

* This work has been funded by the EPSRC under award number
GR/M94113

A Static Timing Analysis Environment Using Java Architecture

for Safety Critical Real-Time Systems
Erik Yu-Shing Hu*, Guillem Bernat and Andy Wellings

Real-Time Systems Research Group
Department of Computer Science

University of York
York, YO105DD, UK

{erik,bernat,andy}@cs.york.ac.uk

Abstract

Certainly, in hard real-time systems, it is reasonable to
argue that no hard real-time threads should behave in an
unpredictable way and that schedulability should be
guaranteed before execution. In order to guarantee the
timing constraints of portable code for hard real-time
applications, a particular static timing analysis is
necessary. In this paper, we provide a static timing
analysis environment for the development of real-time
applications on the Java architecture. The major
contributions include introducing a novel Extensible
Annotations Class (XAC) format to capture portable
annotations from the source level, presenting how to
integrate XACs with portable Worst-Case Execution Time
(WCET) analysis, describing how to obtain real-time
thread parameters from Real-Time Java's specifications,
and demonstrating how static timing analysis using the
Java architecture can be carried out from portable code.

Keywords

Java, Hard Real-Time Systems, Real-Time Java, Worst-
Case Execution Time Analysis, Portable WCET Analysis

1. Introduction

The success of hard real-time systems relies upon their
capability of producing functionally correct results within
defined timing constraints. Clearly, it has to be guaranteed
that all hard real-time tasks will meet their deadlines in line

with the design. To guarantee this, predictability of the
system and static timing analysis are of vital importance.
Typically, most scheduling algorithms assume that the
WCET (Worst-Case Execution Time) of each task is
known prior to doing the schedulability analysis.
Furthermore, the predictability of the system and WCET
values enable developers to allocate more precise
resources during the design phase.

The purpose of WCET analysis is to determine the
maximum possible execution time that a piece of code may
take. This analysis has to be safe; no underestimation of
this value is allowed, but it also should be tight. In order to
achieve a tight estimate, both the program flow, such as
loop iterations and infeasible paths, and the execution
characteristics of the object code on the target system, such
as instruction caches and pipelining, must be taken into
account. On the whole, the WCET analysis technique may
be divided into two levels: high-level analysis and low-
level analysis. The role of the high-level analysis is to
analyse possible program flows from the source program,
without regard to the time for each atomic unit of flow,
whereas the role of the low-level analysis is to determine
the timing aspects of the hardware features. A number of
research approaches [6,7,9,12,14,17] have demonstrated
how to estimate WCET at both levels. Given the high-level
analysis and low-level analysis, the final WCET estimation
can be calculated.

In general, most approaches are tied to either a
particular language or target architecture. Only the Javelin
project [1,3], which presents how worst case execution
time analysis can be performed on Java byte code and how
portable timing annotations can be provide with Java byte
code, is concerned with portability for WCET analysis.
This is achieved by providing language independent high-
level analysis and platform independent analysis. High-
level independence is achieved by analysing an
intermediate representation rich enough to capture control

flow and data flow information. Platform independent
analysis is achieved by parameterising the different targets.
There is some additional pessimism in performing the
WCET process in this particular way, which compensates
for the added benefits that portability brings [1,3].

Indeed, portability is a common requirement of future
real-time applications. One of the most popular
programming languages which supports high portability is
Java. Even though the language was designed as a general-
purpose object-oriented language, it distinguishes itself
from other general-purpose object-oriented languages by
its portability, networking, memory management,
concurrent programming, and security features. The Java
architecture includes Java language, Java Application
Programming Interface (API), Java Virtual Machine
(JVM), and Java Byte Code (JBC). Java supports
portability with its Java byte codes and Java virtual
machine. In fact, JBC can be produced not only from Java
programs, but also from other programming languages
supported by a specific compiler. Therefore, taking
advantage of Java byte code, other programming languages
can be easily migrated to the Java architecture. For
instance, Ada programs can be translated into Java byte
codes by either JGNAT [5] or the Aonix [13] compilers,
and then executed upon a Java virtual machine.

