
Deriving Java Virtual Machine Timing Models for

Portable Worst-Case Execution Time Analysis

Erik Yu-Shing Hu, Andy Wellings and Guillem Bernat

Real-Time Systems Research Group
Department of Computer Science

University of York, York, YO105DD, UK
{erik,andy,bernat}@cs.york.ac.uk

Abstract. Performing worst-case execution time (WCET) analysis on
the highly portable real-time Java architectures without resulting in the
under utilisation of the overall system has several challenges. Current
WCET approaches are tied to either a particular language or target
architecture. It should also be stressed that most WCET analysis ap-
proaches are usually only considered in relation to procedural program-
ming languages. In this paper, we propose a comprehensive portable
WCET analysis approach, and demonstrate how Java virtual machine
timing models can be derived effectively on real-time and embedded
Java-based systems.

Keywords : Real-Time Java, Worst-Case Execution Time (WCET) Analysis,
Portable WCET

1 Introduction

To be able to support a predictable and expressive real-time Java environment,
two major international efforts have attempted to provide real-time extensions
to Java: the Real-Time Specification for Java (RTSJ) [4] and the Real-Time
Core extensions to Java [6]. These specifications have addressed the issues re-
lated to using Java in a real-time context, including scheduling support, memory
management issues, interaction between non-real-time Java and real-time Java
programs, and device management, among others.

On the whole, timing analysis is crucial in real-time systems to guarantee
that all hard real-time threads will meet their deadlines in line with the design.
In order to ensure this, appropriate scheduling algorithms and schedulability
analysis are required. Typically, most scheduling algorithms assume that the
Worst-Case Execution Time (WCET) estimation of each thread has to be known
prior to conducting the schedulability analysis. Therefore, estimating WCET
bounds of real-time threads is of vital importance. Unfortunately, in neither of
the real-time Java specifications [4, 6], is there a satisfactory solution to how
WCET estimations can be carried out on the Java architecture with portability
in mind.

2 Erik Yu-Shing Hu, Andy Wellings and Guillem Bernat

For the most part, current WCET approaches [3, 5, 14, 16, 17] are tied to
either a particular language or target architecture. In addition, these analysis
approaches are only considered in relation to procedural programming languages.
Performing WCET analysis on the Java architecture must take into account not
only additional dynamic features, such as dynamic dispatching and memory
management, but also the platform independent issue. Therefore, most WCET
analysis approaches are not appropriate for the Java architecture, since Java
programs are “write once, run every where” or perhaps more appropriate for
real-time “write once carefully, run everywhere conditionally” [4].

To our knowledge, only the portable WCET analysis proposed by Bernat et
al. [2, 1] has taken account of platform independent features for the Java archi-
tecture. Portable WCET analysis uses a three-step approach: high-level analysis
(i.e. analysing the Java programs), low-level analysis (i.e. producing a Virtual
Machine Time Mode1 (VMTM) for a target platform), and conducting a combi-
nation of the high-level analysis with the low-level analysis to compute the actual
WCET bound of the analysed code sections. However, the portable WCET anal-
ysis approach has only tended to focus on supporting portability, rather than
addressing the dynamic features of Java. It also should be noted that portable
WCET analysis highly depends on the VMTM of a target platform, and there
is also no appropriate solution to show how a VMTM for a particular platform
can be built efficiently. Therefore, from a practical standpoint, bringing this
approach into engineering practice still has a number of issues to be addressed.

For the above reasons, we introduce a comprehensive portable WCET analy-
sis that takes into account the dynamic dispatching issues [7, 10, 11] and presents
how VMTMs can be built for various target platforms. The major contributions
of this paper are:

– introducing two measurement approaches that demonstrate how to extract
Java VMTMs for portable WCET analysis,

– discussing how VMTM can be derived by a profiling-based approach, and
– presenting how to build a portable benchmark model to extract VMTMs

from various target platforms.

The rest of the paper is organised as follows. Section 2 gives a summary of the
related work, while Section 3 presents an overview of the comprehensive portable
WCET analysis. Section 4 discusses how Java VMTMs can be extracted from
various platforms with two different approaches. Following this, Section 5 gives a
simple example to evaluate our approaches. Finally, conclusions and future work
are presented in Section 6.

