Dynamic Task Remapping For Power and Latency
Performance Improvement In Priority-Based
Non-Preemptive Networks On Chip

James Harbin, Leandro Soares Indrusiak

Real-Time Systems Group, Department of Computer Science, University of York, UK
{james .harbin, leandro. indrusiak}@york .ac.uk

Abstract—In dynamic system-on-chip and multicore CPU ap-
plications, the communication patterns between tasks are not easy
to characterise in advance. Dynamic task mapping is commonly
used in Network-On-Chip (NoC) research in order to redistribute
tasks around network processing elements at runtime in response
to changes in network loading. Dynamic task mapping is an-
ticipated to become more important as general purpose CPUs
become massively multicore and system-on-chip (SoC) designs
become more reconfigurable in their application usage patterns.
Simultaneously, reducing NoC power consumption is a necessary
consideration in the development of future scaleable and energy
efficient NoC systems. The work illustrated here uses a dynamic
metric which combines contention and the power consumption
impact of task remapping decisions, in order to produce a non-
preemptive NoC that can deliver as good or better latency as a
preemptive NoC in a real application scenario, while reducing
overall power consumption. The results obtained show a power
consumption reduction of approximately 35% in an application
case involving an autonomous vehicle application, and significant
reductions in the latency of individual flows.

I. INTRODUCTION

Networks-on-chip (NoCs) have been proposed in order to
reduce the proliferation of unstructured interconnection wiring
in multicore CPUs and system-on-chip (SoC) platforms [1] [2].
NoCs bring the benefits of abstraction and layering obtained
in structured networks to the silicon domain, delivering a
standard network capable of delivering arbitrary data through
a network of on-chip routers. Given that these networks may
carry diverse data such as multimedia, memory hierarchy
synchronisation and system control messages, the data packets
transported can be highly heterogeneous with varying lengths
and destinations. Notably, packets may contain different qual-
ity of service parameters which may motivate the use of
priority levels for transmitted packets [3].

Power consumption is emerging as an important metric for
NoC performance. It has been shown that NoCs can consume
approximately 30% of overall system power [4]. In order to
increase the density of SoC and multicore platforms while
delivering adequate cooling, it is important to reduce NoC
power consumption. The majority of power consumption in
a NoC occurs during the transmission of data upon network
links. Therefore, both NoC latency and power consumption are
greatly influenced by the mapping of the application tasks to

processing elements [5]. A power efficient task mapping can
reduce the distance the highest usage tasks have to transmit
across the network, thereby reducing the power burden that
they impose upon the network.

A static task mapping scheme makes task allocation deci-
sions offline and in advance, which is useful in situations in
which traffic patterns can be well characterised in advance.
However, in many future applications for reconfigurable SoCs
or especially multicore CPUs, task communication patterns
would be unknown until runtime or may change dramati-
cally from those anticipated at design time, requiring the
system to dynamically adapt its mapping decisions. This paper
presents a dynamic mapping scheme that takes into account
link contention (free time intervals) and anticipated power
consumption in order to produce power-efficient remappings
in a case study of a real application model.

In order to deliver low latencies in wormhole NoCs, a
typical solution is to use virtual channels and priority pre-
emption at the routers, in order to allow higher priority flows
to interrupt ongoing flows. However, preemptive NoCs require
additional buffer space at the arbiters, which complicates their
design and increases the silicon footprint of the arbiter.

This paper proposes dynamic task mapping as an alter-
native to preemption, in which tasks are moved around the
network to avoid (or where not possible, reduce) contention for
network links. The power consumption and latency resulting
from applying these new application mappings to the non-
preemptive NoC are assessed by simulation and compared
to the preemptive network as a baseline. The intent of this
paper is to demonstrate that non-preemptive NoCs can increase
performance in a real application case study by using task
mapping to compensate for the lack of preemption, reducing
power consumption while delivering lower overall latencies.
The results obtained show that non-preemptive networks with
task mapping can achieve a power consumption reduction of
approximately 35% compared to the preemptive NoC, in an
application case involving an autonomous vehicle application.
Results also demonstrate significant reductions in latency,
particularly for high priority flows.

