
Real-Time Syst (2010) 45: 106–142
DOI 10.1007/s11241-010-9094-5

A timeband framework for modelling real-time systems

Alan Burns · Ian J. Hayes

Published online: 20 April 2010
© Springer Science+Business Media, LLC 2010

Abstract Complex real-time systems must integrate physical processes with digital
control, human operation and organisational structures. New scientific foundations
are required for specifying, designing and implementing these systems. One key chal-
lenge is to cope with the wide range of time scales and dynamics inherent in such
systems. To exploit the unique properties of time, with the aim of producing more
dependable computer-based systems, it is desirable to explicitly identify distinct time
bands in which the system is situated. Such a framework enables the temporal prop-
erties and associated dynamic behaviour of existing systems to be described and the
requirements for new or modified systems to be specified. A system model based on
a finite set of distinct time bands is motivated and developed in this paper.

Keywords Real-time systems · Modelling · Cyber physical

1 Introduction

The construction of large socio-technical real-time systems, such as those envisaged
in cyber-physical applications, imposes a number of significant challenges, both tech-
nical and organisational. Their complexity makes all stages of their development (re-
quirements analysis, specification, design, implementation, deployment and mainte-
nance/evolution) subject to failure and costly re-working. Even the production of an
unambiguous behavioural description of an existing system is far from straightfor-
ward.

A. Burns (�)
Department of Computer Science, University of York, York, UK
e-mail: burns@cs.york.ac.uk

I.J. Hayes
School of Information Technology and Electrical Engineering, The University of Queensland,
Brisbane, Australia

mailto:burns@cs.york.ac.uk

Real-Time Syst (2010) 45: 106–142 107

One characteristic of these computer-based systems is that they are required to
function at many different time scales (from microseconds or less to days or more).
Time is clearly a crucial notion in the specification (or behavioural description) of
computer-based systems, but it is usually represented, in modelling schemes for ex-
ample, as a single flat physical phenomenon. Such an abstraction fails to support the
structural properties of the system, forces different temporal notions on to the same
flat description, and fails to support the separation of concerns that the different time
scales of the system facilitate. Even with a single time scale, system architects seem
to have great difficulty in specifying temporal properties in anything other than very
concrete implementation-level terms. But just as the functional properties of a system
can be modelled at different levels of abstraction or detail, so too should its temporal
properties be representable in different, but provably consistent, time scales.

To make better use of ‘time’, with the aim of producing more dependable
computer-based systems, we propose a framework that explicitly identifies a number
of distinct time bands in which the system under study is situated. The framework
enables the temporal properties of existing systems to be described and the require-
ments for new or modified systems to be specified.

In the following section we motivate the main notions and properties of the time-
band framework. Then, in Sect. 3, an abstract model of timebands is presented, and
in Sect. 4 is extended to describe state. Section 5 gives a brief summary of the model.
The model is, in itself, not intended to be a complete semantic description. That is
achieved by ‘embedding’ the model in a parent notation/logic. The focus of this pa-
per is, however, the timeband framework. Section 6 introduces some notation to allow
specification of properties in the timeband framework. A short example of the use of
the framework in presented in Sect. 7. Related and future work is discussed in Sect. 8
and conclusions are covered in Sect. 9.

2 Motivation

A large real-time system exhibits dynamic behaviour on many different levels. The
computational components have circuits that have nanosecond speeds, faster elec-
tronic subcomponents and slower functional units. Communication on a fast bus is
at the microsecond level but may be tens of milliseconds on slow or wide-area me-
dia. Human time scales move from the 1 ms neuron firing time to simple cognitive
actions that range from 100 ms to 10 seconds or more. Higher rational actions take
minutes and even hours. Indeed it takes on the order of 1000 hours to become an
expert at a skilled task, such as flying a plane (Schneider 1985) and the development
of highly skilful behaviour may take many years. At the organisational and social
level, time scales range from a few minutes, through days, months and even years.
Perhaps for some environmentally sensitive systems, consequences of failure may
endure for centuries. To move from nanoseconds to centuries requires a framework
with considerable descriptive and analytical power.

The concept of timebands comes from a detailed study of existing computer-based
systems1 and their requirements (e.g. Hutchesson and Hayes 1998), ethnographical

1As part of the Dependability Interdisciplinary Research Collaboration—DIRC, see web.

108 Real-Time Syst (2010) 45: 106–142

studies (e.g. Burns and Baxter 2006; Baxter 2007), the work of Newell (1990) in
his attempts to describe human cognition, work on system structure such as that
of Simon (1996), reports on system failures (e.g. Columbus (Blount et al. 2007)),
studies from areas such as the psychology and sociology of time (Fraisse 1963;
Friedman 1990; Roeckelein 2000; Levine 1997; Bergadaà 2007), formalisms such
as the teleo-reactive programming model (Nilsson 1994, 2001) and Statecharts that
require instantaneous state changes, and the few examples of modelling work that
do attempt to consider more than one time scale within a system (e.g. Corsetti et al.
1991a; Ciapessoni et al. 1993a).

As the concept of ‘now’ (present moment) seems to be fundamental to our rea-
soning about time, it follows that notions such as ‘instantaneous’, ‘simultaneous’ and
‘immediate’ are natural ones to use in specifying temporal properties. As Bergadaà
(2007) states in his work on a temporal framework:

The present time could be made of moments that enable the allocation of time
to different activities. They could also be made of duration in which the activity
will take the time necessary for its completion.

From such observations and the literature noted above we distil the following prop-
erties that we identify as being of relevance to the modelling of complex real-time
systems.

– The dynamics of a system (how quickly things change) are central to understanding
its behaviour.

– Systems clearly operate at many different granularities (of time), i.e. there are dif-
ferent abstract views of the dynamics of the system.

– It is useful to consider certain actions (events) as atomic and instantaneous (whilst
allowing them to have internal state and behaviour at a more detailed level of de-
scription).

– It is useful to consider two or more events as occurring simultaneously (instanta-
neously), or the response to some event being immediate (whilst allowing them to
be separated in time at a more detailed level of description).

– The order (but not necessarily the time) at which events occur is important; prece-
dence can give rise to causality.

– The durations of certain actions are important, but the measuring of time must not
be overly precise and must allow for tolerance (non-determinacy) in the temporal
domain.

– Abstract clocks are useful for relating and coordinating activities, but real clocks
are never perfectly reliable or accurate.

– At each level of temporal behaviour it is useful to have access to both continu-
ous and discrete notions of time—controlling actions are typically described using
discrete time, the controlled object due to its continuously changing nature often
requires dense time for its behavioural description.

– Hierarchical control (cascade control) and hierarchical scheduling (planning) are
often observed through the time levels of a system.

– At each level of temporal behaviour similar phenomena are observed (e.g., cyclic/
repetitive actions, deadline-driven actions, synchronous and asynchronous event
handling, agreement, coordination, etc).

Real-Time Syst (2010) 45: 106–142 109

Engineers, even of real-time systems, seem to have great difficulty over the use
of precise values of time. Why choose an iteration rate of 20 ms?—why not 19 ms
or 21 ms? What does a deadline of 15 ms actually mean?—would a delay of 10 μs
be significant? This difficulty with temporal quantities is not mirrored in the physical
domain where tolerances on lengths, weight etc. are commonly expressed.

In the timebands framework, apparently more natural (and essentially atempo-
ral) notions are available such as ‘immediate’, ‘instantaneous’, ‘simultaneous’, ‘defi-
nitely’ and ‘possible’. And durations are first expressed in general terms—for exam-
ple “this is a minute-level activity” (i.e. it will last a few minutes, rather than hours
or seconds). Orders of magnitude between rates of change give an initial decomposi-
tion of the system. Indeed the framework uses time itself to separate concerns in any
architectural description or system specification.

The central notion in the framework is that of a time band that is defined by a
granularity (e.g. 1 minute) and a precision (e.g. 5 seconds). Granularity defines the
unit of time of the band; precision bounds the actual duration of an event that is
deemed to be instantaneous in this band.

A system is assumed to consist not of a single time dimension but a finite set of
bands. System activities are placed in some band B if they engage in significant events
at the time scale represented by B, i.e. they have dynamics that give rise to changes
that are observable or meaningful in band B’s granularity. So, for example, at the
10 millisecond band, neural circuits are firing, significant computational functions
are completing, and an amount of data communication will occur. At the 5 minute
band, work shifts are changing, meetings are starting, etc. For any system there will
be a highest and lowest band that gives a temporal system boundary—although there
will always be the potential for larger and smaller bands. Note that at higher bands the
physical system boundary may well be extended to include wider (and slower) entities
such as legislative constraints or supply chain changes. To complete this short moti-
vation section the important topics of sampling and rates of change are addressed.

Sampling Our focus is on embedded real-time systems and hence we cannot avoid
issues like sampling of inputs, and discretization of continuous quantities. For exam-
ple, assume two proximity conditions are represented by boolean variables top and
bottom, representing that a controlled gate is at the top or bottom, respectively, of its
travel. It is an error for the two proximity sensors to give simultaneous positive inputs.
By placing this requirement for error detection in the minute band (with precision of
5 seconds) the following constraints are derived

– If in any interval of duration five seconds, or more, top and bottom are permanently
true then the error condition must be identified.

– If in any interval of duration five seconds, or less, top and bottom are true for part
of the interval then the error condition can be identified. Note that the intervals
over which top and bottom, respectively, hold don’t have to be the same, or even
overlap.

This dual use of must and can cannot be eliminated. One may move the requirement
between time bands to decrease the value of the precision parameter, but even in
the lowest band in the system there is an inevitable non-determinacy because true
perfectly simultaneous polling of the two sensors is not possible.

