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Abstract 
 

Certainly, in hard real-time systems, it is reasonable to 
argue that no hard real-time threads should behave in an 
unpredictable way and that schedulability should be 
guaranteed before execution. In order to guarantee the 
timing constraints of portable code for hard real-time 
applications, a particular static timing analysis is 
necessary. In this paper, we provide a static timing 
analysis environment for the development of real-time 
applications on the Java architecture. The major 
contributions include introducing a novel Extensible 
Annotations Class (XAC) format to capture portable 
annotations from the source level, presenting how to 
integrate XACs with portable Worst-Case Execution Time 
(WCET) analysis, describing how to obtain real-time 
thread parameters from Real-Time Java's specifications, 
and demonstrating how static timing analysis using the 
Java architecture can be carried out from portable code.   
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1. Introduction  
 

The success of hard real-time systems relies upon their 
capability of producing functionally correct results within 
defined timing constraints. Clearly, it has to be guaranteed 
that all hard real-time tasks will meet their deadlines in line 

with the design. To guarantee this, predictability of the 
system and static timing analysis are of vital importance. 
Typically, most scheduling algorithms assume that the 
WCET (Worst-Case Execution Time) of each task is 
known prior to doing the schedulability analysis. 
Furthermore, the predictability of the system and WCET 
values enable developers to allocate more precise 
resources during the design phase.  

The purpose of WCET analysis is to determine the 
maximum possible execution time that a piece of code may 
take. This analysis has to be safe; no underestimation of 
this value is allowed, but it also should be tight. In order to 
achieve a tight estimate, both the program flow, such as 
loop iterations and infeasible paths, and the execution 
characteristics of the object code on the target system, such 
as instruction caches and pipelining, must be taken into 
account. On the whole, the WCET analysis technique may 
be divided into two levels: high-level analysis and low-
level analysis. The role of the high-level analysis is to 
analyse possible program flows from the source program, 
without regard to the time for each atomic unit of flow, 
whereas the role of the low-level analysis is to determine 
the timing aspects of the hardware features. A number of 
research approaches [6,7,9,12,14,17] have demonstrated 
how to estimate WCET at both levels. Given the high-level 
analysis and low-level analysis, the final WCET estimation 
can be calculated.  

In general, most approaches are tied to either a 
particular language or target architecture. Only the Javelin 
project [1,3], which presents how worst case execution 
time analysis can be performed on Java byte code and how 
portable timing annotations can be provide with Java byte 
code, is concerned with portability for WCET analysis. 
This is achieved by providing language independent high-
level analysis and platform independent analysis. High-
level independence is achieved by analysing an 
intermediate representation rich enough to capture control 



flow and data flow information. Platform independent 
analysis is achieved by parameterising the different targets. 
There is some additional pessimism in performing the 
WCET process in this particular way, which compensates 
for the added benefits that portability brings [1,3].   

Indeed, portability is a common requirement of future 
real-time applications. One of the most popular 
programming languages which supports high portability is 
Java. Even though the language was designed as a general-
purpose object-oriented language, it distinguishes itself 
from other general-purpose object-oriented languages by 
its portability, networking, memory management, 
concurrent programming, and security features. The Java 
architecture includes Java language, Java Application 
Programming Interface (API), Java Virtual Machine 
(JVM), and Java Byte Code (JBC). Java supports 
portability with its Java byte codes and Java virtual 
machine. In fact, JBC can be produced not only from Java 
programs, but also from other programming languages 
supported by a specific compiler. Therefore, taking 
advantage of Java byte code, other programming languages 
can be easily migrated to the Java architecture. For 
instance, Ada programs can be translated into Java byte 
codes by either JGNAT [5] or the Aonix [13] compilers, 
and then executed upon a Java virtual machine.  

Yet, the non-deterministic behaviour of memory 
management, poor performance of most Java 
implementations, and the lack of real-time facilities have 
hindered the acceptance of Java in real-time and embedded 
applications. In order to address these issues, two recent 
approaches have been attempted to provide real-time 
extensions to Java: Real-Time Specification for Java 
(RTSJ) [4] and the Real-Time Core extensions to Java 
[10]. These specifications have addressed the issues related 
to using Java in a real-time context, including scheduling 
support, memory management issues, interaction between 
non-real-time Java and real-time Java programs, and 
device management among others. However, none of the 
specifications provide a satisfactory solution for portable 
WCET analysis.  

