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Abstract—This paper specifies an architecture for power con-
sumption modelling integrated within cycle-approximate trans-
action level modelling for network-on-chip (NoC) simulation.
NoC simulations during design validation have traditionally
been limited to very short durations, due to the necessity to
perform cycle-accurate simulation to represent fully the low level
system simulated. Due to the high proportion of overall system
power that may be consumed by a busy NoC, high-fidelity NoC
power modelling is especially important to accurately assess the
effectiveness of link coding and other strategies to reduce NoC
power consumption.

The paper describes the extension of a cycle-approximate TLM
methodology to encompass power modelling in NoCs, considering
its operation with real application traffic. The proposed scheme
avoids modelling of flit-by-flit progress during non-preemptive
periods of packet transmission. The simulation performance
and accuracy are contrasted with theoretical models and a flit-
by-flit scheme (in which each flow control digit passing along
a bus wire is simulated). The power consumption reduction
delivered by encoding schemes such as bus-invert coding are
considered and compared with analytical models to verify the
correct performance of the simulation models.

I. INTRODUCTION

Network-on-Chip (NoC) concepts have been widely pro-
posed as a solution to the problems of increasing interconnec-
tion complexity in system on chip and modern multicore CPU
design [1][2]. As such systems scale, the manual routing of
custom signalling wires and buses becomes a design area and
capacity bottleneck, and performance favours the engineering
of a standardised backbone network capable of transporting
generic data between processing units. Such data could include
memory hierarchy synchronisation transfers, decoded multi-
media data, and inter-processor communication.

Power consumption is becoming a major consideration in
NoC design, with some early results suggesting that NoCs
could consume 30-40% of overall system power [3]. This
emphasises the importance of finding strategies to reduce
power consumption by NoCs, ideally via physical layer in-
dependent techniques that can be applied early in the design
flow. Drawing design conclusions from simulation requires
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simulation flexibility, with execution times sufficiently low
as to scale to practical network conditions with realistic
traffic. Although such simulations cannot entirely replace the
low-level cycle-accurate validations that must be performed
during the final design phases of specific NoCs, they provide
valuable performance conclusions to allow designers to choose
a suitable NoC.

This paper considers the problem of power modelling
simulation in NoCs and introduces an algorithm for reduc-
ing execution time of NoC power consumption simulations.
This algorithm reduces the number of events simulated in
the simulator kernel by batching power consumption events,
modelling them in cycle-approximate transactions only at
particular points of contention in the simulation. By reducing
the execution time of NoC power consumption simulations,
power reduction techniques such as low-power link coding
can be investigated much more quickly to determine their
effectiveness under realistic application scenarios.

The paper is structured as follows. Section II considers re-
lated work on NoC simulation and presents the power models
used. Section III defines the specific problem this paper covers
and its fundamental assumptions. Section IV defines in detail
our algorithm for TLM power modelling, presenting a pseu-
docode and visual description and illustrating how it reduces
simulation workload. Section V describes the implementation
of the algorithm within our simulation framework, and defines
parameters used in the implementation. Section VI presents
our simulation results, which demonstrate the performance
and accuracy of our algorithm, and validate the successful
implementation of low-power link codecs. Finally, Section
VII considers further work on the simulator and associated
power reduction technologies, while Section VIII concludes
the paper.

II. RELATED WORK

A. NoC Simulation Methodologies

Transaction level models (TLM) of VLSI systems are char-
acterised [4] as those in which details of communication are
provided by channel abstractions, separated from the mod-
elling of the internals of computation. In the general taxonomy
of the Gajski-Kuhn Y-chart [5], TLM is at the algorithm level.



Therefore, TLM’s abstraction level is considerably higher than
the boolean equation models required for systems defined at
the gate level, which require time-consuming simulations with
circuit analysis tools. TLM also represents a further level of
abstraction (and therefore performance improvement) over reg-
ister transfer level (RTL) models, which distinguish registers
(as storage units) and synchronisation from computation.