Yet, the non-deterministic behaviour of memory
management, poor performance of most Java
implementations, and the lack of real-time facilities have
hindered the acceptance of Java in real-time and embedded
applications. In order to address these issues, two recent
approaches have been attempted to provide real-time
extensions to Java: Real-Time Specification for Java
(RTSJ) [4] and the Real-Time Core extensions to Java
[10]. These specifications have addressed the issues related
to using Java in a real-time context, including scheduling
support, memory management issues, interaction between
non-real-time Java and real-time Java programs, and
device management among others. However, none of the
specifications provide a satisfactory solution for portable
WCET analysis.

Since Java is an object-oriented programming language,
in addition to portability it also supports other reusability.
For the most part, object-oriented programming languages
provide three major features: encapsulation, inheritance,
and polymorphism. These features may lead object-
oriented applications to be either unanalysable or
unpredictable, or both. In order to use object-oriented
programming languages in safety critical real-time systems,
some language features need to be restricted.

A profile for high-integrity real-time Java programs
based on the RTSJ specifications has been proposed by
Puschner and Wellings [16]. The profile gives an overview

of how to develop efficient applications whose temporal
behaviour needs to be exactly predictable. They discuss
necessary restrictions of the RTSJ and propose a
realisation of the profile that meets the temporal
requirements of high-integrity real-time systems. The paper
[16] presents the restrictions inherent in the profile
including threading model, inter-process communication
and synchronisation, memory management, and the
representation of time and clocks.

Certainly, in hard real-time systems, it is reasonable to
argue that no hard real-time threads should behave in an
unpredictable way and that schedulability should be
guaranteed before execution. In order to guarantee the
timing constraints of portable code for hard real-time
applications, a particular static timing analysis is necessary.

To address these issues, we introduce a static timing
analysis for the Java architecture in safety critical real-time
applications. In our approach, we assume that the
applications are at least analysable. In order to achieve
this, the applications have to be used with the profile which
is presented in [16]. The major aim of our approach is to
provide a timing analysis environment for the development
of hard real-time applications using the Java architecture.
We introduce a novel extensible annotation class format,
the so-called Extensible Annotations Class (XAC), to
provide timing information from the design phase to static
analysis or run-time phases. Using the XAC, we extend the
work performed under the Javelin project [1,3] in terms of
portable WCET analysis. This paper presents how static
timing analysis using the Java architecture can be carried
out.

The major contributions of this paper are:

• introducing a novel Extensible Annotations Class
(XAC) structure

• presenting how to integrate the XAC with portable
WCET analysis in detail

• describing how to gather real-time thread
parameters from specifications

• demonstrating how static timing analysis using Java
architecture can be carried out from portable code

The rest of the paper is organised as follows. Section 2
gives a brief review of WCET analysis and portable
WCET analysis. Section 3 provides an overview of our
architecture. The subsequent sections describe the
components of the architecture in detail: section 4 presents
a summary of our novel XAC structure, section 5 describes
how to integrate them with the portable WCET analysis
[1,3], section 6 describes our approach to integrating the
Real-Time Java specifications [4,10], and section 7
presents how static timing analysis can be conducted on the
Java architecture in our XRTJ-Analyser (Extended Real-

Time Java). Section 8 presents the current status and future
work of our project. Finally, conclusions are presented in
section 9.

2. Worst-Case Execution Time Analysis

This section gives a summary of the WCET (Worst-
Case Execution Time) analysis and portable WCET
analysis. There exists a well-founded ground of research on
platform-dependent WCET analysis [6,7,9,12,14,17].
Several approaches exist to determine the WCET of a
section of object code. The basic and common approach is
to build the graph of basic blocks† from the source code
and the generated object code. The timing of each basic
block is determined, for instance, by adding up the worst-
case execution time of each of the machine instructions
within the basic block. Loops are identified and annotated
with the maximum number of iterations.

