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Abstract

There is a trend towards using object-oriented programming
languages to develop hard real-time applications. However,
some object-oriented features, such as dynamic dispatching and
dynamic loading, are prohibited from being used in hard real-
time systems because they are either unpredictable and/or un-
analysable. Arguably, these restrictions could make applica-
tions very limited and unrealistic since they could eliminate the
major advantages of object-oriented programming. This pa-
per demonstrates how we can address the dynamic dispatching
issues in Worst-Case Execution Timing (WCET) analysis with
minimum annotations. The major contributions include: dis-
cussing the major issues involved in using and restricting dy-
namic binding features; weakening the restriction of using dy-
namic dispatching; presenting how to estimate tighter and safer
WCET value in object-oriented hard real-time systems. Our ap-
proach shows that allowing the use of dynamic dispatching not
only can provide a more flexible way to develop object-oriented
hard real-time applications, but it also does not necessarily re-
sult in unpredictable timing analysis.

Keywords : Java, Hard Real-Time Systems, Real-Time Java,
Worst-Case Execution Time (WCET) Analysis, Object-
Oriented WCET, Dynamic Dispatching

1. Introduction

The success of hard real-time systems relies upon their ca-
pability of producing functionally correct results within defined
timing constraints. In order to achieve this, it is of vital impor-
tance to guarantee that all hard real-time threads will finish their
tasks within their deadlines. Typically, most scheduling algo-
rithms assume that the WCET (Worst-Case Execution Time) of
each task is known prior to doing the schedulability analysis.

The purpose of WCET analysis is to determine the maxi-
mum possible execution time that a piece of code may take.
This analysis has to be safe; no underestimation of this value
is allowed, but it should also be tight. In order to achieve a
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tight estimate, both the program flow, such as loop iterations
and infeasible paths, and the execution characteristics of the
object code on the target system, such as instruction caches
and pipelining, must be taken into account. On the whole, the
WCET analysis technique may be divided into two levels: high-
level analysis and low-level analysis. The role of the high-level
analysis is to analyse possible program flows from the source
program, without regard to the time for each atomic unit of
flow. The role of the low-level analysis, however, is to deter-
mine the timing aspects of the hardware features. A number
of research approaches [7, 13, 17, 15] have demonstrated how
to estimate WCET at both levels. Given the high-level analy-
sis and low-level analysis, the final WCET estimation can be
calculated.

In general, most WCET analysis approaches are only con-
sidered in relation to procedural programming languages. In
fact, doing WCET analysis on object-oriented programs must
take into account additional dynamic features provided in
object-oriented languages. For the most part, object-oriented
languages provide three major features: encapsulation, inheri-
tance, and polymorphism. In fact, some of these features may
result in object-oriented applications being either unanalysable
and/or unpredictable. In order to use object-oriented languages
in hard real-time systems, most research approaches have pro-
hibited using dynamic features, such as dynamic loading and
dynamic dispatching. Notable exceptions include [11, 14].
However, they do not give a satisfactory solution to the prob-
lem of dynamic dispatching. For example, Persson and Hedin
[14] have proposed providing a maximum time-bound for dy-
namic dispatching methods, but they do not mention how we
can estimate these maximum time-bounds.

Dynamic dispatching issues have been considered in com-
piler techniques for a number of years [1, 2, 8, 9, 18]. Unfor-
tunately, these approaches cannot be directly applied to WCET
analysis since they are solely optimising dynamic binding and
do not guarantee that all dynamic binding will be resolved be-
fore run-time. However, in WCET analysis for hard real-time
systems, the execution time of every single method has to be
known prior to executing it. Therefore, most approaches in
the WCET analysis field have simply assumed that dynamic
dispatching features should be prohibited. It is possible that
these restrictions could make applications very limited and un-



realistic because they might eliminate the major advantages of
object-oriented programming.