110 Real-Time Syst (2010) 45: 106–142

Rate of change Even though an environmental entity is subject to continuous
change, it does not mean that all such behaviour must be captured at the lowest pos-
sible band—and that this band must have a dense notion of time whilst the others can
be discrete. Rather, within any band, many (perhaps most) entities will be discrete,
but some may be continuous. So if the purpose of an automatic ‘plant watering’ sys-
tem in a greenhouse is to aid the growth of plants in some controlled environment,
the rate of growth of the crop per week or day may be significant (but not per second
or millisecond).

Consider, for example, the maximum rate of flow of water from a piston-style
pump. At a higher time band, this may be stated as r litres per time unit, but at a
lower time band, there are two phases of the piston: one filling the cylinder, in which
there is almost no flow of water out of the pump; and the other emptying the cylinder,
during which the rate of flow of water out of the pump is about twice r .

The maximum rate of change of a state variable may be uniform between some
pairs of time bands, but not between others. By uniform, we mean that the maximum
rates of change are the same (although they will be expressed with respect to the
granularity of their respective time bands). For example, with the piston pump the
rate of flow is not uniform at the time band that distinguishes the filling and emptying
phases of the cylinder, but between a pair of higher bands the rate of flow may be
uniform. At a still higher pair of bands, we may be switching the pump on and off
to control the rate of flow over a broader time base. Again the rate of flow won’t
be uniform, but between still higher bands, which don’t distinguish the on and off
phases, it may emerge to be uniform again.

The motivation for proposing this timeband framework is to simplify the specifica-
tion of complex systems, improve the dependability of deployed systems and reduce
the cost of designing (and redesigning) such systems. It allows dynamic properties to
be partitioned but not isolated from each other.

3 Definition of the timeband model

From the above considerations, a timeband model has been developed2 that is de-
scribed in this and the next section (with some illustrative small examples). The aim
of a timeband model is to be an essential part of any complete system description. It
enables the temporal properties of existing systems to be described and the require-
ments for new or modified systems to be specified. The informal description of the
framework is supported by a formal model expressed in the Z notation (Spivey 1992;
Hayes 1987).

The framework is developed in a number of stages that build up the full model.
Some examples of how this model can be extended into a language for actual use in
specifying systems is then given. The list of topics discussed in this section are: time
bands, granularity and precision, events and classes of events, precedence, simultane-
ous and immediate, activities, mappings between bands, durations, and clocks. The

2Initial developments of the framework are described in technical reports Burns et al. (2005), Burns and
Baxter (2006).

Real-Time Syst (2010) 45: 106–142 111

next section covers state-related aspects of the model: a less determined view of state,
change-of-state events, mapping states, accuracy and rates of change.

3.1 Time bands

For our formal model, we take the set of time bands (B) as a primitive type. Both
“�” and “�” are relations between bands, with “�” forming a partial ordering3 on
time bands. The type of a relation between bands is given as B ↔ B. A relation is
equivalent to a set of pairs, i.e. (B ↔ B) = P(B × B), where PX stands for power set
of X, (i.e., the set of all subsets of X).

For example, we may have that

MinuteBand � DayBand � MonthBand

From a focus on some band B , adjacent bands A and C, where C � B � A, can
be identified. Slower (higher or coarser) bands (e.g. A) can be taken to be unchanging
(essentially constant) for issues of concern to B . At the other extreme, behaviours in
the faster (lower or finer) bands (e.g. C) are assumed to be instantaneous in B . The
actual differences in granularity between A, B and C are not precisely defined (and
indeed may depend on the bands themselves) but will typically be in the range 1/10th
to 1/100th. When bands map on to hierarchies (structural or control) then activities in
band A can be seen to constrain the dynamics of band B , whereas those in C enable
B to proceed in a timely fashion. The ability to relate behaviour at different time
bands is one of the main properties of the framework.

As an example, consider a university lecture course. Here there are immediately
four bands to identify. The year band in which new courses and curriculum are
planned, the weekly band in which lectures are scheduled, the minute band that al-
lows each lecture to be structured, and the second band that can capture various in-
teractions with the available technical support (e.g. laptop response). Whilst giving a
lecture, one can assume that the curriculum is stable (unchanging) and that the laptop
reacts instantaneously to slide change requests. Systems that don’t respect some form
of time band structure can become extremely complex and difficult to comprehend,
e.g., changing the course syllabus while lecturing is likely to lead to great confusion.

It is important to emphasise that the full behaviour of a system is not obtained by
refining down to the lowest band or by projecting emergent behaviours up to the high-
est band. Rather it is the amalgamation of all band descriptions—all have behaviours
that may be needed in any assertion about the system as a whole.

3Although in most systems the bands will be totally ordered, there are applications, perhaps in the domain
of systems of systems, where this is not the case. For example a week band and a fortnight band are too
similar to seen as hierarchically related. They would however both be strictly ordered with respect to a
higher year band and a lower minute band. For a formal definition of partial order, see Appendix.

112 Real-Time Syst (2010) 45: 106–142

3.2 Granularity and precision

For each band its granularity, representing the unit of time in that band, and precision,
representing the measure of accuracy of events within that band. They must both be
expressed relative to a lower band. For example, the granularity of the MonthBand
with respect to the DayBand may have a granularity defined as follows:

Granularity(MonthBand,DayBand) = {28,29,30,31}

and the granularity of the DayBand with respect to the MinuteBand is defined as
follows:

Granularity(DayBand,MinuteBand) = {1440},
because there are 24 ∗ 60 = 1440 minutes in a day. Hence the granularity of the
MonthBand with respect to the DayBand is

Granularity(MonthBand,MinuteBand)

= {28 ∗ 1440,29 ∗ 1440,30 ∗ 1440,31 ∗ 1440}.

Note that this set is not contiguous. For ease of presentation we assume that standard
units such as minutes, milliseconds, etc., are well defined. However not all time scales
will give rise to time bands.

For a band b1, its granularity will be defined with respect to all lower bands; hence
the domain of the granularity function is all pairs of bands (b1, b2), such that b2 is
lower than b1. If b1 is related to a lower band b2, and b2 to b3, then the granularity
of b1 with respect to b3 is the composition of the granularities of b1 with respect to
b2 and b2 with respect to b3. The set N is the natural numbers and N1 is the non-zero
natural numbers. Granularity is a partial function (�) from pairs of time bands to a
non-empty set (P1) of non-zero natural numbers.

Within a band, behaviour is defined using events (which are instantaneous), activ-
ities (that have duration) and state (both discrete and continuous). These are defined
in later sections, but important here is the property that events are defined to be in-
stantaneous. And two or more events may be defined to be simultaneous. A band’s
precision is a constraint on the duration of ‘instantaneous’ and ‘simultaneous’ when
measured in a finer band. For example, if the precision of the hour band is defined
to be one minute then two simultaneous events must occur within a minute of each
other.

Real-Time Syst (2010) 45: 106–142 113

Because precision can only be expressed using the granularity of a finer band, it is
defined on a pair of (upper and lower) time bands.

The definition of precision enables the framework to be used effectively for re-
quirements specification. A temporal requirement such as a deadline is band-specific;
similarly the definition of a timing failure. For example, being one second late may
be a crucial failure in a computing device, whereas on a human scale being one sec-
ond late for a meeting is meaningless. The duration of an activity is also ‘imprecise’
(within the band). Stating that a job will take three months is assumed to mean plus
or minus a couple of days. Of course the precision of a band can only be explored in
a lower band.

Again with the lecturing example, assume the precision of the minute band is one
second. The instantaneous ‘slide change’ event when mapped to a laptop activity in
a lower band must have a duration of not more than one second.

A key aspect of the timeband framework is that certain entities are considered to
be instantaneous, and that they are then mapped to actions that have duration in a
more detailed description of the system. One means of achieving this property would
be to give all such entities a distinct precision. However in constructing behaviours
from collections of entities, composition is much more straightforward if the same
notion of precision applies. Moreover, the property of being ‘instantaneous’ relates
to the level of the temporal abstraction not to the event itself. Hence the timeband
framework starts by defining the bands and then places entities into the bands. If
the entity is instantaneous it is represented by an event; if it has duration then it
is represented by an activity with a duration that is adequately expressed using the
granularity of the chosen band. Hence ‘adequately’ means with sufficient (but not
excessive) precision over the value of the defined duration.

As well as the system itself manifesting behaviour at many different time bands,
the environment will exhibit dynamic behaviour at different granularities. The bands
are therefore linked to the environment at the level determined by these dynamics. In
many system abstractions it is useful to assume the environment is in some form of
steady state. But this assumption is clearly false as the environment evolves, perhaps
as a result of the deployment of the embedded system under development. By map-
ping the rate of this evolutionary change to an appropriate (relatively slow) time band
one can gain the advantage of the steady-state abstraction whilst not ignoring slower
dynamics.

3.3 Classes of events/activities

In describing the behaviour of a system we often want to refer to repetitive activi-
ties/events. We say they are of a particular class, e.g., the event class corresponding
to a door opening, where the door will be opened many times during the life of the

114 Real-Time Syst (2010) 45: 106–142

system. Each class of events/activities has a unique time band and name that we use
to characterise the class.

The above is a Z schema: it defines a record type C with two fields, band and name.

3.4 Events

By definition, all actions within a band have similar timing dynamics. Within a band,
events are instantaneous, while activities may have a non-zero duration. Events are
a natural way of expressing change within a system. By first defining behaviours to
be instantaneous, an abstract definition of their cause and effect can be given. Also,
seemingly impossible specifications can be given clear semantics. For example, the
change-of-state event to turn off a water pump (as used in the case study in Sect. 7)
is an event that ideally is instantaneous at some level of abstraction but clearly must
take time at a more detailed level of description (in a finer band).

