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Abstract—The evaluation of communication latency in
multiprocessor platforms requires the profiling of the
application, the description of the architecture of the platform
and of the mapping of application tasks onto processing cores. In
this paper, we describe a layered approach that allows
application developers to obtain accurate figures for
communication latency from an abstract model of the application
functionality. A complete separation of concerns is a critical part
of this approach, so the major contribution here is the definition
of interfaces between different layers: an abstract application
model, its executable counterpart, the mapping heuristic and the
multiprocessor platform model. Case studies with a realistic
application and a NoC-based multiprocessor platform show the
potential of the proposed approach using two different system
evaluation techniques: simulation and static analysis.
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I. INTRODUCTION

One of the major problems faced by embedded application
developers is to check whether or not a given implementation
meets its timing and performance constraints. For instance,
unpredictable delays on memory access will cause image
flickering on a video player, resulting in customer
dissatisfaction. Even worse, the failure to meet constraints in
hard real-time applications such as automotive systems or
power plant controllers can have catastrophic consequences.

This problem is much worse when programming embedded
multi-core platforms because of the increasing impact of inter-
task communication latency, which in turn affects system
timeliness and performance. The complexity of on-chip
interconnect structures, often based on networks-on-chip (NoC)
or hierarchical buses, prevents application developers from
having a clear picture of the underlying sources of latency. This
also restricts the use of their domain-specific knowledge to try
out optimisations such as alternative task mapping and
scheduling policies.

In this paper, we present an approach that supports
application developers when evaluating the impact of on-chip
interconnects on inter-task communication latency. Unlike
similar techniques that deal with communication latency in a

generic way, the proposed approach considers a model of each
specific application and provides latency metrics for each
individual inter-task communication instance. Such metrics can
be as accurate as needed, taking into account low-level
interconnect issues such as arbitration, link contention and
buffering effects. Such effects, however, are hidden from
developers by a well defined stack of abstraction layers that
enforces complete separation of concerns between application
and multiprocessor platform.

II. RELATED WORK

Taking into account the underlying design methodology,
our approach can be compared to system-level design space
exploration frameworks such as SystemCoDesigner [3], PeaCE
[5] or Koski [4]. Just like those frameworks, our approach
considers an abstract application model and supports designers
on analysing and comparing different platforms that can
efficiently execute that application. The application modelling
in SystemCoDesigner and PeaCE is based on actor-orientation,
while Koski uses UML 2.0. Our approach combines actors and
UML, but we do not claim more expressiveness than the
previous approaches. We claim, however, to be more flexible,
convenient and thus having a lower adoption overhead by
designers familiar with one or the other modelling approach.

Another crucial difference between the presented approach
and the three forementioned frameworks is the fact that our
focus is on layered models of communication-centric
multiprocessor platforms. Instead of generating customised
platforms out of the system-level model, our approach jointly
executes application models and existing platform models,
which are kept separated but feed each other with information
as they execute, allowing for an accurate performance
estimation. Platform models are based on predefined
architectural templates that mimic well known communication-
centric architectures such as AMBA AXI [10], HERMES [6] or
QNoC [7]. We make such templates available at different
levels of abstraction, so the profiling of the application and the
parameterisation of the platform can be done step-wise using
different models, allowing designers to choose between faster
or more accurate validation as they follow the design flow.
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Figure 1. Comparing the design flow of related frameworks.

III. APPLICATION MODEL

In the proposed approach, the highest abstraction layer
comprehends the application model. At this level, developers
specify an application by describing its components and
communication channels in a platform-independent manner. As
components, we mean individual atomic subsystems that
perform sequential computation. Despite being more general
than that, it can be used to model tasks and that is what we will
do for the remainder of this paper. We do not advocate for any
specific modelling methodology or notation and leave the
choice open for each development team to choose their
preferred ones. To benefit from our approach, though, the
chosen notation should follow the guidelines listed below:

