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Abstract. Despite Java’s initial promise of providing a reliable and
cost-effective platform-independent environment, the language appears
to be unfavourable in the area of high-integrity systems and real-time
systems. To encourage the use of Java in the development of distributed
high-integrity real-time systems, the language environment must pro-
vide not only a well-defined specification or subset, but also a complete
environment with appropriate analysis tools. We propose an extensi-
ble distributed high-integrity real-time Java environment, called XRTJ,
that supports three attributes, i.e., predictable programming model, de-
pendable static analysis environment, and reliable distributed run-time
environment. The goal of this paper is to present an overview of our
on-going project and report on its current status. We also raise some
important issues in the area of distributed high-integrity systems, and
present how we can deal with them by defining two distributed run-time
models where safe and timely operations will be supported.

Keywords : Real-Time Java, High-Integrity Real-Time Systems, Static Anal-
ysis Environment, Distributed Run-Time Environment

1 Introduction

There is a trend towards using object-oriented programming languages, such
as Java and C++, to develop high-integrity real-time systems because the use
of such languages has several advantages, for instance reusability, data accessi-
bility and maintainability. Typically, high-integrity systems, where failure can
cause loss of life, environmental harm, or significant financial penalties, have
high development and maintenance costs due to the customised nature of their
components. Therefore, the use of object-oriented programming in such systems
may offer a number of benefits including increased flexibility in design and imple-
mentation, reduced production cost, and enhanced management of complexity
in application areas.

? This work has been funded by the EPSRC under award number GR/M94113.
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The Java technology with its significant characteristics, including cost-effective
platform-independent environment, relatively familiar linguistic semantics, and
support for concurrency, has many features for developing real-time and em-
bedded systems. It also provides well-defined Remote Method Invocation (RMI)
features which support distributed applications on the Java architecture.

However, despite Java’s initial promise, the language appears to be un-
favourable in the area of high-integrity systems [22] and real-time systems [7].
Its combination of object-oriented programming features, its automatic garbage
collection, and its poor support for real-time multi-threading are all seen as
particular impediments.

The success of high-integrity real-time systems undoubtedly relies upon their
capability of producing functionally correct results within defined timing con-
straints. In order to support a predictable and expressive real-time Java envi-
ronment, two major international efforts have attempted to provide real-time
extensions to Java: the Real-Time Specification for Java (RTSJ) [5] and the
Real-Time Core extensions to Java [9]. These specifications have addressed the
issues related to using Java in a real-time context, including scheduling support,
memory management issues, interaction between non-real-time and real-time
Java programs, and device handling, among others.

However, the expressive power of all these features, along with the regular
Java semantics, means that very complex programming models can be created,
necessitating complexity in the supporting real-time virtual machine and tools.
Consequently, Java, with the real-time extensions as they stand, seems too com-
plex for confident use in high-integrity systems. Furthermore, in addition to
the difficulties with analysing applications developed in these frameworks with
all the complex features, there is no satisfactory static analysis approach that
can evaluate whether the system will produce both functionally and temporally
correct results in line with the design at run-time.

For the above reasons, to encourage the use of Java in the development
of high-integrity real-time systems, the language environment must provide not
only a well-defined specification or subset, but also a complete environment with
appropriate analysis tools. Hence, we propose an extensible distributed high-
integrity real-time Java environment, called XRTJ, that supports the following
attributes:

– Predictable programming model
– Dependable static analysis environment
– Reliable distributed run-time environment

The XRTJ environment has been developed with the whole software devel-
opment process in mind: from the design phase to run-time phase. The XRTJ
environment includes: the Ravenscar-Java profile [23], a high-integrity subset
of RTSJ; a novel Extensible Annotations Class (XAC) format that stores ad-
ditional information that cannot be expressed in Java class files [18]; a static
analysis environment that evaluates functional and temporal correctness of appli-
cations, called XRTJ-Analyser [18]; an annotation-aware compiler, called XRTJ-
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Compiler; a modified real-time Java virtual machine, called XRTJ-Virtual Ma-
chine that supports a highly reliable run-time environment.

The aim of the paper is to present an overview of our on-going project and
report on its current status. The rest of the paper is organised as follows. Sec-
tion 2 presents an overview of the XRTJ environment. Further details of the
static analysis environment and distributed run-time environment are provided
in Section 3 and 4 respectively. Section 5 shows a simple example that demon-
strates how our approach can be used in a practical application. Section 6 gives
a brief review of related work while Section 7 presents the current status of the
project. Finally, conclusions and future work are presented in Section 8.