In a particular behaviour, there may be any (countable) number of instances of
events of a particular class, including zero. The set of instances of an event class
within a behaviour are totally ordered by precedence (see below), and hence we can
also assign a unique index to an event instance. An event instance, “event” for short,
is characterised by its class (time band and name), and a natural number index, n,
indicating that it is occurrence n of events of that class within a behaviour.

We use the notation c # i to stand for the event of class c that has index number i.
The idea of indexing event instances comes from RTL (Jahanian and Mok 1986). We
define a shorthand for the time band of an event.

For a band, b, Events(b) defines the set of all events in that band.

3.5 Precedence

Although time is of central importance, there are contexts in which pure order is
a more natural way of describing behaviour (Lamport 1978; Allen 1984; Hollnagel
1993) (X was before Y, e.g., “before the end of the shift”, “after the plane took off”,
“before the flood”, “after the thread has completed”, “before the gate has fired”). The

Real-Time Syst (2010) 45: 106–142 115

framework must therefore represent both precedence relations and temporal frames
of reference.

There is a strong link between temporal order (i.e., time-stamped events and ac-
tivities) and precedence relations. However, in this framework, we do not impose an
equivalence between time and precedence. Due to issues of precision, time cannot be
used to infer precedence unless the time interval between two events is sufficiently
large in the band of interest.

Where bands are (at least partially) ordered by granularity, then order and hence
potential causality is preserved as one moves from the finer to the coarser bands.
However, order and hence causality are not necessarily maintained as one moves
down through the bands. Where order is important then proof must be obtained by
examining the inter-band relationships.

A precedence relation (�) defines a partial ordering4 on the events. Only events in
the same time band are related by the precedence relation. We use the operator ≺ for
strict precedence. A behaviour of a system will consist of a nonempty set of events,
ev, ordered by precedence. The notation (_ � _) stands for the precedence relation
taken as a whole.

The above Z schema declares a number of fields and constrains them to satisfy the
predicate below the line. Note that we don’t insist that all pairs of events are related
one way or the other, but if both e � f and f � e, because “�” is a partial order we
insist that e = f . For each class of events, event instances are sequentially numbered
from zero. Hence, if there is an instance of an event with index j , then there must be
event instances of the same class for all indices less than j and these instances must
precede the j th instance.

3.6 Simultaneous and immediate

In the specification of a system, an event may cause a response immediately (instanta-
neously)—meaning that at this band the response is within the precision of the band.
This use of untimed notions helps eliminate the problem of over specifying require-
ments that is known to lead to implementation difficulties (Hutchesson and Hayes
1998). For example consider the naturally specified requirement ‘when the fridge
door opens the light must come on immediately’; this apparently gives no scope
for an implementation to incorporate the necessary delays of switches, circuitry and
the light’s own latency. Making the term ‘immediate’ band specific, enables a finer-
granularity band to include the necessary delays, latencies and processing time that

4See Appendix.

116 Real-Time Syst (2010) 45: 106–142

are needed to support the immediate behaviour at the higher band. This separation of
concerns removes the need to add a precise deadline to the ‘light-on’ event. An ex-
plicit deadline (of say 8.5 ms) is too concrete—rather the deadline is ‘the definition
of immediate in this band’. Obviously being immediate in the hour band is not the
same as being immediate in the microsecond band.

Two events may have a precedence relationship (e.g. slide X before slide Y) but
occur at the same time (same hour).

It follows from these observations that, in this framework, there is a difference
between two events being simultaneous and being ‘at the same time’. The former
is a much stronger statement. Here two simultaneous events (in band B say) must,
when viewed from a finer band, be within the precision of band B. Whereas ‘at the
same time’ only required the two events to occur within the granularity of band B.
As the precision is typically 1/10th to 1/100th of the granularity, clearly events being
simultaneous is a much tighter constraint.

Precedence gives rise to potential causality. If P is before Q then information could
flow between them, indeed P may be the cause of Q. In the use of the framework for
specification we will need to use the stronger notion of precedence to imply causality.
For example, “when the fridge door opens the light must come on”. Within the band
of human experience this can be taken to be immediate (simultaneous but ordered). At
a finer band a number of electro-mechanical activities will be needed to be described
that will sense when the door is open and enable power to flow to the light. Impor-
tantly, no causality relationship can be inferred (without explicit precedence) for two
events occurring at the same time within their particular band. In effect they are logi-
cally concurrent and may occur in sequence or overlapped in time when viewed from
a lower band.

We introduce a separate relation (�) to denote that two events are simultaneous.
While � is reflexive and symmetric, it isn’t transitive.5 One event, f , immediately
follows another, e, written e � f , if f both follows e and is simultaneous with e. Be-
haviours are extended to include simultaneous events. This schema includes schema
BehaviourEvents, and hence includes all the fields of that schema as well as its con-
straints.

5See Appendix for the definition of symmetric_rel.

Real-Time Syst (2010) 45: 106–142 117

3.7 Activities

An activity has a class (time band and name) and an instance number.

We also use the notation c # i to refer to the activity with class c and instance i. We
define a shorthand for the time band of an activity.

For a band, b, Activities(b) defines the set of all activities in that band.

An activity has associated with it a nonempty set of events (i.e. P1 E), all of which
are in the same time band. Every activity, a, has associated with it a start event, ↑a,
and possibly an end event, ↓a. An activity may not have an end event if it never
terminates, or if we are only considering a partial trace of behaviour. For an activity
of class c, the start events of such activities are of class ↑ c and the end events are of
class ↓ c; note that we have overloaded the up and down arrow symbols to function on
both classes and activities. The start event of an activity should precede all events in
the activity, which should themselves precede the activity’s end event. The instance
number of an activity is the same as the index number of its start event. Note that
if we allow two activities of the same class to overlap, the instance number of an
activity and the index number of its end event need not correspond.

For the lecturing example, viewed at the year time band there may be an activity
that corresponds to a course. The events of this activity include a set of lectures, all

118 Real-Time Syst (2010) 45: 106–142

of which are after the start of the course and before its end. The lecture events may
be related by precedence. At this level the precedence may just correspond to the
dependence of material in one lecture on that in another, and hence the ordering of
the lectures need not be total.

Many activities will have a repetitive cyclic behaviour with either a fixed peri-
odicity or slowly varying pace. Other activities will be event-triggered. Most will
have temporal constraints (deadlines). Activities are performed by agents (organi-
sational, human or technical). In some bands all agents will be artificial (physical,
computational or electrical), at others all human, and at others both will be evident.
In addition to agents, there will often be the need for resources to enable the agent to
make progress.

In this framework definition we will not include agents and resources; rather we
concentrate on behaviour (events, activities and state). The scheduling of agents and
resources so that activities meet their timing requirements is a natural extension to
this description and would make use of standard scheduling and planning techniques.

3.8 Mappings between bands

In the components of the framework so far considered, all behaviours have been con-
fined to a single band. In doing so, some notions such as ‘instantaneous’, ‘simulta-
neous’, and ‘immediate’ have been defined but their semantic properties have not yet
been fully defined. To do this, multiple-band behaviours need to be accommodated.
This is achieved by mapping events in one band to activities in finer bands.

Events that are instantaneous in band A may map to activities that have duration at
some lower band B with a finer granularity. A key property of a band is the precision
it defines for its time scale. This requires the activity associated with event E (in
band A) to have a maximum duration of ρ (the precision of band A—as measured
in band B). An illustration of a three band system with the mapping of events to
activities is shown in Fig. 1. As noted earlier, the start and end of an activity are
themselves represented as events.

The link between any two bands is expressed in terms of each band’s granularity
and precision. Usually the finer of the two bands can be used to express these two
measures for the broader band. Where physical time units are used for both bands
these relations are straightforward. For example a band with a granularity of an hour
and a precision of two minutes is easily linked to a band with a granularity of ten
seconds and precision of half a second. The granularity relation is a link from one
time unit (1 hour) in the higher band to 360 units in the lower band. The precision of
one minute means that a time reference at the higher band (e.g., 3 o’clock) will map
down to the lower band to imply a time reference (interval) between 2.59 and 3.01.
In general, two bands are said to be ordered if the precision of one band is larger then
the granularity of the other.

If an event, e, maps to an activity, a, then that activity has a unique signature
event, sign(a), which corresponds to e in the lower band. Behaviours are extended
with activities. The mapping preserves the precedence relation between two higher
band events e1 and e2 by requiring that the signature events of their corresponding

Real-Time Syst (2010) 45: 106–142 119

Fig. 1 Time band example

activities a1 and a1 in the lower band are similarly related, i.e. sign(a1) � sign(a2).

3.9 Durations

The function duration gives the time between any two events. To allow for lack of
knowledge of the exact time between events and the granularity of the time base, the
result of duration is a time interval, i.e., a contiguous nonempty set of times, each of
which is represented by a natural number.

Interval == {I : P1N|(∀t1, t2 : I ; t : N • t1 < t < t2 ⇒ t ∈ I)}
An activity that has not terminated (ie. is not in the domain of “↓”) cannot be given
a duration. The duration of a terminating activity is determined from its start and end
events.

120 Real-Time Syst (2010) 45: 106–142

Any event in the upper band is mapped to an activity in the lower band whose
duration is within the precision of the upper band (with respect to the lower
band).

Precision is not only important in defining the bounds on what it means for an
event to be instantaneous (in a band), it is also used to constrain what is meant by
two events to be simultaneous in some band. If e and f are simultaneous in band b

(with precision ρ with respect to the lower band c) then the signature events of the
mapped activities must occur within ρ in band c. Similarly, two events can be defined
to be ‘not simultaneous’ and may require some component of the system to test that
this erroneous situation does not occur. Again, by placing such a requirement in the
right band, the necessary tolerance on the implementation of the monitoring task is
precisely defined.