Since Java is an object-oriented programming language, 
in addition to portability it also supports other reusability. 
For the most part, object-oriented programming languages 
provide three major features: encapsulation, inheritance, 
and polymorphism. These features may lead object-
oriented applications to be either unanalysable or 
unpredictable, or both. In order to use object-oriented 
programming languages in safety critical real-time systems, 
some language features need to be restricted.  

A profile for high-integrity real-time Java programs 
based on the RTSJ specifications has been proposed by 
Puschner and Wellings [16]. The profile gives an overview 

of how to develop efficient applications whose temporal 
behaviour needs to be exactly predictable. They discuss 
necessary restrictions of the RTSJ and propose a 
realisation of the profile that meets the temporal 
requirements of high-integrity real-time systems. The paper 
[16] presents the restrictions inherent in the profile 
including threading model, inter-process communication 
and synchronisation, memory management, and the 
representation of time and clocks.  

Certainly, in hard real-time systems, it is reasonable to 
argue that no hard real-time threads should behave in an 
unpredictable way and that schedulability should be 
guaranteed before execution. In order to guarantee the 
timing constraints of portable code for hard real-time 
applications, a particular static timing analysis is necessary.  

To address these issues, we introduce a static timing 
analysis for the Java architecture in safety critical real-time 
applications. In our approach, we assume that the 
applications are at least analysable. In order to achieve 
this, the applications have to be used with the profile which 
is presented in [16]. The major aim of our approach is to 
provide a timing analysis environment for the development 
of hard real-time applications using the Java architecture. 
We introduce a novel extensible annotation class format, 
the so-called Extensible Annotations Class (XAC), to 
provide timing information from the design phase to static 
analysis or run-time phases. Using the XAC, we extend the 
work performed under the Javelin project [1,3] in terms of 
portable WCET analysis. This paper presents how static 
timing analysis using the Java architecture can be carried 
out. 

The major contributions of this paper are: 

• introducing a novel Extensible Annotations Class 
(XAC) structure  

• presenting how to integrate the XAC with portable 
WCET analysis in detail  

• describing how to gather real-time thread 
parameters from specifications 

• demonstrating how static timing analysis using Java 
architecture can be carried out from portable code 

The rest of the paper is organised as follows. Section 2 
gives a brief review of WCET analysis and portable 
WCET analysis. Section 3 provides an overview of our 
architecture. The subsequent sections describe the 
components of the architecture in detail: section 4 presents 
a summary of our novel XAC structure, section 5 describes 
how to integrate them with the portable WCET analysis 
[1,3], section 6 describes our approach to integrating the 
Real-Time Java specifications [4,10], and section 7 
presents how static timing analysis can be conducted on the 
Java architecture in our XRTJ-Analyser (Extended Real-



Time Java). Section 8 presents the current status and future 
work of our project. Finally, conclusions are presented in 
section 9.  

 

2. Worst-Case Execution Time Analysis  
 

This section gives a summary of the WCET (Worst-
Case Execution Time) analysis and portable WCET 
analysis. There exists a well-founded ground of research on 
platform-dependent WCET analysis [6,7,9,12,14,17]. 
Several approaches exist to determine the WCET of a 
section of object code. The basic and common approach is 
to build the graph of basic blocks† from the source code 
and the generated object code. The timing of each basic 
block is determined, for instance, by adding up the worst-
case execution time of each of the machine instructions 
within the basic block. Loops are identified and annotated 
with the maximum number of iterations.   

The timing information of each basic block can then be 
combined to determine the WCET of a whole program by 
using a simple timing schema [17], which is a set of rules 
to collapse the control flow graph annotated with timing 
information. Let WCET(S) denote the worst-case 
execution time of a code segment S, and assume that we 
initially have the WCET of all basic blocks. From this, the 
WCET of a whole section of code can be determined by 
collapsing the graph of basic blocks applying, basically, 
the following rules:   

• WCET (S1; S2) := WCET (S1) + WCET (S2)  

• WCET (if E then S1 ; else S2 ):= WCET(E) + 
max(WCET(S1),WCET(S2))  
where E is the conditional code.  