- for each component, developers should be able to specify
its communication interface and whether it is active or passive.
The communication interface defines how each component
sends and receives data, and its active status denotes that it is
able to send data without previously having received data.
Within this paper, we will refer to the communication interface
as input and output ports, but this is simply for convenience
and for consistency with a well known notation, as we will see
in the following paragraphs. However, the same concepts apply
to the definition of communication interfaces based on other
notations such as function calls, methods or send/receive
primitives;

- for each active component, developers should be able to
specify the activation policy (periodic or aperiodic) and
respective parameters (period, list of activation time-stamps,
probability distribution function, etc.) that would cause an
output through each of its output ports;

- for each passive component, developers should be able to
specify the combination of inputs that would cause an output
through each of its output ports;

- for each communication channel, designers should be able
to specify the component ports that are connected to it, which
are the communication messages that are exchanged through it
and what is the precedence relationship (if any) among the
messages (denoted as a partial ordering);

- for each message, designers should be able to specify its
data volume and priority.

There is nothing radically new in this application
specification style. The same elements and attributes are found
in well known system design methodologies and notations such

as MARTE UML profile [1] or SysteMoC [2]. This means that
developers are not expected to build an additional application
model exclusively for the purpose of communication latency
evaluation, since most (or all) information can be directly
extracted from the development models, documentation and
code that they are already producing.

In the case of UML/MARTE, Composite Structure
Diagrams can be used to specify components, ports and
communication channels. The definition of active/passive
status and respective parameters can be done using MARTE
stereotypes such as <<RtUnit>>, <<PPUnit>>,
<<SystemClock>> and <<TimedEvent>>. Finally, attributes
of communication messages such as data volume, precedence
and priority can be described using Sequence Diagrams.
Further details on the relationship between UML/MARTE and
our application modelling guidelines can be found in [1], while
[8] provides additional details on the use of sequence diagrams
to denote precedence on communication channels.

Besides UML, we also performed tests with applications
written using C++, Java and SystemC, and were able to
successfully generate application models that comply with the
forementioned guidelines.

IV. EXECUTABLE APPLICATION MODEL

The application model described above provides a very
abstract view of the application’s behaviour, but it is powerful
enough to provide insights on the potential concurrency among
components and the functional dependencies that constrain it
(i.e. precedence relations between communication messages).
To formalise those insights within an unambiguous model of
computation, our approach assigns execution semantics to the
components described in Section III. We follow the principles
of actor-orientation [9], so each component is considered to be
an actor and is inherently concurrent to all the others. The
synchronisation among actors also happens through message
passing over channels and port-like interfaces, so it matches
well the modelling constructs from Section III. However,
channels in [9] immediately broadcast messages to all input
ports connected to it and do not enforce or even allow the
explicit definition of a precedence relation between them.

In order to fully support the modelling approach shown in
Section III, we extended the actor-orientation principles from
[9] in order to include the support for explicit definition of
precedence between messages. This is a critical feature to
support application models that include UML sequence
diagrams or message sequence charts, which in turn are
particularly useful when designing control-oriented
applications or applications that require complex data exchange
protocols. The details of the adopted extensions to actor-
orientation are given in [8].

By adopting actor-oriented execution semantics, application
models can be executed by an actor-oriented framework.
Within this work, we use PtolemyII as the execution engine
that allows us to observe the interactions among different
application components (from now on referred as application
actors) over time.
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The execution of such an actor-oriented application model
gives designers the chance to better understand the concurrent
behaviour of the system they are designing, as well as the
functional dependencies among its actors. It is even possible to
extract some performance figures from that model. Such
figures, however, assume the maximum possible parallelism
among actors since the model does not account for resource
contention: actors will always have the resources they need to
compute and communicate, and will only wait in case there are
functional dependencies to be resolved (e.g. waiting for a
message signalising an event). While theoretically possible, a
fully parallel solution is usually too expensive to be produced
and virtually all implementations of industrial systems include
some sort of resource sharing. To evaluate the actual impact of
different resource sharing schemes in different
implementations, we need models of the underlying platforms,
detailed in the next section.