3.10 Clocks

For the time bands associated with computational activity, there is usually a strong
notion of time and (adequately accurate) physical clocks that will aid scheduling and
coordination. This is also increasingly the case with the bands of human experience
as external sources of time and temporal triggers abound (Levine 1997). So measures
such as second, minute, hour, day, week, month, year, decade and century are now
universal. But other time scales such as ‘generation’, ‘era’ and ‘age’ are also used
in specific domains. In a different context the granularity of a band may relate to a
physical property of the system, such as the rotation of the crank shaft for an engine
control unit.

A frame of reference defines an abstract clock that counts ticks of the band’s gran-
ularity and can be used to give a time stamp to events and activities. A band may
have more than one such abstract clock but they progress at the same rate. For ex-
ample the day band will have a different abstract clock in each distinct geographical
time zone.

Real-Time Syst (2010) 45: 106–142 121

We develop a consistent model of time by representing certain moments in the
dynamics of a band as “clock tick” events, which are modeled just like any other
event. When necessary, an event can be situated in absolute time (within the context
of a defined band and clock) by stating a precedence relationship between the event
and one or more clock ticks. So an event occurred between 2.00 and 3.00 (in the hour
band) if the event occurred after the start of hour from 2.00 to 3.00 but before the
end of that hour. Note this is different to saying the event occurred ‘at 2.00’. Here the
implication is that it is simultaneous with the 2.00 event. So ‘I will arrive at 2.00’ is
satisfied by arriving sufficiently close to the 2.00 event (within the precision of the
hour band). However ‘I’ll will arrive by 3.00’ is quite different and allows the arrival
event to occur anytime up to the 3.00 event.

A clock can be modeled as a sequence of clock-tick events of a given class, and
hence a given time band. Successive clock-tick events are separated by one time unit
in the granularity of the band. They are therefore never simultaneous.

4 State

In modelling state within the timeband framework there are a number of issues we
need to take into account:

observations: within a particular time band, only a subset of the state variables (ob-
servations) will be relevant,

nondeterminism: at the time interval corresponding to an event within a band, there
may be a set of possible values of a state variable,

change-of-state events: for discrete state observations, changes in value correspond
to change-of-state events,

accuracy: for a continuous state observation, there will be a maximum change over
a time interval corresponding to the precision of the band, and

rate-of-change: for continuous observations, there will be a maximum rate of change
over an interval of size the granularity of the time band.

The observation variables of different time bands may be different. Typically, the
representation becomes richer as one moves down to a lower time band with a finer
granularity. We say that the state of the system is projected onto a band; in some
bands not all possible observation variables will be accessible (as the time spent in
that state is too short). To illustrate, consider an automatic door:

– at a high time band one can view the door as either open or closed, with “instanta-
neous” events to open or close it;

– at a lower time band the open and close events take time, and there are new activi-
ties opening and closing

– at a lower level still one may model how far open the door is by a percentage
between 0% open (i.e., closed) and 100% open; this numeric measurement may
either be discrete, with some granularity, or continuous; if it is discrete then, at a
still lower time band, it may be discrete with a finer granularity.

This can be modeled by having different observation variables at different time bands.

122 Real-Time Syst (2010) 45: 106–142

4.1 States

The state space can be represented by a mapping from variable names, taken from
the set V , to values, taken from the set X.

State[V,X] == V � X

The above definition of State is generic in the sets of variables and values, for exam-
ple, the instantiation State[{x, y}, {0,1}] represents states with variable names from
the set {x, y} and values from the set {0,1}. A state, σ ∈ V � X, maps each variable
name in its domain to its value in that state. For simplicity we use the universal set X

for all values, rather than each variable having values of a particular type. The set of
observation variables in a particular time band is fixed, and hence it is useful to refer
to sets of states, all of which have the same variables (i.e., domain).

StateSet[V,X] == {ss : PState[V,X]|(∀σ1, σ2 : ss • dom(σ1) = dom(σ2))}
For example, if x and y are variables and integers are values then s is a state and ss
is a state set.

s = {x → 0, y → 1}
ss = {{x → 0, y → 0}, {x → 1, y → 0}, {x → 1, y → 1}}

The “sets of states” view is adequate for a single sequential process controlling all the
variables in the state, but if there are concurrent processes or an externally evolving
environment, observation of the state at a particular time precision may observe one
variable at one instant and another at a slightly different instant. Hence, if we don’t
determine the order of observation of the variables, there is a set of values that we
can observe for each variable at that time “instant”. This leads to a less determined
representation of the states, in which each variable is mapped to a set of possible
values.

4.2 Values views of the state

Over the time interval corresponding to an event, e, within a particular time band, one
can extract the set, ss, of actual states that occur in that interval. Unfortunately, the set
of states view doesn’t reflect the reality of observing multiple variables, all of which
are evolving over time. For example, if we have two variables x and y which are both
initially zero, and if in quick succession x changes to one and then y changes to one,
then there is no point at which the state has x with value zero and y with value one.
The set of states for this transition is ss, above. However, a program sampling the two
variables may first sample x and get zero and then sample y and get one, i.e. obtain a
state {x → 0, y → 1}, which is not in ss.

To address this issue we introduce a less determined representation of a set of
states, which for each variable records the nonempty6 set of values it has accumulated

6Hence P1 rather than P.

Real-Time Syst (2010) 45: 106–142 123

over all the states. This has less information than the equivalent set of states.

VState[V,X] == V � P1X

Note that a sets of values view, or values view for short, is a form of state with values
replaced by sets of values:

VState[V,X] = State[V,P1X]
As with states, we define the sets of values views, all of which have the same vari-
ables.

VStateSet[V,X] == StateSet[V,P1X]

4.3 Relating a set of states to a values view

The set of states ss above corresponds to the values view sv.

sv = {x → {0,1}, y → {0,1}}
We define a function values to represent this relationship so that values(ss) = sv,
where the notation {σ : ss • σ(v)} stands for the set of all values of σ(v) for σ in ss.7

In the opposite direction, the set of states that may be apparent in a values view
of the state can be extracted by considering all possible states such that each vari-
able maps to an element of its set of possible values. For the values view sv, the
corresponding set of apparent states is

apparent(sv) = {{x → 0, y → 0}, {x → 1, y → 1},
{x → 0, y → 1}, {x → 1, y → 0}}.

The function apparent is defined as follows.

We have two properties that relate apparent and values.

7This is more commonly written {σ(v)|σ ∈ ss} but Z notation makes the fact that σ is a bound variable
explicit, and hence avoids the possible ambiguity in the commonly used syntax.

124 Real-Time Syst (2010) 45: 106–142

Theorem 1 For all values views, sv,

sv = values(apparent(sv)) (1)

and for all sets of states, ss,

ss ⊆ apparent(values(ss)) (2)

For example,

ss = {{x → 0, y → 0}, {x → 1, y → 0}, {x → 1, y → 1}}
sv = values(ss)

= {x → {0,1}, y → {0,1}}
apparent(sv) = {{x → 0, y → 0}, {x → 1, y → 1},

{x → 0, y → 1}, {x → 1, y → 0}}
⊃ ss

values(apparent(sv)) = {x → {0,1}, y → {0,1}}
= sv

Hence a set of states has potentially finer information than the corresponding values
view.

4.4 Behaviour with state

Each time band has associated with it a set of variables that are observable in that
band. Within a behaviour, ev_val(e), returns the values view (over the observables
of its band) that coincides with event e. For a discrete state variable, there is of-
ten a unique value, but if the event occurs close in time to a change of state then
multiple values are possible to reflect our lack of knowledge of the actual value.
For example, if an event is simultaneous with an hour band clock clk striking 12
then ev_val will return {clk → {11,12}}. If the value of a continuous state variable
is changing at the time of the event, then there is a range of values of the vari-
able.

The set of values views over an interval between (but not including) two events,
e1 and e2, in the same time band is given by interval_val(e1, e2). Behaviours are
extended with state.

Real-Time Syst (2010) 45: 106–142 125

The values view associated with any event occurring within an interval must be in the
values views of the interval. If two events e2 and e3 are surrounded by events e1 and
e4, the values views of the interval between e2 and e3 must be contained in those of
the interval between e1 and e4. For a nonempty interval the states corresponding to
the end-point events “overlap” in values with some state within the interval.

The set of values views over an activity, a, is given by act_val(a), which includes
all the states between the start and end events of the activity, including at the start and
end events.

4.5 Change of state events

For discrete state, changes in value can be modeled by events. We can represent a
change of state event in which variable v takes on the new value x, by the syntax
(v := x) for this class of event. A variable, v is constant between state change events
for v.

126 Real-Time Syst (2010) 45: 106–142

4.6 Mapping states

If an event e is mapped to an activity a in a lower band, then the values view at the
event in the higher band corresponds to the union of the state values for the activity
in the lower band.

4.7 Accuracy and rates of change

As discussed above, within a single band a numeric-valued variable may have an
accuracy and a maximum rate of change. Its accuracy is the maximum amount it
can change over a period of size the precision of the band, and its maximum rate of
change is the maximum amount it can change over a period of size the granularity of
the band.

Within a particular time band, the rate of change of a state variable can be viewed
as the change in its value over a time unit within the band. We’ll illustrate this by
discussing the maximum rate of change of a state variable, v.

– Within a given time band the maximum rate of change of v may be r , i.e., v can
change by at most r over one time unit in that band.

– For a lower time band to be consistent with the upper band, the sum of the changes
over a sequence of time units within the lower time band, with length correspond-
ing to the granularity of the upper band with respect to the lower band, must be at
most r .