However, TLM (frequently implemented in the SystemC
language [6]) is a very broad concept and systems differ
in how closely their transaction interfaces represent reality.
A key issue is the timing of the system and the closeness
of transaction timings to the real hardware timings. Cycle-
accurate TLM seeks to have some level of transaction timing
corresponding to the processor or bus cycles experienced in
the real system. For example, pin-accurate bus cycle accurate
(PA-BCA) models simulate pins and wires cycle-accurate with
the hardware system, but modelling inside components is
now only cycle-approximate [7]. Transaction-based bus cycle
accurate (T-BCA) models discard the abstraction of individual
bus signals, instead modelling as cycle-accurate transactions
the propagation of signals (e.g. flits) across generic channels
which represent a composite bus.

Cycle-approximate Transaction Level Models (TLM) have
been developed for on-chip processing elements [8], which
speed up computation by abstracting away simulation of
individual instructions and using statistics of processing mod-
els rather than the models themselves. Similarly, cycle-
approximate TLM for NoC simulations such as TLM 2.0
[9] coarsen the abstraction further by allowing simulation
of the properties of groups of flow control digits (flits) in
a cycle-approximate way during a single transaction. There
exists a clear trade-off between simulation granularity and
performance, which permits cycle-approximate TLM to be
up to four orders of magnitude faster than a flit-accurate
model [10]. The approach presented in this paper obtains
similar gains, demonstrating that discarding cycle-accuracy
and issuing transactions only upon packet injection/release or
preemption boundaries (rather than on each flit transmission)
permits a performance improvement of almost three orders of
magnitude.

B. Power Modelling

Power consumed by elements of a CMOS logic circuit (such
as a network-on-chip communication bus and its associated
encoders, arbiters, buffers and decoders) can be approximated
[11] by Equation 1:

Ptotal = AfCV 2 + τAfV Ishort + V Ileak (1)

The terms in Equation 1 can be defined as follows:
A Activity proportion of a component
f Clock-frequency of the circuit or component
C Capacitance of a circuit component
V Voltage in the circuit
τ Gate transition time
Ishort Gate short-circuit current
Ileak Leakage current

Total power consumption can be grouped into dynamic power
consumption (represented in the first term above), short circuit
current (second term), and leakage current (third term). The
dynamic power consumption is obtained by considering circuit
elements such as the bus wires as capacitors, and represents
energy consumed during the charging and discharging of
the capacitor. This occurs proportional to the frequency of
the network and its activity, hence the emphasis on power
consumption reduction as CPUs and SoC operate at higher
clock speeds. Although voltage reduction has been useful
to reduce power consumption, it has limits due to signal
degradation in transit that makes signals vulnerable to error
in transmission.

The second term is the short-circuit current, which repre-
sents current flowing to ground when a logic gate in a system
changes state. Again, this is proportional to the frequency
and component activity, and the transition time. The final
term is the leakage current, which represents power loss
through electron leakage due to quantum tunnelling in the
semiconductor. As a result of its independence of dynamic
activity, it is considered to not increase with frequency.
Overall, however, for a NoC the dynamic transition activity
is considered most significant, due to the necessarily long
length of the wires which represent a significant capacitance.
Although, as components become smaller and governed more
by quantum effects, leakage currents become more significant.

In order to compute the power consumption of a bus, a first
order model considers the electrical structure of the bus to
be composed of independent parallel capacitances. Assuming
no connection between the wires, the total capacitance of the
bus can be considered as the aggregate of all the individual
capacitances of separate bus wires. Since a bus is involved in
transmitting coherent signals (grouped in logical flits - flow
control units), the power associated with this model can be
determined from the number of bit transitions between the bit
signals. In coding theory, the number of transitions is equal
to the Hamming distance of the bit signals. Therefore, the
dynamic power consumption associated with the transmission
of flit F1 after F0 can be expressed as Equation 2 (derived
from [12]):

PF1,F0 = kCV 2HD(F1, F0) (2)

In Equation 2, k represents a constant depending on physical-
layer parameters of the bus, and HD(Fi, Fj) is a function
which computes the Hamming distance between two words.