2 XRTJ Environment Overview

The major goal of our project is to provide a predictable and portable pro-
gramming environment to develop distributed high-integrity real-time systems.
The XRTJ environment is targeted at cluster-based distributed high-integrity
real-time Java systems, such as consumer electronics and embedded devices,
industrial automation, space shuttles, nuclear power plants and medical instru-
ments.

To encourage the use of real-time Java in high-integrity systems, we have
introduced the Ravenscar-Java profile [23]. The profile or restricted programming
model excludes language features with high overheads and complex semantics,
on which it is hard to perform temporal and functional analyses. Further details
of the profile are given in Section 2.1.
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Fig. 1. A basic block model of the XRTJ environment

Based on the Ravenscar-Java profile, we propose a highly dependable and
predictable programming environment to develop distributed high-integrity real-
time applications. As shown in Figure 1, the XRTJ environment can be divided
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into two main parts: a Static Analysis Environment, which offers a number of
tools that conduct various static analyses including program safety and timing
analysis; a Distributed Run-Time Environment, in which highly predictable and
dependable distributed capabilities are provided.

Before a detailed discussion of each environment, two major components
of the XRTJ environment will be introduced. In our environment, to facilitate
the various static analysis approaches and provide information that cannot be
expressed in either Java source programs or Java bytecode, an extensible and
portable annotation1 class format called Extensible Annotations Class (XAC)
file is proposed [18]. To generate XAC files, an annotation-aware compiler, named
XRTJ-Compiler, which can derive additional information from either manual an-
notations or source programs, or both, is also introduced. Taking advantage of
the knowledge accumulated with the compiler, different analysis tools may be in-
tegrated into the XRTJ-Compiler to carry out various verifications or validations
either on source programs or Java bytecode.

Essentially, the static analysis environment supports various analysis tech-
niques by means of the XRTJ-Analyser where program safety analysis and timing
analysis can be statically carried out. In the XRTJ environment, Java programs
extended with specific annotations, such as timing annotations or model check-
ing annotations2, are compiled into Java class files and XAC files by either a
simple XAC translator and a traditional Java compiler or the XRTJ-Compiler.
A conformance test that verifies whether the applications obey the rules defined
in the Ravenscar-Java profile or whether the manual annotations are correct can
also be conducted during the compilation. The XAC files, together with the Java
class files, are used by the XRTJ-Analyser to perform various static analyses.
As shown in Figure 1, various static models, such as a Virtual Machine Timing
Model (VMTM)3, can be provided to perform different static analysis approaches
on the XRTJ-Analyser. Further aspects of the static analysis environment are
discussed in Section 3.

The distributed run-time environment provides mechanisms for underlying
systems to facilitate both functionally and temporally correct execution of ap-
plications. This infrastructure is targeted at cluster-based distributed infrastruc-
ture where remote objects are statically allocated during the design phase. In
order to accommodate a diverse set of the implementations on the underlying
platforms or virtual machines, two run-time environments with different levels
of distribution are supported in the XRTJ run-time environment. This will be
explored further in Section 4.

1 The term annotations, in this paper, means both manual annotations and annota-
tions generated by the XRTJ-Compiler automatically.

2 Model-checkers, such as JPF2[6], which requires special annotations, may be em-
ployed in our architecture to facilitate safety checks of concurrent programs.

3 VMTM is a timing model for the target virtual machine including a list of the
worst-case execution time of native methods and Java bytecode instructions.
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2.1 Ravenscar-Java Profile

We have presented a Java profile for the development of software-intensive high-
integrity real-time systems in [23]. The restricted programming model removes
language features with high overheads and complex semantics, on which it is
hard to perform timing and functional analyses. The profile fits within the J2ME
framework [31], fullfils the NIST Real-Time Java profile requirements [7] and is
consistent with well-known guidelines for high-integrity software development,
such as those defined by the U.S. Nuclear Regulatory Commission [16].

Allocatable Memory

Mission Phase

Initialisation Phase

main() invoked

Create Initialiser
thread

main() terminates

Initialise all necessary
objects and real−time

threads

Start all
threads

New Thread

New Thread

New Thread

Immortal MemoryHeap Memory Scoped Memory

Fig. 2. Two execution phases of Ravenscar Virtual Machine

Its computational model defines two execution phases, i.e. initialisation and
mission, as shown in Figure 2. In the initialisation phase of an application, all
necessary threads and memory objects are created by an Initializer thread,
whereas in the mission phase the application is executed and multithreading is
allowed based on the imposed scheduling policy. There are several new classes
that should ultimately enable safer construction of Java programs (for example,
Initializer, PeriodicThread, and SporadicEventHandler), and the use of
some existing classes is restricted or simplified due to their problematic features
in static analysis. For instance, the use of any class loader is not permitted in
the mission phase, and the size of a scoped memory area, once set, cannot be
changed.