Satisfying the consistency condition has a special case if we consider the state vari-
able to be uniform between two levels, or uniform for short. If the granularity of the
upper time band with respect to the lower time band is n, then for a uniform state
variable the maximum rate of change in the lower time band will be at most r/n. At

Real-Time Syst (2010) 45: 106–142 127

a still lower time band with granularity m with respect to the above lower band (and
hence granularity m ∗ n with respect to the upper time band) the maximum rate of
change in this still lower time band will be at most r/(m ∗ n). With a uniform state
variable, as the size of the time unit of the band approaches zero the rate of change
approaches the derivative of the state variable with respect to time.

5 Summary

Rather than have a single notion of time, the proposed framework allows a number of
distinct time bands to be used in the specification or description of a system. System
behaviours are always relative to (defined within) a band.

The above discussion has defined the timeband framework and introduced a num-
ber of key notions that are central to the framework. Here we summarize these ideas:

– band—a subset of system behaviours (discrete and continuous) with similar tem-
poral properties;

– system—a partially ordered set of bands;
– separation—the property of being able to assume that activities in lower (quicker)

bands are instantaneous and the state of higher (slower) bands is unchanging;
– granularity—the unit of time defined by a band;
– precision—the constraint on instantaneous behaviour within a band;
– event—an instantaneous action within a band;
– activity—an action with duration within a band;
– duration—a time interval between events;
– clock—an abstract band-specific clock that produces ticks (events) at the granular-

ity of the band;
– precedence—one event happening after another event;
– simultaneous—two events occurring at the same instant;
– immediate—a precedence relation between two simultaneous events;
– mapping—a link between an event in one band to an activity in a lower band;
– state—the observations available within a time band;
– set of values view—the observations over the period of an event;
– change-of-state events—for discrete observations;
– accuracy—maximum “instantaneous” change in a continuous variable;
– rate-of-change—maximum rate of change of a continuous variable over a unit of

time.

6 Towards a language for timebands

Having presented a model for the timeband framework it is then necessary to define
a language that can be used to specify system requirements and behaviour. Such
a language is derived from the abstract model. In this paper we do not attempt to
provide a single, or even a complete, timeband language. Rather we illustrate features
that such a language could usefully contain. These are used in a short example of the
use of time bands in the Sect. 7.

128 Real-Time Syst (2010) 45: 106–142

6.1 Predicates

We represent a predicate over a state space, �, via the subset of states in � that satisfy
the predicate.

Definition 1 (Predicate) For a state space �, a predicate is represented by a set of
states.

Pred[�] == P�

We use the conventional notations, “∧”, “∨”, and “¬” instead of intersection,
union, and complement of sets (with respect to the state space �), respectively, when
dealing with predicates. As usual, the unary operators have higher precedence than
the binary operators. Point-wise implication, denoted p ⇒ q , is defined as ¬p ∨ q ,
and point-wise equivalence is denoted by p ⇐⇒ q . Universal implication, denoted
p � q , is defined as (∀σ • σ ∈ p ⇒ σ ∈ q), or more succinctly as p ⊆ q . Universal
equivalence is denoted p ≡ q .

6.2 Predicates on sets of states

Given a state predicate, p, there are two obvious ways to promote it to a set of states
(as in modal logics (Hughes and Cresswell 1968)). If p holds for all states in the set,
we write �* p, and if p holds for some state in the set, we write �p.

Definition 2 (All states and some states)

We promote the boolean operators to predicates on sets of states in the obvious
way (because they are defined as predicates, but over sets of states rather than states).
We have the following properties of “all states” and “some state” when combined
with logical operators.

¬�* p ≡ �(¬p) (3)

�* p � �p (4)

�* p ∧ �* q ≡ �* (p ∧ q) (5)

�p ∨ �q ≡ �(p ∨ q) (6)

�* p ∨ �* q � �* (p ∨ q) (7)

�(p ∧ q) � �p ∧ �q (8)

Note that property (4) is valid because the sets of states must be non-empty.

Real-Time Syst (2010) 45: 106–142 129

Theorem 2 Given state predicates p and q ,

(�p ⇒ �* q) � (�* (p ⇒ q)) (9)

Proof

�p ⇒ �* q

≡ by the definition of implication

¬�p ∨ �* q

≡ by (3)

�* ¬p ∨ �* q

�by (7)

�* (¬p ∨ q)

≡ by the definition of implication

�* (p ⇒ q)

�

6.3 Predicates on values views

We refer to a predicate on a values view of the state as a values predicate.

Definition 3 (Values predicate)

VPred[V,X] == Pred[VState[V,X]]

We promote a predicate, p, on a single state, to a predicate on a values view in two
ways. If p holds for all apparent states (see Sect. 4.3) derivable from the values view,
sv, we say p definitely holds for sv, written sv ∈ �p, and if p holds for at least one
apparent state derivable from sv, we say p possibly holds for sv, written sv ∈ �p.

Definition 4 (Definitely and possibly)

We promote the boolean operators to values predicates in the obvious way because
values predicates are predicates, but over values views rather than states.

In the example considered in Sect. 7, if the methane in a coal mine shaft is ever
over a critical level, then to avoid causing an explosion, the pump extracting water

130 Real-Time Syst (2010) 45: 106–142

from the mine must be off. We can formalise this property by the following values
predicate.

�(methane ≥ Critical) ⇒ �(pump = Off)

If the methane is possibly critical at some instant (i.e., the values view includes an
apparent state in which the methane is critical), then the pump is definitely off (i.e., it
is off for all apparent states).

From Definitions 3 and 4, the “definitely” and “possibly” operators are related to
“all states” and “some state” as follows for all values views, sv.

sv ∈ �p ⇔ apparent(sv) ∈ �* p (10)

sv ∈ �p ⇔ apparent(sv) ∈ �p (11)

Hence, we have the following properties directly derivable from the properties of
predicates on sets of states (3)–(8).

¬�p ≡ �(¬p) (12)

�p � �p (13)

�p ∧ �q ≡ �(p ∧ q) (14)

�p ∨ �q ≡ �(p ∨ q) (15)

�p ∨ �q � �(p ∨ q) (16)

�(p ∧ q) � �p ∧ �q (17)

There are two interesting properties of definitely (�) and possibly (�) that don’t
hold for “all states” (�*) and “some states” (�).

Theorem 3 If the free variables occurring in the predicates p and q are disjoint,
then

�p ∧ �q ≡ �(p ∧ q) (18)

�(p ∨ q) ≡ �p ∨ �q (19)

If the set of free variables occurring in the predicate p is w, and σ1 and σ2 are two
states that agree on all the variables in w, (i.e., w � σ1 = w � σ2, where w � σ is the
state σ restricted to just those variables in the set w), then σ1 ∈ p ⇔ σ2 ∈ p.

Proof We focus on property (18) because (19) can be derived from it using �p =
¬�¬p. The reverse implication is property (17) above. In the forward direction,
if we assume sv ∈ �p and sv ∈ �q , then (∃σ : apparent(sv) • σ ∈ p) and (∃σ :
apparent(sv) • σ ∈ q). Hence let σ1 ∈ p ∩ apparent(sv), and σ2 ∈ q ∩ apparent(sv).
If w is the set of free variables occurring in p, we let σ = (w �σ1)∪ (w −�σ2), where
w � σ is the state σ restricted to just the variables in w and w −� σ is σ restricted
to the variables not in w. Because p depends only on variables in w and w � σ =
w � σ1, it follows that σ ∈ p. Similarly, because q only depends on variables not

Real-Time Syst (2010) 45: 106–142 131

in w, σ ∈ q . Finally, because both σ1 and σ2 are in apparent(sv), σ ∈ apparent(sv).
Hence (∃σ : apparent(sv) • σ ∈ p ∧ q), i.e., sv ∈ �(p ∧ q). �

Note that (18) holds for � but not �. For example, if

ss = {{x → 0, y → 0}, {x → 1, y → 0}, {x → 1, y → 1}}
we have ss ∈ �(x = 0) ∧ �(y = 1) but not ss ∈ �(x = 0 ∧ y = 1).

Using Theorem 3 we can show the following theorem.

Theorem 4 Provided the free variables of p and q are disjoint,

�(p ⇒ q) ≡ (�p ⇒ �q)

Proof

�(p ⇒ q)

≡ �(¬p ∨ q)

≡ Theorem 3; free variables in the two disjuncts are disjoint

�(¬p) ∨ �q

≡ ¬�p ∨ �q

≡ �p ⇒ �q �

6.4 On the relationship between reality and observation

For each event there is an interval over which the event occurs and a set of actual
states, ss, over that interval. The corresponding values view is values(ss). From prop-
erty (2), i.e., ss ⊆ apparent(values(ss)), if we want to show a property, p, holds for
all actual states in ss, it is sufficient to show the stronger property that p holds for all
states in apparent(values(ss)), i.e., �p holds for values(ss). Similarly, if we know a
property p holds for some actual state in ss, we can deduce �p for values(ss). These
relationships are captured by the following theorem.

Theorem 5 For any set of actual states, ss,

values(ss) ∈ �p ⇒ ss ∈ �* p (20)

ss ∈ �p ⇒ values(ss) ∈ �p (21)

Consider the simple case in which we are only dealing with one free variable, x,
in a predicate, e.g., the predicate is of the form �(x ∈ S) or �(x ∈ S), where S is
constant over the observation interval, then �(x ∈ S) in the values view is equivalent
to �* (x ∈ S) in reality, and �(x ∈ S) in the values view is equivalent to �(x ∈ S)

in reality. Special cases of these predicates are comparisons of a variable with an
expression, C, that is constant over the observation interval, e.g., x = C or x < C.