In a real system, bus wires are not exactly independent,
as there are electrical effects such as cross-capacitances and
inductive effects between the wires. [13] [14]. Therefore, par-
ticular bit transmissions within links (or between them when
crossing very closely) may affect each other. The architecture
proposed in this paper can easily be extended to such coupling
power models, although for simplicity the model presented
in Equation 2 is used for the implementations and results
contained in this paper.



III. PROBLEM DESCRIPTION

The problem considered in this paper is to propose and
experimentally verify an algorithm for dynamic power con-
sumption modelling in a cycle-approximate NoC, attempting
to retain the power consumption modelling accuracy of a
cycle-accurate model through a simplified algorithm that uses
coarser transactions. This removes the need to model as a
simulator event the passage of each flit through the NoC. A
further issue considered is the implementation of low power
codecs for NoCs such as transition and bus-invert coding, and
the verification of their power reduction performance using
our methodology.

The NoC architecture considered combines features from
Hermes [15] and QNoC [16]. The arbiter design is modelled
upon Hermes, with a structure of four ports to/from neighbour-
ing routers, one port to/from a local processing core, and the
use of XY routing to forward data. Processor to router links
are considered to be part of the logical structure of routes
in the network, and therefore every route modelled has two
additional hops for the link to and from a processor. The flow
control between the elements is credit-based. The existence of
multiple priority levels is based upon QNoC [16], with virtual
channels and support for priority preemption. This allows
the modelling of realistic applications in which quality of
service requirements can be expressed through priority levels,
allowing urgent traffic to be transferred over non-essential.

The application layer is abstracted away from the platform
model, via a static task mapping which assigns the tasks
to specific cores throughout simulation execution. This static
mapping keeps tasks upon their same fixed locations through-
out simulation execution. It is assumed that even though
packets are injected into the network with timings controlled
by their application layer, individual flits of a packet are
injected into a network link with constant timing (equal to
that of the system clock speed).

This paper considers dynamic power consumption, although
additional sources of power consumption such as leakage
current are not considered. However, it is possible to model
these using realistic values for particular NoC routers (from
the internal structure of arbiters, buffers etc) from empirical
models of representative NoCs. In addition, although the
specific simulation uses an independent-bus power model, the
algorithm itself is generic in its power tracking and can be
adapted to any particular framework. In this paper, power
consumption is represented in abstract units consisting of the
total number of bit transitions. Since the grid links considered
are assumed to be constant length, it is possible to obtain total
power consumption by multiplication with a conversion factor.

IV. ALGORITHM DESCRIPTION

The algorithm presented in this paper is an extension of
earlier work on TLM latency modelling [17]. The core of the
algorithm is a flow-set sorted in priority order. The algorithm is
presented in Listing 1, with grey lines indicating the necessary
additions to implement power consumption modelling. The
algorithm uses the concept of interference sets (calculated on

Listing 1: Pseudocode for updating a list of flows with power
tracking
1 u p d a t e ( c u r r e n t T i m e ) {
2 f o r each flowi i n f l o w l i s t {
3 i f (activei ) {
4 flitstosendi = flitstosendi − s e n t F l i t s

( c u r r e n t T i m e − tai ) ;
5 tai = c u r r e n t T i m e ;
6 i f (flitstosendi == 0) {
7 remove flowi from f l o w l i s t ;
8 trackPower(flowi);
9 }

10 f o r each flown i n interferencei {
11 i f (activen ) {
12 activei = f a l s e ;
13 trackPower(flowi);
14 }
15 }
16 } e l s e {
17 i f ( ! a c t i v e n f o r a l l flown i n

interferencei ) {
18 activei = t r u e ;
19 r e q u e s t U p d a t e ( c u r r e n t T i m e +

b a s i c L a t ( f l i t s t o s e n d i ) ) ;
20 }
21 }
22 }
23 }

flow admission) to manage contention for particular links. The
interference set of a flow refers to those flows that when active
will block a flow from data transfer - those sharing at least
one link with a flow, and of a higher priority. The algorithm
keeps track of activation times and expected termination
intervals, and during update events, changes flow activation
status when a flow is blocked by a higher priority flow. When
flows are known to not have been interfered with by higher
priority flows, their progress over the interval including the
flits transmitted and their power impact is updated in a single
transaction. Newly admitted high priority flows therefore block
others from proceeding until their activation is processed.
Traversing the flow list in priority order ensures that the
algorithm respects priorities by allocating links to the highest
priority flows when they are activated. Therefore, simulation
events only occur when flows enter or leave the NoC, or when
preemption alters the active status of a flow.