• WCET (for(E) S;) := (n+1)WCET(E) + nWCET(S)  
where E is the loop expression and n is the 
maximum number of iterations of the loop. This 
schema can also be applied to any type of loop with 
a bounded number of iterations.  

The effects of low-level features like cache effects and 
pipeline effects can be incorporated in the analysis at the 
basic block level or by determining their impact across 
several program paths. For example, this is usually 
modelled as a gain factor (negative time) in the analysis.   

User annotations are usually included in the code to 
drive the analysis process. Simple annotations allow 
developers to define maximum loop bounds that could not 
be determined automatically or more sophisticated 

                                                           
† A basic block is a continuous section of code in the sense that control 

flow only goes in at the first instruction and leaves through the last 
one. 

information, like mutually exclusive paths [6] or 
dependencies between loop induction variables [2]. These 
annotations are usually included in the source code as 
specially formatted comments and they are extracted by 
WCET analysis tools.  

 

2.1 Portable WCET Analysis 
 

The portable WCET analysis using Java byte code (the 
Javelin project) has been proposed by Bernat et. al. [3]. It 
has been extended by Bate et al. [1] to address low-level 
analysis issues. The portable WCET analysis uses a three-
step approach. The analysis assumes that the programmer 
has already compiled the Java source into a class file with 
a Java compiler.  

The first step is the high level analysis. In this stage, the 
technique analyses annotated JBC. Annotations are 
expressed by calls to a predefined static class WCETAn 
[3] and portable WCET information is computed in the 
form of so-called WCEF (Worst-Case Execution 
Frequency) vectors. WCEF vectors [1] represent 
execution-frequency information of basic blocks and more 
complex code structures that have been collapsed during 
the first part of the analysis. The WCEF vectors returned 
by the first analysis step are stored back into class files as 
code attributes. The class files are then ready for 
distribution to target Virtual Machines (VMs) on which the 
real-time code is to run.  

In parallel, analysis of the target platform is performed. 
This takes the form of the definition of a timing model of 
the VM. This stage performs platform-dependent analysis 
(i.e. in the context of specific hardware and VM) of each 
JBC instruction implementation. In this stage, information 
about the potential effects of pipelines and caches may be 
captured.  

Finally, a real-time enabled target virtual machine 
performs the combination of the high-level analysis with 
the low level VM timing model to compute the actual 
WCET bound of the analysed code sections. As the 
resources used by this stage are manageable, the 
calculations can easily be performed even on small virtual 
machines.  

 

3. Framework Overview  
 

Our approach, called XRTJ (Extended Real-Time Java), 
extends the current Real-Time Java architecture [4] that is 
proposed by the Real-Time Java Expert Group. The XRTJ 
architecture has been developed with the whole software 
development process in mind: from the design phase to 



run-time phases. For example, using our approach, the 
system can be evaluated during the design, and the 
application's timing constraints can be validated during 
run-time. This paper is mainly concerned with the static 
timing analysis part. Dynamic timing analysis will be 
discussed in future work. In this paper, we use Java 
programs to discuss our architecture. Indeed, other 
programming languages using a particular compiler, which 
may translate into Java byte code, can also migrate to our 
architecture easily.  
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Figure 1. A block diagram of the XRTJ 
architecture for static timing analysis 

 

A block diagram, which illustrates the XRTJ 
architecture in terms of static timing analysis, is given in 
figure 1. In the figure, we can see that XRTJ architecture 
includes the Extensible Annotation Class (XAC) file, 
integration interfaces for real-time Java specifications, 
VMTMs (Virtual Machine Timing Model) and scheduling 
algorithms. As shown in figure 1, annotated Java programs 
are compiled into JCF (Java Class File) and XAC files by 
either a simple translator and a traditional Java compiler or 
an annotation-aware compiler. The VMTM is a timing 
model for the target virtual machine including a list of the 
WCET of native methods and JBC instructions, and the 
gain factors due to the favourable effects of pipelines 
across instruction sequences. The RTJ (Real-Time Java) 
specification interfaces are the abstract description of the 
specifications which are used in the system to describe how 
the XRTJ-Analyser can extract the real-time parameters 
from the Java byte codes. The system configuration is the 

only input file provided by developers, and defines the run-
time environment of the system to be analysed in the 
XRTJ-Analyser. In accordance with the system 
configuration, the XRTJ-Analyser gets the information 
about the VMTM, the format of the RTJ specification, and 
scheduling algorithms and carries out the static timing 
analysis. An overview of the static timing analysis of the 
XRTJ approach is given below.  