II. RELATED WORK

In general, mapping demands for resources (such as NoC
tasks) to processing elements is an instance of the quadratic
assignment problem which is known to be an NP-complete
problem, and therefore infeasible for optimal solution in large
systems except by heuristics [6]. If effective mapping decisions
can be made from information known at design time, a static
task mapping approach can be used [6]. However, the task
mapping philosophy most closely associated with the present
work is dynamic task mapping, in which nodes use runtime
task communication information in making their mapping
decisions.

The MMC (minimum and maximum channel) approach [7]
takes into account the runtime loading of the most heavily
used link (maximum channel rate) on the route to a candidate
destination, choosing the destination which minimises this
maximum link loading. Also, the PL (path loading) approach
[7] averages link rates along a route in order to discover
the minimal latency link. The dynamic mapping approach
presented here uses a similar approach, however, the structure
of the metric considers free time intervals in contention rather
than link rates, and also takes into account the hop count
and data usage demands of the route in assessing power
consumption.

[8] presents a voltage dependent mapping, which takes into
account different voltage levels at which tasks must operate
in order to meet their deadlines, and uses this in making
mapping decisions. This is a useful approach in networks in
which voltage scaling is employed to reduce power, although
may not be useful in NoC designs in which voltage is
globally controlled. [9] takes into account the user’s behaviour
information in making its mapping decisions, attempting to
define which applications are critical for remapping by com-
puting communication rate and cumulative energy ratios and
using them to remap tasks within specific regions. Dynamic
spiral mapping [10] uses a spiral search outwards from the
current location of a task in determining a new remapping
destination. An agent based mapping approach [11] uses a set
of collaborating agents (both local and global) which interact
in order to distribute tasks across the network.

III. PROBLEM DESCRIPTION
A. Introduction

A non-preemptive wormhole NoC is not typically able
to deliver low latencies to its high priority flows. Upon
contention, higher priority flows are required to wait for the
completion of previously admitted lower priority flows. This is
illustrated in Figure 1, which illustrates routing nodes within a
NoC, the placement of tasks upon their connected processors,
and the paths taken by data transmissions. Only two pairs
of tasks are shown for the purposes of this example, even
though there may be other tasks in the system. Initially, the low
priority flow Sy — Dy is admitted and begins transmission.
However, a contending higher priority flow from S; — D is
then blocked and forced to wait for the shared links to be free

D,
D,

blocked g
SZ Sll EEE g
|

!
Fig. 1: Blocking of high priority flows by lower priorities in
a non-preemptive NoC

Latencies with test packet priority for preemptive
x 107 and non-preemptive NoCs

—— Preemptive NoC, no remapping
Non-preemptive NoC, no remapping

—_
N

-
N
T

AN

O
> o o©®
: ‘ ‘

Latency average in seconds
(with min—max error bars)

o
o
:

0 1 1 1 1 1)
0 2 4 6 8 10 12

Flow priority index

Fig. 2: Flow latencies with priority in preemptive vs non-
preemptive NoCs (low priority index represents higher priority
flows)

before advancing, even though quality of service goals do not
favour this flow waiting for a lower priority flow.

One solution to this problem of the blocking of high priority
flows is priority preemption: the design of a NoC arbiter
that assesses the priority of waiting and requesting flows, and
allows the higher priority flow to interrupt an ongoing lower
priority flow. However, a priority preemptive NoC requires
additional buffer space in order to support the buffering neces-
sary on virtual channel endpoints (with buffering requirements
scaling with the number of priority levels), imposing additional
implementation costs both in silicon area and in arbiter design
and development complexity.

An example of the effects of blocking upon the latencies of
high priority flows is illustrated in Figure 2. It compares the
latencies delivered by non-preemptive and priority preemptive
NoCs, for packets of identical size generated simultaneously
towards the same destination. Release jitter is applied, consist-
ing of a very small randomised timing offset which ensures

that the temporal order of arrival of packets at the NoC is
effectively random. Without the presence of release jitter, the
value of preemption would not be fully evident, since the non-
preemptive NoC may perform as well due to packets being
generated from the application model in priority order.