The power tracking algorithm employs additional state in
the concept of a flit position, which represents the progress
of the packet from the source node. Consider the progress of
a single packet under transmission from source to destination
via intermediate routers in an otherwise idle NoC, as shown in
Figure 1. Flit position Fp defines a counter incrementing with
time whose valid values are in the range 0 ≤ Fp < N +H ,



where H is the hop count of the route and N the total number
of flits in the data packet. During Fp < H − 1 the route is in
a growing phase. During this phase data is being transmitted
to the destination, but some of the later links upon the route
may be idle as data has not yet reached its destination. The
additional flit position values beyond FP > N account for
a shrinking phase in wormhole switching, in which no new
data is being injected, but the final flit has not yet reached its
destination.
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Fig. 1: Structure of the algorithm and flow progression to the
destination

The newly introduced trackPower function is invoked in
lines 8 and 13 of the update function, upon the admission
of a new flow to the network that preempts flowi, or the
completion of flowi. The trackPower function (Listing 2) is
responsible for sequential link-level modelling of the particular
flits involved in this transaction over the interval, within the
temporal window in which the flow was identified by the TLM
algorithm as having exclusive access to the link. Therefore,
rather than the propagation and power impact of these flits
being modelled as individual simulator events, they can be
processed during a single simulation event in our algorithm.
The logic of the trackPower() function can be explained as
follows:

• Work out the flowing time for this flit by subtracting the
current time from its last activation time;

• Work out the number of flits transmitted by this active
flow (from its activation time to current simulator time)
assuming a constant flit injection rate over time (by
default equal to system clock speed);

Listing 2: Pseudocode for TLM power tracking
1 t r a c k P o w e r ( currentF lowi ) {
2 flowing time = c u r r e n t T i m e − tai ;
3 endF litPos = startF litPos + flowingtime ∗

f l i t T r a n s m i s s i o n R a t e ( currentF low i ) ;
4 f o r (flit index = s t a r t F l i t P o s t o

endF litPos ) {
5 f o r ( link index = 0 t o hopLength (

currentF low i ) ) {
6 flit for link = flit index − link index ;
7 i f (flit for link >= 0 and
8 flit for link < e n d F l i t L i m i t (

currentF low i ) ) {
9 link = g e t L i n k ( c u r r e n t F l o w i ,

link index ) ;
10 flit = g e t F l i t (flit for link ) ;
11 r e g i s t e r T r a n s m i s s i o n ( link , flit ) ;
12 }
13 }
14 }
15 s e t F l i t P o s ( currentF lowi , endF litPos ) ;
16 }

• Adding the start flit position to the number of flits injected
by the source over the flowing time, to obtain the end flit
position;

• Iterating over both the flit indices from start to end flit
position, and link indices on the route, look up the flit
which has reached this link on the route by this point in
the algorithm (flit index minus link index);

• Notify each link of that flit’s presence. Inside the function
registerTransmission, the links apply the chosen encoding
and record the power consumption triggered according
to a selected model (for example, the independent-wire
transition counting specified in Section II-B, Equation 2).

The example in Figure 1 shows the flits that will be applied
to particular link indices during modelling for an example with
N = 4 and H = 5, with a starting flit position of 0 and an end-
ing flit position of 8. In this case, under a conventional cycle-
accurate model in which each flit transmission is modelled as
a simulator token, a simulator event would be required upon
every grey arrow. However, the TLM algorithm presented is
able to model the entire progression of the route and register
its flits in a single simulation event, upon its completion or
preemption (in this case it is not preempted by another flow).
The horizontal axis from arrow to arrow represents link indices
moving along a particular route (modelled in the inner loop
of Listing 2) and the rows representing sequential time-steps.
Therefore, the link from processing core Src to router R0

would receive in sequence flits 0, 1, 2, 3, 4. Note that in these
case the flow is in its growing phase is still in progress for
flit positions 0 to 3, and therefore no link activity is modelled



upon the dashed links in these intervals. Similarly, the route
is in its shrinking phase for flit indices 5 to 8.