Java programs are extended with timing annotations, 
such as maximum loop bounds. These annotations are 
extracted by the XAC translator or compiler, and the result 
is a compact representation of these annotations as an XAC 
file. The XAC files, together with the JCFs, are used by the 
XRTJ-Analyser to perform high-level WCET analysis, 
including gathering bounded loops and analysing flow 
information. We can use the VM timing model and flow 
information to carry out low-level WCET analysis. Given 
the high-level analysis and low-level analysis, WCET 
estimates can finally be calculated. Based on the real-time 
Java specification interface, the XRTJ-Analyser can gather 
real-time thread parameters, such as period and deadline, 
from the applications. Given estimated WCET values, real-
time parameters, system configuration, and scheduling 
algorithms, the XRTJ-Analyser can carry out 
schedulability analysis for the whole system. Finally, the 
XRTJ-Analyser produces an output file for the timing 
analysis of the whole system. This information can then be 
used by the developers to refine the system. 

 

4. XAC (Extensible Annotation Class File)  
 

The XAC (Extensible Annotations Class) file stores 
extra information which cannot be expressed in the source 
code. This section is mainly concerned with how to store 
information about timing annotations in the XAC file. 
Although we sometimes use the term XAC file, it is not 
necessarily a physical file. XAC is an annotation structure 
that can be stored in files or as an additional code attribute 
in JCF.  

 

4.1  Features 
 

The XAC file has been designed with two main goals in 
mind: portability and extensibility.  

Extensibility: The motivation for the XAC files is to be 
able to store extra information about the program source 
without changing the JBC format. However, it is 
relatively difficult to define a complete structure to 
provide enough information from the source code level 
for all purposes at once. We realise, therefore, that the 



specification for the XAC should be designed with 
extensibility in mind. For example, although we mainly 
focus on capturing information for timing analysis, the 
file could also be used to hold extra information needed 
for model checkers or any other tools.  

Portability: As mentioned before, JBC may be 
generated from other programming languages supported 
by a specific compiler. Furthermore, JBCs are highly 
portable and can be executed on various platforms 
supported by a particular Java virtual machine. As a 
result of this, to support the Java architecture, XAC has 
to be designed with portability features. Moreover, we 
realise that the XAC file has to be designed with not 
only platform independence, but also language 
independence, in mind. Taking advantage of the 
portability of the XAC file, we can use the XAC file in 
either static or dynamic analysis tools. 

 

4.2 Annotations Format  
 

All annotations in our approach are introduced with the 
characters ' //@' for single line and '/*@ .... @*/' for 
multiple lines. These formats are assumed to be comments 
in Java. Similar structures of annotations are applied in the 
JML (Java Modelling Language) approach [11], and the 
ESC/Java (Compaq Extended Static Checker for Java) [8]. 
However, these projects mainly focus on recording detailed 
design decisions for a software module [11] or checking 
runtime errors by a modular program checker [8].  

Even though the XAC file is provided for each class file 
in Java programs, its format is different from the JBC 
format. As all annotations are provided as comments in 
Java programs, these codes, including annotations, can be 
compiled by a traditional compiler to generate traditional 
JBC files and run on a traditional Java virtual machine. 
Figure 3 gives a fragment of code including the 
annotations.  

 

4.3 XAC Format  
 

Each XAC file is generated for a specific JCF (Java 
Class File). Therefore, the relationship between JBC and 
XAC is one to one. Since the XAC files are not defined for 
any particular operating systems, these files are easy to 
apply in annotation-aware tools or JVMs. Since the XAC 
file is designed for extensibility, the annotation formats of 
the XAC file may be variable. Therefore, all data structures 
need to be declared in the specification area.  