By convention in this paper lower priority index values
dominate higher priority index values, therefore packets with
priority 1 represent the highest priority flows. Notably, the
distribution of latencies for the non-preemptive system is
close to uniform across priorities, due to blocking of newly
introduced high priority flows by ongoing flows. By contrast,
the preemptive NoC is able to deliver a smooth gradient of
latency with priority, illustrating its ability to deliver faster
communication to high-priority flows by preemption of the
lower priority ones.

The intent of this paper is to assess whether a non-
preemptive NoC can use task remapping to deliver lower
latencies, while delivering also reductions in overall power
consumption. This is illustrated in Figure 3, which shows a
possible outcome of the task remapping process in Figure
1. The remapping decisions which have been made seperated
the tasks of the contending flows and therefore removed the
contention, allowing both flows to transmit simultaneously.

Sl"_)'Dl
S;+—tD,

Fig. 3: Task mapping adjustments allowing both flows to
proceed simultaneously

In dynamic power consumption models, power consumption
can be modelled by approximating the bus as a series of
parallel capacitors which have to be charged and discharged
every time bit transitions occur over the relevant link [12].
This power consumption scales in proportion to the size of
packets transmitted multiplied by the number of hops from
source to destination. Therefore, remapping also leads to
reduced power consumption by moving each source closer
to its respective destination. Solving the problem through
resource management (task mapping) rather than hardware
(arbiter decision making complexity) will enable a reduction
in the complexity of NoC routers and therefore an increase
in overall performance under dynamic application models
in which the inter-core communication patterns cannot be
accurately predicted in advance.

B. Scenario Definition

The scenario assumed for this paper is a priority preemptive
NoC with virtual channels, versus a non-preemptive NoC.
Both NoCs operate using wormhole switching which allows
data to be propagated through the network without the need
to completely buffer the packet at an intermediate router. Both
alternative NoC designs consist of a 4x4 grid topology in
which XY routing [13] is used to form the routes between
communicating cores, although the remapping algorithm pre-
sented is sufficiently general as to allow extension to NoCs
incorporating other routing algorithms. The difference between
the NoC architectures studied is that the preemptive NoC
allows a flow in progress to be interrupted by a higher priority
flow, while in the non-preemptive NoC a flow which has
claimed a link cannot be interrupted at that link, and all other
flows that contend have to be blocked. The dynamic remapping
process is applied in the non-preemptive NoC, but in the
preemptive NoC, which is used as a baseline case without
remapping, the original static mapping is used throughout.

The application considered in the results case study is an
autonomous vehicle application. As opposed to the use of
synthetic traffic, this full application is a highly heterogeneous
data set of 38 tasks which incorporates the video processing,
navigation and control information for an autonomous vehicle.
A manually tuned default initial mapping is used as a starting
point in all simulations as defined in our previous work [14].

C. Simulation Implementation

The simulations performed in this paper are implemented as
transaction level models (TLM) in the Ptolemy II simulator.
The TLM concepts used in this paper generate simulator events
only upon flow admission, completion, or upon contention
with another flow which shares at least one link with the
flow. Using these coarser transaction level models which
issue transactions only upon flow entry, exit or contention
boundaries enables considerable simulation performance im-
provement (approximately three orders of magnitude) over
cycle-accurate models, or TLM schemes which model the
progression of every flit through the network [15].

Power consumption modelling has been added to the sim-
ulations following the methodology presented in [14]. The
power consumption is approximated by tracking the number
of bit transitions occurring between adjacent flits upon the
same link, upon the assumption that the majority of power
consumption in a CMOS circuit results from charging and
discharging the capacitances represented by the bus wires
of the NoC links [12]. The simulator therefore registers
the contents of flits applied to each link in temporal order
during TLM processing and performs an XOR operation upon
adjacent flits, keeping a running counter of bit transitions and
therefore power consumption per link. This allows the total
power consumption during simulation to be computed.

Two different simulation models are contrasted in the re-
sults, with the preemptive NoC without any remapping being
the baseline or control case. When flows in the simulator
share at least one link, only one is active and allowed to

proceed simultaneously. The logic upon flow addition chooses
the highest priority flow to activate when multiple flows are
admitted simultaneously. If another higher priority flow is
admitted, the original is preempted and must wait for the new
one to complete before advancing further. The preemptive NoC
architecture is as presented fully in [14].