The algorithm’s forward execution therefore enforces a
temporal ordering between the preemption points. Since it
iterates forward through time in its outer loop and along the
links of the route in its inner loop, it is therefore possible to
apply cross-coupling power consumption models that depend
upon the activity of adjacent network links, e.g. [13] [14]. For
power consumption accuracy, the global time in an enclosing
simulation model does not need to match the event occurrence
times simulated here, but at the link level all the events are
applied forwards in temporal order. However, if the flow is
pre-empted and a higher priority packet has to be delivered
in between the flow of flits, it is possible that some transi-
tions will be mistimed between the boundaries during which
preemption occurs.

The model presented here does not model the impact of pre-
emption by higher priority flows, nor does it compute dynamic
intersections of routes at particular time intervals. It is possible
to imagine a pathological case in which the hop count/flit
number per flow is highly variable (some short packets and
occasional long ones) which could result in the model giving
a substantial under-estimate of power consumption. Assume a
very long packet Lp that has been end-to-end encoded for
low transition count in its flit sequence is repeatedly pre-
empted by the presence of a sequence of very high priority
short packets (i.e. single flits) which share a common link
with Lp. Assume further that these packets have inverted bit
sequences to Lp, so as to cause transitions on every link wire
when traversing the link. Since the high priority packets are
so short, they will not occupy their routes fully with flits, but
the algorithm presented here treats them as if they do. In the
real system, these packets would pass link L interleaved with
the long packet (causing additional transitions), but the model
would delay the transmission of the long packet entirely until
after these have finished. As a result several transitions will
be missed out.

Our demonstration results in Section VI-B indicate that in
a realistic application case in which packet size range from
16kbit up to 512kbit (representing long lived high priority
flows) this theoretical case has only a small impact on overall
accuracy. Firstly, in realistic packet sizes and preemption rates,
transitions caused by preemption are comparatively infrequent
compared to the transitions which occur between flits of the
same source packet. Secondly, even if such preemptions did
occur, packets are not typically constructed to deliberately
produce transitions on preemption.

V. SIMULATION IMPLEMENTATION

The power modelling framework is implemented upon the
lsi.noc simulation framework [17] based upon the Ptolemy
II simulator [18]. Producer and consumer actors are used to
represent data sources and sinks upon the processing cores,
which are called by the application model during message
generation and transmission.

Parameter Value
Default flit size (bits) 32
NoC Clock speed (MHz) 1000
Buffer capacity (flits) 7
Number of virtual channels 40
Default data source XML map model

TABLE I: Simulation parameters for NoC testing simulations
used in the results

The cycle-accurate simulation (used as a reference imple-
mentation for accuracy validation) uses Ptolemy II actors to
represent buffers and arbiters. In the cycle-approximate TLM
model simulation, a single central actor represents the NoC,
implementing the algorithm defined in Section IV. Therefore,
Ptolemy II events that relate to power tracking are only
triggered upon admission of a packet to the network or
upon scheduled update times to handle contention or process
completed flows, greatly reducing total event processing and
improving overall performance.

In both the cycle-accurate reference implementation and
cycle-approximate implementation of our algorithm, objects
are created to hold total dynamic power consumption and
process the power impact of data passing over each link.
In the reference implementation, power tracking is modelled
by monitoring the tokens produced during the processing
and decision phase of the arbiter, and assigning them to the
object for link power tracking of the output link. In our
algorithm, methods upon the link tracking objects are called
by registerTransmission in Listing 2.

VI. SIMULATION RESULTS

A. Performance Results

In order to investigate the performance benefits of the TLM
algorithm defined in this paper, the simulation execution time
of the cycle-approximate TLM power measurement algorithm
was compared with the reference cycle-accurate model. Com-
parisons were made using a 4x4 grid NoC topology, with
an application layer modelling the processing layers of an
autonomous vehicle, specifically video data generated from
on-board cameras, and its navigational and stability control
aspects. Parameters for the simulation are given in Table I.

