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Abstract

The run-time characteristics of Java, such as high frequency
of method invocation, dynamic dispatching and dynamic load-
ing, make Java more difficult than other object-oriented pro-
gramming languages, such as C++, for conductingWorst-Case
Execution Time(WCET) analysis. To offer a more flexible way
to develop object-oriented real-time applications in the real-
time Java environment without loss of predicability and perfor-
mance, we propose a novel gain time reclaiming framework in-
tegrated with WCET analysis. This paper demonstrates how to
improve the utilisation and performance of the whole system by
reclaiming gain time at run-time. Our approach shows that in-
tegrating WCET with gain time reclaiming can not only provide
a more flexible environment, but it also does not necessarily re-
sult in unsafe or unpredictable timing behaviour.

Keywords : Gain Time Reclaiming, Worst-Case Execution
Time (WCET) Analysis, Real-Time Java

1 Introduction

There is a trend towards using object-oriented programming
languages, such as Java and C++, to develop real-time sys-
tems because the use of such languages has several advantages,
for instance reusability, data accessibility and maintainability.
The success of hard real-time systems, undoubtedly, relies upon
their capability of producing functionally correct results within
defined timing constraints. In order to achieve this, the proces-
sor and resource requirements of the hard real-time tasks have
to be reserved. However, this may result in under utilisation
and lead to very poor performance for aperiodic tasks. Unfor-
tunately, object-oriented programming languages support more
dynamic behaviour than procedural programming languages,
and some of these features may result in object-oriented appli-
cations having a more pessimistic worst-case behaviour. In con-
sequence, object-oriented real-time systems may suffer from
significantly lower utilisation and poorer overall performance
of the whole system than procedural real-time systems.

Most scheduling algorithms assume that the Worst-Case Ex-
ecution Time (WCET) estimation of each task is known prior

∗This work has been funded by the U.K. EPSRC under Grant GR/M94113.

to conducting the schedulability analysis. Typically, the WCET
analysis and schedulability analysis are carried out separately.
Sophisticated techniques [6, 19, 21], are used in WCET anal-
ysis, for instance to model caches and pipelines, to achieve
safe and tight estimation. However, most WCET analysis ap-
proaches are only considered in relation to procedural program-
ming languages. Performing analysis on object-oriented pro-
grams must take into account additional dynamic features, such
as dynamic dispatching and memory management. Some re-
search groups have proposed various approaches [11, 20] to ad-
dress these issues, but most approaches result in development
environments which are inflexible and very limited.

In contrast with the WCET analysis, a number of research
groups have proposed various flexible scheduling algorithms,
for instance priority server algorithms [5] and a slack stealing
algorithm [18], to provide a more flexible real-time develop-
ment environment with greater performance of the whole sys-
tem. In general, these flexible scheduling algorithms are mainly
focused on improving the performance of the aperiodic tasks at
run-time. They have, however, paid insufficient attention to the
fact that, for the most part, hard real-time tasks are not exe-
cuting via the worst-case execution time path. Therefore, even
though they have demonstrated very complex scheduling algo-
rithms to improve the average performance of the whole sys-
tem, the improvements are still limited and the overhead of the
implementation is extremely high or it is sometimes not even
possible to implement them in practice.

Generally, the spare capacity of a real-time system may be
divided into three groups [8]:extra capacity, gain time, and
spare time. Extra capacity is the capacity which is not allocated
for hard real-time tasks during the design phase. This can be
identified off-line. Gain time is produced when the hard real-
time tasks execute in less than their worst-case execution time
estimations. This may only be reclaimed at run-time since it
depends on the actual executions of tasks [8]. Spare time may
be defined as a situation in which sporadic tasks do not arrive
at their maximum rate. Most flexible scheduling algorithms are
mainly focused on reclaiming the extra capacity of the system.
Only a few research approaches [1, 9, 13] have discussed how to
reclaim gain time. Even here, they have tended to focus on pro-
cedural programming languages, rather than on object-oriented
programming languages.