Further restrictions include (see [23] for a full list)

– No nested scoped memory areas are allowed,
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– Priority Ceiling Emulation must be used for all shared objects between real-
time threads,

– Processing groups, overrun and deadline-miss handlers are not supported,
– Asynchronous Transfer of Control is not allowed, and
– Object queues are not allowed (i.e. no wait, notify, and notifyAll oper-

ations).

Restrictions are also imposed on the use of the Java language itself, for ex-
ample

– continue and break statements in loops are not permitted, and
– Expressions with possible side effects must be eliminated.

Most subsets of Java or the RTSJ (e.g. [3, 28]) overlook some important
elements of the language, for example, multithreading and the object-oriented
programming model. Thus many of the advantages of Java are lost. However,
the Ravenscar-Java profile attempts to cover the whole language issues, as well
as the run-time model. The profile is expressive enough to accommodate today’s
demanding requirements for a powerful programming model, yet concise enough
to facilitate the implementation of underlying platforms of virtual machines.

3 Static Analysis Environment

The static analysis environment consists of two components: program safety
analysis and timing analysis. The former highlights program safety in terms
of functional correctness and concurrency issues, such as safety and liveness,
whereas the latter emphasises the analysis of timing issues in terms of temporal
correctness. For the most part, these static analysis approaches may be carried
out individually or combinatorially. A block diagram of the XRTJ architecture
for the static analysis environment is given in Figure 3 and further details of
each major component are discussed in subsequent sections.

3.1 XAC (Extensible Annotation Class) File

One of the key components in the XRTJ architecture is the XAC format that
provides information for the various analysis tools that cannot be stored in
Java class files without making them incompatible with the traditional Java
architecture [18]. The XAC format has been designed with two main goals in
mind: portability, to support both platform independence and language inde-
pendence, and extensibility, to hold extra information needed for other analysis
tools. Therefore, the XAC files are easy to extend for various purposes or apply
in annotation-aware tools or JVMs.

Each XAC file is generated for a specific Java class file, and so the relationship
between a Java class file and an XAC file is one to one. Essentially, the offset
numbers of bytecode in a method are stored with the associated annotations in
the XAC file. Therefore, the corresponding bytecode and annotation may easily
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Fig. 3. A block diagram of the XRTJ architecture for static analysis environment

be reconstructed in analysis tools. A checksum is also provided in XAC files to
facilitate analysis tools or JVMs to verify the consistency between the Java class
file and the XAC file. Further details of the XAC file are discussed in [18].

In addition, using XAC files has benefits for distributed systems as XAC files
do not increase the size of traditional Java class files. Therefore, if the XAC files
are not required at run-time, they do not need to be either loaded into the target
JVM or transferred among distributed machines.

3.2 XRTJ-Compiler

Compiler techniques have been applied to analysis approaches, such as worst-case
execution time analysis and program safety analysis, in order to achieve more
accurate results. For example, Vrchoticky [35] has suggested compilation support
for fine-grained execution time analysis, and Engblom et al. [13] have proposed
a WCET tool called Co-transformation, integrated with compilation support,
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to achieve safer and tighter estimation of timing analysis approaches. These
approaches show that compilation support can not only address the optimisation
issues introduced by compilers, but also provide additional information that may
accumulate from the source code level for particular analysis tools.

In the XRTJ environment, an annotation-aware compiler (XRTJ-Compiler)
is introduced in order to both manipulate annotations and validate that the
contexts of source program code obey those rules defined in the Ravenscar-
Java profile. On the whole, the XRTJ-Compiler extracts both manual annota-
tions introduced for timing analysis and specific annotations that can be de-
rived from source code level for particular purposes. For instance, the XRTJ-
compiler derives Abstract Syntax Trees(AST) and Worst-Case Execution Fre-
quency (WCEF)4 vectors of specific applications to facilitate the WCET anal-
ysis (Section 3.4). Furthermore, the requirements of other static analysis tools,
such as information needed for model checkers and other safety analysis tools,
may also be produced by the XRTJ-Compiler and can be stored in associated
XAC files.

It can be observed that the XRTJ-Compiler may provide valuable information
not only to achieve more precise and reliable results from analysis tools, but also
to facilitate the implementation of various static analysis tools on the XRTJ
infrastructure.

3.3 Program Safety Analysis

The inherent complexity in the verification of non-trivial software means that
unsafe programs could be produced and used under critical situations. This is
increasingly the case as today’s programming models become more complex. Our
Ravenscar-Java profile [23] has been developed with such concerns in mind, so
that programs become easier to analyse, and the run-time platform will also be
simpler to implement.