132 Real-Time Syst (2010) 45: 106–142

If one samples a variable, x, in the environment, and gets the value C, one can
deduce �(x = C), which is equivalent to �(x = C). Similarly, by sampling y we may
deduce �(y = D), which is equivalent to �(y = D). By Theorem 3 these samples
allow one to deduce �(x = C∧y = D) but not the stronger condition �(x = C∧y =
D). This formalises the property that sampling two boolean variables, top and bottom,
introduced in Sect. 2. Getting two sample values, e.g., true and true, does not allow
one to deduce that the two variables simultaneously have those values (i.e., we can’t
deduce �(top ∧ bottom)), but we can deduce the weaker property �(top ∧ bottom).
That is

ss ∈ �(top ∧ bottom) ⇒ values(ss) ∈ �(top ∧ bottom)

but not the other way around, in general. Note that �(top ∧ bottom) ≡ � top ∧
�bottom, but we only have �(top ∧ bottom) � � top ∧ �bottom, in general.

6.5 Application to state model

In this section we develop some notation for using values predicates with the values
view model. Given a behaviour and an event e, ev_val(e) gives the values view cor-
responding to event e. For a values predicate, p, we introduce the notation p@e to
state that p holds for the values view corresponding to e, i.e.,

p @ e ⇔ ev_val(e) ∈ p

For events e1 and e2, interval_val(e1, e2) gives the set of values views occurring
(strictly) between the two events. We introduce the notation p during (e1, e2) to stand
for p holding for all values views between e1 and e2, and p within (e1, e2) to state
that p holds for some values view between e1 and e2, i.e.,

p during (e1, e2) ⇔ interval_val(e1, e2) ∈ �* p

p within (e1, e2) ⇔ interval_val(e1, e2) ∈ �p

We also overload these operators so that we can use an activity instead of a pair of
events, e.g., p during a, with the understanding that the pair of events are the start and
end of the activity, e.g., p during (↑a,↓a).

The properties of behaviours on state allow one to deduce properties expressed in
terms of these relations. For example, if a property definitely holds at an end point
event of a nonempty closed interval then, because the state of the end point “overlaps”
with those in the interval, we get the following property for all pairs of events e1 and
e2 where e1 precedes e2,

(�p) @ e1 ⇒ (�p) within (e1, e2) (22)

For example, if �(m ≥ C) @ e1 holds, i.e., for all values of m in the values view
corresponding to e1 we have m ≥ C holding, then because the end of event e1 corre-
sponds to the start of the interval between e1 and e2, we have that m ≥ C at the very
start of the interval, but note that we don’t have any guarantee that m stays above C

Real-Time Syst (2010) 45: 106–142 133

for any given period—not even the precision of the band—during the interval, and
hence we can only deduce �(m ≥ C) holds within the interval.

We introduce two further shorthand forms to state that a values predicate holds
just before and after an event, respectively.

p before e ⇔ (∃e′ : ev • e′ � e ∧ p during (e′, e))

p after e ⇔ (∃e′ : ev • e � e′ ∧ p during (e, e′))

We assume all these relations have higher precedence than logical operators, but
lower precedence than the other operators.

From the properties for predicates on sets of states we can deduce properties for
during and within, e.g., the following property.

(p within (e1, e2)) ⇒ (q during (e1, e2)) �
(p ⇒ q) during (e1, e2)

(23)

This holds because

(p within (e1, e2)) ⇒ (q during (e1, e2))

≡ letting ssv = interval_val(e1, e2)

ssv ∈ �p ⇒ ssv ∈ �* q

≡
ssv ∈ (�p ⇒ �* q)

�by Theorem 2

ssv ∈ �* (p ⇒ q)

≡
(p ⇒ q) during (e1, e2)

7 Example: mine pump

The mine pump case study has been used by a number of formal frameworks to in-
vestigate and illustrate different specification approaches (see Burns and Lister 1991;
Mahony and Hayes 1992; Joseph 1996) for a number of examples). In its briefest
form, the case study involves two subsystems: a methane monitoring subsystem that
sounds an alarm if the sensed level of methane is above a threshold, and a pump
control subsystem that pumps water from the mine sump if the water level reaches
a High_water level sensor (the pump then operates until a Low_water level sensor
is reached). The two subsystems are coupled by the safety requirement not to oper-
ate the pump if the methane is high (due to risk of gas explosion). There is also a
performance requirement that limits the number of days lost due to flooding to be
two or less. In the following partial treatment we concentrate on the methane control
subsystem.

134 Real-Time Syst (2010) 45: 106–142

We specify the mine pump in terms of rely and guarantee conditions (Jones et
al. 2007), which are similar to preconditions and postconditions, except that rely
and guarantee conditions are specified over the interval during which the system is
running, rather than in terms of the before and after states for pre-/post-conditions.
A guarantee condition is a condition that the system should maintain over its operat-
ing interval, provided the rely conditions hold for that interval.

Mine pump guarantee A pump is used to extract water from a mine shaft. However,
if there is a critical level of methane in the mine shaft, an explosion could result if the
mine pump is operated. Hence, one requirement is that at all times while the system
is running, it should guarantee that the pump is off at any time the methane level is
critical.8 This is represented by the following predicate which must hold for all states
of the system while it is operating.

�* (methane ≥ Critical ⇒ pump = Off) (24)

For a guarantee about a system’s behaviour, by (20), if one can show the system
guarantees �p holds for the sampled view of the state, then �* p holds for the corre-
sponding real states. Hence, (24) holds provided the following values predicate holds
while the system is operating,

�(methane ≥ Critical ⇒ pump = Off) during Operation (25)

where Operation stands for the activity representing the period the system is oper-
ating. The “during” operator is interpreted with respect to a particular time band (in
particular, its precision ρ). Interestingly, from the point of view of this guarantee, all
we require is that there is some time band in which this is satisfied (and this can be de-
termined by the implementation). If we added a requirement ensuring that the pump
is on whenever the methane level is safe (i.e., it is below critical by some bound),
then this would constrain the choice of implementation time band by limiting the size
of its precision.

From Theorem 4 we have that (25) is equivalent to the following.

(�(methane ≥ Critical) ⇒ �(pump = Off)) during Operation (26)

Mine pump rely In order to implement the requirement, one may rely on a number
of properties of the environment. We’ll assume that the implementation will be oper-
ating within a particular time band, but the properties we rely on can be adapted to a
range of possible choices of time bands. Assume the accuracy of the methane level
within the band is Acc_meth. This represents the maximum amount the methane level
can vary over a period of size the precision of the time band. Hence for any trace of
the system and any value Z

(�(methane = Z) ⇒ �(methane ∈ Z ± Acc_meth)) during Operation (27)

8In a more detailed analysis, one may want to distinguish between the pump being turned off and it actually
having come to a stop.

Real-Time Syst (2010) 45: 106–142 135

where x ± acc is the set of values {v|x − acc ≤ v ≤ x + acc}. Note that this trace
predicate is implicitly using the precision, ρ, of the time band to split up the interval
into subintervals of size no more than ρ, and the predicate has to hold on each of
these. From (27) one can deduce

(�(methane ≥ Z) ⇒ �(methane ≥ Z − Acc_meth)) during Operation (28)

Note that this accuracy is only concerned with the timing precision of the band. We
should separately consider the accuracy of the methane sampling sensor itself, but for
the purposes of this example we assume there is no sampling error.

Assume the maximum rate of change of methane level in the band is Rate_meth.
This represents the maximum change in the methane over a period of size the granu-
larity of the time band. For an interval of duration n, the level of methane can change
by at most n times Rate_meth over that interval. Hence, for some value, Z, if the
methane is ever at least Z + n ∗ Rate_meth within the interval, then it must have
been at least Z at the start of the interval. For all pairs of events e1 and e2 within a
behaviour such that max(duration(e1, e2)) ≤ n, and for any value Z,

(�(methane ≥ Z + n ∗ Rate_meth) within (e1, e2)) ⇒
(�(methane ≥ Z) @ e1)

(29)

Mine pump implementation The implementation samples the methane level at reg-
ular intervals. The ith sampling event is denoted by s # i. It is assumed that the pump
is off from the start of operation until the first sample.

�(pump = Off) during (↑Operation, s # 0) (30)

We require that the maximum time between samples is n time units in the granularity
of the implementation band, i.e., max(duration(s # i, s # i + 1)) ≤ n. A sample event,
s # i, corresponds to an activity at a lower time band, which takes place within the
precision of the upper time band; the activity contains events to set up analog-to-
digital converters to read the methane and water levels, wait until the conversions
are complete and read the levels, and turn the pump off if the methane is above a
threshold value. In addition, if the methane is below the threshold it turns the pump
on or off depending upon the current water level. Here we focus on the properties
we need of the sampling events, rather than giving an actual implementation. It is a
separate (more straightforward) problem to show an implementation of the sampling
events has these properties.

If the methane is definitely above the threshold for sample i, the pump must be off
from immediately after the sample until the start of the next sample:

(�(methane ≥ Threshold) @ s # i) ⇒
(�(pump = Off) during (s # i, s # i + 1))

(31)

If the pump was already off before sample i then at sample i, if the methane is
definitely at least the threshold, the pump remains off for the sample.

(�(pump = Off) before s # i) ∧ (�(methane ≥ Threshold) @ s # i)

⇒ (�(pump = Off) @ s # i)
(32)

136 Real-Time Syst (2010) 45: 106–142

To allow for the maximum rate of change of the methane level (Rate_meth) between
the sampling events (which are at most n time units apart) and the inaccuracies of
the sampling events (Acc_meth) at each end of the interval, we require the following
constraint between Critical and Threshold.