2 Related Work

In general, there are two principal ways for obtaining the WCET of a program:
static analysis and dynamic analysis (a.k.a. measurement approach). Most sys-
tems in industry have relied on ad-hoc measurements of execution times when

1 VMTM is a timing model for the target virtual machine including a list of the
worst-case execution time of native methods and Java bytecode instructions.

Lecture Notes in Computer Science 3

designing real-time systems [15]. Arguably, measuring an execution time could
be an unsafe practice, since one cannot know whether the worst case has been
captured in the measurements.

In contrast, a static analysis could give relatively safer results for the WCET
analysis [18]. A number of research approaches [5, 14, 16, 19] have demonstrated
how to estimate WCET at high-level and low-level analyses. Unfortunately, the
above WCET approaches are tied to either a particular language or target ar-
chitecture. In addition, these analysis approaches are only considered in relation
to procedural programming languages.

As processors have tended to be more complex recently, some research ap-
proaches [3, 15, 17] have integrated measurement techniques with static analysis
to address modern complicated processor issues. However, these approaches have
attempted to estimate WCET bounds from applications to the target platform
at once. As a result, these techniques cannot take advantage of the platform
independent feature supported in Java.

Notable exceptions include the portable WCET analysis proposed by Bernat
et al. [2, 1]. This approach has taken into account platform independent features
for the Java architecture. However, they have only tended to focus on supporting
portability, rather than taking account of the issues connected with the use of
dynamic dispatching features. Nor is there an appropriate solution to show how
a VMTM for a particular platform can be built efficiently.

Our approach extends the portable WCET analysis approach to take into ac-
count dynamic dispatching issues and provide a portable model to build VMTM
effectively on real-time and embedded systems. Arguably, there is some addi-
tional pessimism in performing the WCET process in this particular way, which
counteracts for the added benefits that portability brings [2]. It can be observed
that this pessimism can be compensated with the use of gain time reclaiming
mechanisms [10, 11] integrated in our approach.

3 Overview of the Framework

Following the philosophy of portable WCET analysis [2, 1], our framework (Fig-
ure 1), therefore, also uses the three-step approach to be able to offer a compre-
hensive WCET analysis bearing portability and dynamic dispatching issues in
mind.

Note that this framework is part of our on-going work, called XRTJ 2 [9],
which extends the current Real-Time Java architecture [4] proposed by the Real-
Time Java Expert Group. The XRTJ environment is targeted at cluster-based
distributed high-integrity real-time Java systems, such as consumer electron-
ics and embedded devices, industrial automation, space shuttles, nuclear power
plants and medical instruments. In the XRTJ environment, to facilitate the
various static analysis approaches and provide information that cannot be ex-
pressed in either Java source programs or Java bytecode, an extensible and

2 XRTJ: an Extensible Distributed High-Integrity Real-Time Java Environment

4 Erik Yu-Shing Hu, Andy Wellings and Guillem Bernat

portable annotation class format called Extensible Annotations Class (XAC) file
is proposed [8]. To generate XAC files, an annotation-aware compiler, named
XRTJ-Compiler [9], which can derive additional information from either man-
ual annotations or source programs, or both, is also introduced. Furthermore,
a static analyser, called XRTJ-Analyser [9], is introduced in order to support
various static analyses, including program safety analysis and timing analysis.

Platform-Dependent
Analysis

Estimating WCET

Platform-Independent
Analysis

Target Virtual
Machine

WCET

Native
Method

VMTM

: Static Analysis

: Dynamic Analysis
 (Measurement)

Java Class
Files

Java Class
Files XAC Files

Java Source
Files

Fig. 1. The comprehensive portable WCET framework

The first step of the framework is the platform-independent analysis. At this
stage, the technique analyses annotated Java programs or Java class files to
produce portable WCET information. Manual annotations in our approach are
introduced with the characters ‘//@’ for single line and ‘/*@ ... @*/’ for mul-
tiple lines [8]. Note that these formats are assumed to be comments in Java.
Taking advantage of the knowledge accumulated with the compiler, portable
WCET information can be extracted from either source programs or Java byte-
code statically. Here, dynamic dispatching methods can also be analysed with
our previous approaches [7, 10, 11]. Portable WCET information is computed in
the form of so-called Worst-Case Execution Frequency (WCEF) vectors by the
XRTJ-compiler. WCEF vectors [1] represent execution-frequency information
about basic blocks3 and more complex code structures that have been collapsed
during the first part of the analysis. Then portable WCET information can be
stored into the XAC files [8]. Note that the static analysis is used in this stage.