By program safety, we mean that a program will behave according to its
functional (and temporal) specification, and not exhibit any erroneous actions
throughout its lifetime. Erroneous actions include data races, deadlocks, and
memory overflows. Also, in the context of real-time Java and the Ravenscar pro-
file, we also need to ensure that the rules defined in the profile and RTSJ are
observed. These rules are checked when programs are compiled and tested for
conformance to the profile. This conformance test alone will remove many possi-
ble errors in the program. For example, deadlocks, and side effects in expressions
can be prevented. The following subsections address some issues that are not di-
rectly addressed by the profile, but which are still important in validating the
safety of a Java program.

4 WCEF vectors represent execution-frequency information about basic blocks and
more complex code structures that have been collapsed during the first part of the
portable WCET analysis.
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Verification of the Java Memory Model’s effect As reported in [26, 29],
the Java memory model (JMM) in [14] is a weaker model of execution than those
supporting sequential consistency. It allows more behaviours than simple inter-
leaving of the operations of the individual threads. Therefore, verification tools
that simply examine Java source code or even bytecode are prone to producing
false results [29]. Because the semantics of the JMM can lead to different im-
plementations, some virtual machines may support sequential consistency, while
others may not for performance reasons. This does not match the Java’s write
once, run anywhere5 philosophy.

However, we can develop restricted fragments of Java programs for which the
JMM guarantees sequential consistency (as opposed to the approach in [29]),
given that there is a means to efficiently analyse Java bytecode to locate only
necessary synchronizations. Libraries will still be considered because such an
analysis tool will operate at the bytecode level. The point-to and escape analysis
[8, 30] can be used to trace escaping and possibly shared objects, as well as
improving overall performance by allocating non-escaping objects in the stack
of a method. This approach, in fact, is how our analysis algorithm has been
designed to uncover data races.

The underlying assumption of our algorithm is that any reads and writes on a
shared object in a method must be enclosed within the same synchronized block
(or method) in order not to have any data races. In other words, any syntactical
gap between a read and write that are not covered by a single synchronized
block will cause possible data races in a multithreaded environment because
either a read or write action can be lost. This is true even when a shared object
is indirectly read and updated using a local object. For example, an interleaving
of another thread that may update the shared object can occur in between the
indirect read and a (synchronized) write in the method, resulting in a lost write.
Thus, any indirect reads and writes should also be treated in a similar manner
to direct ones on a shared object.

Another similar case is the following: even when both a read and write are
synchronized, there can still be data races if the two blocks are guarded by
two different synchronized blocks and can be interleaved by other threads in
between. Our algorithm is capable of analysing all such conditions, thus detecting
problematic data races by tracing all shared objects and checking whether they
are properly guarded by synchronized blocks or methods [21].

Memory Usage Analysis Shortage of memory space at run-time can be dev-
astating in high integrity systems, but at the same time, oversupply of it will be
costly. Considering the new memory areas introduced in the RTSJ, we may need
a different means of estimating the worst-case memory space that a program
requires at run-time, so that only the required amount of memory for each area
will be allocated. For this purpose the RTSJ defines the SizeEstimator class,
but the getEstimate() method does not return the actual amount of memory
that an object of a class and its methods dynamically use, but simply the total
5 Programs may still run anywhere, but possibly with different or unsafe behaviours.
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size of the class’s static fields. In this sense, the class is not readily usable in
estimating the required memory size for an RTSJ application.

However, the Ravenscar-Java profile places some restrictions on the use of
RTSJ’s memory areas; for example, access to scoped memory areas must not be
nested and such memory areas cannot be shared between Schedulable objects
[23]. These restrictions greatly ease the development of an algorithm that will
inspect each thread’s logic to discover all classes it instantiates. After that, by
making use of control and data flow information extracted from the code and
the XAC file (such as loop bounds), the algorithm will be able to tell how many
instances of each class are created by a thread. This information can then be
used to produce a tight upper bound of the amount of memory that a thread
utilises at run-time by applying reserve() and getEstimate() methods of the
SizeEstimator class at the target platform before system despatching. This
thread-oriented memory usage analysis algorithm is currently being developed.

Other Pre-runtime Analyses In addition to the ones introduced above, our
static analyser (XRTJ-Analyser) is also intended to do the following analyses:

– Exception propagation analysis, and
– Dynamic memory access check analysis.

The first analysis stems from the fear that the propagation of any unchecked
exceptions at run-time can be hazardous, while the latter is concerned with
eliminating unpredictable runtime overheads caused by dynamic checks of the
virtual machine. Memory access checks can be prevented by means of the point-
to and escape analysis [8, 30], which will be integrated in our XRTJ analyser
together with an efficient exception propagation analysis technique.