V. EVALUATING APPLICATIONS USING PLATFORM

MODELS

A. Design space delimitation

Unlike the design exploration frameworks referenced in
Section II, our approach does not generate a full-custom
platform model out of the application model. Instead, it uses
platform models based on predefined architectural templates,
and evaluates their suitability to a particular application. This
may be seen as an over-constraining of the design space,
because the only solutions that are considered are those that can
be achieved through the parameterisation of existing platform
models. On the other hand, this is also a more realistic
approach, since the design of electronic systems rarely starts
from scratch and in almost every case a new system or product
is built over legacy components or reusable intellectual
property cores that are licensed from third party vendors. Thus,
the seemingly over-constrained design space considered by our
approach is simply a reflex of the current system design
scenarios in the electronics industry, where only a portion of
the design space is actually feasible when one considers the
costs of design and fabrication.

For instance, one of the platform models that can be
explored within our approach is a homogeneous
multiprocessing platform based on MIPS processors
interconnected with the HERMES NoC. This particular
template can be parameterised regarding the number of
processors, topology, maximum packet size, flit size, flow
control scheme (hand shake vs. credit-based, number of virtual
channels), routing algorithm and buffer sizes, resulting on a
limited yet still large design space.

Due to the complete separation between application and
platform models, designers do not have to restrict themselves to
a single platform template, and they can successively evaluate
the performance of an application running over different
platforms. For instance, after trying to ensure an upper latency
bound for a particular communication flow using the
forementioned HERMES-based platform, a designer may want
to simply substitute that platform model by another one based
on QNoC, in order to explore the benefits of priority-based
arbitration of virtual channels. This essentially means that

designers can have access to an arbitrary number of disjoint
design spaces, as long as they have access to their
corresponding platform templates, potentially covering the
complete design space that they can realistically fabricate.

B. Joint Execution of Application and Platform Models

No matter if a platform model represents different
architectures or different customisations of a particular one, it
will always have different ways to handle the sharing of
resources by multiple application actors. The consequences of
sharing resources such as processors, memory and
communication channels must be taken into account when
evaluating inter-task communication latency. Our approach
evaluates such impact by jointly executing application and
platform models. The interaction of both models, as they
execute, allows for feeding realistic processing and
communication load onto the platform resources, which in turn
feedback to the application actors the performance impact
caused by resource contention.

A typical interaction between an application model AM1
and a platform model PM1 is as follows: (i) during the
execution of AM1, application actor A sends a message to actor
B over channel X; (ii) channel X holds the message before
delivering it to B and notifies the platform model about it; (iii)
once PM1 is notified by X of the message, it triggers processor
PA to send data packets over the on-chip interconnect to
processor PB, simulating all relevant transmission, buffering
and arbitration transactions associated to that data transfer; (iv)
once all packets are received by PB, PM1 informs channel X of
the message delivery; (v) channel X releases the message,
which then reaches actor B. On a realistic case, the platform
model would be notified of each and every actor activation and
communication. It will use its knowledge of platform-specific
structure and functionality to determine which actors are
competing for which platform resources, and evaluate the
impact of such contention on the execution and communication
latencies of all of them.

Based on the description of the interactions between
application and platform models, one can see that our definition
of platform models is quite loose. Any model that can keep
track of the utilisation of communication and computation
resources in a multiprocessor platform would suffice. This
allows us to exploit multiple levels of abstraction, using a
variety of platform models that can range from cycle-accurate
HDL simulators to analytical solvers that estimate latency by
calculating it rather than simulating the platform’s
functionality.

C. Multi-abstraction Platform Models

Taking advantage of the separation of concerns that
resulted on the layered approach presented so far, designers can
evaluate the performance of an application against different
configurations of a platforms, or even completely different
platforms. Based on the same principle, our approach also
supports designers on the evaluation of applications against
different views of the same platform configuration.

The use of multiple views is a common practice in
electronic systems design, because its complexity requires
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designers to start the process at a high level of abstraction and
refine such description towards an implementation. Our
approach fully supports such process by allowing the
application performance evaluation along the stack of
abstraction layers. It allows for preliminary performance
estimations based on early platform models even before the
final implementation is available. It also allows the creation of
simplified models of legacy platforms, allowing for faster (but
less accurate) estimations during the first steps of the design
space exploration.