In parallel, analysis of the target platform is performed, so-called platform-
dependent analysis. This takes the form of the definition of a timing model
of the virtual machine. This stage performs platform-dependent analysis (i.e.
in the context of specific hardware and VM) of the implementation of Java

3 A basic block is a continuous section of code in the sense that control flow only goes
in at the first instruction and leaves through the last one.

Lecture Notes in Computer Science 5

bytecode instructions. During this stage, information about the potential effects
of pipelines [1] and caches4 may be captured.

Although the platform-independent analysis can be carried out by a static
analysis approach, the use of a static analysis technique to perform the platform-
dependent analysis has a number of challenges. It should be noted that when
deriving VMTM it is necessary to take into account the implementation aspects
of not only the Java virtual machine, but also the operating system. In addition,
the analysis should also bear in mind the hardware architecture for various
embedded systems. In order to accommodate a diverse set of implementations
on the underlying platforms and virtual machines for embedded systems the
measurement-based analysis technique is used in our approach. This will be
explored further in Section 4.

The final stage is the estimating of the WCET bounds of each thread. In
the XRTJ environment, a WCET analysis tool in the XRTJ-Analyser performs
the combination of the results of platform-independent analysis with the target
VMTM to compute the actual WCET bound of the analysed code sections.

4 Deriving Java Virtual Machine Models

Deriving the VMTM of a target platform is crucial in the portable WCET anal-
ysis since the results of the analysis are highly dependent on the outcome of the
VMTM. Arguably, in the real-time and embedded field, analysing a virtual ma-
chine to produce the VMTM of the target platform needs to be efficient and rapid
since the development life-cycles of the software built for embedded systems are
short and the applications are demanded to be reusable and compatible among
various architectures. Therefore, how to efficiently derive VMTMs for different
platforms is the key issue for the portable WCET analysis approach. In this
paper, we propose two measurement approaches: profiling-based analysis and
benchmark-based analysis ; which demonstrate how the VMTM can be extracted
from a target platform.

Note that there are several possible ways in which the execution time can be
measured, such as using clock cycle counters and using timers. In our approach,
we use the rdtsc instruction, which has high resolution and very low overhead at
run-time, provided in x86 architecture [12] to extract the time-stamp counter of
the processor. Although we only show the use of software approach on the x86
architecture under the Linux platform here, our approach can also be applied to
other CPU architectures and operating systems if they support instructions or
libraries that can extract the time-stamp counter of the processor. For example,
getrtime() library routine can be used on the SPARC V9 architecture under
Solaris 8 operating systems, and hardware data acquisition interfaces5 can be
used under Windows, Linux and Solaris operating systems.

4 The analysis of the cache effects is our future work and beyond the scope of this
paper.

5 http://www.ultraviewcorp.com/

6 Erik Yu-Shing Hu, Andy Wellings and Guillem Bernat

4.1 Profiling-Based Analysis

Observing the behaviour of a system to analyse the specific aspects of applica-
tions executing on the system is not novel. An automatic tracing analysis [20]
has been proposed to extract temporal properties of applications and opera-
tion systems. The approach shows that the empirical analysis can reduce the
over-estimation of real-time applications. Accordingly, a profiling-based analy-
sis technique can be applied to deriving a VMTM for a particular platform by
instrumenting additional code into the virtual machine.

Even though the idea is relatively straightforward to derive a VMTM, a
number of issues need to be addressed to ensure the reliability of the derived
VMTM. For example:

– where to insert the instrumenting code,
– how to minimise the side effects of the instrumenting code at run-time, and
– how to avoid the out-of-order execution during the measurement of the spe-

cific code section.

Similar to the automatic tracing analysis approach [20], profiling the exe-
cution time of each bytecode can be divided into two steps. One is extracting
run-time information and the other is analysing it. The former step involves:
exploring the context of the virtual machine where temporal information can be
derived; and the instrumenting code to extract the time-stamp counter of the
processor with very low runtime overhead. For instance, the instrumenting code
has to accumulate the instruction mnemonics and the time-stamp counter every
time the interpreter fetches a bytecode. The latter step analyses these data and
builds up a VMTM for the target platform.