Critical ≥ Threshold + n ∗ Rate_meth + 2 ∗ Acc_meth (33)

Theorem 6 An implementation that satisfies properties (30), (31), (32), and (33)
fulfils the guarantee (26) provided the rely conditions (27) and (29) hold.

Proof We assume the rely conditions and the conditions specified for the implemen-
tation and show that the guarantee condition (26) holds over the operating interval,
by showing it holds before the first sample, at every sampling event, and for every
interval between one sample and the next. That the guarantee holds before the first
sample event follows directly from (30). For the rest we have to show that for all
natural numbers i

(�(methane ≥ Critical) ⇒ �(pump = Off)) @ s # i (34)

(�(methane ≥ Critical) ⇒ �(pump = Off)) during (s # i, s # i + 1) (35)

First we show

�(methane ≥ Critical − Acc_meth) within (s # i, s # i + 1) �
�(pump = Off) during (s # i, s # i + 1)

(36)

as follows

�(methane ≥ Critical − Acc_meth) within (s # i, s # i + 1)

�from the constraint on the threshold (33)

�(methane ≥ Threshold + n ∗ Rate_meth + Acc_meth) within (s # i, s # i + 1)

�from the maximum rate-of-change of methane (29)

�(methane ≥ Threshold + Acc_meth) @ s # i

�from methane accuracy (28)

�(methane ≥ Threshold) @ s # i

�as the pump is turned off if methane is high (31)

�(pump = Off) during (s # i, s # i + 1)

To show (34) we first consider the case for sampling events other than sample zero.

�(methane ≥ Critical) @ s # i + 1

�from methane accuracy (28)

�(methane ≥ Critical − Acc_meth) @ s # i + 1

Real-Time Syst (2010) 45: 106–142 137

�by (22)

�(methane ≥ Critical − Acc_meth) within (s # i, s # i + 1)

�from (36)

�(pump = Off) during (s # i, s # i + 1)

�by the definition of before

�(pump = Off) before s # i + 1

�by (32) and Critical − Acc_meth ≥ Threshold

�(pump = Off) @ s # i + 1

For sample zero we have �(pump = Off) before s # 0 from (30), and hence it is
sufficient to apply the equivalent of the last step of the above proof.

To show (35), we first note that, using (23), it is implied by

�(methane ≥ Critical) within (s # i, s # i + 1) �

�(pump = Off) during (s # i, s # i + 1)

which we show as follows.

�(methane ≥ Critical) within (s # i, s # i + 1)

�from methane accuracy (28)

�(methane ≥ Critical − Acc_meth) within (s # i, s # i + 1)

�as �p ⇒ �p

�(methane ≥ Critical − Acc_meth) within (s # i, s # i + 1)

�using (36)

�(pump = Off) during (s # i, s # i + 1) �

The above reasoning has been generic with respect to the choice of time band,
in particular, the precision and granularity of the time band and the choice of the
sampling interval n. From (33) we have

Critical − Threshold ≥ n ∗ Rate_meth + 2 ∗ Acc_meth.

The larger the gap between Critical and Threshold the less time the pump will be ac-
tive when it is safe to be active. The predominant factor is the choice of the sampling
interval, here represented by n times the granularity of the band. If we add a further
requirement that the pump should be active whenever the methane level is below a
level of Safe, then this will put an upper bound on n ∗ Rate_meth + 2 ∗ Acc_meth.

This mine pump example does not need time bands in order to specify its behav-
iour. But the brief outline here does have a much simpler form than other descriptions.
This clarity comes from being able to initially specify all behaviours as instantaneous

138 Real-Time Syst (2010) 45: 106–142

events and all actions as immediate. This very real-time system did not need time in
its initial specification, but it does allow time to play its full role in more detailed
levels of description.

8 Related and future work

The concept of time granularity has been previously discussed in the literature (Hobbs
1985; Clifford and Rao 1987) and many projects have focused on time granularity
within different areas of computer science, such as temporal databases, data mining,
formal specification, etc. Generally, the basic idea of time granularity is to partition
a universal time domain into differently-grained granules, and that a granularity is a
set of indexed granules, any one of which is a set of time instants.

So far, most of this work have focused on embedding time granularity in tempo-
ral logic languages. For example, early exploration (Corsetti et al. 1991b; Montanari
et al. 1991) consists of translation mechanisms that map a formula associated with
different time constraints to the finest granularity. They later (Corsetti et al. 1991a;
Ciapessoni et al. 1993a, 1993b) revise the simple approach by extending the basic
logic language with contextual and projection operators, so that the enhanced seman-
tics can express more general and complete properties. Additional work (Combi et al.
2004; Franceschet and Montanari 2004) aimed at reasoning about time granularity is
also proposed.

Interval temporal logic (ITL) was originally designed for reasoning about hard-
ware circuits (Halpern et al. 1983; Moszkowski 1983). When modelling hardware,
it is natural to look at a circuit’s behaviour at different granularities of time. For
example, the units of time might correspond to regularly spaced clock ticks or to
nanoseconds. ITL has a temporal projection operator to denote the process of map-
ping from one level of time to another: w1 proj w2, where w1 and w2 both denote
ITL formulas. This operator has been implemented in the Tempura programming
language (Moszkowski 1986).

Bettini introduces a glossary of time granularity concepts (Bettini et al. 1997).
Their work is not committed to a particular model of time, which could be discrete
(such as the natural numbers), dense (such as the rationals), or continuous (such as
the reals). The time domain is discretised into countable granules of time, and an
interpretation function relates the index of each granule to an interval in the time
domain.

Broy (2008) takes a highly abstract view of real-time interactive systems, where
the system is described by a set of timed events that represent possible observations.
This set is represented by a function time : E → TIME, that maps each event to the
time of its occurrence. Broy considers time transformers to change the timing of
systems. Suppose that trans : TIME → TIME, then it can be used to transform the
system using function composition: time′ = trans ◦ time. As a result of a time trans-
formation, the new timing may be coarser. Two events e1 and e2, with the timing
property time(e1) < time(e2) may become simultaneous events under time′: we may
get time′(e1) = time′(e2). Broy goes on to introduce a pair of complementary func-
tions COA(n) and FINE(n), which make a system’s timing coarser or finer by a factor
of n. These functions permit the scaling of a timed system by any rational amount.

Real-Time Syst (2010) 45: 106–142 139

Furia et al. (2010) is their extensive survey of how time is represented in models
of computing, note that in most systems “the dynamics of the components range
over widely different time scales and time granularities (in particular, continuous
and discrete components) are integrated.” Nevertheless they note that few languages
approach the granularity problem in a formal way.

All of this work, however, focuses only on incorporating different time scales,
rather than the more expressive idea of bands as defined in this paper. Although they
address granularity they do not consider precision and the other properties summa-
rized in Sect. 5.

The representation, within the timeband model, of repetitive events and activi-
ties (e.g. E # i) is taken from the notion of occurrences in RTL (Jahanian and Mok
1986). The property that a set of events can be ordered but occur at the same time
instance has some resonance with the notion of super-dense chop (Chaochen and
Hansen 1996) in Duration Calculus (Chaochen et al. 1991).

Current and future work with the timeband framework is focused on the appli-
cation of the ideas to industrial case studies—including system of systems. These
studies are addressing the issues of extracting the right bands for a particular applica-
tion, and the assignment of events and activities to these bands. Initial work (White
2010) has indicated the value of first assigning events, as they are more abstract, and
then considering activities as a refinement of these events.

Work has also involved9 modelling timebands with a hierarchy of descriptions.
The top-level description uses CircusTime (Sherif and He 2002), a compact time-
based notation that is an extension of the Circus notation (Woodcock and Cavalcanti
2002). Reasoning at this level is done using an interactive theorem prover (Oliveira
et al. 2007, 2009). CircusTime is a powerful language, with support for imperative
programming with concurrency operators similar to those found in CSP. It is also
possible to write abstract specifications to specify all or part of a process, and a notion
of refinement connects abstract specifications with their implementations (Cavalcanti
et al. 2003).

Concrete descriptions in CircusTime can be translated into CSP_M, the language
for the FDR theorem prover. CSP_M has no built-in notion of time, so CircusTime de-
scriptions can be refined into an untimed description that uses a number of timers. The
untimed description can then be analysed using the FDR refinement model-checker
and the ProB animator. This translation uses the framework in Sherif and He (2002)
and the translation worked out in Freitas and Cavalcanti (2006). The CSP_M descrip-
tions are then implemented in Java using JCSP (Welch 2000), which is a pure Java
class library providing a base range of CSP primitives plus a rich set of extensions. It
also includes a package providing CSP process wrappers giving a channel interface
to all Java AWT widgets and graphics operations.

9 Conclusion

In this paper we have argued that complex real-time systems exhibit behaviour at
many different time levels and that a useful aid in describing and specifying such be-

9Within the Indeed project—http://www.indeedproject.ac.uk/.

http://www.indeedproject.ac.uk/

140 Real-Time Syst (2010) 45: 106–142

haviour is to use time bands. Viewing a system as a collection of event and activities
within a finite set of bands is an effective means of separating concerns and iden-
tifying inconsistencies between different ‘layers’ of the system. Time bands are not
mapped on to a single notion of physical time. Within a system, there will always be
a relationship between bands, but the bands need not be tightly synchronised. There
is always some level of imprecision between any two adjacent bands.

The use of the timeband framework is intended to help develop a comprehensive
foundation to the study and development of future systems. Of course an adequately
expressive model of time is just one element of such a foundation, but it is perhaps
the most important to define if dependable systems are to be engineered.