The timing information of each basic block can then be
combined to determine the WCET of a whole program by
using a simple timing schema [17], which is a set of rules
to collapse the control flow graph annotated with timing
information. Let WCET(S) denote the worst-case
execution time of a code segment S, and assume that we
initially have the WCET of all basic blocks. From this, the
WCET of a whole section of code can be determined by
collapsing the graph of basic blocks applying, basically,
the following rules:

• WCET (S1; S2) := WCET (S1) + WCET (S2)

• WCET (if E then S1 ; else S2):= WCET(E) +
max(WCET(S1),WCET(S2))
where E is the conditional code.

• WCET (for(E) S;) := (n+1)WCET(E) + nWCET(S)
where E is the loop expression and n is the
maximum number of iterations of the loop. This
schema can also be applied to any type of loop with
a bounded number of iterations.

The effects of low-level features like cache effects and
pipeline effects can be incorporated in the analysis at the
basic block level or by determining their impact across
several program paths. For example, this is usually
modelled as a gain factor (negative time) in the analysis.

User annotations are usually included in the code to
drive the analysis process. Simple annotations allow
developers to define maximum loop bounds that could not
be determined automatically or more sophisticated

† A basic block is a continuous section of code in the sense that control

flow only goes in at the first instruction and leaves through the last
one.

information, like mutually exclusive paths [6] or
dependencies between loop induction variables [2]. These
annotations are usually included in the source code as
specially formatted comments and they are extracted by
WCET analysis tools.

2.1 Portable WCET Analysis

The portable WCET analysis using Java byte code (the
Javelin project) has been proposed by Bernat et. al. [3]. It
has been extended by Bate et al. [1] to address low-level
analysis issues. The portable WCET analysis uses a three-
step approach. The analysis assumes that the programmer
has already compiled the Java source into a class file with
a Java compiler.

The first step is the high level analysis. In this stage, the
technique analyses annotated JBC. Annotations are
expressed by calls to a predefined static class WCETAn
[3] and portable WCET information is computed in the
form of so-called WCEF (Worst-Case Execution
Frequency) vectors. WCEF vectors [1] represent
execution-frequency information of basic blocks and more
complex code structures that have been collapsed during
the first part of the analysis. The WCEF vectors returned
by the first analysis step are stored back into class files as
code attributes. The class files are then ready for
distribution to target Virtual Machines (VMs) on which the
real-time code is to run.

In parallel, analysis of the target platform is performed.
This takes the form of the definition of a timing model of
the VM. This stage performs platform-dependent analysis
(i.e. in the context of specific hardware and VM) of each
JBC instruction implementation. In this stage, information
about the potential effects of pipelines and caches may be
captured.

Finally, a real-time enabled target virtual machine
performs the combination of the high-level analysis with
the low level VM timing model to compute the actual
WCET bound of the analysed code sections. As the
resources used by this stage are manageable, the
calculations can easily be performed even on small virtual
machines.

3. Framework Overview

Our approach, called XRTJ (Extended Real-Time Java),
extends the current Real-Time Java architecture [4] that is
proposed by the Real-Time Java Expert Group. The XRTJ
architecture has been developed with the whole software
development process in mind: from the design phase to

run-time phases. For example, using our approach, the
system can be evaluated during the design, and the
application's timing constraints can be validated during
run-time. This paper is mainly concerned with the static
timing analysis part. Dynamic timing analysis will be
discussed in future work. In this paper, we use Java
programs to discuss our architecture. Indeed, other
programming languages using a particular compiler, which
may translate into Java byte code, can also migrate to our
architecture easily.

Java Byte Code
(*.class)

Java Programs
+

Annotations

Extensible Annotation
Class (*.xac)

T
ra

di
tio

na
l

JB
C

XRTJ-Compiler

E
xt

en
si

bl
e

A
nn

ot
at

io
ns

XRTJ-Analyser

Scheduling
algorithms

System
Configuration

System Info.