This paper introduces a novel gain time reclaiming frame-



work integrated with WCET analysis to balance the tradeoff
among flexibility, efficiency and predictability. In our approach,
the predictability of hard real-time tasks is strengthened dur-
ing the design phase and the performance of the whole system
is reinforced with gain time reclaiming during run-time. We
show that integrating WCET analysis with gain time reclaim-
ing not only may achieve high utilisation and high performance
of the whole real-time system, but also keeps the flexibility and
reusability of the object-oriented real-time applications. The
major contributions of this paper are:

• introducing a novel gain time reclaiming framework in-
tegrated with WCET analysis for real-time Java applica-
tions,

• demonstrating how to reclaim the gain time of object-
oriented real-time systems with gain time reclaiming
graphs, and

• constructing a bridge between WCET analysis and
scheduling algorithms to provide greater flexibility with-
out loss of predicability and efficiency.

The rest of the paper is organised as follows. Section 2
gives a brief review of related work, while Section 3 presents
an overview of our previous work. Section 4 demonstrates how
gain time can be reclaimed in high performance object-oriented
real-time systems. Then, Section 5 gives an overview of im-
plementation issues in the real-time Java environment and Sec-
tion 6 evaluates our approach with a practical example. Finally,
conclusions and future work are presented in Section 7.

2 Related Work

This section gives a brief survey of the related work on gain
time analysis [1, 9, 13]. Haban and Shin have proposed an ap-
proach [13] placing software triggers at the end of basic blocks1

in task code to measure actual execution time. By comparing
the actual execution time calculated at the software trigger point
with pre-determined WCET values, the gain time of the specific
basic block can be determined. In a similar way, Dix et al. have
proposed an approach [9] addingmilestonesinto task code to
calculate the maximum remaining execution time of the partic-
ular task. However, both approaches reclaim the gain time after
they have been generated and are not integrated with WCET
analysis.

Audsley et al. [1] have introduced again point mecha-
nism to reclaim gain time of the basic blocks of a task code
as early as possible. In [1], the use of gain point can be grouped
into four separate forms, includingstatic gain pointfor static
code,dynamic gain pointfor loop constructs,efficiency gain
point for detecting hardware speed-ups, andresource usage
gain point for identifying spare resources. Yet, Audsley et
al.’s approach and the previous two approaches do not take into
account object-oriented programming features or the overesti-
mated WCET values resulting from functional constraints.

1A basic block is a continuous section of code in the sense that control flow
only goes in at the first instruction and leaves through the last one.

3 Previous Work

We have proposed an extensible distributed high-integrity
real-time Java environment [16], called XRTJ, which extends
the Real-Time Java architecture [4] proposed by the Real-Time
Java Expert Group. In our environment, theExtensible Annota-
tions Class(XAC) format2[15] is used to store extra informa-
tion that cannot be expressed in the source code. We have also
demonstrated how the dynamic dispatching issues in WCET
analysis can be addressed with minimum annotations to esti-
mate safe and tight WCET bounds for hard real-time applica-
tions in [14].

3.1 Portable WCET Analysis

A portable WCET analysis approach based on the Java ar-
chitecture has been proposed by Bernat et al. [3, 2]. This sec-
tion presents how portable WCET analysis can be adapted for
our environment [16].

Portable WCET analysis uses a three-step approach: high-
level analysis, which analyses the annotated Java class files
and computing the portable WCET information in the form
of Worst-Case Execution Frequency(WCEF) vectors [2], rep-
resenting execution-frequency information about basic blocks
and more complex code structures that have been collapsed dur-
ing the first part of the portable WCET analysis; low-level anal-
ysis, which produces aVirtual Machine Time Model(VMTM)
for the target platform by performing platform-dependent anal-
ysis on Java bytecode instructions implemented for the par-
ticular platform; and conducting the combination of the high-
level analysis with the low-level analysis to compute the actual
WCET bound of the analysed code sections.

In our environment, an annotation-aware Java Compiler
analyses the annotated Java programs and creates the WCEF
vectors during compilation. The WCET vectors and WCET an-
notations are stored in the XAC file. Therefore, after compila-
tion, the class files and XAC files are ready for WCET analysis
tools. A WCET analysis tool then performs the combination of
the high-level analysis with the low level VMTM to compute
the actual WCET bound of the analysed code sections.

3.2 WCET Annotation

In [14], we have introduced the//@maxWCET() annota-
tion to address complicated class hierarchies where there is
more than one particular method that may be invoked. It can
suggest that the WCET of a dispatching method should be con-
sidered to be the maximum WCET of the class family3 con-
taining that method. In this annotation, “&” may be applied
to denote the whole class family of a class/interface, whereas
“+” and “-” can also be used to express the union or subtrac-
tion of a single class/interface or a class family for the method
respectively.

