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ABSTRACT 

For many, Java is the antithesis of a high integrity programming language. Its 
combination of object-oriented programming features, its automatic garbage 
collection, and its poor support for real-time multi-threading are all seen as particular 
impediments. The Real-Time Specification for Java has introduced many new features 
that help in the real-time domain. However, the expressive power of these features 
means that very complex programming models can be created, necessitating 
complexity in the supporting real-time virtual machine. Consequently, Java, with the 
real-time extensions as they stand, seems too complex for confident use in high 
integrity systems. This paper presents a Java profile for the development of software-
intensive high integrity real-time systems. This restricted programming model 
removes language features with high overheads and complex semantics, on which it is 
hard to perform timing and functional analyses. The profile fits within the J2ME 
framework and is consistent with well-known guidelines for high integrity software 
development, such as those defined by the U.S. Nuclear Regulatory Commission. 
 

1. Introduction 
 
Increasingly computers are being used in high integrity real-time systems; that is, 
systems where failure can cause loss of life, environmental harm, or significant 
financial penalties. Examples include space shuttles, nuclear power plants, automatic 
fund transfers and medical instruments. They typically have high development and 
maintenance costs due to the customised nature of their components.  Within such 
systems, there has been a growing trend to use software, because it provides 
[Leveson1986, Leveson1991, Parnas+1990, Bowen+1998]: 
 

• improved functionality 
• increased flexibility in design and implementation 
• reduced production cost 
• enhanced management of complexity in application areas. 

 
Java has proved to be an appropriate vehicle for a diverse range of applications 
including web-based intranets and embedded systems. Its relatively simple linguistic 
semantics, the adoption of well-understood approaches to managing software 
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complexity, and support for concurrency seem to have contributed towards its 
popularity. Initially designed with embedded systems in mind, Java’s main goal was 
to provide engineers with a reliable and cost-effective platform-independent 
environment.  
 However, despite all these valuable features, Java has been criticised for its 
unpredictable performance as well as some security concerns [Appel1999, 
Azevedo+1999, Amme+2001]. The automatic garbage collection and dynamic class 
loading mechanisms are often considered problematic, especially under time or 
performance-critical situations. Moreover, a number of security bugs in the Java 
virtual machine have been discovered since its first appearance, especially in the 
bytecode verifiers and Just-in-Time (JIT) compilers [Gong1999, Appel1999]. These 
fears make Java and its associated technology simply unsuitable for high integrity 
systems [Kwon+2002]. 
 In recent years, there have been two main activities, initiated by Sun, to 
address the limitations of Java for real-time and embedded systems. The first is, the 
Real-Time Specification for Java (RTSJ) [Bollella+2000a, Bollella+2000b] which 
attempts to minimise any modification to the original Java semantics and yet to define 
many additional classes that must be implemented in a supporting virtual machine. 
The goal is to provide a predictable and expressive real-time environment. This, 
however, ironically leads to a language and run-time system that are complex to 
implement and have high overheads at run-time. Software produced in this framework 
is also difficult to analyse with all the luxurious features, such as the asynchronous 
transfer of control (ATC) and dynamic class loading. 
 The second relevant activitiy is the Java 2 Platform Micro Edition (J2ME) 
[Sun2000]. This essentially defines a three layer architecture: 

 
• a virtual machine layer (usually implemented on top of a host operating system) 
• a configuration layer which defines the set of Java language features, a minimum 

set of virtual machine features and the available class libraries that can be supported 
by a particular implementation platform (for example, a mobile phone) 

• a profile layer which defines a minimum set of Application Programmers Interfaces 
(APIs) targeted at a particular application domain. 