RTJ
Specifications

VMTMs

XAC-Translator
Traditional Java

Compiler

Figure 1. A block diagram of the XRTJ
architecture for static timing analysis

A block diagram, which illustrates the XRTJ
architecture in terms of static timing analysis, is given in
figure 1. In the figure, we can see that XRTJ architecture
includes the Extensible Annotation Class (XAC) file,
integration interfaces for real-time Java specifications,
VMTMs (Virtual Machine Timing Model) and scheduling
algorithms. As shown in figure 1, annotated Java programs
are compiled into JCF (Java Class File) and XAC files by
either a simple translator and a traditional Java compiler or
an annotation-aware compiler. The VMTM is a timing
model for the target virtual machine including a list of the
WCET of native methods and JBC instructions, and the
gain factors due to the favourable effects of pipelines
across instruction sequences. The RTJ (Real-Time Java)
specification interfaces are the abstract description of the
specifications which are used in the system to describe how
the XRTJ-Analyser can extract the real-time parameters
from the Java byte codes. The system configuration is the

only input file provided by developers, and defines the run-
time environment of the system to be analysed in the
XRTJ-Analyser. In accordance with the system
configuration, the XRTJ-Analyser gets the information
about the VMTM, the format of the RTJ specification, and
scheduling algorithms and carries out the static timing
analysis. An overview of the static timing analysis of the
XRTJ approach is given below.

Java programs are extended with timing annotations,
such as maximum loop bounds. These annotations are
extracted by the XAC translator or compiler, and the result
is a compact representation of these annotations as an XAC
file. The XAC files, together with the JCFs, are used by the
XRTJ-Analyser to perform high-level WCET analysis,
including gathering bounded loops and analysing flow
information. We can use the VM timing model and flow
information to carry out low-level WCET analysis. Given
the high-level analysis and low-level analysis, WCET
estimates can finally be calculated. Based on the real-time
Java specification interface, the XRTJ-Analyser can gather
real-time thread parameters, such as period and deadline,
from the applications. Given estimated WCET values, real-
time parameters, system configuration, and scheduling
algorithms, the XRTJ-Analyser can carry out
schedulability analysis for the whole system. Finally, the
XRTJ-Analyser produces an output file for the timing
analysis of the whole system. This information can then be
used by the developers to refine the system.

4. XAC (Extensible Annotation Class File)

The XAC (Extensible Annotations Class) file stores
extra information which cannot be expressed in the source
code. This section is mainly concerned with how to store
information about timing annotations in the XAC file.
Although we sometimes use the term XAC file, it is not
necessarily a physical file. XAC is an annotation structure
that can be stored in files or as an additional code attribute
in JCF.

4.1 Features

The XAC file has been designed with two main goals in
mind: portability and extensibility.

Extensibility: The motivation for the XAC files is to be
able to store extra information about the program source
without changing the JBC format. However, it is
relatively difficult to define a complete structure to
provide enough information from the source code level
for all purposes at once. We realise, therefore, that the

specification for the XAC should be designed with
extensibility in mind. For example, although we mainly
focus on capturing information for timing analysis, the
file could also be used to hold extra information needed
for model checkers or any other tools.

Portability: As mentioned before, JBC may be
generated from other programming languages supported
by a specific compiler. Furthermore, JBCs are highly
portable and can be executed on various platforms
supported by a particular Java virtual machine. As a
result of this, to support the Java architecture, XAC has
to be designed with portability features. Moreover, we
realise that the XAC file has to be designed with not
only platform independence, but also language
independence, in mind. Taking advantage of the
portability of the XAC file, we can use the XAC file in
either static or dynamic analysis tools.

4.2 Annotations Format

All annotations in our approach are introduced with the
characters ' //@' for single line and '/*@ @*/' for
multiple lines. These formats are assumed to be comments
in Java. Similar structures of annotations are applied in the
JML (Java Modelling Language) approach [11], and the
ESC/Java (Compaq Extended Static Checker for Java) [8].
However, these projects mainly focus on recording detailed
design decisions for a software module [11] or checking
runtime errors by a modular program checker [8].