2The XAC format is an annotation structure that can be stored in files or as
an additional code attribute inJava Class Files(JCF).

3A class family of a class/interface is a set of the classes and/or interfaces
including the class/interface itself and all the child classes and/or interfaces
inherited from it.



4 Gain Time Reclaiming

Given the need to provide 100% deadline predictability for
hard real-time tasks, it is inevitable that the processor and other
resources will be under-utilised at run-time [1]. In addition,
to avoid unpredictable behaviour in hard real-time applications,
some dynamic features of the object-oriented programming are
often prohibited from being used [12]. As a result, it is likely
that the design of object-oriented real-time systems could be-
come inflexible and the performance and utilisation relatively
poor. In order to balance the tradeoff among the flexibility, pre-
dictability and efficiency of the real-time systems, a novel gain
time reclaiming framework is proposed.

From the point of view of the syntax of the programming
languages, the levels of flow of control can be classified as fol-
lows [10]: local flow of control, which identifies statements
within a routine or method to be executed;method invocations
and routine calls, performing the parameter transfer and flow-
of-control manipulation needed to activate a new routine; and
non-local jumps, which divert the control flow from the cur-
rently running routine into an ancestor routine. In general, real-
time threads are not allowed to use non-local jumps since this
may result in unpredictable and unanalysable behaviour. There-
fore, gain time reclaiming in this paper will be focused on the
first two levels of flow of control in object-oriented program-
ming languages. Integrating these levels with WCET analysis
techniques, gain time reclaiming in object-oriented program-
ming languages may be classified into three mechanisms:struc-
tural constraint reclaiming(§ 4.1),object constraint reclaiming
(§ 4.2), andfunctional constraint reclaiming(§ 4.3).

Note that gain time can be represented with machine cycles
of the target machine if the source code of the application is
translated into machine code directly. However, it could be dif-
ficult to estimate the exact machine cycles of Java applications
because of the portability of Java architecture. In this case,
the concept of WCEF vectors [2] can be used instead of pre-
calculated units. These WCEF vectors may be used to calculate
the exact gain time when the information about the target ma-
chine is available. Machine cycle units are used in the rest of
the paper for the take of clarity.

4.1 Structural Constraint Reclaiming

On the whole, a local flow of control is made up of a number
of basic blocks in the form of sequences,selections(i.e. some
pieces of code to be selected for execution based on the value
of some expressions) andrepetitions(i.e. pieces of code to be
executed zero or more times based on the value of some expres-
sions). Therefore, the overestimated WCET bounds which suf-
fer from the structure of the program can be reclaimed as soon
as the exact execution path of selection code or the exact num-
ber of iterations of repetition code are determined. Formally,
based on the WCET analysis rules defined in Timing Schema
[22], the gain time of the structural constraints can be defined
as follows:

• Let S be a selection code with the expressionZ, and letP

be an actual executed path ofS in a particular execution.
Then, the gain time ofP can be calculated by subtracting
the sum of the WCET ofZ and the WCET ofP from the
WCET ofS. This schema can be used in any type of selec-
tion code, such asif-then-else andswitch-case .

• Consider a repetition codeR with the expressionZ and
loop X. Here, assume thatn is the maximum loop bound
of R used in the static WCET analysis andn′ is an actual
executed iteration in a specific execution. Then, the gain
time of n′ iteration ofR can be computed by multiplying
the subtraction ofn′ from n by the sum of the WCET ofZ
and the WCET ofX. This schema is valid for any type of
repetition code with a bounded number of iterations, such
asfor-loop, while-loop anddo-while .

The structural constraint reclaiming of a specific thread may
be represented with aStructural Gain Time Reclaiming Graph
(SGTRG), which illustrates the exact places (i.e. offset num-
ber of the machine code or Java bytecode) and amounts (i.e.
machine cycles or WCEF vectors) of gain time that may be re-
claimed. Formally, the SGTRG can be denoted withgain time
reclaiming nodes∇(l, g), wherel represents the offset number
of the Java bytecode andg indicates the amounts of gain time
that can be reclaimed.

Using compiler techniques [10] that are applied to the anal-
ysis of the local flow of control can identify the exact places of
the basic blocks of the selection and repetition code, and derive
an SGTRG for each routine or method. Based on the SGTRG,
the gain time of structural constraints can be reclaimed by deter-
mining the actual execution path of selection code or the exact
iteration times of repetition code at run-time.

