
Reservation-Based Timing Analysis -
A Practical Engineering Approach for Distributed Real-Time Systems

Alan Grigg, Neil Audsley
Real-Time Systems Group, Dept. of Computer Science, University of York, York, U.K.

{alan,neil@cs.york.ac.uk}

Abstract

This paper proposes a timing analysis technique that
gives practical support to the industrial systems
engineering process for large-scale, distributed real-time
systems. The technique, known as reservation-based
timing analysis (RBA), gives support throughout the life-
cycle of the system, from the early stages of system
development through to implementation stages and later
in-service upgrades. RBA allows the timing properties of
the system to be validated incrementally throughout
system development and upgrade. This gives greater
control over the costs associated with the development
and upgrade of the real-time properties of the system.

1. Introduction and Problem Definition

Many real-time systems applications, such as those
in the aerospace domain, perform safety-related functions
and are subject to increasingly stringent certification
standards like DEF STAN 00-56 [17] and DO-178B [18].
A combination of analytical models and testing
techniques is required to support validation of their real-
time behaviour. However, given the trend towards
increasingly flexible development processes and target
system architectures, typified by the civil and military
integrated modular avionics (IMA) programmes [1, 2],
the provision of appropriate analytical techniques is
increasingly difficult.

This paper proposes an analytical technique that has
been developed to meet IMA requirements but is
generally applicable to large-scale, industrial distributed
real-time systems. The work has been funded by BAE
SYSTEMS as part of the Dependable Computing
Systems Center programme. The key technical challenge
is that the timing analysis method for IMA, like other
aspects of the engineering process, must deal with two
apparently conflicting goals :
• Evolvable system development (and upgrade) -

Changes to system requirements, design or
implementation details must be accommodated with
minimal re-work (and associated costs). Such
changes can arise from customer requests, rapidly
evolving implementation technologies or, quite

simply, technical problems encountered during
development. Their impact is currently a major cost
factor in the development of avionic systems and is
predicted to be much worse in future systems due the
trend towards more collaborative, multi-national
development teams, in conjunction with…

• A highly integrated system architecture - The IMA
architecture is integrated both functionally (with
increased sharing of functions and data between
traditionally independent aircraft sub-systems) and
physically (with increased sharing of computing
resources – processing and communication media).
Timing analysis for integrated systems is prone to
being holistic - it is difficult or impossible to analyse
parts of the system in isolation from other parts. The
effect of making even small changes to such systems
upon their emergent timing behaviour are typically
widespread. Hence, there is a need for re-validation
of system timing properties and a resulting risk of re-
work whenever a change is made.

2. Reservation-Based Timing Analysis

Traditionally, timing analysis has been applied to
real-time systems relatively late in their development
process, when all of the implementation details of the
hardware and software are known. Analysis begins with
the determination of worst-case execution times for
individual software components executed on specific
target hardware. Then, at successive stages of system
integration, feasibility analysis is applied to determine
whether or not the overall timing requirements are met
for larger-scale applications and, ultimately, the system
as a whole. The result of discovering any timing
deficiencies relatively late in the development process,
however, can be extremely costly, enforcing the need for
re-implementation, re-design or even changes to the
original timing requirements.

Reservation-based timing analysis (RBA) takes a
different approach in order to meet the goals of IMA.
RBA encourages the use of timing analysis much earlier
in the development process, supporting predictions of
end-to-end, system-level timing behaviour on the basis of
the latest information available from the development
process, allowing for some parts of the system to be

further ahead in their development than others. Figure 1
illustrates the overall RBA process based on the classical
V-model.

System
Definition &

Decomposition

System
Implementation
& Integration

ABSTRACT
ANALYSIS

TARGET-
SPECIFIC
ANALYSIS

Figure 1. RBA Through the System Life-Cycle

Abstract timing analysis is performed during the
decomposition stages of development by adopting :

• an abstract model of the target computing platform;
• the use of timing and resource ‘budgets’ that can be

successively evolved.
Target-specific timing analysis is consequently

performed during system implementation and integration
with the following constraints :
• the assumptions made in the abstract model of the

target computing platform need to be preserved;
• the timing and resource budgets must be validated

(shown to be sufficient) for the actual target.
At successive stages of system development, timing

guarantees can be generated in conjunction with a set of
timing obligations that must be observed during
subsequent stages of development. In this way, the timing
analysis model can evolve along side the development of
the system. A key property of the RBA model is that it
allows the timing properties of the system to evolve with
minimal re-validation by keeping the impact of localised
changes as local as possible and avoiding the need to re-
analyse large parts of the system or even the whole
system, as is often the case with timing models of
distributed systems. In order to achieve this, RBA adopts
a partitionable analytical model of timing behaviour
based on the approach of resource reservation.