Even though the XAC file is provided for each class file
in Java programs, its format is different from the JBC
format. As all annotations are provided as comments in
Java programs, these codes, including annotations, can be
compiled by a traditional compiler to generate traditional
JBC files and run on a traditional Java virtual machine.
Figure 3 gives a fragment of code including the
annotations.

4.3 XAC Format

Each XAC file is generated for a specific JCF (Java
Class File). Therefore, the relationship between JBC and
XAC is one to one. Since the XAC files are not defined for
any particular operating systems, these files are easy to
apply in annotation-aware tools or JVMs. Since the XAC
file is designed for extensibility, the annotation formats of
the XAC file may be variable. Therefore, all data structures
need to be declared in the specification area.

The format of the XAC file is given in figure 2. In order
to speed up the reading of these files, the XAC file can be

expressed in binary format. The XAC file includes class
namespace, checksum, total number of tags, data format
specification and contents of the annotations. The
checksum can help the JVMs to verify the consistency
between the JBC file and the XAC file. It can also be used
in both static and dynamic analyses. The outermost layer of
the XAC file defines how many TAG are contained in this
XAC file. Each TAG encompasses a specification and its
body. The specification may declare the format of the
contexts. The body includes the annotations whose formats
are defined in the specification.

<@XAC>
<@Class_Name, Checksum>
TAG_Count = n
<BODY>
 ...
</BODY>

TAG = TAG_ID
<TAG_Name>
 <SPEC>
 <SUBTAG_COUNT = n >
 <METHOD = Constant_Pool_index >
 <METHOD BODY>
 ...
 </METHOD_BODY>
 </SPEC>
 <TAG_BODY>
 ...
 </TAG_BODY>
</TAG_Name>

< METHOD = #Ref >
<METHOD BODY>
 ...
</METHOD_BODY>

Figure 2: The format of the XAC file

5. Integrating Portable WCET Analysis

This section shows how the XRTJ approach can be
integrated with portable WCET analysis. To support
WCET, analysis annotations have to be provided in the
source code. Bernat et al. [3] present a high-level WCET
analysis technique using JBC to provide WCET
annotations by means of a WCETAn class. It has sufficient
capabilities to provide WCET annotations from the source
level to JBC. The approach has showed how to extract data
flow and control flow information from the JBC program
without relying on the source code. The WCETAn class
allows scope or code-block boundaries, the maximum
number of iterations of loops, execution modes and
arbitrary path execution frequencies to be described [15].
However, the WCETAn approach requires either a tool or
WCETAn-aware JVM to eliminate these annotation
instructions from JBC before executing.

We extend the WCETAn approach to accumulate
timing information from the source level. We introduce the
XAC (Extensible Annotation Class) file to provide high-
level WCET annotations instead of using WCETAn Class.
We support similar annotations to the one used by the
Javelin project [3]. These are given in table 1.

Take the following code example in figure 3, which
shows how to specify that a loop iterates 50 times in the
worst case, but that in the particular modes of operation
called Quick_Mode and Normal_Mode they only iterate 10
and 30 times respectively.

Table 1. WCET Annotations

...
public void Call_ForLoop(int nDoLoop) {

...
//@ Mode(Quick_Mode)
//@ Mode(Normal_Mode);
...
//@ Loopcount(50);
//@ Loopcount(10, Quick_Mode);
//@ Loopcount(30, Normal_Mode);
for(i=0;i<nDoLoop;i++) {
 ...
}
...

}
...

Figure 3. A fragment of the annotated

Call_ForLoop method

The context in which this fragment is used determines
the mode. This allows the analysis tool to use tighter loop
bounds for different calls and therefore reduce the
pessimism. Without the annotations, extra pessimism
would be incurred in the analysis by considering that all
calls use the maximum number of iterations. Using an
XAC translator or compiler, the XAC file can be produced
from the annotated Java program. The text format of the
XAC file is given in figure 4. In the figure, we can see that

four types of WCET annotation formats are defined in the
specifications. Each annotation has a unique identification
number. For instance, 03 is defined for the Loopcount(int,
Mode_name) annotation. Based on the offset of the method
of the JBC in the JCF file, the annotation of the
Loopcount(int, Mode_name) can be given as <03 #10, 10,
Quick_Mode> and <03, #10, 30, Normal_Mode> in the
body area.