The non-preemptive simulation model does not permit pre-
emption by a higher priority flow. Upon flow admission, the
distance to its first contention point is computed. The flow
which will reach the contention point first is allowed to claim
it and is set to active. If two simultaneously admitted flows are
an equal distance from the contention point, then the highest
priority of the two will claim it. Once a flow has passed
through the contention point, then the model assumes that it
cannot be preempted and will flow until completion.

IV. REMAPPING ALGORITHM DESCRIPTION

The intent of the remapping algorithm considered here is
to improve power consumption performance by intelligent
reallocation of the tasks upon the processing cores of the
system. Accordingly, the remapping process first identifies
the flows that are most in need of remapping. These are the
flows upon congested routes, or with a high impact upon
power consumption due to carrying a large amount of data
a relatively long distance over the NoC. Then the process
constructs a listing of possible endpoints, namely possible
source-destination node pairings. The remapping process then
relocates the tasks generating these needy flows to closer and
less congested processing elements, in which the power and
contention impact of these flows will be reduced.

The remapping algorithm is triggered periodically upon
the expiry of a timer known as the sampling interval. This
reduces the number of remapping events and therefore the
operating system and communication rate required to perform
the remappings. Throughout the sampling interval, each NoC
router examines the headers of blocked packets to keep track
of those experiencing contention, and communicates properties
of these contended flows to the core executing the operating
system (or other component responsible for management of
task mappings).

Upon the expiry of the sampling interval timer, the remap-
ping matching process is performed according to the algorithm
in Listing 1. The remapping matching process employs two
priority queues. The first priority queue flowNeeds, contains
the flows that experienced contention, sorted in descending
order of their need metric RN (Equation 1). The second
priority queue endpoints is constructed using all possible
source destination pairings (including those with source and
destination values the same, if design constraints permit mul-
tiple processes being assigned to a single core).

In sorting the endpoints priority queue, the primary crite-
rion is the hopcount in the NoC between the endpoints, and
the secondary criterion is the total number of tasks mapped
at source and destination endpoints, divided by a mapping
density factor My and truncated to an integer. Therefore,
the general preference of the algorithm will be for choosing

Listing 1: Pseudocode for the remapping matching process
triggered during execution each sampling interval

—_

remappingAlgorithm () {

foreach flow; in contendingFlows () {
flowNeeds . insert (flow;, RNyiow,);

}

foreach endpoint in possibleEndpoints () {
endpoints.insert (endpoint) ;
}

flowsToRemap = int(flowNeeds.size =
remapProportion) ;

(=Bl SN le NIV IE VS I

12 remapCount = 0;

13 remappedTasks = {};

14 while (!flowNeeds.empty() && remapCount
< flowsToRemap) {

15 target = flowNeeds.removeHighest () ;

16 TASKg = getSourceTask (target);

17 TASKp = getDestinationTask (target) ;

18 if (!remappedTask.containsEither (
TASKs, TASKp)) {

19 chosen = endpoints.getLowest();

20 remap (TTASKg, chosen.source);

21 remap (TASKp, chosen.dest);

22 remapCount = remapCount + 1;

23 remappedTasks.add (TASKs, TASKp);
24 }

25 }

26 }

source-destination pairs that are close together and lightly
loaded. However, the algorithm will treat endpoints as having
identical loading when their loading is below the mapping
density factor M. This motivates the algorithm to cluster tasks
together in one region, rather than dispersing them too widely.

From line 14 onwards, the remapping process then processes
a fixed proportion of the flows deemed to be in greatest need
of remapping. Firstly, the tasks associated with the flow are
looked up. If they have not yet been remapped during this
run of the algorithm, their remapping this time is recorded
(to prevent these tasks being remapped later by other flows
with a lower need). The tasks are then remapped to the best
endpoints (source and destination processing cores) chosen.
Finally, any endpoints which have been updated (by either a
task entering or leaving them) have their metrics recomputed,
and the priority queue endpoints is resorted to ensure the best
endpoint is chosen if necessary.

