659807.

tightness is used to describe how accurate this upper bound
is; a WCET estimate becomes tighter as it approaches the
real WCET. Further, we use the term soundness to indicate
that a WCET bound is indeed an upper bound that is not
exceeded by the actual WCET 1.

One approach to the WCET problem is Static Analysis,
which is the general term used to describe any WCET es-
timation technique which uses a model based on program
source or assembly code and the behaviour of the hardware
that it is to run on. A major difficulty with Static Analysis
is State Explosion, where the number of states to check in
the analysis grows exponentially. To combat state explosion,
the two main techniques used in current approaches are Ab-
stract Interpretation [11] and Symbolic Model Checking [6].
These techniques have the same goal of discarding informa-
tion that is irrelevant to the problem at hand, but accom-
plish this goal using distinctly different methods. This paper
focuses on Abstract Interpretation, although the ideas intro-
duced are equally applicable to Symbolic Model Checking.

Collecting Semantics [12] is a specific technique imple-
mented by Abstract Interpretation. Collecting Semantics
seeks to utilise the fact that multiple concrete states may
exhibit exactly the same behaviour. Hence, Collecting Se-
mantics can provide a significant reduction in the number of
states required for analysis, although this may not be suffi-
cient to render the analysis tractable if a system contains a
large number of distinct behaviours.

One problem in Abstract Interpretation is finding an ap-
propriate approximation in order to discard irrelevant in-
formation. Abstract Interpretation relies on identifying a
property of the system which can be usefully approximated
[11], which leads to the situation where research is primar-
ily focused on identifying such properties. Further, even
when such a property is found, there is no guarantee that it
will yield a useful approximation. A more fruitful approach
would be to have a set of rules which give guidance, such
that the innovative step can be designed to have the desired
properties.

Information Theory [25] is the branch of mathematics ded-
icated to the analysis, handling and storage of Information.
The original application of Information Theory was devel-
oped by Shannon in 1948 for use in analogue signal process-
ing [23]. Specifically, analogue signals are prone to inter-
ference. Using Information Theory it is possible to specify
precisely how much interference a signal can tolerate before

1We note that in the literature, this is sometimes referred to
as safety or a safe bound; however, since safety has different
connotations in safety-critical systems, we prefer the term
soundness.

David Griffin, Benjamin Lesage, Alan Burns and Robert Davis

RTNS 2014 203

it is unusable. Using similar ideas, Lossy Compression [26] is
a technique that enables data of lower value to be discarded
while preserving enough data such that the information is
still useful for its intended purpose.

It can be argued that Abstract Interpretation implements
a form of Lossy Compression, as Abstract Interpretation
specifically sets out to discard data that is deemed by the
implementer to be of low value. However, the technique
of Abstract Interpretation provides no specific guidance on
how one might determine what data is of low value. By con-
trast, Lossy Compression provides both a vocabulary and a
method to determine low value data with regard to specific
goals. This paper outlines how the techniques of Lossy Com-
pression can be applied to Abstract Interpretation, with the
aim of aiding the development of suitable abstractions.

1.1 Organisation
The remainder of the paper is organised as follows: Sec-

tion 2 begins by describing the concepts of Abstract Inter-
pretation and Collecting Semantics. A specific example of
this is given for the PLRU Cache, using Grund and Reineke’s
PLRU cache analysis [17]. Section 3 gives an overview of
Lossy Compression, in particular its application to MP3 [5].
This is combined with observations made about abstract in-
terpretation to give an overview of how one may apply the
principles of lossy compression to WCET analysis. PLRU
cache analysis is revisited in Section 4 which describes how
one can apply the principles of Lossy Compression to the
PLRU cache, resulting in Full Tree Analysis, outlined in
Section 5, a PLRU cache analysis method which does not
discard important information. Full Tree analysis is eval-
uated against current methods in Section 6. Finally, con-
clusions about the application of lossy compression to static
analysis and PLRU cache analysis in particular are given in
Section 7.

2. ABSTRACT INTERPRETATION AND
COLLECTING SEMANTICS

Abstract interpretation is a general program analysis tech-
nique developed by Cousot and Cousot [11]. The goal of
abstract interpretation is to perform the minimal amount
of work in order to prove the correctness of a property of a
program. The method for this creates an abstract represen-
tation of the program which contains less information than
the original program, but retains enough to provide a valid
answer. For example, given the operation −x × y = −xy,
and the requirement that only the sign of the result was re-
quired, an appropriate abstraction would be −(sign(x)) ×
+(sign(y)) = −(sign(x)sign(y)), completely discarding the
magnitude of x and y and only using their signs. Then, once
the abstract representation has been created, the abstraction
can represent sets of concrete values with a single abstract
value, without impacting the validity of the model. By also
defining a merge function which combines sufficiently sim-
ilar abstract points, the size of the model is reduced and
hence a desired property becomes easier to prove. The level
of approximation that the abstraction uses is not defined by
Cousot and Cousot; instead it is left to the implementation
and specific use to pick an appropriate level.

Collecting Semantics [12] are a form of Abstract Inter-
pretation that seeks to preserve the operational behaviour,
rather than concrete states. A simple example of Collecting
Semantics is the approximation of the real numbers between

[0, 1] by the integers 0, 1 using the floor function. As the
floor function maps every real number to an integer, the be-
haviour of all real numbers is accurately represented by an
integer. With the given ranges, the integer 0 represents the
behaviour of all reals in the range [0, 1), as bxc = 0 = b0c for
all x ∈ [0, 1), with the integer 1 representing the behaviour of
the real number 1. Hence applying the collecting semantics
in this case results in a very large reduction in the number of
states that need to be considered. In the case of the PLRU
cache, a simple implementation of the collecting semantics
is the cache naming approach, which is introduced in the
next section.