D. Mapping Application Actors onto Platform Models

A complete separation between application and platform
models has many advantages, as seen before, but it prevents the
accurate evaluation of the system’s performance through their
joint execution. There are important interdependencies between
those models, because the way application components are
clustered and allocated to processors at the platform is critical
to the communication latency and, as consequence, to the
system’s performance. Thus, the process of mapping
application actors onto processors at the platform must be
explicitly considered.

We then include another layer to our approach, a so-called
mapper, which represents the application-platform mapping
function and act as the only connecting point between
application and platform models. As such, it plays a critical
role in the joint execution of those two models: it will define
which components of the platform model that are activated
when there are actions notified by the application model.
Referring back to the interaction between AM1 and PM1
described in the previous subsection, the mapper is responsible
for identifying which, of all processors in PM1, are PA and PB

once there is a message being sent from actor A to actor B.

It is important to notice that this new layer adds a new
dimension to the design space exploration, as the choice of an
application-platform mapping function can be considered a
design decision. Thus, for a given pair of application-platform
models, designers can choose among (and evaluate the impact
of) different mapping heuristics. The case studies presented in
Section VI were based on different mappers and show the
impact of such design choices on the communication latency.
However, the efficient exploration of this particular dimension
of the design space, which can include a wide range of static
and dynamic mapping heuristics, is fairly complex and is
outside the scope of this paper.

E. Summary

The proposed approach to the design space exploration of
multiprocessor systems was organised in layers with well
defined interfaces, as shown in Figure 2. It allows for a
separation of concerns that makes it easy to swap layers
without requiring changes over the rest of the stack. For
instance, a designer may swap between two slightly different
configurations of a given platform (e.g. changing the routing
algorithm of a NoC-based interconnect) and evaluate the
impact of that change without a single modification to the
application model or the mapper. Figure 3 shows all
dimensions of the proposed design space organisation.

Figure 2. Conceptual layers of the proposed approach.

Figure 3. Multiple dimensions in the proposed design space organisation.

VI. CASE STUDY

To demonstrate the potential of the approach presented
here, we use a model of an autonomous vehicle as a case study.
This is an embedded application which is likely to benefit from
on-chip multiprocessor platforms, because of the high
computing power required by its many subsystems and because
its constraints on size and power consumption are better met by
on-chip rather than on-board integration.

The autonomous vehicle we consider is designed to
recognize an unknown space by populating a database of
obstacles, obtained through stereo photogrammetry and
ultrasonic sensors. Each of the two cameras used for the
photogrammetric analysis feeds the system with a QVGA
frame (320x240 resolution). After feature extraction of each of
the images, photogrammetry estimates the distance from the
vehicle to the obstacle, calculates the obstacle’s absolute
location (by using its own position obtained from a positioning
sensor) and adds it to the database. Ultrasonic sensors also add
obstacle information to the database, but since they have much
shorter range, they are mainly used to refine the entries
obtained with photogrammetry. The vehicle uses the obstacle
database to guide its navigation process, which controls the
speed and the direction of the vehicle. Furthermore, it also
includes sensors to measure vibration. If the vehicle vibrates
too much, it affects the quality of the camera images and may
compromise photogrammetry. Therefore, the system controller
is able to adjust the vehicle’s tyre pressure so that it is suitable
for the surfaces it moves on. Finally, a radio interface enables
interaction with external entities. In this example, the radio
interface is only used to command the capture of images.
Figure 4 depicts five sequence diagrams that are part of the
application model constructed for this case study.
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Figure 4. UML sequence diagramsshowing interactions between application actors and precedence relation between messages.

We use an extension of Ptolemy II to create an executable
model of the application using actors and the UML diagrams
from Figure 4 following the principles from [8]. To evaluate
the communication latency impact of different multiprocessor
platforms, we co-execute that application model with different
platform models [11] built using Ptolemy II components, as
depicted in Figure 5. We then implemented a number of
heuristics that can map application actors onto platform
components, completing the set of layers shown in Figure 2.
That way, we can exemplify all different dimensions of the
proposed design space organisation shown in Figure 3.