D
RNflow = Z (1 - Flink) + D H Ccou'm‘, (1)

: mazx
links

The terms employed in Equation 1 are defined as follows.
Fiini refers to the free proportion of the link, namely the
longest proportion of the sampling interval in which the link
was unused. links is the set of links used by the flow. H
is the hop count of the route (number of links). D is the
total amount of data contained in the flow, and D,,,,, is the
largest amount of data contained in any flow yet encountered
during remapping. Ceoyune 1S the total number of times in
which another flow caused contention with this flow during
the sampling interval.

The first part of Equation 1 favours the selection of flows
which are upon heavily used links for remapping, since flows
which are heavily contended will tend to experience much
greater latencies, as other flows will have to wait for their
completion in a non-preemptive network. The second part of
the equation selects flows based upon their approximate power
consumption, using the number of links traversed and the
data demand of a flow to approximate its power consumption.
Although actual power consumption during transmission will
be unknown without knowledge of the precise sequence of
bit transitions that occur upon the link, it can be expected that
reducing the product of end-to-end flit sent and hop count will
reduce power consumption on average.

Therefore, the intent of the remapping need equation is
to combine an incentive for both latency reduction (by pri-
oritising for remapping flows upon heavily congested links,
as exhibited in the first term in the equation) and power
consumption reduction as exhibited by the second term.
Of course, with traffic pattern changes it may be possible
to achieve both objectives simultaneously, for example by
remapping tasks to a closer destination thereby reducing both
the contention encountered and the power consumption on
intermediate links (as illustrated in Figure 3). However, in the
autonomous vehicle application used in the results, 38 tasks
are assigned amongst a total of 16 processors, so the task
remapping algorithm is frequently faced with the tradeoff of
reducing the latency of one source-destination task pair at the
cost of increasing another. This therefore provides a test of its
adaptability to real scenarios in which processors are heavily
contended.

V. SIMULATION RESULTS

The default parameters used in the simulation are presented
in Table I.

Parameter Value
Default flit size (bits) 32
NoC Clock speed (MHz) 100
Buffer capacity (flits) 7
Number of virtual channels 40
Sampling interval 0.5s
Proportion of flows remapped | 0.5
Mapping density factor My 6
Simulation run time 10s

TABLE I: Simulation parameters

Reductions in power consumption for
the non—preemptive NoC with
remapping versus the preemptive NoC
15 T T T T

Relative frequency

025 30 35 40 45 50
Percentage reduction in power consumption
Reductions in normalised latency for
the non-preemptive NoC with
remapping versus the preemptive NoC

10 ‘ ‘ ‘ ‘

Relative frequency

15 20 25 30 35 40 45
Percentage reduction in mean normalised latency

Fig. 4: Power consumption and mean normalised latency
reductions as histograms

Figure 4 presents a histogram of power consumption and
mean normalised latency with application remapping, and in
particular the reduction in power consumption with jitter. The
maximum jitter in flow arrival at the NoC is one tenth of the
clock period. The power consumption reduction is calculated
relative to the baseline of the preemptive system. (The baseline
power consumption results for both the preemptive and non-
preemptive NoC without remapping are virtually identical.
The impact of preemption itself on power consumption is
minimal given that flit transitions occurring on a preemption
boundary are outnumbered greatly by those within a non-
preempted packet). Power consumption is mainly a feature
of the application mapping and how closely communicating
flows can be sited. The results show that the mean power
reduction is a saving of approximately 35%, and that this has
a standard deviation of around 4.5%. There are two outliers
delivering a power consumption reduction of over 42%, which
occured when the jitter of flow arrival causes some remappings
to be performed in one sampling interval rather than the next,
causing particularly advantageous remapping decisions.

Figure 5 demonstrates the normalised latencies per flit
(in seconds per flit) delivered for the preemptive vs a non-
preemptive NoC using dynamic application remapping. An
initial mapping was used which was developed from our pre-
vious research [15] [14]. The left graph contrasts the latencies
in the final three seconds of simulation runtime (following
stabilisation of the system under the new application) showing
that the non-preemptive NoC with application remapping is
capable of delivering considerably lower latencies than the
preemptive NoC. In particular a number of flows receive
effectively zero latency since their source and destination pairs
are placed upon the same endpoint, which means they do
not have to cross the NoC. The flow with priority index 7
is the only outlier, which is one of the video processing flows.