Figure 2 illustrates the differences in simulation execu-
tion time for our cycle-approximate TLM power modelling
algorithm compared to the reference cycle-accurate model,
logging execution times throughout 2 seconds of simulation
execution of the same application layer. The graph also shows
the execution times for the original implementations of the
algorithms, before their modification for power tracking.

It is obvious from these results that the our cycle-
approximate TLM power tracking scheme is approximately
three orders of magnitude faster than for the cycle-accurate
model. Previous work on TLM latency modelling [17] which
did not consider power modelling recorded a performance
difference of approximately three orders of magnitude for



TLM, as also exhibited here for our results. It is important
to note that even cycle-approximate TLM power modelling
requires the generation of source data, formatting this data into
flits, and loading it into Ptolemy II tokens at least once to reach
the interconnect, which is not required in the original TLM
modelling without power consumption considerations. Also,
power tracking requires bitwise operations and array copying
to determine transitions. This accounts for the execution time
increase between our original latency modelling algorithm and
its modification here with power tracking. The differences be-
tween the cycle-accurate reference model with power tracking
and without it is comparatively less significant, since execution
time in these models is dominated by the processing and
propagation of tokens through Ptolemy II actors and by arbiter
decisions, rather than data generation and bitwise operations
for power modelling.
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Fig. 2: Simulation performance showing approximately three
orders of magnitude execution time for our cycle-approximate
algorithm

B. Simulation Accuracy

This section considers the accuracy achieved by the TLM
algorithm, and in particular the worst-case accuracies of dy-
namic transitions recorded upon particular links. The overall
accuracy of transitions recorded upon the particular links was
−0.24%, that is a very slight under-estimate by our cycle-
approximate TLM model. Figure 3 considers the accuracy
of modelling for particular links, giving a histogram of error
levels for individual links. It is clear that the majority of links
exhibit an transition count error less than 1%, although a small
proportion of outliers exhibit errors of 1%− 2% and a small
cluster around 2.5%.

Figure 4 shows the structure of the network and the relative
errors of different links between the cycle-approximate and
cycle-accurate reference model. Figure 4a shows the relative
error, while Figure 4b indicates the total power consumption
of links and therefore their total traffic carried. The deepest red
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Fig. 3: Histogram of link relative errors for our algorithm
against the reference implementation showing relative errors
under 3%

Structure of the 4x4 network showing
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Fig. 4: Network errors showing error locations and total power
consumption (with default optimal traffic pattern)

in Figure 4a is the maximum error of any link, which as shown
in Figure 3 is under 3%. From this, it is clear that the nodes
which have the greatest relative errors are those that carry the
smallest amount of traffic, and therefore errors upon these links
have the overall smallest contribution to overall network power
consumption accuracy. In the application traffic model tested,
these correspond to links used primarily for the transmission
of navigation control information for the autonomous vehicle,
which consists typically of shorter packets and more frequent
preemptions. However, since the overall impact of their trans-
missions on the network as a whole is minor to the small
amounts of data interchanged upon these links, their adverse
effect upon the accuracy of network power consumption as
a whole is minor, which accounts for the overall −0.24%
deviation between the cycle-accurate and cycle-approximate
schemes.

An alternative traffic mapping was considered in Figures
5 and 6, which considers moving traffic sources (particularly
those responsible for position tracking and navigation of the
autonomous vehicle) into a less optimal location to produce
additional contention with the video processing flows. The
figures shows again similar results for overall contention, with
again heavily used links receiving the smallest inaccuracies.
In this model one link had no traffic in either direction and is
therefore not displayed. The overall power consumption error
increases slightly to −0.29%.
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Fig. 6: Network errors showing error locations and total power
consumption with less optimal traffic pattern (one link not
shown due to absence of traffic in either direction upon it)

C. Transition Coding Validation

A physical-layer independent approach to building low-
power NoCs focuses upon link coding techniques, which
encode data specifically to reduce dynamic power consumption
by reducing bit transitions. The following subsections aim
to demonstrate the accurate implementation of low-power
encoding schemes upon our TLM simulator, verifying that
such schemes deliver their intended power savings under
our higher performance TLM power modelling. Transition
coding [19] encodes bits using an XOR operation from the
previous bit sent over a particular wire, favouring data in
which bits are frequently alternating. Figure 7 shows the
results in cycle-approximate TLM simulation of replacing the
application data source with a stream of alternating pairs
of 32-bit words 00000000 FFFFFFFF, showing a reduction
in total bit transition events by approximately 90%. This is
produced through the ability of the transition codec to convert
the alternating bits of the stream to constant values.