1 public checkdata (){
2 int i , morecheck, wrongone;
3 i =0; morecheck=1; wrongone=−1;
4 ...
5 while ( morecheck){
6 ...
7 /∗ Say WCET(if) = 70 cycles
8 WCET(else) = 100 cycles .∗/
9 if (data [ i ]< 0) {

10 /∗ Here 30cycles of the structural
11 gain time of the current if−else
12 statement can be reclaimed .
13 ( i .e. 100−70 cycles )∗/
14 ...
15 wrongone=i; morecheck=0;
16 }
17 else{
18 /∗ Here 50 cycles of funtional
19 gain time of the below if−else
20 statement can be reclaimed .
21 ( i .e 100−50 cycles)∗/

22 ...
23 if (++i >= DATASIZE)
24 morecheck=0;
25 }
26 }
27 ...
28 /∗ Say WCET(if) = 100 cycles
29 WCET(else) = 50cycles .∗/
30 if (wrongone>= 0){
31 // Error path ;
32 ...
33 return 0;
34 }
35 else{
36 // Noml path ;
37 ...
38 return 1;
39 }
40 }
41 ...

Figure 1. An example of gain time reclaiming [19]

As shown in Figure 1, theif-then-else basic block
can reclaim 30 cycles at Line 10, if the condition expression is
TRUE (i.e. data[i]<0 ) and thewhile-loop is part of its
worst-case path. One should note that the gain time reclaiming
for unknown repetition needs to be provided with the maximum
loop bound used in the WCET analysis. The maximum itera-
tion number may be provided by manual annotations or derived
automatically using Gustafsson’s approach [11]. For example,
thewhile-loop (Line 5-26), given in Figure 1, needs to be



provided with such information to be able to reclaim the gain
time of the repetition code at run-time.

4.2 Object Constraint Reclaiming

In order to guarantee all hard real-time tasks in object-
oriented real-time systems, most WCET researchers suggest
prohibiting the use of dynamic dispatching, dynamic loading
and garbage collection features [12]. We have argued for the
need to use dynamic dispatching and demonstrated how to guar-
antee the deadline of hard real-time tasks in our previous work
[14]. In our previous approach, a//@maxWCET() annota-
tion is used to indicate the WCET of a dynamic dispatching
method call. However, we cannot avoid the fact that the use
of //@maxWCET() might have relatively pessimistic results if
the class family is extremely large or the WCET estimations
for different classes are spread over a wide range. In order
to compensate for the penalty of the flexibility of the object-
oriented programming, object gain time reclaiming is required.
Formally the gain time of the object constraints can be defined
as follows:

• Consider an objectX with a dynamic dispatching method
m, and assume that the WCET ofX.m should take into
account the WCET of the class familyF . Let i be an in-
stance ofX andA be an actual type of the instance to be
executed in a particular execution. Then, the gain time of
i.m in the particular execution can be calculated by sub-
tracting the WCET ofA.m from the WCET ofF.m .

Based on the thread-based CFG4, all instances of various
objects that are created in each real-time thread can be identi-
fied. Then, by analysing the assignment or type changing code
of each instance we can distinguish the lifetimes of particular
types of each instance, and produce anObject Type Lifetime
Graph (OTLG), a diagram which represents the lifetimes of
types of particular instances in a specific thread. Formally, an
OTLG is made up of two types of component:nodeandedge.
A node, namedtype changing nodein Figure 2, denotes a place
where the type of instance is changed, whereas anedgeillus-
trates the lifetime of a particular type of instance between two
nodes. An OTLG can be represented with a number type chang-
ing nodes that can be formally expressed withΘ(l, t), wherel
indicates the offset number of the Java bytecode andt denotes
the possible types of the instance at run-time.

In the OTLG, symbolic type references may be applied to
represent the relationship between the dynamic dispatching ob-
jects of the same class family during run-time. After discrimi-
nating the lifetimes of specific types of each instance, analysing
method invocations on each type of the instance can determine
the amount of gain time that can be reclaimed. Here, sym-
bolic references that are represented in OTLGs can be solved
by analysing the associated instances in the specific thread in-
crementally so that gain time can be reclaimed as early as pos-

4A thread-based CFG is a control flow graph which illustrates not only the
local flow of control of the thread, but also the local flow of control of each
method invocation of the thread in detail.

sible. Following this, the exact places and amounts of object
gain time reclaiming can be identified and illustrated in anOb-
ject Gain Time Reclaiming Graph(OGTRG). AnOGTRGis a
diagram which illustrates places where the type of the instance
should be traced or the object constraint reclaiming may take
place.