For the above reasons, we argue that the use of dynamic dis-
patching should be allowed in object-oriented hard real-time
systems. In this paper, we propose minimum annotations to
address dynamic dispatching. Furthermore, we show that the
correctness of these annotations can be easily validated with a
combination of optimisation techniques, such as Class Hierar-
chy Analysis (CHA)[8]. The major contributions of this paper
are:

• Discussing the major issues involved in restricting and us-
ing dynamic binding

• Weakening the restrictions by allowing dynamic dispatch-
ing

• Presenting how to estimate tighter and safer WCET values
in object-oriented hard real-time systems

• Demonstrating how to fit this approach into a framework
for real-time system development on Java (XRTJ)

The rest of the paper is organised as follows. Section 2 gives
a brief review of WCET analysis, a summary of portable WCET
analysis, and our framework for developing real-time programs
in Java (XRTJ). Section 3 discusses the major issues connected
with using and restricting dynamic binding features in object-
oriented hard real-time systems. Following this, section 4 in-
troduces annotations and shows how these annotations can be
denoted in real-time applications in order to estimate tighter and
safer WCET values. Section 5 gives an example to demonstrate
how we can address dynamic dispatching issues and how safe
and tight WCET estimations can be calculated. Finally, conclu-
sions and future work are presented in section 6.

2. Background

2.1. WCET (Worst-Case Execution Timing) Analysis

There exists a well-founded ground of research on platform-
dependent WCET analysis [7, 13, 17, 15]. Several approaches
exist to determine the WCET of a section of object code. The
basic and common approach is to build the graph of basic
blocks1 from the source code and the generated object code.
The timing of each basic block is determined, for instance, by
adding up the worst-case execution time of each of the machine
instructions within the basic block. Loops are identified and
annotated with the maximum number of iterations.

The timing information of each basic block can then be com-
bined to determine the WCET of the whole program by using
a simple timing schema [17], which is a set of rules to collapse
the control flow graph annotated with timing information. Let
WCET(S) denote the worst-case execution time of a code seg-
ment S, and assume that we initially have the WCET of all basic

1A basic block is a continuous section of code in the sense that control flow
only goes in at the first instruction and leaves through the last one.

blocks. From this, the WCET of a whole section of code can
be determined by collapsing the graph of basic blocks applying,
essentially, the following rules [17]:

• WCET (S1; S2) := WCET (S1) + WCET (S2)

• WCET (if E then S1; else S2) := WCET (E) +
max(WCET (S1),WCET (S2))
where E is the condition expression code

• WCET (for (E) S;) := (n+1)WCET(E) + nWCET(S)
where E is the loop expression and n is the maximum num-
ber of iterations of the loop. This schema can also be ap-
plied to any type of loop with a bounded number of itera-
tions.

The effects of low-level features such as cache effects and
pipeline effects can be incorporated in the analysis at the basic
block level or by determining their impact across several pro-
gram paths. For example, this is usually modelled as a gain
factor (negative time) in the analysis.

User annotations are usually included in the code to drive
the analysis process. Simple annotations allow developers to
define maximum loop bounds that could not be determined au-
tomatically, or provide more sophisticated information like mu-
tually exclusive paths [7] or dependencies between loop induc-
tion variables [4]. These annotations are usually included in
the source code as specially formatted comments and they are
extracted by WCET analysis tools.

2.2. Portable WCET Analysis

A portable WCET analysis approach based on the Java ar-
chitecture has been proposed by Bernat et. al. [5] within the
Javalin project. It has been extended by Bate et al. [3] to ad-
dress low-level analysis issues. The portable WCET analysis
uses a three-step approach. The analysis assumes that the pro-
grammer has already compiled the Java source into a class file
with a Java compiler.

The first step is the high level analysis. At this stage, the
technique analyses annotated Java class files (JCF). Annota-
tions are expressed by calls to a predefined static class WC-
ETAn [5] and portable WCET information is computed in the
form of so-called WCEF (Worst-Case Execution Frequency)
vectors. WCEF vectors [3] represent execution-frequency in-
formation about basic blocks and more complex code struc-
tures that have been collapsed during the first part of the anal-
ysis. The WCEF vectors returned by the first analysis step are
stored back into class files as code attributes. The class files are
then ready for distribution to target Virtual Machines (VMs) on
which the real-time code is to run.