2.1 Current Analysis of PLRU Caches
The Pseudo Least Recently Used (PLRU) cache is an ap-

proximation of an LRU cache. In empirical testing, the
PLRU cache scheme achieves a hit ratio almost as good
as an equivalently sized LRU cache [18]. However, as the
PLRU cache structure is designed to easily map onto a sil-
icon implementation, then for high associativities, the die
area consumed by cache logic is greatly reduced compared
to that required for an equivalent LRU cache [18]. This
in turn results in the cache requiring less silicon, and thus
decreasing manufacturing costs and power usage. As these
attributes are valuable to chip manufacturers, most high as-
sociativity caches are implemented using the PLRU scheme.

Implementing a PLRU cache is accomplished by organ-
ising elements in a binary tree. Cache lines are stored on
the leaves of the tree. Each node of the tree contains an
additional bit of information that acts as a pointer. The
pointers are used to approximate the least recently used ele-
ment. This is accomplished by setting each pointer to point
away from a memory location being updated during a touch
operation. Further, to determine the element to evict, the
pointers are simply followed and the element being pointed
at is evicted. Hence the touch and evict operations can be
defined specifically as:

• EvictAndReplace(memoryLocation): Take the path
indicated by the pointers from the root of the tree to
the indicated leaf; store the new memory location in
the cache line on the indicated leaf.

• Touch(memoryLocation): For each pointer on the
path between the root of the tree and the memory
location indicated, set the pointer to point away from
that path.

These behaviours are demonstrated in Figure 1, which
shows a request for a memory location not in the cache, and
hence results in an eviction operation (evicting the element
which the pointers point to) followed by a touch operation
(pointing the pointers away from the new cache element).

Figure 1: Showing the behaviour of a PLRU cache
by accessing the element e, which evicts b

One slight complication in this description is the handling
of invalid cache lines (the state of a cache line which contains

Lossy Compression for Worst-Case Execution Time Analysis of PLRU Caches

204 RTNS 2014

no information, such as when the cache is initially turned
on). Two policies exist in this case sequential fill and tree
fill [17]. In the tree fill scheme, the pointers on the nodes of
the tree always determine which cache line should be evicted.
However, in the sequential fill scheme, if the cache contains
one or more invalid cache lines then the first invalid cache
line (using an arbitrary ordering) is selected. Sequential fill
can cause complications in analysis as if it were not for this
behaviour, left and right subtrees of a node in the PLRU
tree containing the same abstract representation could be
considered equal in all cases. With sequential fill, left and
right subtrees cannot necessarily be considered equal if they
contain two or more invalid cache lines. Due to the compli-
cations of sequential fill, this paper only considers the case
of tree fill caches.

Figure 2: Illustrating the fastest a memory location
can be evicted from a PLRU cache

The behaviour of a PLRU cache means that from each
access to a cache element, it is guaranteed that the element
will persist for at least log2(cache size) + 1 accesses [19].
The worst case scenario that is used to find this bound is
illustrated in Figure 2. The worst case can be proven by
noting the fact that a memory access can only set a single
pointer on the path to the required value; specifically, the
pointer where the path to element a and the path to the
element being accessed diverge. For all other pointers on
the path to element a, the pointers will by definition be
set to point away, as the paths are the same. Hence, to
get all pointers on the path to element a to point to a, at
least cache height = log2(cache size) memory accesses are
necessary. Finally, an additional memory access is required
to evict a, and hence the bound is log2(cache size) + 1.

Figure 3: As an access to a sets the circled pointer,
b can be unintentionally protected

Unfortunately, unlike in the case of an LRU cache where
a fixed number of misses guarantees an element is evicted,
there is no similar bound for the PLRU cache. This was
illustrated by Berg et al. [3], who showed that it is trivial
to construct a case where an element in the cache can still
be resident in the cache after an arbitrarily high number of
misses. This is illustrated in Figure 3, and exploits the tree
structure of the PLRU cache. Specifically, where cache lines

a and b reside in the same subtree, frequent accesses to cache
line a will protect cache line b from eviction, by setting the
pointers in the common part of the path of a and b to point
away from b.

Figure 4: Assigning a name to a tree fill PLRU cache

One of the interesting properties of a PLRU cache is that
multiple cache states can exhibit the same logical behaviour.
This can be observed by swapping subtrees at the same level
and flipping the corresponding pointer; this does not change
the cache lines being pointed at, but does change physical
locations2. To determine which states exhibit the same be-
haviour, a current technique, referred to as cache naming ,
swaps the left and right subtrees of any nodes of the tree
which are pointing to the left, as well as flipping the direction
of the pointer, as illustrated in Figure 4. By placing a cache
state in this form, all cache states that exhibit the same log-
ical behaviour will be equal, and hence duplicates can be
easily detected and discarded. This scheme also enables a
compact name to be assigned to the cache state, which is
simply the values of the cache lines read from left-to-right,
as all pointers are known to point in a single direction. As
cache naming reveals the logical behaviours of the PLRU
cache, it can be used as a basis for implementing collecting
semantics for PLRU [12].

Initial work on providing a Must analysis of a PLRU
cache was carried out in 2003 by Heckmann et al [19], and
further elaborated on by Grund and Reineke [21] in 2008.
As previously stated, any cache element requires at least
log2(cache size) + 1 memory accesses from its last memory
access to be evicted. Hence, it can easily be inferred that a
Must analysis on an LRU cache of size log2(k) + 1 elements
will provide a sound estimate of the elements that would be
in the PLRU cache. The main problem with this approach is
that it is a partial analysis which does not scale well with the
size of the cache. Hence, while a cache of size 4 can have 3
elements analysed by this approach, doubling the cache size
to 8 results in only 4 elements of the cache being analysed.
Further, this approach does not yield any useful data about
cache Misses, and hence cannot provide a May analysis.