Formally, an OGTRG is made up of two types of nodes:type
changing nodeandgain time reclaiming node. A type chang-
ing nodedenotes a place where the type of instance is changed
but where it is not possible to identify the exact amount of gain
time, whereas again time reclaiming nodeindicates a place
where the exact amount of the gain time of a particular type of
the instance occurs. As mentioned above, type changing nodes
and gain time reclaiming nodes can also be denoted withΘ(l, t)
and∇(l, g) in an OGTRG respectively. The gain time reclaim-
ing of all instances in the real-time task can be merged together
and provided for the run-time environment to reclaim them.

Considering the example in Figure 2, four instances (i.e.
aa,bb,cc, anddd) need to be analysed to carry out the ob-
ject constraint reclaiming analysis in theApp real-time thread.
Using the object constraint reclaiming mechanism mentioned
above, an object gain time reclaiming graph for each instance
can be conducted by a modified compiler or tool automatically.
A diagram which illustrates the transformation of two instances
(i.e. aa andbb) from CFG to OGTRG is given in Figure 2.
In the figure, the type of instanceaa can be identified in the
secondif-then-else statement (i.e. type changing node)
and the exact number of method invocations can be determined
in the lastif-then-else statement (i.e. gain time reclaim-
ing node). Therefore, as soon as the expression of the last
if-then-else statement is executed, the object gain time
of instanceaa can be reclaimed.

Note that solving the symbolic expression of an associated
class family can improve the reclaiming as early as possible.
As shown in Figure 2, the gain time of the instancebb can
be reclaimed as soon as the type of instancecc is determined.
Therefore, the gain time reclaiming node of the instancebb
can be indicated at the firstif-then-else statement. Our
approach can also be applied to the analysis of method-based
applications that are built as libraries or packages in object-
oriented programming.

4.3 Functional Constraint Reclaiming

Identifying theexclusive paths[19] or variousmodes[6],
based on design knowledge, to calculate the WCET estimations
of the real-time applications has been widely used in the WCET
field. By analysing real-time threads with annotations that indi-
cate exclusive paths or modes, relatively safe and tight WCET
bounds can be estimated. We acknowledge such efforts and
contributions in the WCET domain. However, one should note
that it is possible that the WCET estimations of the exclusive
paths or different modes are spread over a wide range, and the
exact execution path or mode cannot be determined during the
design phase. In such cases, the reductions of the pessimistic
estimations can still be limited. Moreover, analysing functional



/∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
Assume that Class A is a parent class .
Class B, C and D extend A, and
override the m1() methd.
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/
class App extendsRealtimeThread{

...
public void run (){

A aa=newA(); B bb= newB();
C cc=newC(); D dd=newD();
...

/∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
Initial values of x , y and z

are from the environment.
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/
if (x > 5) {

cc = dd ; ...;
}
...
if (y == 5){

aa = dd ; ...;
}
else{

aa = bb ; ...;
}
bb = cc;
...
if (z == true ) {

aa.m1; ...;
aa.m1;

} else{
aa.m1; ...;

}
bb.m1; ...;
bb.m1;

}
}

OTLG OGTRGCFG

bb = @cc

cc = C or D

object aa

object bb

true

false

cc=dd

x>5

bb.m1
bb.m1

aa = A

aa = B or D

bb = B

aa = B or D

Based on the type of aa
identified above, 1 or 2
times of the gain time of
aa.m1  can be reclaimed.

run method

run method

run method

object bb object bb
run method

Here, the type of the  bb
can be known as soon
as the type of the cc is
determined. Therefore,
based on the type of cc,,
2 times of the gain time
of bb.m1 can be
reclaimed.

bb=@cc

true

false

run method

cc=dd

x>5

true

false

aa=dd
aa=bb

y==5

true

false

bb=cc

z==true

bb.m1
bb.m1

aa.m1
aa.m1

aa.m1

run method

object aa object aa

...

...