In parallel, analysis of the target platform is performed. This
takes the form of the definition of a timing model of the VM.
This stage performs platform-dependent analysis (i.e. in the
context of specific hardware and VM) of each Java byte code
(JBC) instruction implementation. During this stage, informa-
tion about the potential effects of pipelines and caches may be
captured.



Finally, a real-time enabled target virtual machine performs
the combination of the high-level analysis with the low level
VM timing model to compute the actual WCET bound of the
analysed code sections. As the resources used by this stage are
manageable, the calculations can easily be performed even on
small virtual machines.

2.3. XRTJ Overview

Our previous work, called XRTJ (Extended Real-Time
Java), extends the current Real-Time Java architecture [6] pro-
posed by the Real-Time Java Expert Group. The XRTJ ar-
chitecture has been developed with the whole software devel-
opment process in mind: from the design phase to run-time
phases. For example, using our approach, the system can be
evaluated during the design, and the application’s timing con-
straints can be validated during run-time. A summary of our
previous work presented in [12] is given as below.
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Figure 1. A block diagram of the XRTJ architec-
ture for static timing analysis

As shown in Figure 1, the XRTJ architecture includes an Ex-
tensible Annotation Class (XAC) file, integration interfaces for
real-time Java specifications, VMTMs (Virtual Machine Tim-
ing Models) and scheduling algorithms. Annotated Java pro-
grams are compiled into JCF (Java Class File) and XAC files
by either a simple translator and a traditional Java compiler or
an annotation-aware compiler. The VMTM is a timing model
for the target virtual machine including a list of the WCET
of native methods and JBC instructions, and the gain factors
due to the favourable effects of pipelines across instruction se-
quences. The RTJ (Real-Time Java) specification interfaces are
the abstract description of the specifications. These are used
in the system to describe how the XRTJ-Analyser can extract

the real-time parameters from the Java byte codes. The sys-
tem configuration is the only input file provided by the devel-
opers, and defines the run-time environment of the system to be
analysed in the XRTJ-Analyser. In accordance with the system
configuration, the XRTJ-Analyser gets the information about
the VMTM, the format of the RTJ specification, and schedul-
ing algorithms and carries out the static timing analysis. An
overview of the static timing analysis of the XRTJ approach is
as follows.

Java programs are extended with timing annotations, such as
maximum loop bounds. These annotations are extracted by the
XAC translator or compiler, and the result is a compact repre-
sentation of these annotations as an XAC file. The XAC files,
together with the JCFs, are used by the XRTJ-Analyser to per-
form high-level WCET analysis, including gathering bounded
loops and analysing flow information. We can use the VM tim-
ing model and flow information to carry out low-level WCET
analysis. Given the high-level analysis and low-level analysis,
WCET estimates can finally be calculated. Based on the real-
time Java specification interface, the XRTJ-Analyser can gather
real-time thread parameters, such as period and deadline, from
the applications. Given estimated WCET values, real-time pa-
rameters, system configuration, and scheduling algorithms, the
XRTJ-Analyser can carry out schedulability analysis for the
whole system. Finally, the XRTJ-Analyser produces an output
file for the timing analysis of the whole system. This informa-
tion can then be used by the developers to refine the system.

2.4. XAC (Extensible Annotation Class File)

The XAC (Extensible Annotations Class) file stores extra in-
formation which cannot be expressed in the source code. XAC
is an annotation structure that can be stored in files or as an ad-
ditional code attribute in JCF. The XAC file has been designed
with two main goals in mind:portability andextensibility. We
have introduced a number of annotations in order to capture
information for timing analysis in [12]. In this paper, we pro-
posed additional annotations, which have the same format as
our previous annotations and which can be translated into the
XAC file, for addressing dynamic dispatching. This will be
discussed in detail in section 4.

3. Dynamic Dispatching Issues

This section is mainly concerned with the major issues con-
nected with using and restricting dynamic dispatching features.
In this paper, these issues will be mainly discussed with the Java
architecture, but our approach can easily apply to any object-
oriented programming language.