More recently, in 2010, Grund and Reineke [17] provided
an improved PLRU cache Must analysis, by utilising a met-
ric named subtree distance. Subtree distances quantify the
link between elements in the cache. By approximating the
subtree distance of elements within the cache to be either
maximal or non-maximal, the analysis is able to have some
knowledge of how access to specific elements affect other el-
ements, thus enabling the exclusion of additional elements
from eviction when compared to the previous work.

2This does not hold in the case of a sequential fill cache con-
taining invalid cache lines, as in sequential fill the physical
position of an invalid cache line is significant.

David Griffin, Benjamin Lesage, Alan Burns and Robert Davis

RTNS 2014 205

a b c d

Initial pointer: Left

Left subtree Right subtree
a: 0
b: 1

c: 0
d: 1

Figure 5: Mapping a PLRU cache state to Grund
and Reineke’s representation

The implementation of Grund and Reineke’s approach
considers abstract cache states with 3 components: the root
pointer and representations of the left and right subtrees.
Elements in the subtrees are grouped by the maximum num-
ber of pointers that could be pointing to each element in
the subtree, as in Figure 5. When the maximal number of
pointers reaches log2(cache size) these elements have been
considered for eviction, and hence fail the Must test.

By analysing the root pointer of the cache tree separately,
Grund and Reineke’s analysis effectively decreases the height
of any cache trees to approximate by 1. This results in the
good results seen by Grund and Reineke for a 4-way cache
[17], as the cache trees approximated have height 1, and
hence behave identically to an LRU cache. However, while
using the maximal number of pointers pointing to a cache
element is a better approximation than using the Must anal-
ysis of an appropriately sized LRU cache, the same problem
of scalability applies. Grund and Reineke’s results for an
8-way cache indicate that only 6 elements of the cache can
be analysed, as opposed to the entire cache in the 4-way
case. This leads Grund and Reineke to conclude that their
technique is limited to analysing 2log2(cache size) elements,
and hence this is still only a partial analysis. Further, the
approach still does not yield any useful information for a
May analysis.

3. LOSSY COMPRESSION
As mentioned before, Abstract Interpretation implements

a form of Lossy Compression. In the previous example,
Grund and Reineke’s analysis of the PLRU cache [17], a
form of lossy compression has effectively been used, in that
information deemed to be important is kept while discard-
ing information deemed less important. However, in order to
devise an analysis based on the principles of lossy compres-
sion [26], it is first necessary to examine how it is relevant to
the problem faced. As previously noted, while every piece
of information is important, quite often some pieces of infor-
mation are more important than others. Lossy compression
takes advantage of this principle to discard information that
is of low value to a particular result.

When applying lossy compression, the value of discarding
information is twofold. Firstly, information that is discarded
does not have to be stored, and this increases compression.
Secondly, it is possible that the information to be discarded
can actually be substituted instead [26]. If the informa-
tion is substituted, then patterns can be introduced into the
information stream that can be exploited by a lossless com-
pression technique. This can result in even less information
being stored than by simple discarding; by introducing pat-
terns that a compression algorithm can effectively exploit,
large sections of the stream only have to be stored a sin-
gle time, thus further reducing the amount of information
to store. However, determining the value of information to
discard via lossy compression is highly dependent on the
specific application. The next section gives an overview of

determining the value of information in MP3 compression.

3.1 Overview of Lossy Compression in MP3
Perhaps the most well known example of a specific appli-

cation of lossy compression is Audio compression, such as
MPEG Layer 3 (MP3) [5]. Audio compression utilises an
effect called psychoacoustic masking for compression, in ad-
dition to the quantisation and the Modified Discrete Cosine
Transformation (MDCT).

Psychoacoustic masking describes the limits on human
hearing, and specifically when the presence of one frequency
of sound masks another. First conceived of in 1979, psychoa-
coustic masking was independently developed by Schroeder
[22] and Hill and Krasner [20], it was not until later that psy-
choacoustic masking became a viable technique, with imple-
mentations of psychoacoustic codecs being well publicised in
1988 [4]. Two forms of psychoacoustic masking are utilised
in MP3: simultaneous masking, which describes when mul-
tiple frequencies cannot be perceived at the same time, and
temporal masking, which describes when sound cannot be
heard around a temporally local louder noise. When in-
formation in the audio signal is identified as being imper-
ceptible according to one of these effects, it is of no value
and hence can be discarded without consequence. Similarly,
frequencies above and below the range of human hearing
can also be discarded. In the case of information that is
discarded, an MP3 decoder replaces the sound with white
noise of an appropriate volume, as this is less perceptible to
the human ear than silence.

During the quantisation [15] phase of compression, the
analogue signal is converted to digital. Due to the nature of
sampling [24], lower frequency sounds can be described using
fewer samples than higher frequencies, which leads to com-
pression by varying the number of samples with respect to
the input frequency. The final technique used is the MDCT
transform, which represents a given signal as an infinite se-
ries of cosine functions [1]. Once transformed by MDCT, co-
sine functions which have a low weight can be discarded, as
these contribute least and therefore have lower value. There-
fore, MDCT transformed data can be compressed without
significant reduction in quality.

As the compression can be parameterised by many vari-
ables, the size of the compressed state space is much larger
than the uncompressed state space, as multiple compressed
outputs can represent the same uncompressed data, albeit
with varying levels of quality. However, as only a single
compressed output is required, this does not detract from
the applicability of the technique.

3.2 Application of Lossy Compression to
WCET Modelling

Having detailed an example of lossy compression in the
MP3 format, we now provide a general outline of how a more
formal approach can be used to find appropriate simplifica-
tions. This can be done according to the following steps,
with examples taken from the use of lossy compression in
MP3:

1. Types of Information: Firstly, it is necessary to iden-
tify the distinct types of information within the system
being modelled. Types of information are determined
by constructing the minimal alphabets needed to rep-
resent unambiguously all data within the concrete sys-
tem.