...
 <!-- WCET information -->
 <TAG=1>
 <WCET>

<SPEC>
 <SUBTAG_COUNT=4>
 <Method=Constant_Pool_index>
 <Method_Body>

<00 PC_Offset=int, Mode=name>
<01 PC_Offset=int, Use_Mode=name>
<02 PC_Offset=int, LoopCount=int>
<03 PC_Offset=int, LoopCount=int, Mode=name>

 </Method_Body>
</SPEC>
<TAG_BODY>
 <!--Constant_Pool index #36=

SimpleIO$ControllerThread.Call_ForLoop(I)V -->
 <Method=#36>
 <Method_Body>

<00 #1, Quick_Mode>
<00 #1, Normal_Mode>
<02 #10, 50>
<03 #10, 10, Quick_Mode>
<03 #10, 30, Normal_Mode>

 </Method_Body>
 ...
</TAG_BODY>

 </WCET>
...

Figure 4. A fragment of the XAC file for
Call_ForLoop method

6. Integrating with Real-Time Specification

This section is mainly concerned with how to extract
real-time thread parameters from JCF files. In the XRTJ
architecture, the XRTJ-Analyser has an interface to support
different specifications [4,10] of the real-time extensions to
Java. Developers can define which specification is going to
be used in the system by the system configuration file. To
do a schedulability analysis, real-time thread parameters
are required. An example using RTSJ is given in this
section.

In the RTSJ [4], a real-time thread (javax.realtime.-
RealtimeThread) is an extension of the primary Java thread
(java.lang.Thread). A real-time thread has a scheduling
parameters object (javax.realtime.SchedulingParameters)
that contains the priority of the thread. The object may also
provide other parameters, such as importance value, for a
particular scheduling algorithm. Each real-time thread is
associated with a dispatching parameters object
javax.realtime.ReleaseParameters) that includes cost,
deadline, and two asynchronous event handlers. In the
RTSJ, periodic threads, aperiodic threads, and sporadic
threads are classified by the characteristics of their

Type Annotation Description
WCET
Tags

//@ Mode (Mode_name) Build a mode

 //@ Label (Label_name) Build a label
Naming

Tags
//@ Define_Mode (Mode_name) Define a mode

 //@ Use_Mode (Mode_name) Use the specific
mode

 //@ Identify_Code (Label_name) Identify a label
Assertions //@ Loopcount (Max_loop_count) Maximum loop

count
 //@ Loopcount (Max_loop_count,

Mode_name)
Maximum loop
count associated
with the mode

 //@ Dead_Path (Mode_name,
Label_name)

Infeasible path

 //@ Begin_WCET (Label_name) The beginning of
the WCET
associated with
the label

 //@ End_WCET (Label_name) The end of the
WCET
associated with
the label

dispatching parameters. These objects extend from the
object ReleaseParameters, such as PeriodicParameters
object, AperiodicParameters object, and
SporadicParameters object.

The XRTJ-Analyser reads JCF files and finds out the
parameters objects associated with the specific real-time
threads as follows. First of all, the XAC-Analyser reads the
real-time thread information from the constant pool table
stored in the JCF files. Solving the symbolic information,
the full name and type of each object can be reproduced. In
line with the chosen real-time specification interface, the
analyser, using the complete information about these
objects and code attributes, can easily find out each real-
time thread created in the program. Following this, the
relationships between parameter objects and the real-time
threads are identified. Finally, all real-time thread
parameters are collected.