Java distinguishes itself from other general-purpose object-
oriented languages by its portability, networking, memory man-
agement, concurrent programming, and security features. How-
ever, the run-time characteristics (i.e. high frequency of method
invocations and dynamic dispatches) make Java more diffi-
cult than other object-oriented programming languages, such



as C++, for optimisation at compilation time. Therefore, ad-
dressing dynamic dispatching on the Java architecture is a big
challenge and very interesting research topic in either dynamic
compilation or WCET analysis. The following subsections dis-
cuss the major issues connected with restricting and using the
dynamic dispatching feature in Java.

3.1. Issues connected with Restricting Dynamic Dis-
patching Features

From the Java virtual machine point of view, methods can be
mainly divided intoJava methodsandnative methods. Invoking
aJava methodin the Java virtual machine (JVM) creates a new
stack frame, whereas invoking anative methoddoes not push
a new stack frame [19].Native methodsare not discussed here
since they are outside the scope of this paper.

For the most part,Java methodsmay be classified into two
main groups:class (static) methods, andinstance methods. A
class (static) methodis a method which does not need an in-
stance to be invoked, whereas aninstance methodrequires an
instance before it can be invoked. In other words,class (static)
methodsare invoked based on the type of the object reference,
whereasinstance methodsare invoked based on the actual ob-
ject [19]. In general, theclass methodsare translated intoin-
vokestaticJava byte code instructions, which uses static binding
technique at run-time. By definition, astatic methodcannot be
overridden and therefore no run-time dispatching is required. In
contrast,instance methodsare translated into theinvokevirtual
Java byte code instruction, which uses dynamic binding. Note
that, althoughinstance methodsare normally invoked within-
vokevirtual, in specific situations two other Java byte code in-
structions may be used:invokespecialandinvokeinterface. The
invokespecialinstruction is applied for instance initialisation,
private methods, and methods invoked with thesuperkeyword.
It differs from invokevirtualin the manner in which it uses static
binding. Theinvokeinterfaceperforms the function asinvoke-
virtual, but it is used solely when the type of reference is anin-
terface. In the following sections, we use’instance method’to
mean those methods that are translated into eitherinvokevirtual
or invokeinterfaceinstructions and which may be overridden by
child classes.

In the Java language semantic,Java methodsmay be defined
as: public, private, protected, static, andfinal. By definition,
private, static, andfinal methods cannot be overridden by any
other classes, and onlypublic and protectedmethods can be
overridden by child classes. On the whole, the dynamic fea-
tures of objected-oriented, such as inheritance and overriding,
are offered in theinstance methods, which are defined aspub-
lic andprotectedin Java. Therefore, if one prohibited the use
of dynamic binding features in object-oriented real-time appli-
cations, onlystatic, private, andfinal methods could be used.
Obviously, these restrictions could eliminate the major advan-
tages of object-oriented programming. Arguably, these kinds
of applications no longer appear object-oriented and have even
less expressive power than procedural languages in terms of
reusability and extensibility. An alternative approach is to force

the programmer only to use static binding. In Java, this can be
achieved by disallowing assignment and parameter association
between objects in the same class hierarchy. For the above rea-
sons, we conclude that dynamic dispatching should be allowed
in hard real-time systems in an appropriate way.

3.2. Issues involved in Using Dynamic Dispatching Fea-
tures

Unlike procedural programming languages, the analysis of
object-oriented programming in WCET analysis needs to con-
sider more dynamic characteristics. In real-time systems, all
hard real-time threads not only have to be analysable and pre-
dictable, but also have to meet their deadline at run-time. In
fact, using the dynamic binding features in Java applications
may leadinstance methodsto be either unanalysable and/or un-
predictable.

class A {
// WCET:100ms
public void m1(){
...
}
...

}

class B extendsA {
// WCET:25ms
public void m1(){
....
}
...

}

class C extendsA {
// WCET:200ms
public void m1(){
....
}
...

}

class App {
Call m1(A ax){

// dynamic dispatching occur
ax.m1();

}
public static void main ( String [] args ){

A a= newA();
B b= newB();
C c= newC();
...
Call ml(a );
Call m1(b);
Call m1(c );
...
if (x>5)

a = c;
else

a = b;
...