Code attributes

Bytecode
interpretation

Entering a
Method

Leaving from
the Method

Extracting the CPU
Time-stamp counter

: location of the instrumenting code

Allocate the memory

Extracting the CPU
Time-stamp counter

Dump into storage

Interpreter Engine

Fig. 2. Instrumenting profiling code into an interpreter engine

To be able to trace the run-time information, instrumenting code needs to
be provided into the Java virtual machine. The instrumenting mainly depends

Lecture Notes in Computer Science 7

on the specific implementation of the JVM. However, on the whole, Java vir-
tual machines conduct the interpretation of Java bytecode by a method-based
approach. Therefore, to reduce the memory and run-time overhead needed for
collecting the run-time information, the implementation of the profiling-based
analysis can refer to a suggested implementation, given in Figure 2. Note that
the major aim of the collecting run-time data by method in the interpreter en-
gine is only to reduce the memory and run-time overhead of the instrumenting
code, rather than analysing the applications.

As shown in the figure, a small amount of memory, which can be allocated
when invoking a method, is necessary to store the collected information during
run-time. These accumulated data can be dumped into storages when return-
ing from the method (i.e. finishing the interpretation of the method). Dumping
accumulated data at this point can reduce the noise or side effects of the instru-
menting code on the measurement results. Here, these data can be analysed with
the requirements of the target platform and the VMTM can be built with these
analytical data. To avoid out-of-order execution during profiling, a serializing
instruction (cpuid) can be invoked before extracting the time-stamp counter of
the processor.

The experimental implementation of this approach has been carried out on
the reference implementations of RTSJ provided by TimeSys [21]. Basically, the
instrumenting code, including the serializing and time-stamp counter instruc-
tions, is added into the interpreter engine. Before starting the interpretation of
a method, a buffer to store run-time information is prepared. Then, the execu-
tion time of each bytecode can be measured starting from the opcode fetched
to before fetching the next opcode. The run-time information captured by the
interpreter is classified by the opcode mnemonics. When leaving the method,
the captured run-time information can be conducted with statistical analysis to
produce he VMTM. The evaluation of this approach is discussed in Section 5.

4.2 Benchmark-Based Analysis

It should be noted that the analysis of the portable WCET analysis approach
highly depends on the VMTM of a target platform, and the technique provided
in the previous section needs enormous effort to be carried out, including mod-
ifications to the execution engine of the target Java virtual machine to derive
the execution time of each bytecode. In order to conduct this, it is clear that
the source of the virtual machine is necessary. Although deriving the execution
time of a single bytecode can be achieved by the previous mechanism, deriv-
ing the execution of specific sets of bytecodes is unlikely to be accomplished.
Furthermore, the implementations of the previous approach cannot be reused
for building the VMTM of a new virtual machine. This means that creating a
VMTM for a new virtual machine needs to be started from scratch. Therefore,
to be able to apply portable WCET analysis to real-time and embedded systems
effectively, two major issues need to be addressed:

– how the instrumenting code can be reused effectively on various platforms
without modifying it, and

8 Erik Yu-Shing Hu, Andy Wellings and Guillem Bernat

– how the execution time of a specific set of bytecodes can be measured.

To address these issues, the benchmark-based analysis approach is introduced.
The aim of this approach is to provide a Java-based benchmark6 that may pro-
duce a VMTM automatically after executing it on the target virtual machine.
The principle behind this mechanism is to inject individual or a set of specific
bytecodes into the instrumenting code developed in a native method that may
access the time-stamp counter of the processor in a Java program. Therefore,
the native method using Java native interface (JNI) features in the benchmark
can be ported easily to different platforms without modifying the benchmark.
However, some issues need to be addressed to achieve these goals:

– where and how specific bytecodes can be inserted into the Java program to
measure the execution time of the specific bytecodes, and

– how to maintain the integrity of the Java stack after the injection of addi-
tional bytecodes.

To prove the feasibility of this approach and reduce the time needed to de-
velop the whole mechanism, a number of tools have been investigated. Taking
advantage of the time-stamp counter instruction (rdtsc) [12] supported in x86 ar-
chitecture, the bytecodes disassembler and assembler tools provided in the Kopi

Compiler Suite [13], and the Java native interface feature, the benchmark-based
analysis approach can be carried out. The procedure of how the benchmark can
be established is given below.