It is worth noticing that use of platform models built using
Ptolemy II is not a requirement of this approach, and the use of
RTL simulation models and even hardware-in-the-loop
prototypes as platform models has already been successfully
used to validate actor-based application models [12][13].

Figure 5. Joint execution of application and platform models in Ptolemy II.

As we intend to follow a realistic design process, we first
explore a larger portion of the design space using fast abstract
models and then analyse a few selected solutions using
accurate models. The proposed approach can directly support
such process without requiring change or recompilation of the
application model, one of its major advantages in comparison
with the work presented in Section II.

So the first step is to evaluate the autonomous vehicle
application with different configurations of the platform and
different mapping heuristics. The abstract platform model we
used here mimics the HERMES platform, but it does not
replicate its complete functionality and uses analytical
components to estimate rather than simulate the impact of
HERMES arbitration and flow control mechanisms. We
consider two platform configurations, both with 2D mesh
topology and XY routing, but differing on the mesh dimension
(3x3 and 4x4). We then apply three different heuristics to map
application actors onto both platform configurations. By jointly
executing each application-platform pair, we obtained
communication latency results for each instance of each
message of the application. Figure 6 shows an aggregate of the
obtained latency figures for each of the application’s
interactions (worst case latency of an interaction as the sum of
the worst case latency of each of its messages).

To gain more confidence in the results produced by the
abstract model, we must use less abstract views of the platform
that represent its behaviour more precisely. We choose the first
mapping and the 4x4 configuration, for its acceptable figures in
all interactions and a low latency for tyre pressure adjustment
(TPA). We repeat the process using two less abstract models of
the HERMES platform. One of them is a hybrid model that is
more accurate on estimating latencies, as it uses both
simulation and analytical solutions [14], but it is slower than
the abstract model. The other is a cycle-accurate model that
fully simulates the platform and provides actual latencies in
terms of clock cycles, but its execution is even slower.
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Figure 6. Obtained figures for worst case communication latency using
different platform configurations and mapping heuristics (in milliseconds).
DA- Direction Adjustment; OR – Obstacle Recognition; P – Photogrammetry;
SR – Snapshot Request; TPA- Tyre Pressure Adjustment.

TABLE I. WORST CASE COMMUNICATION LATENCY RESULTS OBTAINED

FROM DIFFERENT VIEWS OF THE 4X4 PLATFORM USING MAPPING 1

Interaction
Communication Latency (ms)

Abstract Hybrid Cycle-accurate

OR 0.04 0.09 0.12

TPA 0.07 0.09 0.14

DA 0.24 0.27 0.39

SR 0.68 0.94 1.35

P 0.71 0.99 1.41

Table I shows the latency figures obtained from the models
providing different views of the platform. While there is a
visible lack of accuracy between the cycle-accurate model and
the simplified ones, it is clear that they show a consistent trend.
This means that abstract models are valuable for fast
comparative analysis, but accurate models are always needed
for proper figures on system performance. This again shows
that importance and relevance of the proposed approach,
allowing for successive design space exploration across
multiple abstraction layers.

VII. CONCLUSIONS AND FUTURE WORK

This work has proposed a layered approach to the
evaluation of applications running over multiprocessor
platforms. The separation of concerns that was achieved though
layering allows for four different dimensions on the design
space: platforms, configurations, mapping and views. All those
dimensions can be explored without a single change on the
application model using a novel evaluation approach based on
the joint execution of application and platform models.

A case study with an autonomous vehicle application
demonstrated the potential of the proposed approach,
evaluating the impact of different platform configurations and
mapping heuristics. The support for the evaluation of the
system performance using different views of the platform at

different levels of abstraction was also shown, allowing for a
design flow that explores many alternatives using fast and
abstract models, followed by the detailed exploration of
selected solutions using accurate models. An even better
solution would be to start the exploration with fully analytical
models for worst case analysis similar to [15]. Such models are
extremely fast and can provide upper bounds for
communication latency, so we leave that for future work.
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