Lossy Compression for Worst-Case Execution Time Analysis of PLRU Caches

206 RTNS 2014

• Example: finding frequencies in a sound.

2. Value of Information: After types of information are
found, it is necessary to argue for the value of each type
of information as used within the system. This can be
accomplished by considering the use of the information
within the system. Such an argument should take into
account the frequency of use of the information, with
less frequently used information being less valuable,
the amount of information stored in each instance of
data, and the consequences of the information being
inaccurate. Simple experimentation, by trivially dis-
carding information of a certain type, may be useful
here to provide evidence that an argument is correct.

• Example: Perceptibility of frequencies in a sound
at a given time due to hearing range or psychoa-
coustic effects.

3. Overall Strategy : Having decided on which types of
information are least valuable, the next step is to de-
cide how much information should be discarded by the
lossy compression. All data of no value should au-
tomatically be discarded, and in addition enough low
value data also needs to be discarded to make the anal-
ysis tractable. These decision on what to discard will
then shape the choices in the remaining steps.

• Example: Strategy of discarding all imperceptible
frequencies when they occur, approximating the
remainder using MDCT.

4. Representation: Once an overall strategy has been de-
termined, a suitable representation should be found.
The representation used should be picked such that it
is computationally efficient to discard any information
marked for removal by the strategy.

• Example: Represent sound by applying quantisa-
tion and MDCT to the source.

5. Approximation Operator : Next, an approximation op-
erator must be defined, which successfully implements
the discarding of low value information.

• Example: Discarding imperceptible frequencies
and removing low value components of the MDCT
transformation.

6. Recovery Strategy : Finally, if information that has value
to the analysis is discarded, it is necessary to imple-
ment a recovery strategy to cope with the information
loss. Such a strategy has to ensure that the property
of soundness still holds in the analysis, despite infor-
mation having been discarded.

• Example: Replacing sounds which have been dis-
carded with white noise of an appropriate volume
during playback.

Following these steps may increase the size of the state
space by introducing a notion of uncertainty into the rep-
resentation. Provided that this is counteracted by visiting
fewer states during the analysis, increasing the size of the
state space does not in itself present a problem.

Having outlined an overall strategy for devising new anal-
yses with a more formal approach based on lossy compres-
sion, the next section demonstrates how these methods can
be applied to analysing the PLRU cache.

4. LOSSY COMPRESSION FOR THE
PLRU CACHE

The first step is to determine the different types of infor-
mation used to represent a PLRU cache. A type of informa-
tion is defined by the minimal alphabet that is needed to rep-
resent it. Information using a different alphabet is counted
as a different type. In the system of a tree-fill PLRU cache,
there are two quantities that affect this encoding: the num-
ber of cache ways N , and the set of possible memory blocks
that the cache could contain, L. With this information, it
is possible to identify three distinct types of information:

• Pointers: The pointers on the nodes of the cache tree.
These are represented by the alphabet of {0, 1}, and
hence consume a single bit of information. In total,
for an N -way cache, there are N−1 pointers, meaning
N−1 bits of information are used for their representa-
tion. Pointers are used to determine which cache line
to evict.

• Cache Lines: Each cache line contains either a mem-
ory block, or is invalid. Hence they are represented by
the union of the set of L possible memory blocks and
a single invalid state. As each cache line is drawn from
the pool of possible memory blocks, for a cache of size
N the number of possibilities is given by the binomial
coefficient NC|L| = N !

(|L|−N)!
. Cache Lines are used to

determine if a given access is a hit or a miss.

• Tree Structure: The tree structure describes the posi-
tion of each cache line and pointer within the cache,
and hence is represented by an alphabet of orderings.
The tree structure comprises two parts: the ordering
(or permutation) of pointers (which, given N−1 point-
ers, has a size of N−1PN−1 = (N − 1)!) and the order-
ing (or permutation) of cache lines (which, given N
cache lines, has a size of NPN = N !), and therefore
has an alphabet size of (N − 1)!N !. However, in most
representations the tree structure will be implicit, as
both pointers and cache lines will be represented with
an implicit notion of ordering (e.g. as in a list). The
tree structure is used in both evictions and touch op-
erations, to determine which cache line to evict/touch
respectively.

Of these items, the pointers and tree structure control
the discrepancy between physical and named states of the
cache. As previously mentioned, flipping subtrees such that
all pointers point in the same direction can be used to as-
sign a named cache state to a physical cache state. The
information lost in this transformation is the distinction be-
tween different physical states which have the same logical
behaviour, which clearly has zero value with respect to the
analysis.

Considering the types of information, it is possible to eval-
uate their relevance with respect to the PLRU cache analysis
algorithm. It is possible to divide cache analysis into three
steps: a classification step, which determines if an access is a
hit, miss or uncertain, an evict step that determines possible
successor states in the event of a miss, and a touch step that
sets the pointers in the cache appropriately, and updates
the tree structure. Each of these steps uses information,
and hence can be affected by uncertain information. Classi-
fication uses the contents of the cache; in the case that this

David Griffin, Benjamin Lesage, Alan Burns and Robert Davis

RTNS 2014 207

is uncertain, classification will be unable to determine cache
hits or misses. Similarly, Eviction is degraded if a pointer
is unknown, as both possibilities an unknown pointer rep-
resents must be considered, and hence multiple successor
states will be produced. However, it is also important to
note that these steps also modify the cache state, and hence
can remove uncertain information as well. An eviction op-
eration can potentially replace an unknown memory block,
while a touch operation can overwrite unknown pointers.