(b) Measuring WCET of the specific set of Java bytecodes
 on the target VM and generating VMTMs

Java Class file

J
a

v
a

c

disassembler

Java Program + JNI

Instrumenting
bytecode(s)

Kopi Assembly
Language

Target Virtual Machine

Java APIs + (Real-Time APIs)

RDTSC's JNI library
for the target platform

Assembler

(a) Instrumenting a specific set of Java bytecodes

Java Class file
+

additional bytecode(s)
to be measured

Java Class file
+

additional bytecode(s)
to be measured

generates

Virtual Machine
Timing Model

Fig. 3. Instrumenting and Measuring of the benchmark-based approach

As shown in Figure 3, a Java program with a native method that can access
the time-stamp counter can be translated into Java bytecode by a traditional
compiler. Then, the class file can be translated into Kopi assembly language to

6 The term benchmark means a collection of Java programs that are instrumented
with particular bytecodes to be measured.

Lecture Notes in Computer Science 9

be able to insert a specific set of Java bytecodes easily under text mode. Here,
one should note that the integrity of the Java stack of JVM needs to be borne
in mind when inserting additional bytecodes. For instance, after executing the
iload instruction, the virtual machine will load an integer onto the Java stack.
Therefore, we need to add complementary bytecodes to remove the integer from
the stack in order to maintain the data integrity of the Java stack for the whole
program. Some bytecodes may also need to be provided with values or references
before executing them, such as iadd and iaload. As a result, to ensure the data
integrity of the Java stack, corresponding complementary bytecodes needed to
be added at the pre- or post- locations of the measurement bytecodes. After
injecting the specific bytecodes, the file saved in the Kopi assembly language
format can be translated into standard Java class files. As presented in Figure 3,
these individual instrumenting Java programs can be combined together into a
comprehensive benchmark that can generate VMTM automatically. Then, the
individual Java program or the benchmark is ready to be used for measuring the
execution time of the specific set of bytecodes on any target platform.

One should note that the major purpose of the benchmark is to produce
VMTM that contains a collections of the WCET bounds of WCEF vectors and
method calls. Therefore, it is possible that building VMTM to be used in systems
in the small can provide a compact benchmark that comprises those WCEF
vectors that will only be used on such systems. The benchmark can be executed
on any particular target platform with a native method that can access the time-
stamp counter of the target platform. This approach can be used to generate the
execution time of a specific set of common sequence bytecodes since it allows to
insert any combination of bytecodes with this mechanism. It can be observed
that generating instrumented Java programs can be automatically conducted by
a simple program implementing the above procedure.

Table 1. Measurements of the WCET
of the instrumenting code

Experiment 99.95% 99.90% Average

1. 334 321 320

2. 326 321 321

Table 2. Measurements of the WCET
of iload with the instrumenting cost

Experiment 99.95% 99.90% Average

1. 366 353 353

2. 363 353 353

An experiment has been carried out on the RTSJ-RI and the preliminary re-
sult of the analysis of iload bytecode is given below. A Java program developed
with a native method that can access the time-stamp counter of the processor
is developed to measure the cost of the instrumenting code. The experimental
results of the cost of the instrumenting code is given in Table 1. Then, iload
bytecode instructions is added into the instrumenting code and the correspond-
ing complementary bytecode (i.e. istore) is inserted at the post instrumenting
code. The measurement of the iload has been carried out in a 50000-times loop.
The experiment has been conducted several times and two of them are given in
Table 2. There is a graph illustrating that the distributions of the measurement

10 Erik Yu-Shing Hu, Andy Wellings and Guillem Bernat

 100

 1000

 10000

 100000

 0 10000 20000 30000 40000 50000

cy
cl

es

counts

iload: 100.00%

 345

 350

 355

 360

 365

 370

 0 10000 20000 30000 40000 50000

cy
cl

es

counts

iload: 99.95%

Fig. 4. Measurements of the iload bytecode with the benchmark-based analysis

of the iload instruction is given Figure 4. The iload:100% shows the machine
cycles of all the measurements in the loop, whereas the iload:99.95% presents
99.95 percentage of the measurements of the loop where we assumed that very
high execution time of the measurements are influenced by the operation systems
and interrupts.