The format of the XAC file is given in figure 2. In order 
to speed up the reading of these files, the XAC file can be 

expressed in binary format. The XAC file includes class 
namespace, checksum, total number of tags, data format 
specification and contents of the annotations. The 
checksum can help the JVMs to verify the consistency 
between the JBC file and the XAC file. It can also be used 
in both static and dynamic analyses. The outermost layer of 
the XAC file defines how many TAG are contained in this 
XAC file. Each TAG encompasses a specification and its 
body. The specification may declare the format of the 
contexts. The body includes the annotations whose formats 
are defined in the specification. 

 
<@XAC>
<@Class_Name, Checksum>
TAG_Count = n
<BODY>
  ...
</BODY>

TAG = TAG_ID
<TAG_Name>
    <SPEC>
       <SUBTAG_COUNT = n >
       <METHOD = Constant_Pool_index >
       <METHOD BODY>
             ...
        </METHOD_BODY>
    </SPEC>
    <TAG_BODY>
      ...
    </TAG_BODY>
</TAG_Name>

< METHOD = #Ref >
<METHOD BODY>
             ...
</METHOD_BODY>

 
Figure 2: The format of the XAC file 

 

5. Integrating Portable WCET Analysis 
 

This section shows how the XRTJ approach can be 
integrated with portable WCET analysis. To support 
WCET, analysis annotations have to be provided in the 
source code. Bernat et al. [3] present a high-level WCET 
analysis technique using JBC to provide WCET 
annotations by means of a WCETAn class. It has sufficient 
capabilities to provide WCET annotations from the source 
level to JBC. The approach has showed how to extract data 
flow and control flow information from the JBC program 
without relying on the source code. The WCETAn class 
allows scope or code-block boundaries, the maximum 
number of iterations of loops, execution modes and 
arbitrary path execution frequencies to be described [15]. 
However, the WCETAn approach requires either a tool or 
WCETAn-aware JVM to eliminate these annotation 
instructions from JBC before executing. 

We extend the WCETAn approach to accumulate 
timing information from the source level. We introduce the 
XAC (Extensible Annotation Class) file to provide high-
level WCET annotations instead of using WCETAn Class. 
We support similar annotations to the one used by the 
Javelin project [3]. These are given in table 1.  



Take the following code example in figure 3, which 
shows how to specify that a loop iterates 50 times in the 
worst case, but that in the particular modes of operation 
called Quick_Mode and Normal_Mode they only iterate 10 
and 30 times respectively. 

 

Table 1. WCET Annotations 

 

...
public void Call_ForLoop(int nDoLoop) {

...
//@ Mode( Quick_Mode )
//@ Mode( Normal_Mode );
...
//@ Loopcount( 50 );
//@ Loopcount( 10, Quick_Mode );
//@ Loopcount( 30, Normal_Mode );
for(i=0;i<nDoLoop;i++) {
   ...
}
...

}
...

 
Figure 3. A fragment of the annotated 

Call_ForLoop method 

 

The context in which this fragment is used determines 
the mode. This allows the analysis tool to use tighter loop 
bounds for different calls and therefore reduce the 
pessimism. Without the annotations, extra pessimism 
would be incurred in the analysis by considering that all 
calls use the maximum number of iterations. Using an 
XAC translator or compiler, the XAC file can be produced 
from the annotated Java program. The text format of the 
XAC file is given in figure 4. In the figure, we can see that 

four types of WCET annotation formats are defined in the 
specifications. Each annotation has a unique identification 
number. For instance, 03 is defined for the Loopcount(int, 
Mode_name) annotation. Based on the offset of the method 
of the JBC in the JCF file, the annotation of the 
Loopcount(int, Mode_name) can be given as <03 #10, 10, 
Quick_Mode> and <03, #10, 30, Normal_Mode> in the 
body area. 