Call m1(a );
}

}

Figure 2. Example 1

For example, in Figure 2, class A is a parent class and has
a public method called m1(). Then, class B and class C ex-
tend the class A and override the method m1(). Considering the
Java byte code in Figure 2, we can see that the exact method
of the ax.m1() in the Callm1() method is unknown until run-
time since it uses dynamic binding features. The WCET values
for A.m1(), B.m1() and C.m1() are 100ms, 25ms, and 200ms
respectively. In this situation, if we estimate the WCET value
of ax.m1() with A.m1() method, it is very pessimistic if the in-
stance type is B, or it is even unsafe if the instance type is C.
Again, from the source codes, it can be observed that the WCET
of the first call Callm1(a) and the last call Callm1(a) are dif-
ferent since an instance of parent class can denote an instance
of any descendant of the class.

Apparently, using dynamic dispatching in a hard real-time
system may result in the whole system being not only unpre-
dictable and unanalysable, but also either unacceptably pes-
simistic or unsafe. Therefore, every singleinstance method
should be analysed carefully if dynamic dispatching features
are allowed.



//@ WCET Label(Full Class Name.Method Name(argument types), Pattern Format) . . . . . . . . . A1
//@ UseWCET(Full Class Name.Method Name(argument types), Pattern Format) . . . . . . . . . A2
//@ DefineScope(Scope Name) . . . . . . . . . A3
//@ ScopeWCET(Scope Name, nCount ∗ UseWCET (...) + ...) . . . . . . . . . A4
//@ maxWCET(&Full Class Name.Method(argument types) − /+

Full Class Name/ &Full Class Name, Pattern Format) . . . . . . . . . A5

Table 1. WCET annotations

4. Dynamic Dispatching with Annotations

In our previous work [12], we use the//@Mode(...) anno-
tation, proposed by Chapman et al. [7], to help estimate tighter
WCET values for different execution times on a specific iter-
ation loop or function call. Similarly, in object-oriented pro-
gramming languages, the execution time of eitherclassor in-
stance methodmay vary. In addition to this, in Java, the execu-
tion time of a particularinstance methodmay be different in its
descendant classes if child classes override the method. There-
fore, it is clear that the WCET analysis will be complicated if
dynamic binding features are taken into account.

In our approach, we assume that the source code of all
hard real-time thread is analysable. This section introduces
minimum annotations, using the XAC (Extensible Annotation
Class) format presented in [12]. These annotations can not
only address the dynamic dispatching feature, but can also of-
fer WCET analysis that achieves tighter and safer WCET esti-
mation. All annotations are given in Table 1 and each one is
discussed in the following subsections.

4.1. WCET Annotations for Object-Oriented Methods

As shown in Figure 2, the type of the instance object ’a’,
which originally has the type of Class A, was changed to the
type of B object or C object after theif statement. Most of
these dynamic type changes can be analysed by current com-
piler optimisation approaches, such as Class Hierarchy Analy-
sis (CHA) [8] and Rapid Type Analysis (RTA) [2], for dynamic
compilation. However, the dynamic compilation approaches
are solely for optimising dynamic binding and they do not guar-
antee that all dynamic binding will be resolved before run-time.
In fact, in WCET analysis for hard real-time systems, the exe-
cution time of every singleinstance methodhas to be known
prior to executing it.

Moreover, in procedural programming languages, the rela-
tionships between functions or procedures are relatively simple.
They have one call hierarchy and neither inheritance nor poly-
morphism is supported. Unfortunately, in object-oriented lan-
guages, the naming of methods is relatively difficult to under-
stand and analyse if several objects are using the same method
name, for example using overridding and overloading. As a
result, well-structured annotations need to be considered in re-
lation to the class hierarchy information in object-oriented lan-
guages.