...
0 new #46 <Class javax/realtime/PriorityParameters>
3 dup
4 bipush 8
6 invokenonvirtual #49

 <Method javax/realtime/PriorityParameters.<init> (I)V>
9 astore_1
...
118 new #68 <Class javax/realtime/PeriodicParameters>
121 dup
122 aload 4
124 aload 5
126 aload 8
128 aload 5
130 aconst_null
131 aconst_null
132 invokenonvirtual #71

 <Method javax/realtime/PeriodicParameters.<init>
(Ljavax/realtime/HighResolutionTime;
 Ljavax/realtime/RelativeTime;
 Ljavax/realtime/RelativeTime;
 Ljavax/realtime/RelativeTime;
 Ljavax/realtime/AsyncEventHandler;
 Ljavax/realtime/AsyncEventHandler;)V>

135 astore 11
...
175 new #73 <Class SimpleIO$ControllerThread>
178 dup
179 aload_1
180 aload 11
182 invokenonvirtual #76 <Method SimpleIO$ControllerThread.<init>

(Ljavax/realtime/SchedulingParameters;
 Ljavax/realtime/ReleaseParameters;)V>

185 astore 14
...
219 aload 14
221 invokevirtual #84 <Method java/lang/Thread.start ()V>
...

Figure 5. A fragment example of the Java Byte

Code

An example fragment of a JCF file is given in figure 5.
The context in which this fragment is used creates a
periodic thread (SimpleIO$ControllerThread) in a main
program. In the figure, we can see that the periodic thread,
which is created in offset byte 175-185, contains a
scheduling parameters object and dispatching parameters
object, which are created in offset byte 0-9 and offset byte
118-135 respectively. Analysing these Java byte codes, the
priority of the periodic thread and its dispatching
parameters, including period, deadline, cost and start

values, can be extracted easily. The complete example is
given on our website (http://www.xrtj.org).

In a very similar way, real-time thread parameters from
the system using RT-Core specification [10] can be
accumulated.

7. XRTJ-Analyser

 As mentioned in previous sections (Sec.5 and Sec. 6)
real-time parameters, including priority and dispatching
parameters, for the set of threads and WCET estimates can
be produced from the JCF and XAC files. Given the
WCET estimates and real-time parameters, the
schedulability analysis can be conducted easily. In the
XRTJ-Analyser, only the system configuration information
is needed. The system configuration includes: which
scheduling algorithm is going to be used in the system,
such as Earliest Deadline First; which resource access
protocol is applied in the scheduling algorithm, such as
priority inheritance protocol; which real-time specification
is being used, such as RTSJ [4]; and additional information
about VMTM, such as memory management features. In
addition, the scheduling algorithms can be provided
through the interface which is offered by the XRTJ-
Analyser to support various scheduling algorithms. This
feature can be easily achieved as a result of the way in
which the dynamic binding and dynamic loading of object-
oriented features are applied.

Following the system configuration, the XRTJ-Analyser
loads the scheduling algorithm and carries out the
schedulability analysis. Scheduling algorithms must
provide scheduling characteristics, algorithms which can
calculate other scheduling parameters, such as release-
jitter, blocking time, response-time, and resource access
protocols which are provided to manage the priority
inversion problems. Further details of the schedulability
analysis are not discussed here since they are outside the
scope of this paper. Finally, the XRTJ-Analyser produces
the result of the analysis of the system. The output file
provides not only the result of the analysis, but also
includes timing and scheduling information, such as
response time, release-jitter, blocking time.

8. Current Status and Future Work

Currently, we are developing a translator to produce
XAC files from the annotated Java programs. At the same
time, we are working on the schedulability analyzer to
integrate it with the XRTJ-Analyser.

In this paper, we have only mentioned the static timing
analysis issue. Indeed, the approach can be applied in the
run-time environment to validate the timing constraints of
the system dynamically. To perform this, the Java virtual
machine needs to be modified. Our future work includes:

• developing the XRT-JVM (Extended Real-Time
Java Virtual Machine) to support dynamic timing
analysis at run-time

• developing the XRTJ-Compiler to produce the
XAC file and JCF file during compiling time

• extending the portable WCET analysis to get
tighter estimated values.