The notion of resource reservation is, in itself,
nothing new - scheduling solutions and communication
protocols have been reported in recent literature on real-
time systems. Notable contributions include scheduling
solutions for multimedia applications [8, 9, 10],
techniques for partitioning of real-time and non-real-time
applications [11, 12] on a uni-processor and
communication bandwidth reservation schemes [14, 15,
16]. The contribution of RBA is two-fold :
• a consistent, bandwidth-based timing model for

prediction of end-to-end delays across diverse
resource types in a distributed real-time system - all

processing, communication and other resources
modeled using the same basic parameters;

• a timing model that can be instigated early in the
system development process and updated
incrementally as the system development evolves.
For the practical application of RBA to large-scale,

distributed real-time system engineering projects, tool
support will be required to both manage the details of the
evolving timing model and to automatically determine
the end-to-end timing behaviour of the system. Such a
tool has been developed for research purposes for a
MATLAB/Simulink modeling environment and was used
to generate the example transactions and results given in
the rest of this paper.

3. Representation and Decomposition of
System Timing Properties

The end-to-end timing and resource characteristics of
the system are captured, decomposed and validated in
terms of transactions and activities. A transaction
describes the temporal relationship between :
• a set of input events from the external environment

or some other transaction(s);
• a set of output events to the external environment or

some other transaction(s).
The body of a transaction is described in terms of :

• activities, that capture resource requirements;

• other, nested transactions.
An activity is any stage in a transaction with static

requirements for one or more shared resources. This
definition covers all types of resources that typically
make up a distributed real-time system, both logical
(code, data) and physical (processor, communications).

Each transaction is thereby described by a graph that
is acyclic, directed and nested. The nodes of the graph
represent activities and the edges capture precedence and
nesting relationships.

The transaction model is nested in order to support
evolution of application components as the system is
developed. In order that the timing model may be
executed at any stage of that evolution, the main objects
of the computational model - the nested transaction and
the activity - must be interchangeable. Hence, any nested
transaction can be implemented in terms of activities, but
also an activity can be replaced by a nested transaction
and then evolved further. This has led to highly scaleable
timing model. The parameters via which timing
behaviour is represented and observed are the same for a
single activity, any group of related activities, a nested
transaction and a system-level transaction. These
parameters are the input jitter, output jitter and minimum
I/O separation, as illustrated in Figure 2. The parameters

are respectively denoted by in
kiJ ,.., , out

kiJ ,.., and di,..,k for

any arbitrarily nested transaction or activity, λi,..,k with
some system-level transaction λi.

output event window :
input event
window :

Ji,..,k
in

Ji,..,k
out

min. I/O separation :
di,..,k

Figure 2. Transaction/Activity Timing Properties

Timing analysis can be performed at any stage of
evolution of the transaction graph provided that all nested
transactions terminate with at least one activity, ie. have
defined resource consumption characteristics. All activity
resource requirements are denoted by the tuple (ci,..,k,
Ci,..,k, Vi,..,k), where [c, C] bounds the resource access time
and V is an assigned reservation budget which can take
any real value in the interval (0, 1]. V governs the rate at
which progress is made at run-time for that activity.

The same parameters are used to represent the
budgeted timing properties early in the system
development through to the actual values at the end of the
implementation stage.

4. Calculation of End-to-End Delays

At each stage of evolution of the system, its overall
timing behaviour can be assessed by a depth-first
traversal of the set of nested transaction graphs,
observing the order of precedence at each nested level.
As the traversal progresses, local delays and jitter are
consolidated to generate cumulative end-to-end values.