3.4 Timing Analysis

Timing analysis is crucial in real-time systems to guarantee that all hard real-
time threads will meet their deadlines in line with the design. In order to ensure
this, appropriate scheduling algorithms and schedulability analysis are required.
Typically, most scheduling algorithms assume that the Worst-Case Execution
Time (WCET) estimation of each thread has to be known prior to conducting
the schedulability analysis. Therefore, estimating WCET bounds of real-time
threads is of vital importance. In addition, having accurate timing estimations
enables the developer to allocate resources more precisely to the system during
the design phase.

On the whole, most WCET approaches [13, 35, 27] are tied to either a partic-
ular language or target architecture. Moreover, RTSJ has kept silent on how the
WCET estimations can be carried out on the highly portable Java architecture.
Consequently, it is unlikely to achieve Java’s promise of ”write once, run any-
where” or perhaps more appropriately for real-time “write once carefully, run
anywhere conditionally” [5].
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Hence, in order to offer a predictable and reliable environment for high-
integrity real-time applications, a number of timing analysis issues need to be
addressed, for example:

– How the WCET analysis can be carried out on a highly portable real-time
Java architecture,

– How the run-time characteristics of Java, such as high frequency of method
invoking and dynamic dispatching, can be addressed,

– How schedulability analysis can be conducted statically, and
– What techniques need to be provided to take account of the supporting

distributed run-time environment.

The subsequent sections explore how these issues can be addressed in the
static analysis environment of the XRTJ infrastructure to be able to ensure that
real-time threads will meet their time constraints.

Portable WCET Analysis A portable WCET analysis approach based on
the Java architecture has been proposed by Bernat et al. [4], and extended by
Bate et al. [2] to address low-level analysis issues. This section presents how
the portable WCET analysis can be adapted for our environment to be able to
perform the WCET analysis statically [18].

The portable WCET analysis uses a three-step approach: high-level analysis
(i.e. analysing the annotated Java class files and computing the portable WCET
information in the form of Worst-Case Execution Frequency (WCEF) vectors [2,
4]), low-level analysis (i.e. producing a Virtual Machine Time Mode (VMTM)
for the target platform by performing platform-dependent analysis on Java byte
code instructions implemented for the particular platform), and conducting the
combination of the high-level analysis with the low-level analysis to compute the
actual WCET bound of the analysed code sections.

In our environment, the XRTJ-Compiler analyses the annotated Java pro-
grams and extracts the WCEF vectors during the compilation. The WCET vec-
tors and WCET annotations are stored in the XAC file by the XRTJ-Compiler
automatically. Therefore, after compilation, the class files and XAC files are
ready for WCET analysis tools. To be able to build VMTMs of various plat-
forms for real-time and embedded Java-based systems in an efficient way, we
are developing a timing analysis benchmark that can build a VMTM of a target
platform automatically simply by providing a native method that can access
the machine cycle of the target platform. A WCET analysis tool in the XRTJ-
Analyser, then, performs the combination of the high-level analysis with the low
level VMTM to compute the actual WCET bound of the analysed code sections.

WCET Annotations Dynamic dispatching issues have been considered in
compiler techniques for a number of years [1, 11, 12]. Unfortunately, these ap-
proaches cannot be directly applied to WCET analysis since they are solely op-
timising dynamic binding and do not guarantee that all dynamic binding will be
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resolved before run-time. However, in WCET analysis for hard real-time systems,
the execution time of every single method has to be known prior to executing
it. Therefore, most approaches in the WCET analysis field have simply assumed
that dynamic dispatching features should be prohibited. It is possible that these
restrictions could make applications very limited and unrealistic because they
might eliminate the major advantages of object-oriented programming [17].

In [17], we have explored the ways in which dynamic dispatching can be
addressed in object-oriented hard real-time systems with the use of appropriate
annotations. Our approach shows that allowing the use of dynamic dispatching
can not only provide a more flexible way to develop object-oriented hard real-
time applications, but it also does not necessarily result in unpredictable timing
analysis. Moreover, it demonstrates how to achieve tighter and safer WCET
estimations.

It is an open question for most annotation-based approaches as to how to ver-
ify if the provided annotations are correct. Combining optimisation techniques,
such as Class Hierarchy Analysis (CHA) [11] or Rapid Type Analysis (RTA) [1],
with our approach allows the annotations to be verified, if there is no dynamic
linking at run-time. For example, applying the CHA approach, we can easily get
the maximum bound of the class hierarchies information from the Java bytecode.