...
    <!-- WCET information -->
    <TAG=1>
    <WCET>

<SPEC>
    <SUBTAG_COUNT=4>
    <Method=Constant_Pool_index>
    <Method_Body>

<00 PC_Offset=int, Mode=name>
<01 PC_Offset=int, Use_Mode=name>
<02 PC_Offset=int, LoopCount=int>
<03 PC_Offset=int, LoopCount=int, Mode=name>

    </Method_Body>
</SPEC>
<TAG_BODY>
    <!--Constant_Pool index #36=

SimpleIO$ControllerThread.Call_ForLoop(I)V -->
    <Method=#36>
    <Method_Body>

<00 #1, Quick_Mode>
<00 #1, Normal_Mode>
<02 #10, 50>
<03 #10, 10, Quick_Mode>
<03 #10, 30, Normal_Mode>

    </Method_Body>
    ...
</TAG_BODY>

    </WCET>
...  

Figure 4. A fragment of the XAC file for 
Call_ForLoop method 

 

6. Integrating with Real-Time Specification 
 

This section is mainly concerned with how to extract 
real-time thread parameters from JCF files. In the XRTJ 
architecture, the XRTJ-Analyser has an interface to support 
different specifications [4,10] of the real-time extensions to 
Java. Developers can define which specification is going to 
be used in the system by the system configuration file. To 
do a schedulability analysis, real-time thread parameters 
are required. An example using RTSJ is given in this 
section.  

In the RTSJ [4], a real-time thread (javax.realtime.-
RealtimeThread) is an extension of the primary Java thread 
(java.lang.Thread). A real-time thread has a scheduling 
parameters object (javax.realtime.SchedulingParameters) 
that contains the priority of the thread. The object may also 
provide other parameters, such as importance value, for a 
particular scheduling algorithm. Each real-time thread is 
associated with a dispatching parameters object 
javax.realtime.ReleaseParameters) that includes cost, 
deadline, and two asynchronous event handlers. In the 
RTSJ, periodic threads, aperiodic threads, and sporadic 
threads are classified by the characteristics of their 

Type Annotation Description 
WCET 
Tags 

//@ Mode (Mode_name) Build a mode 

 //@ Label (Label_name)  Build a label 
Naming 

Tags 
//@ Define_Mode (Mode_name) Define a mode 

 //@ Use_Mode (Mode_name) Use the specific 
mode 

 //@ Identify_Code (Label_name) Identify a label 
Assertions //@ Loopcount (Max_loop_count) Maximum loop 

count 
 //@ Loopcount (Max_loop_count, 

Mode_name) 
Maximum loop 
count associated 
with the mode 

 //@ Dead_Path (Mode_name, 
Label_name) 

Infeasible path 

 //@ Begin_WCET (Label_name) The beginning of 
the WCET 
associated with 
the label  

 //@ End_WCET (Label_name) The end of the 
WCET 
associated with 
the label 



dispatching parameters. These objects extend from the 
object ReleaseParameters, such as PeriodicParameters 
object, AperiodicParameters object, and 
SporadicParameters object. 

The XRTJ-Analyser reads JCF files and finds out the 
parameters objects associated with the specific real-time 
threads as follows. First of all, the XAC-Analyser reads the 
real-time thread information from the constant pool table 
stored in the JCF files. Solving the symbolic information, 
the full name and type of each object can be reproduced. In 
line with the chosen real-time specification interface, the 
analyser, using the complete information about these 
objects and code attributes, can easily find out each real-
time thread created in the program. Following this, the 
relationships between parameter objects and the real-time 
threads are identified. Finally, all real-time thread 
parameters are collected.  

...
0 new #46 <Class javax/realtime/PriorityParameters>
3 dup
4 bipush 8
6 invokenonvirtual #49

    <Method javax/realtime/PriorityParameters.<init> (I)V>
9 astore_1
...
118 new #68 <Class javax/realtime/PeriodicParameters>
121 dup
122 aload 4
124 aload 5
126 aload 8
128 aload 5
130 aconst_null
131 aconst_null
132 invokenonvirtual #71

    <Method javax/realtime/PeriodicParameters.<init>
(Ljavax/realtime/HighResolutionTime;
 Ljavax/realtime/RelativeTime;
 Ljavax/realtime/RelativeTime;
 Ljavax/realtime/RelativeTime;
 Ljavax/realtime/AsyncEventHandler;
 Ljavax/realtime/AsyncEventHandler;)V>

135 astore 11
...
175 new #73 <Class SimpleIO$ControllerThread>
178 dup
179 aload_1
180 aload 11
182 invokenonvirtual #76 <Method SimpleIO$ControllerThread.<init> 

(Ljavax/realtime/SchedulingParameters;
 Ljavax/realtime/ReleaseParameters;)V>

185 astore 14
...
219 aload 14
221 invokevirtual #84 <Method java/lang/Thread.start ()V>
...