At any level of nesting, ie. for a single activity or an
entire nested transaction, the basic timing parameters

in
kiJ ,..,
, iout

kiJ ,..,
 and di,..,k are related through the overall

delays experienced at that level of nesting :
in

kikiki Jrd ,..,,..,,.., −=

)(,..,,..,,..,,.., kiki
in

ki
out

ki rRJJ −+=

where ri,..,k and Ri,..,k, are the minimum and maximum
delays accrued across that level of nesting. These accrued
delays (and consequently the jitter) are calculated by
expanding the sub-graph for the nested transaction
involved and accounting for localised delays, precedence
relationships and nesting relationships.

For scaleability, the analytical model is constructed
such that cumulative, end-to-end delays can be calculated
relatively, from any one node in the transaction graph to
any other. Let in

kid ,..,
 denote the cumulative delay that a

nested transaction or activity λi,..,k inherits as it arrives for
execution. Depending on the position of λi,..,k in the
transaction graph, this inheritance may be from its
predecessor(s) or a parent (higher level nested

transaction), denoted by λi,..,j. In turn, let out
kid ,..,
 denote the

cumulative delay that λi,..,k exports to its successors upon
completion. Figure 3 illustrates the relationships between
these parameters.

Ji,..,k
in Ji,..,k

out

di,..,k

di,..,k
in

di,..,k
out

input event
window of λi,..,k :

output event
window of λi,..,k :

Ji,..,j
out

output event
window of λi,..,j :

Figure 3. Cumulative Delays and Jitter

Localised delays are those that are attributable to
individual activities as they consume shared resources
during their execution. Such delays occur at the deepest
level of nesting of the transaction graph and can be
calculated directly from the specified activity timing
characteristics. A simple abstract model of the target
hardware implementation and run-time scheduling
solution is imposed in order that these delays can be
estimated – see Section 5. Localised delays are
consolidated into the cumulative delay calculation by
increasing the inherited minimum I/O separation by the
minimum local delay (the impact of the maximum local
delay is taken care of by the output jitter calculation
given earlier) :

ki
in

ki
out

ki rdd ,..,,..,,.., +=

Precedence and nesting are accounted for in a
manner that depends on the form of relationship
involved. In the following circumstances, cumulative
delays and jitter are directly inherited (unchanged) across
the relationship in the direction of control flow :
• Precedence - From the predecessor output to

successor input(s) across one-to-one and one-to-
many precedence relationships (where completion of
a given stage of computation triggers the arrival of
one or more subsequent stages);

• Nesting - From parent input to child input(s) across
descending nesting relationships (where a single
input event window at the parent level is
decomposed into one or more concurrent input
events at the child level).
In the following circumstances, however, delay and

jitter inheritance is less straight forward :
• Precedence - From predecessor output(s) to the

successor input across many-to-one precedence
relationships (where completion of a number of
concurrent stages of computation is required to
trigger the arrival of a single subsequent stage);

• Nesting - From child output(s) to the parent output
across ascending nesting relationships (where a

number of concurrent output events at the child level
are composed into a single output event window at
the parent level).
These latter situations can be modeled in the same

way, both involving the consolidation of multiple
concurrent threads of control, {λi,..,j ; j = 1,..,n}, into a
single thread, λi,..,k whose release is governed by a
boolean parameter Qi,..,k. The value of Qi,..,k is dependent
on the execution status predecessor activities. The only
difference between the ‘precedence’ case and the
‘nesting’ case being the relative positions of λi,..,j and λi,..,k

in the transaction graph - in the first case, they are at the
same nested level and in the second case, they are at
successive ascending levels. The following expressions
give ‘safe’ bounds independently of the definition of Qi,..,k

(whose details can be used to give less pessimistic
bounds) :

)(min ,..,,..,
out

ji
j

in
ki dd ≥

in
ki

out
ji

out
ji

j

in
ki dJdJ ,..,,..,,..,,..,)(max −+≤

Similarly, it is possible to calculate the tightest
possible bounds that can only be relaxed given Qi,..,k :

)(max ,..,,..,
out

ji
j

in
ki dd ≤

in
ki

out
ji

out
ji

j

in
ki dJdJ ,..,,..,,..,,..,)(min −+≥

This is the basic analytical framework for end-to-end
timing analysis but two further details are required :
• how to calculate localised, activity-level delays in a

target-independent way - this is covered in Section 5;
• how to impose constraints on the degree of end-to-

end delay variation (jitter) - this is discussed (very
briefly, due to space limitations) below, and
illustrated by example in Section 7.
The RBA transaction model is basically event-

triggered. Whilst this allows a great deal of flexibility at
the run-time scheduling stage, the net effect at the
application level can be a degree of variability in its end-
to-end timing behaviour. This is perfectly acceptable in
many applications but, in some, some means of limiting
the amount of variation is required. For example, an
output to a sensor or a control loop feedback may need to
occur in a strictly periodic manner.