Normalised latencies for AV
application in preemptive and non-preemptive
«10¢ NoC with remapping
7 -

Changes in latency with priority
in non—preemptive NoC over time as
« 10~ task mapping improves

=memm Preemptive NoC, no remapping

i N oNn—preemptive NoC, dynamic remapping (7 to 10s)

— % — Non-preemptive NoC, dynamic remapping (0 to 3s)
Non-preemptive NoC, dynamic remapping (3 to 7s)

(6]
T

N
T

w
T

N
T

Normalised latency per flit (seconds)
(mean, with min—max error bars)
Normalised latency per flit (seconds)
(mean, with min—max error bars)

10 20

Flow priority index

30 40

—4— Non-preemptive NoC, dynamic remapping (7 to 10s)

T

2.5

20
Flow priority index

30

Fig. 5: Latencies with priority index values for the autonomous vehicle application. Low priority values represent high priority

flows.

Since it is issued simultaneously with other flows of higher
priority that transfer more data, it therefore experiences a
higher latency than the others as part of the cost of giving
them a better mapping.

In the rightmost graph of Figure 5, the three series show
the latencies experienced during three stages of the dynamic
mapping process over the first ten seconds of execution, during
which the system adapts to the application traffic pattern.
During the exploratory phase within which the first remapping
decisions are made, the latencies of some flows increase
considerably as early remapping decisions are taken, leading to
additional contention and longer delays for communication to
occur. In particular, an outlier is flow 20. This is partially due
to the need to adapt to the loading provided by the application,
which develops in the early phases of execution historical data
such as D,,,,. Since the power impact of flows is ranked
relative to the largest ever yet encountered in the NoC, the
earliest remapping decisions may not be able to correctly
discriminate between small and large flows. However, from 3
to 7 seconds mean normalised latencies for most flows decline
considerably, although some flows in the range 9 to 15 are
showing increased latency from more exploratory remapping
decisions.

VI. FURTHER WORK

Although the remapping need metric used in this paper
combines consideration of the impact of link free intervals
and power impact in choosing the flows most in need of
remapping, it has combined both these aspects uniformly.
Future work will consider varying this by the use of additional
parameters to allow the end user to manage the trade off
between these potentially conflicting objectives.

Additional further work will include a consideration of the
hardware implementation of the features necessary to support
flow tracking at the NoC routers, and the implementation
costs of these features and any control messages that have
to be added. The granularity of the sampling interval and
remapping algorithm execution (currently at 0.5s) is relatively
long compared to the overall NoC timescale. Therefore, the
impact of the power consumption of moving tasks across the
network is expected to be limited, compared to the power
savings achieved in regular data transmission. One potential
extension for future work is to bound the maximum remapping
rate of a particular task, and determine the impact of this
constraint on power consumption performance. Although the
granularity of the sampling interval is sufficiently long in this
example case study that remapping decisions will be relatively

infrequent, a real hardware implementation will be very useful
to verify the concepts.

In future work, it will also be important to take into account
the impact of link coding on power consumption. Using low
power coding (e.g. [16]) it is possible to reduce the power
consumption of particular links by encoding data so as to
reduce its bit transition activity. In this case, the algorithm
proposed for dynamic remapping would have to be extended
to take into account that the power consumption impact of
particular links differs depending on the codec selected.

VII. CONCLUSIONS

This paper has demonstrated that dynamic application map-
ping can produce both power consumption and latency benefits
in a non-preemptive network, equivalent to and frequently
exceeding those of obtained from using a preemptive NoC.
The latency impact upon priority levels has been considered
in order to determine the impact of the remapping process
upon individual flows, showing that the majority of flows
experience significantly reduced latencies. These results have
been generated in a real case study incorporating heteroge-
neous data in a complete autonomous vehicle application.
The results obtained showed a power consumption reduction
of approximately 35% in an application case involving an
autonomous vehicle application, and significant reductions in
latency particularly for high priority flows.