5 Evaluation

The evaluation of our analysis is illustrated with an example code of the Bubble
Sort algorithm presented in Figure 5. Figure 6 shows the individual basic block
of the algorithm with offset numbers. The maximum number of iterations of the
outer and inner loops can be assumed as 10 − 1 and 10(10 − 1)/2 respectively
when the size is equal to 10.

The WCEF vectors of the bubble sort algorithm, generated by our prototype
compiler during compilation, is given in Figure 7 in text mode. In this example,
only 14 different Java bytecodes are generated by the Java compiler. When
deriving VMTM it is necessary to minimise the run-time overhead and influences

import javax . r e a l t ime .∗ ;
public c l ass rth extends RealtimeThread {

s tat ic int Data [] ;
public void run () {

// . . .
bb Sort (Data) ;
waitForNextPeriod () ;

}
public s tat i c void bb Sort (int a []) {

int i , j , t ;
int s i z e = 10 ;
for (i=s iz e −1; i >0; i −−) {

for (j =1; j<=i ; j ++) {
i f (a [j −1] > a [j]) {

t = a [j −1] ;
a [j −1] = a [j] ;
a [j] = t ;

}
}

}
}
. . .

}

Fig. 5. The Bubble Sort Algorithm in Java

Lecture Notes in Computer Science 11

B1: 0~ 9

B8: 57~58

B2: 12~14

B6: 49~51

B7: 54~54

B3: 17~25

B5: 46~46

B4: 28~45

B9: 61~61

Fig. 6. Individual basic blocks
with their offset numbers

<WCEFVectors>

. . .
<Method=bb Sort : ([I)V>

<SubTAG BODY>

BB: (0 ˜9)
bipush :1
i s t o r e :1
i l o ad :1
i c o n s t 1 : 1
i sub :1
i s t o r e 1 : 1
goto : 1

BB:(12˜14)
i c o n s t 1 : 1
i s t o r e 2 : 1
goto : 1

BB:(17˜25)
a load 0 : 2
i l o a d 2 : 2
i c o n s t 1 : 1
i sub :1
i a lo ad :2
i f i cmp l e : 1

BB:(28˜45)

a lo ad 0 : 4
i l o a d 2 : 4
i c on s t 1 : 2
i sub :2
i a lo ad : 2
i s t o r e 3 : 1
i a s t o r e : 2
i l o a d 3 : 1

BB:(46˜46)
i i n c :1

BB:(49˜51)
i l o a d 2 : 1
i l o a d 1 : 1
i f i cmp l e :1

BB:(54˜54)
i i n c :1

BB:(57˜58)
i l o a d 1 : 1
i f g t :1

BB:(61˜61)
return : 1

</SubTAG BODY>

. . .
</WCEFVectors>

Fig. 7. WCEF Vectors of the bubble sort
algorithm in text mode

of background process running in the operating systems including background
tasks and interrupters. We addressed these issues by running the test-bed under
single user mode on Linux. In addition, other background processes are killed
manually to reduce the influences as much as possible. The measurements of
the execution time are represented with machine cycle unit in the rest of this
example.

Table 3. A VMTM derived with the benchmark-based analysis

Bytecode 99.95% 99.90% Average

aload 48 38 36

bipush 40 30 30
iaload 46 34 36

iastore 55 41 31

ifgt 67 47 27

if icmple 71 51 52
iinc 93 64 62

iload 37 32 24

istore 50 38 36

isub 45 34 35
goto 36 27 25

iconst0 38 35 31

iconst1 37 37 32

A summary of the VMTM for the Bubble Sort example is shown in Ta-
ble 3. This table shows the different statistical analysis results of the VMTM
carried out with benchmark-based analysis. Each bytecode is measured by 50000
times continuously. As shown in Figure 8, although the VMTM derived with the
benchmark-based approach shows rather constant outcomes, the VMTM pro-
duced with the profiling-based approach presents relatively pessimistic results
if the 99% of the measurements have been taken into account as the WCET