Rather than supporting a pure time-triggered
transaction model for such applications, to virtually
eliminate input jitter at successive stages of the
transaction (at the price of reduced scheduling flexibility,
even for the majority of other applications in the system
that can tolerate jitter), RBA allows input jitter tolerances
to be prescribed at any stage in a transaction. Hence, the
maximum input jitter associated with any nested
transaction or activity may be either inherited directly
from its predecessors or statically imposed by the
application developer.

Maximum values for inherited jitter can be predicted
by the RBA model as described above. If these values are
beyond acceptable limits, statically imposed values may
be specified to over-ride inherited values. These values
are then fixed at the appropriate node(s) of the transaction
graph. Hence, a purely time-triggered transaction can be
produced by specifying the input jitter values to be zero
(or negative, to indicate a forced delay offset) throughout
the transaction. Similarly, a purely event-triggered
transaction can be produced by allowing all input jitter to
be inherited. More generally, a hybrid time-and-event-
triggered transaction can be defined by specification of
appropriate jitter tolerance levels. This allows trade-offs
to be made on a per-system basis between its overall
timing behaviour and the degree of flexibility available at
the integration stage of its development.

5. Calculating Localised Delays based on
Scheduling Obligations

Prior to implementation, an abstract model of the
target hardware is used to determine the localised delay
bounds for each activity at the deepest level of nesting in
the transaction graph. The abstract model is based on the
notion of scheduling obligations :
• Each activity is obliged to make progress at least at

the minimum rate specified by its reservation budget;
• The ‘granularity’ of the underlying resource

reservation mechanism is bounded by some value ∆.
The following delay bounds can then be derived

independently from the target implementation :

=

ki

ki
ki V

c
r

,..,

,..,
,..,

∆+

=

ki

ki
ki V

C
R

,..,

,..,
,..,

When the target hardware details are finalised, the
abstract timing analysis results can be validated. For each
activity, λi,..,k, the actual service time (the best and worst-
case execution time or equivalent communication
resource requirements) must be bounded by the
previously budgeted values [ci,..,k, Ci,..,k]. There is no need
to re-execute the end-to-end timing analysis calculation
to check that the pre-computed end-to-end delay and jitter
bounds will hold. Hence, it is simple to re-validate end-
to-end timing guarantees following localised changes to
the target hardware or software implementation.

The simplest run-time implementations that meet the
RBA scheduling obligations are weighted round-robin or
weighted fair queuing scheduling/communication
schemes [4, 5, 14, 15] - these can provide suitably fine-
grained bandwidth allocation. Approaches such as fixed-
priority scheduling can also be adapted by the use of
bandwidth server techniques [11, 12]. The context for our

research is aircraft IMA systems [1, 2, 3] and Section 7
shows how the civil IMA scheduling model can be
configured to support RBA.

6. Examples of Transaction Definition and
End-to-End Timing Analysis

Consider the following simple transaction taken from
an avionic sub-system case study - a generic attitude
guidance and autopilot (AGA) missile sub-system. In
short, the AGA sub-system reads data from sensors,
calculates the attitude of the missile and then, together
with information about a potential target, such as an
infra-red image, determines an aim point for the missile.
Figure 4 illustrates the AGA transaction topology in the
form of an acyclic activity graph.