: basic block

: expression

: begin / end

: type changing node

: gain time reclaiming
node

run method

true

false

aa=dd
aa=bb

y==5

true

false
z==true

aa.m1
aa.m1

aa.m1

Figure 2. An example of object constraints and its diagram of producing OGTRG

constraints in object-oriented programming is much more com-
plicated than in procedural programming. This means that data
dependency issues in object-oriented programming langues can
lead to pessimistic WCET estimations that suffer from not only
structural constraints but also object constraints. Hence, as well
as analysing the exclusive paths and modes in the structure of
the programs, the analysis of functional constraints must take
into account the pessimistic bounds that suffer from the dy-
namic characteristic of object types in object-oriented program-
ming.

For the most part, these pessimistic WCET estimations that
suffer from data dependencies can be addressed with the struc-
tural and object constraint reclaiming mechanisms. However,
to be able to reclaim gain time as early as possible, these mech-
anisms can be integrated with the WCET analysis approaches
that bear data dependencies issues in mind.

The rationale of functional constraint reclaiming is based on
the concept of identifying the exclusive paths or various modes
of the WCET analysis approaches. Therefore, we assume that
the exclusive paths or various modes can be distinguished with
annotations that are introduced by WCET analysis. Taking ad-
vantage of these annotations, a modified compiler or gain time
reclaiming tool can derive these exclusive (or inclusive) paths
and modes from the programs. Based on the identified paths
and modes, we can determine the places where these paths or
modes can be distinguished. As soon as the exact path or mode
can be discriminated or executed, the gain time of the path or
mode can be reclaimed. Here, the gain time of particular paths
can be reclaimed if the exclusive path of the current executing
path is the worst-case execution path or the inclusive path of the
current path is not the worst-case execution path. Similarly, as

soon as the specific mode is identified and it is not the worst-
case execution mode, then the gain time of the mode can be
reclaimed. In both cases, the functional constraint reclaiming
should consider the data dependencies issues connected with
object constraints. Formally, the gain time of the functional
constraints can be defined as follows:

• Suppose thatS is a section of code that includes exclusive
paths, andP is an actual executed path ofS in a particular
execution. Then, the gain time ofP can be computed by
subtracting the WCET ofP from the WCET ofS. This
schema can also be used in calculating exclusive modes of
functional constraints.

The functional constraint reclaiming of a specific thread may
be represented with aFunctional Gain Time Reclaiming Graph
(FGTRG), which illustrates the exact places and amounts of
gain time that may be reclaimed. The functional gain time re-
claiming can be assumed as an advanced mechanism that is a
combination of the structural and object constraint reclaiming
mechanisms of a particular path or mode. Therefore, the formal
definitions of the nodes introduced for OGTRG (i.e.Θ(l, t) and
∇(l, g)) can also be applied to FGTRG.

For example in Figure 1, the WCET estimations of two
if-then-else statements (i.e. Line 9-25 and Line 30-39)
are exclusive to each other, but the structure of the program
may increase the WCET estimation. In other words, the WCET
of these twoif-then-else statements will not be executed
at the same time due to its functional constraints. Therefore,
based on WCET annotations identifying the exclusive paths or
modes, the gain time associated with the normal mode (i.e. the
else statement at Line 35-39) can be reclaimed in Line 18 at



run-time. It can be observed that using functional constraint re-
claiming may reclaim the gain time earlier than the structural
constraint reclaiming.

5 Implementation

We use the XRTJ architecture [16] to demonstrate how the
gain time reclaiming can be implemented for object-oriented
programs. However, the implementation approach is not re-
stricted to our architecture. Following the philosophy of
portable WCET analysis, the implementation may be divided
into two stages:producing gain time reclaiming graphsthat
can be conducted at compilation, andrun-time supported re-
claimingthat can be carried out at the target platform.

Here, we assume that the WCET values or WCEF vectors
of each basic block have been calculated. They may be pro-
duced while performing static timing analysis by combining
the portable WCET analysis [2, 3] and our previous approach
[14, 15]. Then the WCET value or WCET vector of each ba-
sic block can be stored in the XAC format in either separate
files or code attributes in JCF files. Note also that the gain time
reclaiming graphs can be provided in the XAC format. In addi-
tion, the worst-case execution for the runtime overhead of the
gain time reclaiming can be added into the basic block where
the gain time reclaiming takes place.