Our approach is to provide minimum annotations to en-
sure the predictability of dynamic binding methods statically
and estimate safe and tight WCET for hard real-time applica-
tions. In this section, two major WCET annotations (A1 and
A2), which offer expressive power to cope with object-oriented
features, are introduced in order to address dynamic dispatch-
ing problems. TheWCETLabel()annotation (A1) is provided
for making a label for a specific mode for particular execut-
ing characteristics in either class or instance methods, whereas
UseWCET()annotation (A2) is offered to denote a specific
mode or method in the applications. The complete format of
these two annotations is given in Table 1. In both annotations,
PatternFormatmay denote apath, label, mode, symbolic mode
with input data ranges or none. Using thePatternFormat, we
can define a specific path, label, mode, or symbolic mode for
different WCET estimations for the method. In the symbolic
mode, we can express the input data range (DR) as follows:

Data Range Notation
a ≤ DR ≤ b, where a < b [a..b]
a < DR < b, where a < b (a..b)
a ≤ DR < b, where a < b [a..b)
a < DR ≤ b, where a < b (a..b]

−∞ < DR < b (-inf..b)
a < DR < ∞ (a..+inf)

Table 2. Symbolic input data range format

In addition, in order to take into account the polymorphism
features, argument types need to be considered. In a combina-
tion of the full class name, method name and argument types,
the full name for each method can be defined in the annotations.
A simple example is given in Figure 3.

4.2. WCET Annotations for Nested Scopes in
Objected-Oriented Programs

Considering the situation of the program in Figure 3, it is
clear that the annotations proposed in the previous section are
not tight enough to represent complicated structures or nested
loops. The example shows that it could be pessimistic or unsafe
if this situation occurred. To represent the dynamic behaviour
of a program additional annotations, which can represent the
WCET estimation for a specific scope, are necessary. Further-
more, in order to provide a more flexible environment for the
object-oriented hard real-time applications, we need to consider
more complicated conditions, such as nested loops.

In this section, two additional WCET annotations (A3 and



class A {
//@ WCET Label(A.m1())
public void m1 (){ ...} // given 100ms

}

class B extendsA {
//@ WCET Label(B.m1())
public void m1 (){ ....} // given 25ms

}

class App {
public static void main ( String [] args ){

A a= newA();
B b= newB();
...

//@ DefineScope(ForScope)
for ( int i=0;i<5;i++) {

if ( i==2) // type changing
a = b;

//@ ScopeWCET(ForScope,2∗UseWCET(A.m1)+3∗UseWCET(B.m1))
a.m1();

}
}

}

Figure 3. Example 2

A4), which address nested scopes or loops, are introduced.
The DefineScope()annotation (A3) is provided for defining
a simple or nested loop to establish the WCET, whereas the
ScopeWCET()annotation (A4) is offered to denote the WCET
estimation for the whole specific scope. These two annotations
are given in Table 1.

The scope annotations, which have been used in procedural
programming languages [10], are introduced in order to repre-
sent a particular scope or nested loops in WCET analysis. Us-
ing these scope annotations, we can achieve very tight and safe
WCET for a specific scope or nested loops.

4.3. Maximum WCET Annotations for Dynamic Dis-
patching

Using annotations presented in previous sections (Section
4.1 and 4.2), we can address most issues involved when us-
ing dynamic dispatching features. However, the drawback is
that these annotations need to know exactly which methods are
going to be invoked at run-time. Unfortunately, it could be pos-
sible that there is more than one particular method that may be
invoked.

In this section, themaxWCET(...)annotation (A5), which
can denote a set of complicated class hierarchy, is introduced.
This annotation can suggest that the WCET of a dispatching
method should be considered to be the maximum WCET of
the class family2 containing that method. Subsets of the class
family can also be specified. One of the major differences with
other annotations is that themaxWCET(...)supports reusability
and extendibility features. This can be achieved by the support
of an annotation-aware compiler.