Q5

λλ2 λλ4

λλ1

λλ3

λλ5 λλ6

Figure 4. Example Transaction Topology

The release function Q5 is defined such that λ3 and λ4

must both complete execution prior to release of λ5.
The following table gives the local delay bounds [r,

R] for each activity, calculated from the RBA model from
a given set of resource requirements (c, C, V).

i λi ci Ci Vi ri RI

1 awaitTrig 0 1 0.25 0 4
2 readSensor 1 2 0.2 5 10
3 readTarget 2 3 0.2 10 15
4 calcAtt 4 7 0.3 13 24
5 calcAim 3 8 0.4 7 20
6 write 2 3 0.25 8 12

For a given λ1 input jitter value of, say, 4, the end-to-
end delays are predicted to be as follows :

i λi Ji
in di

out Ji
out

1 awaitTrig 4 -4 8
2 readSensor 8 1 13
3 readTarget 8 6 13
4 calcAtt 13 14 24
5 calcAim 24 21 37
6 write 37 29 41

Notice from the table that λ1 has a negative I/O
separation value - this is perfectly valid, corresponding to
the fact that its earliest possible completion time is earlier
than its latest possible arrival time.

J1
in

d6
out

10 20 30 40 50 60 700

J1
out

J2
out

J3
out

J4
out

J5
out

J6
out

Figure 5. Example End-to-End Analysis Results

Figure 5 illustrates the analysis results graphically.
The overall end-to-end behaviour of the transaction is

captured by the tuple (inJ1 , outd6 , outJ 6). The results also

show how delays and jitter accumulate at intermediate
stages in the transaction. This information is useful when
the predicted end-to-end delay or jitter is unacceptable
and intermediate parameters need to be modified to give
acceptable timing behaviour. An example of this is given
in Section 7 in the context of reducing end-to-end jitter.

7. A Target-Specific Implementation of
RBA for Civil IMA Systems

In this section, we address the transition from the
abstract RBA model to a target-specific implementation
model. We consider the case of civil IMA systems, where
the run-time CPU scheduling model is prescribed by the
APEX standard [3]. APEX defines the following two-tier
scheduling policy :
• Partition scheduling - CPU time on each processor is

allocated cyclically to create multiple temporal
partitions;

• Process scheduling - A partition can contain multiple
concurrent processes which are scheduled according
to a fixed-priority regime within the time allocated to
that partition.
For the duration of its execution, a partition is

granted exclusive access to all resources shared with
other partitions. Communication between partitions is
handled via OS API calls, giving a degree of
independence from the underlying network topology and
from the allocation of partitions to processors. Within a
partition, additional ‘logical’ communication resources
may be shared between processes.

The RBA model can be mapped most readily to the
APEX model by assuming temporal equivalence between
an RBA activity and an APEX partition. It then remains
to derive the partition level attributes of the APEX run-
time schedule from the RBA timing model at system
integration time. There are many potential mappings from
the RBA domain into the APEX domain as will now be
illustrated by example.

Consider the AGA sub-system example used above.
Figure 6 depicts a resource allocation for parts of the

example transaction, reflecting that other parts might be
allocated to other resources in a distributed IMA system.
Assume that R1 represents a CPU resource that is
scheduled according to the APEX scheduling model and
that R2 and R3 are synchronous, logical communication
resources (typically mapped to shared memory) that
provide a means for activities λ2 and λ3, respectively, to
read their required sensor data. R2 and R3 are termed
‘synchronous’ since they rely on R1 (the CPU) to also be
available to enable their use.

λλ2

λλ1

λλ3

To other activities
allocated to resources
other than R1, R2 and R3

R1, R3

R1

R1, R2

Figure 6. Example Resource Allocation

Three alternative APEX-compliant schedules for
processing resource R1 are described below. A number of
trade-offs involved in the production of the final
scheduling solution are highlighted.

7.1 APEX Schedule 1

Figure 7 depicts possibly the simplest solution to
meet the stated timing requirements. The APEX cycle
time is set to 4 (RBA) time units – note that a finer
grained clock may be used in practice to implement the
schedule. Each activity λ1, λ2 and λ3 is then assigned one
time slot in each cycle to either meet exactly or exceed its
minimum bandwidth requirement.