Acknowledgements The authors would like to thank the useful contributions of all the people who
have discussed time bands with us—in particular Brijesh Dongol, Colin Fidge, Leandro Soares Indrusiak,
Cliff Jones, Michael Jackson, Peter Robinson, Kun Wei, and Jim Woodcock. This work is supported, in
part, by the EPSRC(UK) through its funding of the INDEED project and the TrAmS platform, and is also
supported, in part, by the Australian Research Council (ARC) Discovery Grant DP0987452, Combining
Time Bands and Teleo-Reactive Programs for Advanced Dependable Real-Time Systems.

Appendix: Notation

A partial order “�” on some set X is reflexive, transitive, and anti-symmetric.

References

Allen J (1984) Towards a general theory of actions and time. Artif Intell 23:123–154
Baxter G, Burns A, Tan K (2007) Evaluating timebands as a tool for structuring the design of socio-

technical systems. In: Bust P (ed) Contemporary ergonomics 2007. Taylor & Francis, London, pp 55–
60

Bergadaà M (2007) Temporal frameworks and individual cultural activities: four typical profiles. Time Soc
16(2/3):387–408

Bettini C, Dyreson CE, Evans WS, Snodgrass RT, Wang XS (1997) A glossary of time granularity con-
cepts. In: Temporal databases, Dagstuhl, pp 406–413

Blount S, Walker MJ, Leroy S (2007) Coping with temporal uncertainty: when rigid ambitious deadlines
don’t make sense. In: Organization at the limit. Springer, Berlin, pp 122–134

Real-Time Syst (2010) 45: 106–142 141

Broy M (2008) Relating time and causality in interactive distributed systems. IOS Press, Amsterdam,
pp 75–130

Burns A, Baxter GD (2006) Time bands in systems structure. In: Structure for dependability. Springer,
Berlin, pp 74–90

Burns A, Lister AM (1991) A framework for building dependable systems. Comput J 34(2):173–181
Burns A, Hayes IJ, Baxter G, Fidge CJ (2005) Modelling temporal behaviour in complex socio-technical

systems. Computer Science Technical Report YCS 390, University of York
Cavalcanti A, Sampaio A, Woodcock J (2003) A refinement strategy for circus. Form Asp Comput 15(2–

3):146–181
Chaochen Z, Hansen MR (1996) Chopping a point. In: BCS-FACS 7th refinement workshop. Electronic

workshops in computing. Springer, Berlin
Chaochen Z, Hoare CAR, Ravn AP (1991) A calculus of duration. Inf Process Lett 40:269–276
Ciapessoni E, Corsetti E, Montanari A, San Pietro P (1993a) Embedding time granularity in a logical

specification language for synchronous real-time systems. Sci Comput Program 20:141–171
Ciapessoni E, Corsetti E, Montanari A, San Pietro P (1993b) Embedding time granularity in a logical

specification language for synchronous real-time systems. In: 6IWSSD: selected papers of the sixth
international workshop on software specification and design. Elsevier, Amsterdam, pp 141–171

Clifford J, Rao A (1987) A simple, general structure for temporal domains. In: Temporal aspects in infor-
mation systems. AFCET, pp 23–30

Combi C, Franceschet M, Peron A (2004) Representing and reasoning about temporal granularities. J Log
Comput 14(1):51–77

Corsetti E, Montanari A, Ratto E (1991a) Dealing with different time granularities in formal specifications
of real-time systems. J Real-Time Syst 3(2):191–215

Corsetti E, Montanari A, Ratto E (1991b) Time granularity in logical specifications. In: Proceedings of the
6th Italian conference on logic programming, Pisa, Italy

Fraisse P (1963) The psychology of time. Harper and Row, New York
Franceschet M, Montanari A (2004) Temporalized logics and automata for time granularity. Theory Pract

Log Program 4(5–6):621–658
Freitas A, Cavalcanti A (2006) Automatic translation from circus to java. In: Misra J, Nipkow T, Sekerinski

E (eds) FM. Lecture notes in computer science, vol 4085. Springer, Berlin, pp 115–130
Friedman W (1990) About time: inventing the fourth dimension. MIT Press, Cambridge
Furia CA, Mandrioli D, Morzenti A, Rossi M (2010) Modeling time in computing: a taxonomy and a

comparative survey. ACM Comput Surv 42(6):1–59
Halpern JY, Manna Z, Moszkowski BC (1983) A hardware semantics based on temporal intervals. In: Díaz

J (ed) ICALP. Lecture notes in computer science, vol 154. Springer, Berlin, pp 278–291
Hayes IJ (ed) (1987) Specification case studies. Prentice-Hall, New York
Hobbs J (1985) Granularity. In: Proceedings of the ninth international joint conference on artificial intelli-

gence, Los Angeles, California, pp 432–435
Hollnagel E (1993) Human reliability analysis: context and control. Academic Press, New York
Hughes GE, Cresswell MJ (1968) An introduction to modal logic. University Paperbacks, Routledge
Hutchesson SG, Hayes N (1998) Technology transfer and certification issues in safety critical real-time

systems. In: Digest of the IEE colloquium on real-time systems, vol 98/306, April 1998
Jahanian F, Mok AK (1986) Safety analysis of timing properties in real-time systems. Trans Softw Eng

SE-12(9)
Jones CB, Hayes IJ, Jackson MA (2007) Deriving specifications for systems that are connected to the

physical world. In: Cliff JB, Liu Z, Woodcock J (eds) Formal methods and hybrid real-time systems.
Lecture notes in computer science, vol 4700. Springer, Berlin, pp 364–390

Joseph M (ed) (1996) Real-time systems: specification, verification and analysis. Prentice-Hall, New York
Lamport L (1978) Time, clocks, and the ordering of events in a distributed system. Commun ACM

21(7):558–565
Levine R (1997) A geography of time. Guilford Press, New York
Mahony B, Hayes IJ (1992) A case_study in timed refinement: a mine pump. IEEE Trans Softw Eng

SE-18(9):817–826
Montanari A, Ratto E, Corsetti E, Morzenti A (1991) Embedding time granularity in logical specifications

of real-time systems. In: Proceedings of the third euromicro workshop on real-time systems, Paris,
France

Moszkowski B (1983) Reasoning about digital circuits. PhD thesis, Department of Computer Science,
Stanford University (Available as technical report STAN-CS-83-970)

142 Real-Time Syst (2010) 45: 106–142

Moszkowski B (1986) Executing temporal logic programs. Cambridge University Press, Cambridge
Newell A (1990) Unified theories of cognition. Harvard University Press, Cambridge
Nilsson NJ (1994) Teleo-reactive programs for agent control. J Artif Intell Res 1:139–158
Nilsson NJ (2001) Teleo-reactive programs and the triple-tower architecture. Electron Trans Artif Intell

5:99–110
Oliveira M, Cavalcanti A, Woodcock J (2009) A UTP semantics for ircus. Form Asp Comput 21(1–2):3–

32
Oliveira MVM, Cavalcanti A, Woodcock J (2007) Unifying theories in ProofPowerZ. Form Asp Comput.

doi:10.1007/s00165-007-0044-5
Roeckelein JE (2000) The concept of time in psychology: a resource book and annotated bibliography.

Greenwood Press, Westport
Schneider W (1985) Training high-performance skills: fallacies and guidelines. Hum Factors 27(3):285–

300
Sherif A, He J (2002) Towards a time model for circus. In: George C, Miao H (eds) ICFEM. Lecture notes

in computer science, vol 2495. Springer, Berlin, pp 613–624
Simon HA (1996) The science of the artificial, 3rd edn. MIT Press, Cambridge
Spivey JM (1992) The Z notation: a reference manual, 2nd edn. Prentice Hall International, Englewood

Cliffs
Welch PH (2000) Process oriented design for Java: concurrency for all. In: Arabnia HR (ed) PDPTA.

CSREA Press, Las Vegas
White R (2010) Capturing the temporal properties of complex systems: an evaluation of the timebands

approach. PhD thesis, University of York, Computer Science, York, UK
Woodcock J, Cavalcanti A (2002) The semantics of circus. In: Bert D, Bowen JP, Henson MC, Robinson

K (eds) ZB. Lecture notes in computer science, vol 2272. Springer, Berlin, pp 184–203

Alan Burns co-leads the Real-Time Systems Research Group at the
University of York. His research interests cover a number of aspects of
real-time systems including the assessment of languages for use in the
real-time domain, distributed operating systems, the formal specifica-
tion of scheduling algorithms and implementation strategies, and the
design of dependable user interfaces to real-time applications. Profes-
sor Burns is a member of the ARTIST Network of Excellence.

Ian J. Hayes is a Professor of Software Engineering at the University
of Queensland, where he leads the Systems and Software Engineer-
ing Research Group. He received his PhD from the University of New
South Wales in 1983. His research interests are in developing better
methods for specifying, developing, and reasoning about computer-
based systems, especially real-time systems.

http://dx.doi.org/10.1007/s00165-007-0044-5

	A timeband framework for modelling real-time systems
	Abstract
	Introduction
	Motivation
	Sampling
	Rate of change

	Definition of the timeband model
	Time bands
	Granularity and precision
	Classes of events/activities
	Events
	Precedence
	Simultaneous and immediate
	Activities
	Mappings between bands
	Durations
	Clocks

	State
	States
	Values views of the state
	Relating a set of states to a values view
	Behaviour with state
	Change of state events
	Mapping states
	Accuracy and rates of change

	Summary
	Towards a language for timebands
	Predicates
	Predicates on sets of states
	Predicates on values views
	On the relationship between reality and observation
	Application to state model

	Example: mine pump
	Mine pump guarantee
	Mine pump rely
	Mine pump implementation

	Related and future work
	Conclusion
	Acknowledgements
	Appendix: Notation
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