The cache lines of a cache state are used to determine if a
cache access would be a hit or a miss; this in turn determines
whether or not an eviction should occur. Pointers are used to
determine what element of the cache should be evicted, if an
eviction is necessary. It can therefore be inferred that the in-
formation presented in the cache lines is more valuable than
the information in the pointers, because for each memory
access it is necessary to classify the memory access, whereas
evictions may or may not happen based on the result of the
classification. Further, in actual use cache hit rates are engi-
neered to be high, as the penalty for a high number of misses
is severe; this is illustrated by Cantin and Hill [8], who show
that for the SPEC CPU 2000 benchmark the miss rates for
LRU associative caches typically range between 10% and
less than 2%, depending on the size of the cache. Assuming
that this represents acceptable performance for a cache, it
follows that for every evict operation that occurs, between
10 and 50 classification operations occur. This leads to the
conclusion that information used during classification (the
contents of the cache lines) is much more valuable than infor-
mation used during eviction (the contents of the pointers).
In the case that this does not hold, and evictions happen
frequently, then discarding pointers will cause pessimism;
however, this pessimism will only occur when the cache is
largely ineffective (due to a high miss frequency). Therefore,
in the case where discarding pointers introduces significant
pessimism, there is an argument that the use of the cache is
ineffective anyway.

It is also important to consider that any operation will
result in some information being overwritten; if uncertain
information introduced by lossy compression is overwritten,
then the lossy compression will not have an effect on the
precision of the analysis. Further, data which is overwrit-
ten provides a natural form of recovery from the lossy com-
pression. Hence the likely frequency of overwriting data is
a consideration in determining which data should be dis-
carded by compression. As a touch operation is performed
on each access, touch operations occur with the same fre-
quency as classification operations, which is expected to be
much greater than the eviction operation. The logical con-
clusion of this is that as the pointers of the cache are more
frequently overwritten than the cache lines or tree structure,
the impact of a pointer containing unknown information will
be less than that of unknown cache lines or tree structure.

Finally, it is necessary to consider the number of succes-
sor states that need to be considered to handle the impact
of uncertain information. In the case of cache lines, an un-
certain cache line results in at most 2 successor states - the
memory block is either in the cache or not. For pointers,
if all pointers are uncertain then one of N memory blocks
could be evicted, leading to N successor states. Similarly
for the tree structure, an access to a memory block whose
location in the cache is uncertain will result in N successor
states, as the memory block could reside in any cache line.

Maximum
Usage freq. Overwrite freq. Uncertainty impact

Pointers Low High N on evict
Cache Lines High Low 2 on classify

(can trigger pointer and tree structure uncertainty)
Tree Structure V.High High N on touch

Table 1: Properties of Information in a PLRU cache

Summarising this information (Table 1) it can be con-
cluded that pointers are a useful target for lossy compres-
sion. The tree structure is not an appropriate target be-
cause it is used in every operation and uncertainty in the tree
structure results in a large number of successor states. Cache
lines are argued to be unsuitable as they are used frequently,
overwritten infrequently, and an uncertain cache line can po-
tentially trigger uncertain pointers and tree structure to gen-
erate additional successor states. While the potentially large
number of successor states might appear to make pointers
an undesirable target for compression, their expected low
usage combined with a high overwrite frequency mean that
in typical usage this is not expected to cause a problem.

5. FULL TREE ANALYSIS
A simple implementation of collecting semantics for PLRU

finds logical states by using pointers to rearrange the tree
structure so that all pointers point in the same direction, and
is referred to as cache naming. Cache naming is unsuitable
as it becomes complex to check that two cache states have
the same tree structure, as pointers impact the cache name
substantially, as previously seen in Figure 4. Instead, an
alternative method of transforming cache states is necessary,
such that for cache states with the same cache lines it is easy
to determine if they also have the same tree structure. This
can be accomplished by using the cache lines to manipulate
the tree structure, as opposed to the pointers, and will be
referred to as the cache signature. As our analysis preserves
the tree structure of the cache, it is referred to as Full Tree
Analysis.

Figure 6: Illustrating how to find a cache signature,
using alphabetical comparison, by moving from a
physical state to an appropriate logical state without
using pointers

The method of computing the cache signature, using cache
lines to manipulate the tree structure, involves recursively
sorting the cache tree such that for each node of the tree, the
leftmost element of the left subtree is less than the leftmost
element of the right subtree, using a given ordering (assum-
ing that no memory block can be in the cache twice). With

Lossy Compression for Worst-Case Execution Time Analysis of PLRU Caches

208 RTNS 2014

Figure 7: A second example of finding a cache sig-
nature. As the tree structure differs from the first
example, the logical state reached is significantly dif-
ferent.

caches in this arrangement, as with the arrangement given
by cache naming which uses pointers, it is trivial to check
if two caches containing the same cache lines have the same
tree structure. This can be done by simply reading the ele-
ments of the cache in left-to-right order. As pointers are not
used to compute this ordering, the only way for two cache
states containing the same memory blocks to have a different
ordering of their elements is for their tree structures to dif-
fer. Hence it accomplishes the goal of determining when two
cache states have the same cache lines and tree structure,
and thus enables pointer information to be analysed.

An example of this is given in Figures 6 and 7, using an
alphabetic ordering on the memory blocks a, b, c, d contained
in the cache states. In Figure 6, first the deepest subtrees
are sorted, resulting in the left hand subtree being flipped
but the right hand subtree remaining the same. Then the
next deepest subtrees (in this case, the entire tree) is sorted
in the same manner, by comparing c and a; as a < c the sub-
trees are swapped, resulting in the signature state a, b, c, d.
Figure 7 demonstrates the same sequence of actions, but on
a cache with a different tree structure. The resulting logical
cache state is significantly different, with the final ordering
of elements and hence the signature changed; crucially how-
ever, when using this method the only way to obtain such
a difference is through cache states with different contents
or tree structure - the contents of the pointers only affects
the pointers in the signature state, and not the positioning
of memory blocks in the signature state.