1 2 3 4 5 6 70 8

λλ2 λλ3 λλ1 λλ2 λλ3λλ1

(slack)

APEX Cycle

Partition
1

Partition
2

Partition
3

Figure 7. APEX Schedule 1

There are several means of assessing this APEX
schedule, including the following :
• The effectiveness of the final resource allocation,

measured in terms of the amount of reserved
bandwidth compared to its actual usage under worst-
case assumptions about activity execution;

• The extent to which additional run-time controls
must be imposed to preserve the results of the RBA
predictive model (typically the enforcement of
minimum end-to-end delays and thereby the
maximum jitter accrued).
The issue of resource allocation effectiveness is one

that concerns all ‘bandwidth reservation’ scheduling
solutions. Consider APEX schedule 1 :

• λ1 is allocated exactly the minimum bandwidth
required to meet its worst-case requirements, ie. 25%
of the bandwidth;

• λ2 is allocated more than the minimum bandwidth
required to meet its worst-case requirements, ie. 25%
of the bandwidth rather than 20%;

• λ3 is allocated more than the minimum bandwidth
required to meet its worst-case requirements, ie. 25%
of the bandwidth rather than 20%.
The reason that two activities have been over-

allocated resource bandwidth is that a compromise has
been made in favour of defining a simple APEX
schedule. This has resulted in an additional 10% of the
total resource bandwidth being reserved over and above
that which is actually required in the worst-case.
Remember, however, that the benefits of the RBA
solution have been retained in terms of the ability to
incrementally modify and analyse the distributed IMA
system; which may be sufficient to justify the final APEX
schedule. Alternatively, a different APEX schedule could
be defined, such as either of those described below, that
comply with the RBA model and give better resource
utilisation, at the expense of a slightly more complex
APEX schedule definition.

The second issue identified above - the extent to
which additional run-time controls must be imposed to
preserve the results of the RBA predictive model - is now
considered for this first APEX scheduling solution. The
need for such controls is typically to enforce minimum
end-to-end delay requirements and thereby limit the
maximum jitter accrued. In the example, the bandwidth
allocated to activities λ2 and λ3 is greater than that
required to meet worst-case requirements and so their
actual best-case delays will be shorter than those
predicted by the RBA model. This is shown in the table
below, alongside the predicted RBA values denoted by
Vi

* and ri
* :

i λi ci Vi Vi
* ri ri

*

1 awaitTrig 0 0.25 0.25 0 0
2 readSensor 1 0.25 0.2 4 5
3 readTarget 2 0.25 0.2 8 10

The following table shows the resulting impact on
end-to-end delays, alongside the previously predicted
RBA values denoted by di

out* and Ji
out* :

i λi Ji
in di

out di
out* Ji

out Ji
out*

1 awaitTrig 4 -4 -4 8 8
2 readSensor 8 0 1 14 13
3 readTarget 8 4 6 15 13

To counteract this effect without resorting to an
alternative APEX schedule definition, additional controls
can be imposed as follows :

• The earliest completion time of the affected activities
(λ2 and λ3) could be artificially delayed;

• The earliest release times (and hence the input jitter)
of all direct successor activities (in this case, λ4 and
λ5) could be controlled as described below.
By either of these means, the predicted input jitter

values can be preserved for the direct successors to λ2

and λ3 and, hence, for all other ‘downstream’ activities.
The second of the two approaches is chosen now for
illustration purposes. The next table gives the inherited
input jitter values for the direct successors to λ2 and λ3

and the values that should be used to over-ride these in
order to comply with the predictive RBA model. The
over-ride values are simply those that were previously
predicted by the RBA model (denoted by Ji

in*).

i λi Ji
in Ji

in* di
out Ji

out

4 calcAtt 14 13 14 24
5 calcAim 24 24 21 37
6 write 37 - 29 41

Notice that, due to the particular topology and timing
characteristics of the transaction, the input jitter control
for activity λ5 is actually redundant, being equal to the
naturally inherited value. Hence, from the point of release
of λ4, there is no observable impact on the timing
behaviour of the transaction.

Note that the impact of reserving more than the
required minimum bandwidth on the worst-case delay
prediction of the RBA model is not to invalidate it, ie. it
is still ‘safe’, but only to increase its pessimism. Hence,
the imposition of input jitter controls to counter the
effects on best-case delays is sufficient to preserve the
integrity of the RBA model in these situations.

7.2 APEX Schedule 2

Figure 8 depicts an alternative APEX schedule,
where the cycle time is set to 20 (RBA) time units and
with each activity λ1, λ2 and λ3 assigned multiple time
slots in each cycle to either meet exactly or exceed its
minimum bandwidth requirement.