12 Erik Yu-Shing Hu, Andy Wellings and Guillem Bernat

 0

 50

 100

 150

 200

aload bipush iaload iastore ifgt ificmpl iinc iload istore isub goto icnst0 icnst1

cy
cl

es

bytecode

99.0%

profiling-based
benchmark-based

 0

 20

 40

 60

 80

 100

aload bipush iaload iastore ifgt ificmpl iinc iload istore isub goto icnst0 icnst1

cy
cl

es

bytecode

90.0%

profiling-based
benchmark-based

Fig. 8. Comparing the profiling-based and benchmark-based analyses

bounds. This can be reasoned that the ad-hoc measurements of the profiling-
based analysis can produce pessimism because it derives the execution time of
each bytecode from various methods invoked on the VM and most methods
are invoked during the initialisation phase of the VM. As a result, some mea-
surements could be the worst-case response time of the bytecode instead of the
WCET bounds. However, it can be observed that the 90% percent of the mea-
surements of the profiling-based analysis are very close to the results derived with
the benchmark-based analysis. The experiment also shows that the profiling-
based analysis has some difficulties to control which particular bytecodes to be
measured and the number of the measurements of the bytecodes. Therefore, in
order to obtain the reliable measurements with the profiling approach, it also
needs to be provided with a large amount of the particular bytecodes needed to
be measured.

Using Table 3, three different WCET bounds (i.e. 99.95%, 99.90%, and aver-
age) can be estimated. The WCEF of the bubble sort algorithm is obtained as
follows:

WCET(bb Sort ())
= B1+10∗B8+9(B2+B7)+46∗B6+45(B3+B4+B5)+B9

Table 4. Comparing the final WCET bounds

Approach 99.9% 90.0%

End-to-end measurement 40378 39865
Benchmark-based 42125 39908

Profiling-based 164689 51235

The final WCET bounds of the algorithm with different approaches (i.e.
end-to-end measurement, benchmark-based analysis and profiling-based analy-
sis) have been conducted. The estimations taking account of the 99% and 90%
of the measurements in Table 4. Note that the method of estimating the pipeline
effects is beyond the scope this paper and the technique proposed in [1] can be
integrated into our approach easily with benchmark-based analysis.

Lecture Notes in Computer Science 13

6 Conclusion and Future Work

Since the aim of portable code is to support hardware interchangeability, the
WCET analysis for such portable applications needs to bear portability in mind.
The comprehensive portable WCET has been proposed with a three stage ap-
proach to analyse the highly portable and reusable Java applications for real-time
and embedded systems. In this paper, we have mainly discussed how to derive
various VMTMs to facilitate the use of portable WCET [2] in real-time and
embedded Java-based applications.

Two approaches (i.e. profiling-based and benchmark-based) have been pro-
posed to derive VMTMs. The major advantage of the profiling-based approach
can be extended to integrate with other tracing or profiling techniques, such as
POSIX-trace [20], whereas the disadvantages of the approach are that it needs
the source code and knowledge of the target VM and it takes time to instrument
the additional code into the VM. In contrast, the benchmark-based analysis is
highly portable and only needs to provide a native method to access the time-
stamp counter of the target processor. However, the benchmark-based analysis
is less convenient to integrate with other profiling techniques. Therefore, these
techniques can be applied to various applications that depend on the require-
ments of the systems.

Based on the experimental results, the outcomes of the benchmark-based
analysis approach (Figure 8) encourage us to carry on the future work on the
use of portable WCET analysis in real-time and embedded Java-based systems,
whereas the results of the profiling-based analysis approach reminds that taking
account of other run-time issues, such as cache effects and branch prediction
issues, can achieve relatively safer and tighter WCET estimations.

There are still a number of issues that need to be addressed in our approach,
such as taking into account the timing properties of the RTSJ, cache effects on
WCET estimations and extending for just-in-time compiler techniques.

References

1. I. Bate, G. Bernat, G. Murphy, and P. Puschner. Low-Level Analysis of a Portable
Java Byte Code WCET Analysis Framework. Proceedings of the 6th IEEE Real-

Time Computing Systems and Applications RTCSA-2000, pages 39–48, December
2000.

2. G. Bernat, A. Burns, and A. Wellings. Portable Worst-Case Execution Time
Analysis Using Java Byte Code. Proceedings of the 6th Euromicro Conference on

Real-Time Systems, pages 81–88, June 2000.
3. G. Bernat, A. Colin, and S. Petters. WCET Analysis of Probabilistic Hard Real-

Time Systems. Proceedings of the 23rd IEEE Real-Time Systems Symposium, De-
cember 2002.