An additional advantage of removing the impact of point-
ers on the positioning of elements in the signature states
is that the signature states become more efficient to update
than named states. This is because if no
eviction/replacement is carried out, a signature state re-
mains in its signature representation. By contrast with
the cache naming approach, as the touch operation changes
pointers, then subtree flipping must occur. Hence, by remov-
ing the impact of pointers, the speed of analysis is increased.

Our method for lossy merging allows each pointer to oc-
cupy three states: left-pointing, right-pointing, and uncer-
tain. When performing merging, each cache state is first
transformed into its logical (cache signature) representation
by applying the sorting method outlined above. Then, when
multiple cache states have the same cache content and tree
structure, determined by reading the contents from left to

right, these cache states are merged. Each pointer in the
merged cache state is set to be left (right) pointing if for all
signature states being merged, the pointers in the same lo-
cation are all left (all right) pointing. Otherwise, the pointer
is set to be uncertain, as it must represent both values.

In order to cope with the unknown pointers, the analy-
sis must know how to handle these during eviction. As an
unknown pointer represents one of two possible values, the
correct way to handle this is to consider both possible out-
comes. This results in the eviction operation returning a set
of successor states. As the input to the touch and classi-
fication operations is unaffected by the compression, these
functions behave as they would do in a normal collecting
semantics approach.

The additional compression obtained by using this merg-
ing strategy can be found by observing that as pointers no
longer have an impact on the analysis, then at most 2N−1

states in the collecting semantics can be represented by a
single state in Full Tree analysis. In practice, the benefit of
this can be found in multipath code, which is more likely
to have different valued pointers than single path code, pro-
vided that the hit rate of the cache is sufficiently high. If the
hit rate is not sufficiently high, then the likelihood of point-
ers which have been discarded being used is greater, and
hence additional uncertainty can be expected. However, as
previously stated, programs are designed to have high cache
hit rates, and therefore this property is unlikely to occur in
practice.

Having outlined the changes needed to collecting seman-
tics to implement Full Tree analysis, it follows to evaluate
the effectiveness of these changes.

6. EVALUATION
Evaluation was carried out on three sets of benchmarks,

using three different methods. Full Tree analysis (ft) was
compared against the collecting semantics implemented by
cache naming (cs), and the current state of the art, Grund
and Reineke’s Potential Leading Zeros analysis (plz). The
first set of benchmarks are synthetic benchmarks, as com-
piled by Grund and Reineke [17], and are presented in Sec-
tion 6.1. The second and third sets of benchmarks are mul-
tipath benchmarks extracted from the Maladärlen [10] and
Papabench [14] benchmark suites respectively; for these, due
to excessive memory usage, it proved impossible to provide
a comparison against the plz method.

6.1 Synthetic Benchmarks
Two sets of synthetic benchmarks were applied to an 8-

way fully associative cache; these benchmarks are defined in
terms of memory blocks and hence the size of cache lines is
arbitrary. The two sets of synthetic benchmarks evaluated
are defined as follows:

• loopK: Subjects the analysis to a loop of the memory
blocks 1 to K, with the loop repeating 16 times. This
test provides a stress test to show the boundaries of
the analysis.

• randomK: Subjects the analysis to accesses to 100
memory blocks randomly chosen from the range [1,K].
This test provides a sample of performance in typical
non-looping conditions.

David Griffin, Benjamin Lesage, Alan Burns and Robert Davis

RTNS 2014 209

loop3 loop4 loop5 loop6 loop7 loop8 loop9 loop10
Benchmark

0

20

40

60

80

100

Pe
rc

en
ta

ge
 o

f a
cc

es
se

s
cl

as
si

fie
d

as
Hi

t/N
ot

 C
la

ss
ifi

ed
 (N

.C
.)/

M
is

s

plz hits
plz N.C.
ft hits
ft N.C.
ft miss
cs hits
cs N.C.
cs miss

Figure 8: Results for the synthetic loopK benchmark

loop3 loop4 loop5 loop6 loop7 loop8 loop9 loop10
Benchmark

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

An
al

ys
is

 ru
nn

in
g

tim
e

(s
)

plz
ft
cs

Figure 9: Analysis time for the synthetic loopK
benchmark

Figure 8 shows the classification results for the loopK
benchmark. This illustrates that unlike plz, ft is capable
of analysing all elements in the cache. This is shown by the
fact that it can predict hits for loops of size 7 and 8. Figure
9 shows the time that the analysis takes. Here, the Full Tree
Analysis ft is up to 10 times faster than using the collecting
semantics cs. It is also much faster than plz for high values
of K, due to the additional pessimism of plz resulting in plz
analysing a large number of states.

Similar benefits are seen in the randomK benchmarks.
Figure 10 shows the classification results for the randomK
benchmarks. Again, Full Tree Analysis ft outperforms Po-
tential Leading Zeros analysis plz in all cases. Similarly, the
time taken to reach this result is lower than that seen in cs,
with the largest observed difference being approximately 10
times. Again, for large values of K, ft is much faster than
plz.