 

The same configuration layer may support more than one profile, and different 
configuration layers may support the same profile. A configuration layer, called 
Connected, Limited Device Configuration (CLDC) has been defined for small, 
resource-constrained mobile devices (mobile phones, pagers, personal organizers etc.) 
typically with a memory capacity of up to 512 KB. The K (kilo bytes) virtual machine 
(KVM) is a virtual machine specifically designed to support the CLDC. The 
restrictions imposed on the Java language and the virtual machine include [Sun2000]: 
no support for floating point operations, no native interfaces, no user-defined class 
loaders, no thread groups or daemon threads, no object finalization, etc. The main 
motivation for these restrictions is to reduce the size of memory required to 
implement the virtual machine.  
 It is clear that the overheads of implementing the RTSJ makes it unsuitable for 
the CLDC configuration and consequently RTSJ, as it stands, is probably targeted at 
Java 2 Standard Edition (J2SE) or ideally another configuration (for example, the 
CDC – Connected Device Configuration) within the J2ME framework. However, a 
high intergity subset of the RTSJ model would be appropriate for J2ME and it is 
possible to imagine a high integrity KVM and CLDC along with one or more profiles.  
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 Unfortunately, many language subsets for high integrity systems discourage 
the use of concurrent activites.  For example, Ada is one of the most important 
programming languages for the high integrity systems application domain. The 
SPARK subset of Ada [Barnes1997] (which removes many of the language’s 
complicated or advanced features such as tasking, exceptions, overloading etc.) allows 
programs to be mathematically proven correct. In recent years, advances in real-time 
systems research and, in particular, in the area of schedulability analysis, have meant 
that it is now possible to show mathematically that a concurrent program will meet its 
deadlines. Of course, constraints must be placed on the particular concurrency 
mechanisms used to ensure predictability. However, it is no longer axiomatic that 
concurrency should be forbidden or even discouraged.  
 To encourage the use of concurrency in high integrity real-time systems, the 
Ada community has developed a subset of the Ada tasking model (including the Real-
Time Annex) called the Ravenscar Profile [Burns+1998]. The main aims of the subset 
are to support a predictable computational model and to enable a small efficient and 
predictable run-time support system to be produced. The Ravenscar Profile has 
attracted support from users and compiler (and run-time) vendors, and has become a 
de facto standard in the high integrity system domain. It will soon be incorporated into 
the Ada language standard.  
 Following the philosophy of the Ravenscar profile, we propose a high integrity 
profile for real-time Java (called Ravenscar-Java) that offers a more reliable and 
predictable programming environment. In other words, our profile eliminates features 
with high overheads and complex semantics, so that programs become more 
analysable and ultimately, more dependable. 
 This paper is structured as follows: the next section sets the scope and 
describes the organisation of the profile. In section 3 we show the computational 
model, before the actual profile is illustrated in detail. Section 5 briefly looks at 
implementation issues, followed by an example Ravenscar-Java program in Section 6. 
Related work is considered in Section 7 and the paper concludes with Section 8. The 
full description of the rules and guidelines of the profile is provided in Appendix A. 
 

2. Scope and Organisation of the Profile 
 
There are many general and sector-specific standards that assist in the construction of 
high integrity systems (e.g. U.S. DO178B, U.K. DS 00-55, MISRA guidelines, 
IEC61508). Of particular interest here is the set of software guidelines produced by 
the U.S. Nuclear Regulatory Commission (NRC) [NUREG/CR-6463] because it is 
specific to high integrity systems and because it has set up a systematic framework of 
guidelines by deriving many important attributes from existing standards. There are 
four top-level attributes: 
 •   Reliability — defined as the “predictable and consistent performance of the 

software under conditions specified in its design.”  A key factor in obtaining 
reliability is to have predictability of the program’s execution; in particular: 
predictability of control and data flow, predictability of memory utilization and 
predictability of response times. 

 •   Robustness — defined as “ the capability of the safety system software to operate 
in an acceptable manner under abnormal conditions or events.”  Often called fault 
tolerance or survivability, this attribute requires the system to cope with both 
anticipated and unanticipated faults. Techniques such as using replication, diver-
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sity and exception handling are commonly used [Burns+2001].  
 •   Traceability — relates to “ the feasibility of reviewing and identifying the source 

code and library component origin and development processes”  thus facilitating 
verification and validation techniques, which are essential aids to ensuring 
program correctness. 

 •   Maintainability — relates to “ the means by which the source code reduces the 
likelihood that faults will be introduced during changes made after delivery.”  All 
the standard software engineering issues apply here such as good readability, use 
of appropriate abstraction techniques, strong cohesion and loose coupling of 
components, and portability of software components between compilers and 
platforms [Sommerville2000]. 