5.1 Producing Gain Time Reclaiming Graphs

Based on the thread-based CFG of each real-time thread,
gain time reclaiming graphs can be produced from analysable
source programs or JCF files by a modified compiler or tool
that supports our gain time reclaiming mechanisms discussed
above. These gain time reclaiming graphs can be extracted
during compilation in order to reduce the run-time overhead.
The three gain time reclaiming graphs of a particular thread can
be merged together into the theThread Gain Time Reclaiming
Graph (TGTRG), which illustrates places where the gain time
reclaiming may take place in the thread. It should be noted
that gain time that can be reclaimed by functional constraint
reclaiming could overlap with those that can be reclaimed by
the structural and object constraint reclaiming. Therefore, com-
bining the functional gain time reclaiming graph into TGTRG
leads to the necessity of eliminating the gain time that overlap
with other constraints. The implementation overhead is rela-
tively low since the implementation does not necessarily need
to know all possible execution paths in advance.

5.2 Run-Time Support Reclaiming

For the most part, the gain time reclaiming may be carried
out at the target platform in two stages:ReconstructingandRe-
claiming. The first stage, calledreconstructing, includes map-
ping Java bytecode with associated gain time reclaiming nodes,
and instrumenting gain time reclaiming method invocations. A
modified Java virtual machine or tool loads the associated Java
class files and the TGTRG of each task-based real-time thread

stored in the XAC files, and reproduces the relationship be-
tween gain time reclaiming nodes and Java bytecode. Then,
the gain time reclaiming graphs can be translated into method
invocations that support the integration with the scheduling al-
gorithms. Here, the exact machine cycles of gain time which
are provided with WCET vectors can be calculated.

Note that it could be possible that the actual reclaimed gain
time is less than the run-time overhead of the reclaiming. In
this situation, the gain time should be either neglected or accu-
mulated until it is worth reporting. Which gain time reclaim-
ing nodes need to be removed can be identified on the basis of
an acceptance value that may be used to examine if the over-
head of the gain time reclaiming is acceptable at run-time. Fur-
thermore, to support repetition code with gain time reclaiming
mechanism, either the run-time system, such as the Virtual Ma-
chine, must support a mechanism to count the exact iteration of
the loop at run-time or additional code must be introduced by a
modified compiler to count the loops. In addition, type tracing
mechanism need to be provided for type changing nodes where
the exact amount of the gain time cannot be identified.

At the reclaiming stage, based on gain time reclaiming meth-
ods instrumented during the reconstructing stage, gain time can
be reclaimed automatically as soon as reclaiming methods are
executed. The gain time can be collected by the associated
scheduling algorithm and can be used to improve the overall
performance of the whole system. How to integrate the gain
time reclaiming with the scheduling algorithm is outside the
scope of this paper. Techniques such as Dual-Priority Schedul-
ing [7] and Dynamic Sporadic Server [5] are applicable.

6 A Practical Example

Considering the “Rover Tasks” part of the applications layer
of the FIDO Rover system5 in Figure 3, the command processor
sends discrete instructions to particular periodic tasks at run-
time to interact with the environment. Therefore, any sequences
of the commands may be sent by the command processor to a
specific periodic task. In addition, it is possible that all instruc-
tions of the various types of robot cannot be known beforehand
(i.e. during the design phase of the command processor). Con-
sequently, if any new command is introduced or a new type of
robot is developed, the command processor and the specific pe-
riodic task need to be revised and the whole system needs to be
retested. Unfortunately, redevelopment and retesting are rela-
tively expensive in high performance real-time applications.

In order to provide the applications with greater flexibility,
reusability and extensibility, the application layer may be rede-
veloped for a real-time Java environment. Based on the applica-
tion layer of the FIDO Rover’s architecture,Instructions
classes can be classified into a subclass family based on their
similar functionalities or characteristics. Part of the class hier-
archy of theInstructions classes is given in Figure 4. Any