ACKNOWLEDGEMENTS

The authors are grateful to the EPSRC for providing
financial support, under project 'LowPowNoC’, contract
EP/J003662/1.

REFERENCES

[11 S. Pasricha and N. Dutt, On-chip communication architectures: system
on chip interconnect. Morgan Kaufmann, 2008.

[2] R. Marculescu, U. Y. Ogras, L.-S. Peh, N. E. Jerger, and Y. Hoskote,
“Outstanding research problems in NoC design: System, microarchitec-
ture, and circuit perspectives,” IEEE Trans. Computer-Aided Design of
Integrated Circuits and Systems, vol. 28, no. 1, pp. 3 =21, Jan. 2009.

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

E. Bolotin, I. Cidon, R. Ginosar, and A. Kolodny, “QNoC: QoS
architecture and design process for network on chip,” J. Syst. Archit.,
vol. 50, no. 2-3, pp. 105-128, Feb. 2004.

K. Lee, S.-J. Lee, and H.-J. Yoo, “Low-power network-on-chip for high-
performance SoC design,” IEEE Trans. VLSI Syst., vol. 14, no. 2, pp.
148 160, Feb. 2006.

P. K. Sahu and S. Chattopadhyay, “A survey on application mapping
strategies for network-on-chip design,” Journal of Systems Architecture,
vol. 59, no. 1, pp. 60 — 76, 2013.

A. Hansson, K. Goossens, and A. Radulescu, “A unified approach to
constrained mapping and routing on network-on-chip architectures,” in
Proceedings of the 3rd IEEE/ACM/IFIP international conference on
Hardware/Software codesign and system synthesis, ser. CODES+ISSS
’05. New York, NY, USA: ACM, 2005, pp. 75-80.

E. Carvalho, N. Calazans, and F. Moraes, “Heuristics for dynamic
task mapping in noc-based heterogeneous mpsocs,” in /8th IEEE/IFIP
International Workshop on Rapid System Prototyping, 2007, pp. 34-40.
C.-L. Chou and R. Marculescu, “Incremental run-time application map-
ping for homogeneous nocs with multiple voltage levels,” in Hard-
ware/Software Codesign and System Synthesis (CODES+ISSS), 2007 5th
IEEE/ACM/IFIP International Conference on, 2007, pp. 161-166.
——, “User-aware dynamic task allocation in networks-on-chip,” in
Design, Automation and Test in Europe, 2008. DATE 08, 2008, pp.
1232-1237.

A. Mehran, A. Khademzadeh, and S. Saeidi, “Dsm: A heuristic dynamic
spiral mapping algorithm for network on chip,” IEICE Electronics
Express, vol. 5, no. 13, pp. 464-471, 2008.

M. A. Al Faruque, R. Krist, and J. Henkel, “Adam: run-time agent-
based distributed application mapping for on-chip communication,” in
Proceedings of the 45th annual Design Automation Conference, ser.
DAC ’08. New York, NY, USA: ACM, 2008, pp. 760-765.

T. Mudge, “Power: a first-class architectural design constraint,” Com-
puter, vol. 34, no. 4, pp. 52 -58, Apr. 2001.

V. Rantala, T. Lehtonen, and J. Plosila, “Network on chip routing
algorithms,” University of Turku, Turku Centre for Computer Science,
Tech. Rep. 226, 2006.

J. Harbin and L. S. Indrusiak, “Fast transaction-level dynamic power
consumption modelling in priority preemptive wormhole switching
networks on chip,” in SAMOS: International Conference on Embedded
Computer Systems Architectures Modelling and Simulation, Jul. 2013.
L. S. Indrusiak and O. M. dos Santos, “Fast and accurate transaction-
level model of a wormhole network-on-chip with priority preemptive
virtual channel arbitration,” in DATE 2011: Design, Automation Test in
Europe Conf., Mar. 2011, pp. 1-6.

A. Garcia-Ortiz, L. S. Indrusiak, T. Murgan, and M. Glesner, “Low-
power coding for networks-on-chip with virtual channels,” Journal of
Low Power Electronics, vol. 5, no. 1, pp. 77-84, 2009.