Schedulability Analysis This section demonstrates how schedulability can be
carried out for our real-time Java architecture in line with the portable WCET
analysis. In [18], we have illustrated how real-time parameters, including priority
and dispatching parameters, for the set of threads and WCET estimates can be
produced from the Java class files and XAC files. Given the WCET estimates
and real-time parameters, the schedulability analysis can be conducted easily.
In the XRTJ-Analyser, only the system configuration information is needed.
Following the system configuration, the XRTJ-Analyser loads the scheduling al-
gorithm and carries out the schedulability analysis. Scheduling algorithms must
provide scheduling characteristics, algorithms which can calculate other schedul-
ing parameters, such as release-jitter, blocking time, response-time, and resource
access protocols which are provided to manage the priority inversion problems.
The XRTJ-Analyser produces the result of the analysis of the system. The out-
put file provides not only the result of the analysis, but also includes timing and
scheduling information, such as response time, release-jitter, and blocking time.

Support for Distributed Features It should be noted that analysing the
WCET bound of real-time threads in a distributed run-time environment differs
from a standalone run-time environment. In particular, there are a number of
issues that need to be clarified to achieve safe and tight WCET estimation and
schedulability analysis of real-time threads containing remote method invoca-
tions. In the XRTJ infrastructure, we assume that one compatible virtual ma-
chine resides on each node in the cluster network and no recursive remote method
invocations are allowed. In accordance with these assumptions, the WCET esti-
mation and schedulability can be carried out as follows.
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Fig. 4. The Java’s RMI architecture [19]

Based on Java’s RMI architecture shown in Figure 4, a stub6 needs to be
provided on the local virtual machine, whereas a skeleton7 resides on the remote
virtual machine [19]. In line with this architecture, holistic schedulability analysis
can be performed [33, 25]; the response time estimations of all remote methods
and the skeleton on the server node have to be analysed as sporadic threads
during the schedulability analysis.

As to the client node, the WCET estimation of a real-time thread that holds
remote method invocations differs from those that only comprise local method
invocations. One should note that the WCET estimation of a remote method on
the client node should not take into account the execution time of the remote
method because a remote method is translated by the stub that resides on the
local virtual machine and is executed on remote virtual machines. The WCET
bound of a remote method invocation, therefore, should only take account of the
execution time of the stub.

4 Distributed Run-Time Environment

This section is mainly concerned with the distributed run-time environment of
the XRTJ infrastructure, which is targeted at cluster-based distributed high-
integrity real-time systems. Moving from a centralised environment to a dis-
tributed environment requires the following issues to be addressed:

– How objects are allocated to nodes in the cluster,
– What form of communication is supported between distributed objects,
– How the model of communication can be integrated into Ravenscar-Java,

and
– What impact the model has on the XRTJ environment.

For high-integrity environments, objects should be statically allocated to
each node in the cluster. Therefore, the term distributed in this paper means
6 A stub is a class that automatically translates remote method calls into network

communication setup and parameter passing.
7 A skeleton is a corresponding class that accepts these network connections and trans-

lates them into actual method calls on the actual object.
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statically distributed whereby remote objects are allocated to nodes during the
design phase. Although there have been many different communication models
proposed for distributed Java programs (tuplespaces, distributed events, etc)
most are based on top of the Java’s RMI mechanism. XRTJ assumes the existence
of a real-time RMI facility [36], such as that proposed by Miguel [10].

To accommodate existing practice, which is a stated goal of the project, two
static distributed run-time environments are introduced, including Initialisation
Distributed Environment, in which RMI is only allowed for use in the initiali-
sation phase of an application, and Mission Distributed Environment, where a
restricted real-time RMI model [36] can be used during the mission phase. The
following subsections give further details on each of these and show how those
issues mentioned previously can be addressed.

4.1 Initialisation Distributed Environment

The Ravenscar-Java profile does not support any remote interfaces on its main
classes. Neither are they serialisable. Consequently, no remote operation can be
applied to periodic threads or sporadic event handlers. This implies that they
cannot be passed over the network during the mission phase of the RVM.

However, in order to provide not only high predictability and reliability, but
also some degrees of support for distributed applications, which may reduce
the development and maintenance costs of overall systems, the initialisation
distributed environment is introduced. The motivation of providing this environ-
ment can be observed by a simple example given in Section 5. In such systems,
communications between a server and each node, including loading data and
reporting status, is essential and this can be achieved easily if the run-time
environment provides distributed features in the initialisation phase.

In line with the framework proposed for integrating the RTSJ and Java’s
RMI [36], the standard RTSJ may offer a distributed environment with a minimal
distribution level, defined as Level 0 integration by Wellings et. al. [36]. Following
this approach, the initialisation distributed environment can be applied to either
a standard Real-Time Java Virtual Machine (RTJVM) or a Ravenscar Virtual
Machine (RVM). In such a run-time environment, both RTJVMs and RVMs can
support a distributed environment defined as Level 0 distribution in [36] before
all real-time threads are started (i.e. the initialisation phase of Ravenscar-Java).