0

λλ1

APEX Cycle

P1

1 2 3 4 5 6 7

λλ2 λλ3 λλ1 λλ2

P2 P3 s P1 s P2

8 9 10 11 12 13

λλ3 λλ1 λλ1 λλ2 λλ3

P3 P1 s P1 P2 P3

14 15 16 17 18 19

λλ1 λλ2 λλ3 λλ1

s P1 s P2 P3 P1

20

s

Figure 8. APEX Schedule 2

Considering this schedule from the perspective of
resource utilisation effectiveness :

• λ1 is allocated more than its minimum bandwidth
requirement, ie. 30% rather than 25%;

• λ2 is allocated exactly its minimum bandwidth
requirement, ie. 20%;

• λ3 is allocated exactly its minimum bandwidth
requirement, ie. 20%.
Hence, 5% of the bandwidth of resource R1 has been

allocated over and above that which is actually necessary
to meet the stated worst-case resource requirements of the
activities. This over-allocation is still 5% less than for
APEX schedule 1, as described previously, but then
APEX schedule 2 is less simple.

The impact of reserving more than the minimum
bandwidth required for activity λ1 is to reduce its best-
case response time below that predicted by the RBA
model. Once again, this is easily compensated for by the
imposition of jitter controls on the direct successors to the
activity, ie. λ2 and λ3.

7.3 APEX Schedule 3

The granularity of the clock that provides a time
reference for a given system resource need not be the
same as that used in the abstract RBA model, so long as
the actual clock is finer-grained than the RBA clock. The
schedule shown in Figure 9 exploits this fact to give a
perfect implementation of the RBA model for resource
R1 at the expense of imposing an additional requirement
on the APEX clock to be (at least) ten times finer-grained
than the RBA clock.

1 2 3 4 5 6 70 8

λλ2 λλ3 λλ1 λλ2 λλ3λλ1

(slack)

APEX Cycle

P1 P2 P3

0 18 26 40APEX :

RBA :

80

Figure 9. APEX Schedule 3

The enforcement of a minimum clock granularity is
not unreasonable. The net effect is that the RBA model
can be implemented exactly without any additional
controls, eg. to enforce minimum delays. This is
beneficial in terms of supporting future changes to the
system. In practice, it is likely that the schedule can be
defined without the need for this clock granularity
requirement since the transaction timing requirements
will typically be much greater than the clock cycle time.

8. Related Work

It was stated earlier that there are many and varied
forms of valid implementation schemes for RBA, as
described in the literature on the class of reservation-
based scheduling solutions [4, 5, 11, 12, 14, 15]. In this
section, the focus is on other studies that have specifically
addressed the issue of timing analysis at multiple stages
in the life-cycle of a distributed real-time system.

Sha and Sathaye [13] have used the notion of
scheduling abstractions as a mechanism for providing a
degree of target-independence into the timing analysis

model of a distributed system. However, their approach is
restricted to time-triggered transactions and static,
priority-based scheduling.

Stoyenko et al [6] have developed a language,
CaRT-Spec for describing the timing and resource
characteristics of complex, distributed real-time systems.
Applications are described in terms of concurrent
processes, each of which is described by a single entry,
single exit acyclic graph of actions. Actions capture the
resource consumption characteristics of the applications
and can be structured hierarchically to reflect ongoing
refinement during the development of the system. There
are clear similarities between CaRT-Spec and RBA but
some notable differences are apparent. Firstly, CaRT-
Spec allows the application developer to model resource
usage explicitly, providing a powerful description
language to do so. RBA uses a consistent bandwidth-
based model of resources that supports independent
timing analysis of the RBA activities assigned to each
resource - this encourages the application design to be
kept free from implementation details and integration
decisions and also ensures that a holistic timing analysis
model is avoided. Secondly, CaRT-Spec provides a
general assessment of feasibility based on symbolic
execution. RBA provides an analytical evaluation of
localised and end-to-end delays and jitter.