6.2 Maladärlen and Papabench Benchmarks
To assess the effectiveness of Full Tree Analysis on more

realistic benchmarks, the Maladärlen [10] and Papabench
[14] benchmarks were used. The benchmarks were com-
piled for the MIPS architecture and the resulting binaries
interrogated using the Heptane analyser [9] to find a control

random6 random7 random8 random9 random10 random11 random12
Benchmark

0

20

40

60

80

100

Pe
rc

en
ta

ge
 o

f a
cc

es
se

s
cl

as
si

fie
d

as
Hi

t/N
ot

 C
la

ss
ifi

ed
 (N

.C
.)/

M
is

s

plz hits
plz N.C.
ft hits
ft N.C.
ft miss
cs hits
cs N.C.
cs miss

Figure 10: Results for the synthetic randomK bench-
mark

random6 random7 random8 random9 random10 random11 random12
Benchmark

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

An
al

ys
is

 ru
nn

in
g

tim
e

(s
)

plz
ft
cs

Figure 11: Analysis time for the synthetic randomK
benchmark

flow graph bounding all paths through the program. These
graphs were then analysed using the ft and cs methods, as-
suming a fully associative 8-way PLRU cache with a line
size of 32 bytes (for a total cache size of 256 bytes). Note
a relatively small cache size was chosen so that the effects
of low hit rates could be examined. The size of the con-
trol flow graphs analysed varied from less than 1KB (cnt)
to more than 100MB (compress)3, demonstrating that the
technique is applicable to complex programs.

Figure 12 shows the results for selected Maladärlen bench-
marks, indicated on the x-axis. For the majority, the results
from ft analysis are competitive with cs. The worst re-
sults are observed in cnt, which exhibits some additional
pessimism due to the nature of the program branches which
are merged resulting in infeasible states being considered
combined with the comparatively high proportion of misses.
These problems also negatively impact the analysis time of
ft, as shown in Figure 13 which shows cnt taking longer to
analyse using Full Tree analysis ft than collecting semantics
cs. However, it should be noted that for all benchmarks of a

3While compress is a small benchmark, the Heptane anal-
yser is unable to provide control flow information, and hence
this results in a large number of paths.

Lossy Compression for Worst-Case Execution Time Analysis of PLRU Caches

210 RTNS 2014

adpcm cnt compress expint matmult nsichneu statemate
Benchmark

60

65

70

75

80

85

90

95

100

Pe
rc

en
ta

ge
 o

f a
cc

es
se

s
cl

as
si

fie
d

as
Hi

t/N
ot

 C
la

ss
ifi

ed
 (N

.C
.)/

M
is

s

ft hits
ft N.C.
ft miss
cs hits
cs N.C.
cs miss

Figure 12: Results for selected Maladärlen bench-
marks

adpcm cnt compress expint matmult nsichneu statemate
Benchmark

10-1

100

101

102

103

An
al

ys
is

 ru
nn

in
g

tim
e

(s
)

ft
cs

Figure 13: Analysis time for selected Maladärlen
benchmarks

substantial length, ft outperforms cs by a factor of between
2 and 5 (note the log scale on the graph). In the case of cnt,
even though the benchmark takes longer to analyse under ft
than cs, both still perform the analysis in less than a second.

The results for the Papabench benchmarks show similar
properties to those for the Maladärlen benchmarks. Figure
14 shows that when analysing the benchmark as a whole,
as is the case with the autopilot and fly − by − wire, the
results are competitive with the collecting semantics. How-
ever, when the individual tasks are analysed the effect of
the introduced pessimism is proportionally higher, leading
to proportionally worse results. Similarly, the time taken for
analysing individual tasks is worse for ft than cs, but still
less than a second. For the larger benchmarks, ft is faster
than cs by a factor of 5.

As previously stated, a small cache size was picked to ex-
amine the effects of low hit rates. A larger cache could be
analysed by increasing the size of a cache line or moving to
a set associative cache. Further, in addition to the tests pre-
sented here, a 16-way cache was also attempted. However,
this was not feasible on the available hardware due to mem-
ory usage, which has been calculated to be approximately 3
orders of magnitude higher than is necessary for the 8-way

autopilot fly_by_wire autopilot.t7 autopilot.t11 fly_by_wire.t2 fly_by_wire.t5
Benchmark

75

80

85

90

95

100

Pe
rc

en
ta

ge
 o

f a
cc

es
se

s
cl

as
si

fie
d

as
Hi

t/N
ot

 C
la

ss
ifi

ed
 (N

.C
.)/

M
is

s

ft hits
ft N.C.
ft miss
cs hits
cs N.C.
cs miss

Figure 14: Results for the Papabench benchmarks

autopilot fly_by_wire autopilot.t7 autopilot.t11 fly_by_wire.t2 fly_by_wire.t5
Benchmark

10-2

10-1

100

101

102

103

An
al

ys
is

 ru
nn

in
g

tim
e

(s
)

ft
cs

Figure 15: Analysis time for the Papabench bench-
marks

cache; for the current implementation, this is thought to be
approximately 8GB. As the memory usage is so high, limi-
tations in commercial computers mean that the analysis will
spend the majority of CPU resources paging memory, even
if it can complete the analysis. Hence it is concluded that
the analysis of a 16-way cache is only feasible with specialist
hardware capable of handling large data sets.

7. CONCLUSION
This paper introduced the idea of applying Lossy Com-

pression to the collecting semantics of a given component,
with the aim of providing a general and powerful approach
to formulating WCET analyses. Specifically, existing tech-
niques from abstract interpretation were compared against
techniques used in lossy compression to find similarities.
These similarities were used as the basis of a generic ap-
proach to formalise creating a simplification that can be used
in abstract interpretation. Even though this approach may
increase the size of the state space for the analysis, when
correctly applied the number of states visited during anal-
ysis should decrease, as is the case with correctly applied
abstract interpretation.

While any analysis derived by using Lossy Compression
could potentially be found by other methods, utilising such

David Griffin, Benjamin Lesage, Alan Burns and Robert Davis

RTNS 2014 211

a formal approach grants access to a structure and pro-
cess which can aid in understanding the effects of approxi-
mating the various quantities in the system under analysis.
Thus lossy compression provides an effective means of re-
ducing the difficulty involved in finding appropriate approx-
imations.