The most updated information can be found on our
website (http://www.xrtj.org).

9. Conclusions

Since the aim of portable code is to support hardware
interchangeability, the validation of the timing constraints
in a particular run-time system is of vital importance for
hard real-time systems. We have presented a static timing
analysis approach based on the Java architecture to analyse
the execution time of hard real-time systems during the
development phase. The approach demonstrates the
expressive power of the XRTJ architecture in terms of the
static timing analysis in a portable code context. This
architecture can be easily merged with other approaches,
such as model checking.

10. Acknowledgements

The authors would like to thank Peter Puschner and an
anonymous reviewer for their comments on the early draft
of this paper.

11. References

[1] I. Bate, G. Bernat, G. Murphy and P. Puschner. Low-Level
Analysis of a Portable Java Byte Code WCET Analysis
Framework, In 6th IEEE Real-Time Computing Systems and
Applications (RTCSA2000), pp.39-48, South Korea,
December 2000

[2] G. Bernat and A. Burns. An approach to symbolic worst-
case execution time analysis In 25th IFAC Workshop on
Real-Time Programming, Palma (Spain), May 2000

[3] G. Bernat, A. Burns and A. Wellings. Portable Worst-Case
Execution Time Analysis Using Java Byte Code, In proc.
6th Euromicro conference on Real-Time Systems, pp.81-88,
June 2000

[4] G. Bollella, J. Gosling and B. Brogdol. Real-Time
Specification for Java, Addison Wesley, 2000
(http://www.rtj.org)

[5] E. Briot. JGNAT: The GNAT Ada 95 environment for the
JVM. In Ada France 1999

[6] R. Chapman, A. Burns and A. Wellings. Integrated program
proof and worst-case timing analysis of Spark Ada, In proc.
ACM Workshop on language, compiler and tool support for
real-time systems, ACM Press 1994

[7] J. Engblom and A. Ermedahl. Pipeline timing analysis using
a trace-driven simulator. In proc. 6th International
Conference on Real-Time Computing Systems and
Applications (RTCSA'99), pp. 88-95, December 1999

[8] C. Flanagan and K. R. M. Leino. Houdini, an annotation
assistant for ESC/Java. Technical Note 2000-003, Compaq
Systems Research Center, 2000.

[9] C.A. Healy, R.D. Arnold, F. Mueller, D.B. Whalley and
M.G. Harmon. Bounding pipeline and instruction cache
performance. IEEE Transactions on Computers, 48(1): 53-
70, 1999

[10] International J Consortium Specification. Real-Time Core
Extensions for the Java Platform. Specification No. T1-00-
01. (http://www.j-consortium.org) 2000

[11] G. T. Leavens, A. L. Baker and C. Ruby. JML: A notation
for detailed design. from H. Kilov, B. Rumpe, and I.
Simmonds, editors, Behavioral Specifications of Businesses
and Systems, pages 175-188. Kluwer Academic Publishers,
Boston, 1999.

[12] S. Lim, Y. Bae, G. Jang, B. Rhee, S. Min, C. Park, H. Shin,
K. Park and C. Kim. An accurate worst case timing analysis
for RISC processors, IEEE Transactions on Software
Engineering, 21(7): 593-604, July 1995

[13] ObjectAda, Anoix (http://www.anoix.com)

[14] P. Puschner and C. Koza. Calculating the maximum
execution time of real-time programs, Real-Time Systems
Journal, 1(2): pp.159-176, September 1989

[15] P. Puschner and A. Schedl. Computing maximum task
execution times - a graph based approach. Real-Time
Systems. 13(1): 67-91, July 1997

[16] P. Puschner and A. Wellings. A Profile for High-Integrity
Real-Time Java Programs, Proceedings of the 4th IEEE
International Symposium on Object-Oriented Real-Time
Distributed Computing, pp. 15-22, ISORC 2001

[17] A. Shaw. Reasoning about time in high-level language
software, IEEE Transactions on Software Engineering,
17(7): 875-889, 1989