Burns and Lister [7] have described the TARDIS
framework for top-down development of timely and
reliable distributed systems. The main similarity between
TARDIS and RBA is in the clear distinction between the
logical and physical levels of the architecture with
implementation-independent timing obligations being
imposed from the former to the latter, although the
TARDIS logical architecture is described using an object-
oriented approach. Unlike RBA, TARDIS assumes a
global time-base is available to coordinate scheduling
policies across the distributed platform - the timing
analysis is application-dependent but can be holistic.

9. Summary

A practical problem of how to apply timing analysis
in a cost-effective way in the development of large-scale
industrial real-time systems has been identified. The
analysis should be applicable throughout the life-cycle of
the system, starting from its early stages of development.
The analysis should be insensitive to localised changes in
system requirements, design or implementation details.

RBA has been proposed as a potential solution to this
problem. RBA provides a consistent model for capturing
the end-to-end timing and resource requirements of a
distributed system and performing timing analysis based
on this information. Timing analysis can not only be
applied to individual end-to-end transactions in the
system but also to specific stages within a transaction to
calculate relative delays and jitter. Localised changes to

the system can thus be re-validated incrementally, ie.
with minimal re-analysis of other parts of the system.
This supports the evolvable nature of large-scale,
distributed real-time system development.

10. References
[1] “ARINC 651 : Design Guidance for Integrated Modular
Avionics” Airlines Electronic Engineering Committee, 1991.
[2] Edwards, RA., “ASAAC Phase 1 Harmonised Concept
Summary” Proc. of ERA Avionics Conf. and Exhibition, 1994.
[3] “ARINC 653 : Avionics Application Software Standard
Interface” Airlines Electronic Engineering Committee, 1997.
[4] Parekh, AK., Gallager, RG., “A Generalised Processor
Sharing Approach to Flow Control in Integrated Services
Networks: The Single Node Case” Proc. of IEEE INFOCOM,
1992.
[5] Kuo, TW., Yang, WR., Lin, KJ., “EGPS: A Class of Real-
time Scheduling Algorithms Based on Processor Sharing” Proc.
of Euromicro Workshop on Real-time Systems, 1998.
[6] Stoyenko, AD., Marlowe, TJ., Laplante, PA., “A
Description Language for Engineering Complex Real-time
Systems” Real-time Systems Jnl. 11(3), 1996.
[7] Burns, A., Lister, AM., “A Framework for Building
Dependable Systems” Computer Jnl. 34(pp.173-181), 1991.
[8] Stoica, I., et al, “A Proportional Share Resource Allocation
Algorithm for Real-time Time-shared Systems” Proc. of Real-
time Systems Symp., 1996.
[9] Jeffay, K., Bennett, D., “A Rate-based Execution
Abstraction for Multimedia Computing” Proc. of Int. Workshop
on Network and OS Support for Digital Audio and Video, 1995.
[10] Yau, DKY., Lam, SS., “Adaptive Rate Controlled
Scheduling for Multimedia Applications” Proc. of ACM
Multimedia Conf., 1996.
[11] Deng, Z, Liu, JW-S., “Scheduling Real-time Applications
in an Open Environment” Proc. of Real-time Systems Symp.,
1997.
[12] Spuri, M., Buttazzo, G., “Scheduling Aperiodic Tasks in
Dynamic Priority Systems” Jnl. of Real-time Systems 10(pp179-
210), 1996.
[13] Sha, L., Sathaye, SS., “A Systematic Approach to
Designing Distributed Real-time Systems” IEEE Computer Jnl.
26(9), 1993.
[14] Zhang, L., Deering, S., Estrin, D., Shenker, S., Zappala, D.,
“RSVP: A New Resource Reservation Protocol” IEEE Network
7(5), 1993.
[15] Raha, A., Kamat, S., Zhao, W., “Guaranteeing End-to-End
Deadlines in ATM Networks” Proc. of IEEE Distributed
Computing Systems Conf., 1995.
[16] Ermedahl, A., Hansson, H., Sjodin, M., “Response Time
Guarantees in ATM Networks” Proc. of Real-time Systems
Symp., 1997.
[17] “Defence Standard 00-56: Safety Management
Requirements for Defence Systems” UK Ministry of Defence,
1996.
[18] “DO-178B: Software Considerations in Airborne Systems
and Equipment Certification” RTCA/EUROCAE, 1992.