To validate this approach, a PLRU cache analysis was
designed. Full Tree analysis was shown to outperform the
previous state of the art technique with respect to both the
accuracy of analysis and the runtime required, in addition
to also providing a May analysis. In comparison to the col-
lecting semantics, Full Tree analysis was shown to be faster
on substantially sized realistic benchmarks, while providing
comparable accuracy.

In [16] we have also applied the Lossy Compression ap-
proach to provide analysis for caches with an evict-on-miss
random replacement policy [13], [2].

Acknowledgement
This work was partially funded by the EU FP7 Integrated
Project PROXIMA (611085).

8. REFERENCES
[1] N. Ahmed, T. Natarajan, and K. R. Rao. Discrete

cosine transform. IEEE Transactions on Computers,
100(1):90–93, 1974.

[2] S. Altmeyer and R. I. Davis. On the correctness,
optimality and precision of static probabilistic timing
analysis. In 17th Design, Automation and Test in
Europe Conference (DATE). EDAA, 2014.

[3] C. Berg. Plru cache domino effects. In F. Mueller,
editor, 6th International Workshop on Worst-Case
Execution Time (WCET) Analysis, Dagstuhl,
Germany, 2006. Internationales Begegnungs- und
Forschungszentrum f”ur Informatik (IBFI), Schloss
Dagstuhl, Germany.

[4] K. S. D. Brandenburg. Ocf: Coding high quality audio
with data rates of 64 kbit/sec. In Audio Engineering
Society Convention 85, 11 1988.

[5] K. S. G. Brandenburg. ISO/MPEG-1 audio: A generic
standard for coding of high-quality digital audio. J.
Audio Engineering Soc, 42(10):780–792, 1994.

[6] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill,
and L. J. Hwang. Symbolic model checking: 1020

states and beyond. Infinite Computing, 98(2):142–170,
1992.

[7] A. Burns and A. Wellings. Real-Time Systems and
Programming Languages: Ada, Real-Time Java and
C/Real-Time POSIX. Addison Wesley, fourth edition,
May 2009.

[8] J. F. Cantin and M. D. Hill. Cache performance of
SPEC 2000 CPU. http://research.cs.wisc.edu/
multifacet/misc/spec2000cache-data, May 2003.
Accessed on 15th August 2013.

[9] A. Colin and I. Puaut. A modular and retargetable
framework for tree-based wcet analysis. In 13th
Euromicro Conference on Real-Time Systems
(ECRTS), pages 37–44, 2001.

[10] Contributors. Maladarlen WCET benchmarks.
http://www.mrtc.mdh.se/projects/wcet/benchmarks.html.
Accessed on 1st September 2013.

[11] P. Cousot and R. Cousot. Abstract interpretation: a
unified lattice model for static analysis of programs by
construction or approximation of fixpoints. In
Conference Record of the Fourth Annual ACM
SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pages 238–252, Los Angeles,
California, 1977. ACM Press, New York, NY.

[12] P. Cousot and R. Cousot. Abstract interpretation
frameworks. Journal of logic and computation,
2(4):511–547, 1992.

[13] R. I. Davis, L. Santinelli, S. Altmeyer, C. Maiza, and
L. Cucu-Grosjean. Analysis of probabilistic cache
related pre-emption delays. In 25th Euromicro
Conference on Real-Time Systems (ECRTS), pages
168–179. IEEE, 2013.

[14] Nemer F., Cassé H., Sainrat P., Bahsoun J., and
Michiel M. Papabench: a free real-time benchmark. In
In WCET ’06, 2006.

[15] A. Gersho and R. M. Gray. Vector quantization and
signal compression, volume 159. Springer, 1992.

[16] D. Griffin, B. Lesage, A. Burns, and R. I. Davis. Static
probabilistic timing analysis of random replacement
caches using lossy compression. In RTNS ’14:
Proceedings of the 22nd International Conference on
Real-Time and Network Systems, Versailles, France,
2014. ACM, New York, NY, USA.

[17] D. Grund and J. Reineke. Toward precise PLRU cache
analysis. In B. Lisper, editor, Proceedings of 10th
International Workshop on Worst-Case Execution
Time (WCET) Analysis, pages 28–39. Austrian
Computer Society, July 2010.

[18] J. Handy. The cache memory book. Morgan
Kaufmann, Burlington, Massachusetts, USA, 2nd
edition, Jan 1998.

[19] R. Heckmann, M. Langenbach, S. Thesing, and
R. Wilhelm. The influence of processor architecture on
the design and the results of WCET tools. Proceedings
of the IEEE, 91(7):1038–1054, 2003.

[20] M. A. Krasner. Digital encoding of speech and audio
signals based on the perceptual requirements of the
auditory system. Technical report, DTIC Document,
1979.

[21] J. Reineke and D. Grund. Relative competitiveness of
cache replacement policies. In SIGMETRICS ’08:
Proceedings of the 2008 ACM SIGMETRICS
international conference on Measurement and
modeling of computer systems, pages 431–432, New
York, NY, USA, June 2008. ACM.

[22] M. R. Schroeder, B. S. Atal, and J. L. Hall.
Optimizing digital speech coders by exploiting
masking properties of the human ear. The Journal of
the Acoustical Society of America, 66(6):1647–1652,
1979.

[23] C. E. Shannon. A mathematical theory of
communication. Bell system technical journal, 27,
1948.

[24] C. E. Shannon. Communication in the presence of
noise. Proceedings of the IRE, 37(1):10–21, 1949.

[25] M. Usher. Information Theory for Information
Technologists. Macmillan Publishers Ltd, 1984.

[26] J. Watkinson. Compression in Video and Audio. Focal
Press, 1995.

Lossy Compression for Worst-Case Execution Time Analysis of PLRU Caches

212 RTNS 2014