In themaxWCET(...)annotation (A5), ”&”of A denotes the
whole class family of A. In this annotations, we can use ”+” and
”-” to express the union or subtraction of a single class or a class

2A class family of a class is a set of the classes including the class itself and
all the child classes inherited from it.

family for the method. The definition of thePatternFormat is
described in section 4.1. Given class A has two descendant
classes B and C, and B and C each has a number of descendant
classes, if we would like to denote a method (A.mx()) of the
class A, in which we do not want to consider the class C family,
we can use themaxWCET(...)as below.
e.g.//@ maxWCET (&A.mx()−&C)

A.mx()

B.mx() C.mx()

DD FFEE HH II JJ

//@ maxWCET(&A.mx()−&C)

Figure 4. maxWCET(...) annotation

The concept of these annotations is similar to CHA [8],
which is used for optimisation in compilation techniques,
whereas here the annotation may provide tighter specification
for a specific method. If we apply the CHA approach, the
WCET value could be very pessimistic. Again, using Figure
2, here we only need to consider the execution of A.m1() from
the WCET value either A.m1() or B.m1(). If we used the CHA
approach or other WCET approaches for the WCET value for
the A.m1() with max(A.m1(), B.m1(), C.m1()), the estimation
is very pessimistic. It is clear that using//@ maxWCET (...)
annotation can not only address these issues and but can also
achieve tighter and safer WCET estimation.

5. Evaluations

This section gives an example to demonstrate how we can
address dynamic dispatching issues and how safe and tight
WCET estimations can be calculated. In addition, this section
discusses how we can validate the correctness of these annota-
tions.

5.1. An Example

We use an example which is part of the sensor control sys-
tem of an aircraft control system to discuss how we can pro-
vide safe and tight WCET annotations in the parent classes
and how to use them in the child classes. The semantics and
real-time APIs (Application Program Interfaces) used in the
example are in line with the RTSJ specification [6]. In Fig-
ure 5, it can be observed that an abstract Sensor class has
three subclasses:TemperatureSenclass,PressureSenclass
andSpeedSenclass. TheTemperatureSenclass has three child
classes:AirTempSenclass,JetEngineTempSenclass andLand-
ingDeviceTempSenclass.

The purpose of these classes is to detect the surrounding en-
vironment, such as air temperature, Jet-engine temperature, and
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Figure 5. A class hierarchy for Sensor Control
Systems

landing devices’ temperature, of the aircraft and then to report
temperature information to related device objects or systems.
Similarly, theAirSpeedSenclass andVelocitySenclass, which
are inherited from theSpeedSenclass, detect the air speed
and velocity of the aircraft respectively. The limited space of
this paper means that we can only discuss theTemperatureSen
class in this section. Moreover, in order more easily to under-
stand our approach, in the example, we only consider the high-
level timing analysis of the program and produce the WCET
estimation. Of course, in reality, we have to consider the low-
level timing analysis to calculate the tight and safe WCET esti-
mations.

class TemperatureSenextendsSensor{
...

//@ WCET Label(TemperatureSen.CollectData(V)) // WCET:100ms
//@ WCET Label(TemperatureSen.CollectData(V), TakeOffMode) //WCET:200ms
public int CollectData (){ // Overridden by children classes

...
return result ;

}
//@ WCET Label(TemperatureSen.AccessSensor(V)) //WCET:200ms
public int AccessSensor (){ // Overridden by children classes

...
return result ;

}
...

}

Figure 6. A fragment of the Temperature Sen
Java program

As shown in Figure 6, theTemperatureSenclass hasCol-
lectData(...) and AccessSensor(...)methods. The WCET
annotations can be added to analyse and validate the design
and WCET behaviour of theTemperatureSen class as fol-
lows. In this object, we add two annotations forCollect-
Data(...) method: one is the default//@WCETLabel(...) and
the other isTakeOffMode. We assume that the WCET val-
ues for the default//@WCETLabel(...) and theTakeOffMode
are 100ms and 200ms respectively. In a similar way, we can

analyse other methods either in parent or in child classes.
In the child classes, we assume that the WCET values, de-
noted with default//@WCETLabel(...), for CollectData(...)
method in theAirTempSen, JetEngineTempSen, and Land-
ingDeviceTempSenare 110ms, 120ms and 130 respectively.
The WCET values for theTakeOffModeare twice the WCET
value of the default//@WCETLabel(...) in the same class in
each child class. Moreover, the WCET values forAccessSen-
sor(...) method in theAirTempSen, JetEngineTempSen, and
LandingDeviceTempSenare 210ms, 220ms and 230 respec-
tively. Here we shall have to omit the source codes of these
child classes.

import javax . realtime .∗

static AirTempSen ATTempSen;
static JetEngineTempSen JETempSen;

class public SensorControllerextendsRealTimeThread ( .... ){
TemperatureSen TempSen;
...
SensorController ( PriorityParameters schP , PeriodicParameters relP ){

super(schP , relP );
TempSen = JETempSen; // default with JetEngineTempSen
...