In the mission phase of the RVM or after executing the real-time threads
in a standard RTJVM, no remote method invocation is allowed. However, if
the Ravenscar-Java profile supports aperiodic or non real-time threads, it is
possible to use RMI in such threads with lower priority than real-time threads.
Obviously, there is no modification required for standard RTJVMs or RVMs
to support distributed high-integrity real-time Java-based applications in this
environment.
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4.2 Mission Distributed Environment

Supporting distributed features in the mission phase makes it necessary to ad-
dress more issues, such as how to guarantee statically that all hard real-time
threads will meet their deadlines, when distributed virtual machines can enter
the mission phase and when real-time RMI can be used without rendering hard
real-time tasks unsafe.

To offer a more flexible way to develop distributed high-integrity applica-
tions in the XRTJ environment without loss of predicability and dependability,
the mission distributed environment is introduced. To support this distributed
environment, three execution phases are proposed in the XRTJ-Virtual Ma-
chine (XRTJ-VM), including initialisation phase, pre-mission phase and mission
phase.

In the mission distributed environment, all remote objects are allocated dur-
ing the design phase and the XRTJ-VM supports Level 1 (i.e. real-time RMI)
distribution defined by Wellings et. al. [36]. The program safety and timing
analysis can be carried out with static analysis tools as mentioned in Section 3.4
during the static analysis phase. Note that the response time of all remote objects
and threads, and the skeleton on the server node can be analysed as sporadic
threads during the schedulability analysis, since they are allocated during the
design phase.

The initialisation phase of the XRTJ-VM can be assumed to be the same as
the initialisation the RVM mentioned previously. However, it should be noted
that allocations, registrations, reference collections of all remote objects that are
allowed for use in the mission phase have to be done during the initialisation
phase.

Since the invocations of real-time RMI [36] are allowed in the mission phase
of the XRTJ-VM, one should note that a virtual machine executing in its mission
phase must not attempt to invoke a remote method on another virtual machine
that is not running under the mission phase. The use of such invocations may
result in unpredictable and unanalysable real-time threads running in the mission
phase. To address this issue, synchronisation needs to be provided to decide when
distributed virtual machines can enter into the mission phase at the same time.
In line with the synchronization, all XRTJ-VMs in the same cluster network can
be in the waiting stage after initialising. This phase is named the pre-mission
phase of the XRTJ-VM.

The only difference between the mission phase of the RVM and the mission
phase of the XRTJ-VM is that the invocations of pre-instantiated remote objects
are allowed during the mission phase of XRTJ-VM. Furthermore, the XRTJ-
VM supports the notion of real-time remote objects, real-time RMI, and simple
distributed real-time threads [36] to enable the development of high-integrity
real-time systems with greater flexibility.
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5 Example

In this section, we present a simple example, which we hope is realistic enough
to illustrate the application of our approach. Assume that there is an automated
industrial production line where a number of multi-purpose robots and their
controllers are employed. Each robot station (i.e. a robot and its controller) is
linked over a network to the main server that will provide them with tailor-made
instructions or tasks, depending on the models of products8. Once robot stations
are set up with particular tasks, they will remain unchanged until new tasks are
required to manufacture different products.

Our first distribution model, the Initialisation Distributed Environment de-
scribed in Section 4.1, can be utilized in this situation, minimizing complexity in
program analysis and in the implementation of underlying systems. In this man-
ner, dependable software can be developed using our restricted programming
model (i.e. the Ravenscar-Java profile), and static program safety and timing
analysis techniques integrated in the XRTJ-Analyser. In the initialisation phase
of all the robot stations, they will be given specific tasks by the main server by
means of RMI. Having passed the initial phase, all the robots can begin their
assigned operations, but are not allowed to invoke remote methods any more. A
brief list of pseudo code for the robot controller is shown in Figure 5.

However, there are many other situations where robot controllers need to
communicate with the server while in operation. For instance, a robot may in-
spect products using an overhead camera, send images to the server and require
real-time feedback, assuming that the server has more powerful processors and
resources to process images and distinguish faulty goods. In such cases, our sec-
ond distribution model, the Mission Distributed Environment (see Section 4.2)
is a valid approach. As with the code given in Figure 5, robot stations may in-
voke remote methods in the initialisation phase, as well as in the mission phase
to cooperate with the server in a real-time manner as explained in Section 4.2.
The pre-mission phase may be required to synchronize operations of the robots.
However, in this more tolerant model of system distribution, static timing and
schedulability analysis become more challenging, thus as we discussed briefly
in Section 3.4 a holistic schedulability analysis should be performed to obtain
response times of real-time threads communicating across a network.