4. G. Bollella, J. Gosling, B. M. Brosgol, P. Dibble, S. Furr, D. Hardin, and M. Turn-
bull. Real-Time Specification for Java. Addison Wesley, 2000.

5. R. Chapman, A. Burns, and A. Wellings. Integrated Program Proof and Worst-
Case Timing Analysis of SPARK Ada. Proceedings of the Workshop on Language,

Compiler, and Tool Support for Real-Time Systems, June 1994.

14 Erik Yu-Shing Hu, Andy Wellings and Guillem Bernat

6. J. Consortium. Real-Time Core Extensions for Java platform. International

J Consortium Specification, Revision 1.0.14, September 2000. http://www.j-
consortium.org/rtjwg/.

7. E. Y.-S. Hu, G. Bernat, and A. J. Wellings. Addressing Dynamic Dispatching Issues
in WCET Analysis for Object-Oriented Hard Real-Time Systems. Proceedings of

the 5th IEEE International Symposium on Object-Oriented Real-Time Distributed

Computing ISORC-2002, pages 109–116, April 2002.
8. E. Y.-S. Hu, G. Bernat, and A. J. Wellings. A Static Timing Analysis Environment

Using Java Architecture for Safety Critical Real-Time Systems. Proceedings of

the 7th IEEE International Workshop on Object-Oriented Real-Time Dependable

Systems WORDS-2002, pages 77–84, January 2002.
9. E. Y.-S. Hu, J. Kwon, and A. J. Wellings. XRTJ: An Extensible Distributed High-

Integrity Real-Time Java Environment. Proceedings of the 9th International Con-

ference on Real-Time and Embedded Computing Systems and Applications RTCSA-

2003, pages 371–391, February 2003.
10. E. Y.-S. Hu, A. J. Wellings, and G. Bernat. A Novel Gain Time Reclaiming

Framework Integrating WCET Analysis for Object-Oriented Real-Time Systems.
Proceedings of the 2nd International Workshop on Worst-Case Execution Time

Analysis WCET-2002, June 2002.
11. E. Y.-S. Hu, A. J. Wellings, and G. Bernat. Gain Time Reclaiming in High Perfor-

mance Real-Time Java Systems. Proceedings of the 6th IEEE International Sym-

posium on Object-Oriented Real-Time Distributed Computing ISORC-2003, pages
249–256, May 2003.

12. Intel’s Applications Notes. Using the RDTSC Instruction for Performance Moni-
toring. Intel. http://cedar.intel.com/software/idap/media/pdf/rdtscpm1.pdf.

13. Kopi. The Kopi Project. DMS Decision Management Systems Gmb.
Hhttp://www.dms.at/kopi/.

14. S. Lim, Y. Bae, G. Jang, B. Rhee, S. Min, C. Park, H. Shin, K. Park, and C. Kim.
An accurate worst case timing analysis for RISC processors. IEEE Transactions

on Software Engineering, 21(7):593–604, July 1995.
15. M. Lindgren. Measurement and Simulation Based Techniques for Real-Time Sys-

tems Analysis. Dissertation, Uppsala University, Sweden, 2000.
16. F. Mueller. Static Cache Simulation and its Applications. Ph.d thesis, Department

of Computer Science, Florida State University, July 1994.
17. S. Petters and G. Farber. Making Worst Case Execution Time Analysis for Hard

Real-Time Tasks. In Proceedings of the 6th International Conference on Real-Time

Computing Systems and Application RTCSA-1999, December 1999.
18. P. Puschner and A. Burns. A Review of Worst-Case Execution-Time Analysis.

Real-Time Systems, 18(2/3):115–128, 2000.
19. A. Shaw. Reasoning about Time in Higher-Level Language Software. IEEE Trans-

actions on Software Engineering, 15(7):875–889, July 1989.
20. A. Terrasa and G. Bernat. Extracting Temporal Properties from Real-Time Sys-

tems by Automatic Tracing Analysis. Proceedings of the 9th International Confer-

ence on Real-Time and Embedded Computing Systems and Applications RTCSA-

2003, pages 483–502, February 2003.
21. TimeSys. Real-Time Java. TimeSys. http://www.timesys.com/prodserv/java/.