5The FIDO (Field Integrated Design and Operations) Rover system is a
planetary exploration autonomous system and is being used in ongoing NASA
field tests to simulate driving conditions on Mars.
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Figure 4. A class hierarchy of the Instructions
Classes with WCET estimations

particular function or action of the child classes can be speci-
fied in theirRespond() methods by overriding the method of
the parent class. A typical periodic task that may be used in
the FIDO Rover system is given in Figure 5. As shown in the
figure, the only information which can be known during the de-
sign or analysis phase is the maximum number of instructions
sent to the specific periodic task and the WCET estimation of
each instruction. Undoubtedly, to be able to ensure that these
critical tasks have to be finished by their deadline, all the re-
quirements of the processor and resources need to be reserved.
For the most part, the WCET estimation of each periodic task
can be calculated with a maximum number of instructions al-
lowed to be sent to the specific thread and the maximum WCET
estimation of the instructions from the wholeInstructions
class family. In this situation, if the WCET estimations of all
the instructions are spread over a wide range, the estimation is
very pessimistic. In addition, the overall performance will be
decreased because these reserved resources cannot be used for
other aperiodic tasks. The next subsection (§ 6.1) explores how
these issues can be addressed with our approach.

6.1 Analytical Results

Assume that the WCET values of eachRespond() method
of the Instructions class family are given as in Figure 4

1 /∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
2 Motion Control periodic real−time thread
3 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
4 import javax . realtime .∗;
5 ...
6 public class MotionCtrl RT extendsRealtimeThread{
7 public MotionCtrl RT (...){
8 ...
9 }

10 ...
11 // Maximum number of instructions allowed in each period
12 final int maxInsts = 10;
13 /∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
14 Say ObjList object contains a list of Instrucions objects
15 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
16 private ObjList CommandList[maxInsts];
17 ...
18 public void run (){
19 while (!Terminate){
20 // Do the main job of the periodic thread
21 ...
22 // Get the number of commands for this period .
23 ints = getNumberOfCommands();
24 ...
25 // Get the commands for this period .
26 CommandList = getCommandList();
27 for ( i =0; i<ints ; i++){
28 ...
29 result = ( CommandList[i]).Respond();
30 ...
31 }
32 waitForNextPeriod (); // waiting for next period
33 }
34 }
35 }

Figure 5. An example of periodic thread

and the WCET estimation of therun() method of the rest
of code in theMotionCtrl RT thread is 150 cycles. In the
MotionCtrl RT object, the maximum number of instruc-
tions is 10 (at Line 12). Therefore, if all classes are taken
into account for the estimation of the specific periodic of the
MotionCtrl RT thread, the WCET value is equal to 35150
cycles (i.e. 10*3500+150).

However, as shown in Figure 4, based on the design
knowledge, the estimation forMotionCtrl RT can be pro-
vided with //@maxWCET() annotation at Line 29, since
the WCET estimations of theRespond() method in the
Vision Control class family are not going to be used in
the MotionCtr RT thread. Therefore, the estimation of the
WCET value of the thread can be reduced to 25150 cycles (i.e.
10*2500+150). Then, based on the thread gain time reclaim-
ing graph, including a structural constraint reclaiming node at



Line 23 and an object constraint reclaiming node at Line 26,
the gain time of each period of theMotionCtrl RT thread
can be reclaimed at run-time. For example, if the context of
the CommandList for the thread includes three instructions
includingNew Course, Accelerate andStop , the gain
time of the particular period can reclaim 20000 cycles (i.e.
25150-5150 cycles). In the same way, other periodic threads
in the Rover tasks part of the application layer may be anal-
ysed in the design phase and reclaimed at run-time in order to
improve the overall performance of the system.

7 Conclusions and Future Work

This paper has demonstrated a novel gain time reclaiming
framework integrated with WCET analysis for high perfor-
mance real-time Java systems. Our approach shows that inte-
grating WCET with gain time reclaiming not only can provide
a more flexible environment to develop real-time Java appli-
cations, but may also achieve high utilisation and high perfor-
mance of the whole real-time system.

As discussed above, three types of gain time reclaiming
mechanisms can be applied to real-time Java programs. The
analysis of structural constraint reclaiming and object con-
straint reclaiming can be fully automatic with a modified com-
piler or tool that supports our mechanisms, whereas the func-
tional constraint reclaiming partially needs to be integrated with
annotations used in WCET analysis. Furthermore, these mech-
anisms can also be applied to the development of real-time Java
API (Application Programming Interfaces) or packages to im-
prove the utilisation and overall performance of the whole sys-
tem.

Attention should be drawn to the fact that the granularity of
the gain time reclaiming should be balanced to avoid large run-
time overheads. Therefore, our future work will be focused on
when gain time should be reclaimed or how to evaluate which
gain time can be reclaimed without rendering the run-time en-
vironment inefficient.
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