6 Related Work

A consortium of European companies and research institutes have been working
on a high-integrity distributed deterministic Java environment called HIDOORS
[34]. The targeted applications of HIDOORS are similar to ours, but the project
is mainly based on the Real-Time Core Extension specification [9], whereas our
project is in line with the Real-Time Specification for Java [5]. However, there
is a limited amount of information available on the HIDOORS project, and it is
8 Robots need to be able to handle different models or versions of products manufac-

tured in volume.
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import ravenscar.∗;
...
public class RobotController extends Initializer {

public void run() { // Initialisation routine
// Get Server’s instructions/tasks via RMI
...
// Set up real−time threads and sporadic event handlers
// with appropriate parameters. For example,
PeriodicThread robotRoutine1 = new PeriodicThread (

new PriorityParameters(10), // Priority :10
new PeriodicParameters(

new AbsoluteTime(0, 0), // Start time
new RelativeTime(5333, 0) // Period

),
new Runnable() { // Application logic

public void run() {
// Logic for the robot controller
// Here, real−time RMI may be used in the mission distributed environment
...
// Events may be fired

};
}

);
robotRoutine1.start (); // Start of Mission Phase!

}

public static void main (String [] args) {
RobotController init = new RobotController();
init . start ();

}
}
...

Fig. 5. An industrial automation environment
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not clear how program safety analysis and timing analysis can be carried out in
their preliminary report [34]. It should be noted that the HIDOORS project has
attempted to provide a predictable implementation of the full Java langauge,
whereas our project relies on the Ravenscar-Java profile.

Moreover, there has been considerable work in the area of formal verifica-
tion of Java programs and bytecode, and Hartel and Moreau [15] systematically
review most of this. Of particular interest to us are the verification techniques
for Java Card applications based on the J2ME architecture [31], and Leroy [24],
who recently developed an efficient on-card bytecode verifier. Leroy’s approach
is superior to other existing work in that it requires much less memory at run-
time, and it handles additional features of the Java language (e.g. subroutines).
Although our work does not directly deal with formal verification techniques
at the moment, we feel encouraged by such developments, and may be able to
incorporate them into our XRTJ-Analyser in the future.

7 Current Status

Currently we are modifying the Kopi Java compiler [20] to facilitate development
of the XRTJ-Compiler. Our prototype XRTJ-Compiler can extract annotations
from the source code and produces XAC files during compilation. The implemen-
tation of our prototype involved modifications to abstract syntax trees in order
to map the annotation to the associated Java bytecodes. The prototype shows
the feasibility of providing extra information that cannot be expressed in both
Java programs and Java bytecode for static analysis tools. We are also working
on the XRTJ-Compiler in order to provide a virtual machine timing model of a
particular virtual machine automatically for the portable WCET analysis.

In addition, program safety and timing analysis tools are under development
and will be integrated into the XRTJ-Analyser. The goal of the XRTJ-Analyser is
to provide a user friendly graphic interface for the static analysis environment in
future. We are also working on the reference implementation of RTSJ (RTSJ-RI),
which is released by TimeSys [32], on Linux platform. A number of modifications
will be conducted on the RTSJ-RI to be able to support mechanisms enforced
both functionally and temporally correct results of applications in the distributed
run-time system.

We have also created a website (http://www.xrtj.org) on which the most
up-to-date information on this project can be found.

8 Conclusion and Future Work

In this paper, we have presented an overview of the XRTJ environment that is
expected to facilitate the development of distributed high-integrity real-time sys-
tems based on Java technology. The three main aims of the XRTJ are to develop
a predictable programming model, a sophisticated static analysis environment,
and a reliable distributed run-time architecture.
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Bearing these aims in mind, we have addressed several of the problemati-
cal features of the Java language, its run-time architecture, and the Real-Time
Specification for Java. Our novel approaches include the Ravenscar-Java pro-
file, program-safety and timing analysis techniques, and a distributed run-time
environment. However, the profile may be supported by different architectures,
and the analysis techniques are versatile enough to apply to other programming
models. We have also raised some important issues in the area of distributed
high-integrity systems, and presented how we can deal with them by defining
two distributed run-time models, i.e. Initialisation Distributed Environment and
Mission Distributed Environment, where safe and timely operations will be sup-
ported.

There are also some open issues, including design methodologies and tools;
these should facilitate formal verification of systems at design stage. We intend to
work towards these issues in the course of our implementation. We consequently
feel confident that the XRTJ environment will provide a logical and practical
base for future high-integrity real-time systems.
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