 
Figure 5. A fragment example of the Java Byte 

Code 

 

An example fragment of a JCF file is given in figure 5. 
The context in which this fragment is used creates a 
periodic thread (SimpleIO$ControllerThread) in a main 
program. In the figure, we can see that the periodic thread, 
which is created in offset byte 175-185, contains a 
scheduling parameters object and dispatching parameters 
object, which are created in offset byte 0-9 and offset byte 
118-135 respectively. Analysing these Java byte codes, the 
priority of the periodic thread and its dispatching 
parameters, including period, deadline, cost and start 

values, can be extracted easily. The complete example is 
given on our website (http://www.xrtj.org). 

In a very similar way, real-time thread parameters from 
the system using RT-Core specification [10] can be 
accumulated.  

 

7. XRTJ-Analyser 
 

 As mentioned in previous sections (Sec.5 and Sec. 6) 
real-time parameters, including priority and dispatching 
parameters, for the set of threads and WCET estimates can 
be produced from the JCF and XAC files. Given the 
WCET estimates and real-time parameters, the 
schedulability analysis can be conducted easily. In the 
XRTJ-Analyser, only the system configuration information 
is needed. The system configuration includes: which 
scheduling algorithm is going to be used in the system, 
such as Earliest Deadline First; which resource access 
protocol is applied in the scheduling algorithm, such as 
priority inheritance protocol; which real-time specification 
is being used, such as RTSJ [4]; and additional information 
about VMTM, such as memory management features. In 
addition, the scheduling algorithms can be provided 
through the interface which is offered by the XRTJ-
Analyser to support various scheduling algorithms. This 
feature can be easily achieved as a result of the way in 
which the dynamic binding and dynamic loading of object-
oriented features are applied.  

Following the system configuration, the XRTJ-Analyser 
loads the scheduling algorithm and carries out the 
schedulability analysis. Scheduling algorithms must 
provide scheduling characteristics, algorithms which can 
calculate other scheduling parameters, such as release-
jitter, blocking time, response-time, and resource access 
protocols which are provided to manage the priority 
inversion problems. Further details of the schedulability 
analysis are not discussed here since they are outside the 
scope of this paper. Finally, the XRTJ-Analyser produces 
the result of the analysis of the system. The output file 
provides not only the result of the analysis, but also 
includes timing and scheduling information, such as 
response time, release-jitter, blocking time. 

 

8. Current Status and Future Work 
 

Currently, we are developing a translator to produce 
XAC files from the annotated Java programs. At the same 
time, we are working on the schedulability analyzer to 
integrate it with the XRTJ-Analyser.  



In this paper, we have only mentioned the static timing 
analysis issue. Indeed, the approach can be applied in the 
run-time environment to validate the timing constraints of 
the system dynamically. To perform this, the Java virtual 
machine needs to be modified. Our future work includes: 

• developing the XRT-JVM (Extended Real-Time 
Java Virtual Machine) to support dynamic timing 
analysis at run-time  

• developing the XRTJ-Compiler to produce the 
XAC file and JCF file during compiling time  

• extending the portable WCET analysis to get 
tighter estimated values.  

The most updated information can be found on our 
website (http://www.xrtj.org). 

 

9. Conclusions 
 

Since the aim of portable code is to support hardware 
interchangeability, the validation of the timing constraints 
in a particular run-time system is of vital importance for 
hard real-time systems. We have presented a static timing 
analysis approach based on the Java architecture to analyse 
the execution time of hard real-time systems during the 
development phase. The approach demonstrates the 
expressive power of the XRTJ architecture in terms of the 
static timing analysis in a portable code context. This 
architecture can be easily merged with other approaches, 
such as model checking.  
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