D. Bus-Invert Coding Validation

Bus-invert coding [20] is an encoding scheme that reduces
bit transitions through additional signalling wires. In its sim-
plest form, activation of a single inversion wire inverts the bus,
which indicates that all wires upon the bus carry signals that
are the opposite of their usual coding. This is highly beneficial
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Fig. 7: Transition coding and the reduction in transitions
compared to null coding

for patterns which contain a large number of transitions,
as signalling the inversion wire allows the entire bus to be
inverted, a significant reduction of the worst-case transition
activity. In our simulations, activation of the alternating bus
wire produced a reduction of 96% of transition activity on a
32-bit bus. In typical data, however, the performance gains
of bus-invert coding are not as significant, since transitions
are less predictable [21]. For example, in data drawn from
a uniform random distribution such as experienced if data is
already highly compressed (or otherwise of maximal entropy),
the modal case is for transitions upon precisely half the wires;
a situation in which bus-invert coding. In [21] the following
analytic expression for the expected number of transitions
T (n) per flit of uniform-random data under bus-invert coding
upon a bus (of even width) n is provided:

T (n) = (n+ 1)

(
1

2
−
Cn

n/2

2n+1

)
(3)

Since the expected number of transitions is n/2, it is possible
to calculate the expected reduction in transitions R(n) for bus
width n (as a proportion of uncoded) as:

R(n) = 1− T (n)

n/2
= 1−

[
(n+ 1)

n/2

(
1

2
−
Cn

n/2

2n+1

)]
(4)

Figure 8 presents simulated and analytic results for bus-invert
coding of uniform random data for bus widths of 8, 16
and 32 bits, demonstrating a very close agreement between
theoretically predicted transition reduction and that obtained
from the TLM model. The highest error is for 32-bit encoding,
where a discrepancy of 11.3% between 11.2% was observed.
This error is well within the accuracy observed for TLM
modelling in Section VI-B.

VII. FURTHER WORK

A potential optimisation exists to avoid the processing over-
heads of registering bit sequences individually with individual
links, depending on the characteristics of the power model and
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Fig. 8: Match between simulation and theoretical prediction
for bus-invert coding

any link encoding that may be in use. If power consumption
only depends upon the previous data the link received and the
next (as in a transition counting model), and the encodings
upon the links of a flow are the same, then is it possible to
optimise the algorithm further by computing the total power
consumption increment associated with different flit positions
in a flow.

In terms of the mechanism of the simulation, one particular
artifact of the TLM modelling process is that it allows only
one particular route to be activated upon statically intersecting
routes simultaneously. Although with long packets the major-
ity of routes will be fully occupied, it is possible that some
routes will be partially unoccupied. Therefore, some accuracy
gains could be obtained by allowing routes to flow through
the growing and shrinking phases of another route (when no
data transfer is occurring on this route).

VIII. CONCLUSIONS

This paper has defined and investigated an algorithm for
power consumption modelling within cycle-approximate trans-
action level modelling (TLM) upon a priority-preemptive
NoC, without the overheads associated with cycle-accurate
modelling with a simulator token tracking every flit trans-
mitted throughout the network. The assumption of priority
preemption is an advantage for realistic scenarios in which
traffic has various levels of importance. The algorithm has
been successfully implemented upon our lsi.noc simulation
package, and simulation results in a NoC for a real application
have demonstrated that simulations can achieve an accuracy
of under one percent in overall dynamic power modelling
accuracy (via bit transitions), with a speed benefit of between
two and three orders of magnitude in comparison to a flit-
accurate model. Using the bus-invert coding schemes, close
agreement with theoretical predictions upon the simulation
platform has also been demonstrated.
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