}
private void Call Sensor (TemperatureSen callTempSen){

...
// With design knowledge, we can denote the maxWCET(...) as below.
//@ maxWCET(&TemperatureSen.AccessSensor− &LandingDeviceTempSen)
// the WCET is max (200, 210, 220) => WCET: 220ms
callTempSen.AccessSensor();
...
// given the rest of the WCET is 100ms

}
public void run (){

while( waitforNextPeriod ());
...

//@ UseWCET(JetEngineTempSen.AccessSensor(V)) //WCET:220ms
TempSen.AccessSensor()
...
Call Sensor (TempSen); // 220ms+100ms
TempSen = ATTempSen; // given 7 ms // type changing occur

...
//@ UseWCET(AirTempSen.AccessSensor(V)) //WCET:210ms
TempSen.AccessSenor();
...

//@ UseWCET(AirTempSen.CollectData(V),TakeOffMode) //WCET:220ms
TempSen.CollectData();
...

TempSen = JETempSen; // given 7 ms // type changing occur
// given the rest of the WCET is 200ms

}
}

}

Figure 7. A fragment of the SensorController
Java program

Then, as shown in the Figure 7, we can analyse the real-
time thread (SensorController), which is defined as aPe-
riodicThread in accordance with the RTSJ. In theSensor-
Controller object, assume that we only need to consider the
AirTempSenobject andJetEngineTempSenobject. Therefore,
with design knowledge, we can add an //@maxWCET( &Tem-
peratureSen.CollectData() - &LandingDevice ) annotation for
TempSen.CollectData()code to achieve tighter WCET estima-
tion in the CallSensor() method. Therefore, for this code, we
can assume that the WCET value is 220ms. In the run() method,



analysing the source code, we can denote two//@UseWCET(...)
annotations. Finally, we can calculate a tight and safe WCET
value for theSensorControllerperiodic real-time thread. The
WCET value for the run method in theSensorControllerthread
can be calculated as follows:

WCET( SensorController.run () )
= 220ms+ (220ms+100ms)+ 7ms+ 210ms+ 220ms+ 7ms+ 200ms
= 1184ms

5.2. Correctness of Annotation

It is an open question for most annotation-based approaches
as to how to validate if the provided annotations are correct or
not. Obviously, combining the optimisation techniques, such
as CHA [8] or RTA [2], with our approach the annotations can
be simply verified, if there is no dynamic linking at run-time.
For example, applying the CHA approach, we can easily get the
maximum bound of the classes hierarchy information from the
Java byte code. In addition, since the//@ maxWCET(...)anno-
tations defined in the parent classes can be inherited from child
classes, the annotation defined in the parent classes can be used
to validate the annotations added in the child classes. There-
fore, using these annotations, the object-oriented hard real-time
systems not only can achieve tight and safe WCET estimations,
but can also validate the correctness of the system’s design and
WCET annotations.

6. Conclusions and Future Work

This paper has explored the ways in which dynamic dis-
patching can be addressed in object-oriented hard real-time sys-
tems. Our approach shows that allowing the use of dynamic dis-
patching not only can provide a more flexible way to develop
object-oriented hard real-time applications, but it also does not
necessarily result in unpredictable timing analysis. Moreover,
it demonstrates how to achieve tighter and safer WCET estima-
tions in object-oriented real-time applications.

Currently we are working on the XRTJ architecture [12]
to improve the timing analysis to take into account other dy-
namic features of the object-oriented languages, such as mem-
ory management, dynamic loading, and remote method invoca-
tion (RMI). We are also assessing our timing analysis approach
with the aim of providing information about the dynamic be-
haviour of object-oriented hard real-time threads to improve the
performance of aperiodic threads at run-time. Furthermore, val-
idating annotations and integrating this approach into dynamic
timing analysis will be a major feature of our future work.
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