The report also provides guidelines based on the framework for nine programming 
languages (including Ada95 and C/C++). Unfortunately, the guidelines do not 
consider Java.  
 The goal of this paper is to apply the NRC’s framework to Java augmented by 
the RTSJ. The paper focuses on the reliability attribute as the rest of the attributes are 
concerned with general design decisions that are covered in the software engineering 
literature. However, we still give several Java specific guidelines in those areas where 
they have impacts on the RTSJ. 
 

3. Computational Model 
 
The key aim of the Ravenscar-Java profile is to develop a concurrent Java 
programming model that supports predictable and reliable execution of application 
programs, thus benefiting the construction of modern high integrity software. 
Particularly, we follow the philosophy of the Ravenscar profile [Burns+1998] and 
emphasise the reliability attribute of the NRC guidelines. This means that some 
language features with high overheads and complex semantics are removed for the 
sake of reliability, and programs are statically analysable in terms of functionality and 
timeliness before execution. Similarly, the Java virtual machine is also restricted to 
ensure predictability and efficiency. For example, a Ravenscar-Java VM  (RVM) does 
not support garbage collection. 
 As in the RTSJ, the Ravenscar-Java profile allows concurrent execution of  
schedulable objects (threads and event handlers) based on pre-emptive priority-based 
scheduling. Schedulable objects have to be either periodic or sporadic with minimum 
inter-arrival times, and the priority ceiling protocol is required to be implemented in 
the runtime system. This profile facilitates the use of off-line schedulability analysis, 
which is associated with fixed priority scheduling (e.g. deadline monotonic or rate 
monotic analysis [Audsley+1993, Liu+1973]). 
 We assume two execution phases as suggested in [Puschner+2001], i.e. 
initialisation and mission phase, as shown below in Figure 1. In the initialisation 
phase of an application (i.e. the main() method and one RealtimeThread), all non-
time-critical activities and initialisations that are required before the mission phase are 
carried out. This includes initialisation of all real-time threads, memory objects, event 
handlers, events, and scheduling parameters1. In the mission phase, the application is 
executed and multithreading is allowed based on the imposed scheduling policy.  
                                                 
1 This includes loading all the classes needed in the application. In a JIT (Just-In-Time) compilation 
environment, all loaded classes will be compiled. 
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Figure 1. Two execution phases 

 

4. The Profile 
 
The proposed profile can be classified into the following headings, and each of them 
is expanded below: 
 

 • Predictability of memory utilisation 
 • Predictability of timing 
 • Predictability of control and data flow. 
 

We separate the rules and guidelines of the profile into the following categories (in 
Appendix A), and the NRC  framework is applied to each of them: 
 

1. Programming in the Large 
2. Concurrent Real-Time Programming 
3. Programming in the Small. 

 

In the first category, we give guidelines on the use of language features that support 
high-level decomposition and minimise the complexity of software, which involve 
object-orientation, and abstract data types. In the second, guidelines on the use of 
features provided by the RTSJ are presented, whereas in the third we discuss 
programming issues related to the production of small software components, such as 
control structures, methods, and expressions. This section summarises the rules and 
guidelines. 

The resulting profile is targeted at a RVM; however, programs written 
according to the profile are valid RTSJ programs, which will execute without change 
under a RTSJ virtual machine (although perhaps not within their deadlines). 
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4.1. Predictability of memory utilisation 
This attribute is concerned with ensuring that the software will not access unintended 
or disallowed memory locations, and ensuring that the use of memory space will be 
predictable and bounded. 
 
4.1.1. Initialisation and mission phases 
When an application is started, its main() method will first be invoked by the RVM 
and the base heap memory area will be used to allocate any objects within the method 
(as with standard Java).  
 The main method first creates a new NoHeapRealtimeThread with the highest 
priority in the system. This is required to ensure a well-ordered and controlled 
execution of the initialisation and mission phases, as illustrated in Figure 2. 
 
i mpor t  j avax. r eal t i me. * ;  
cl ass Mai n i mpl ement s Runnabl e 
{  
  publ i c  st at i c  voi d mai n( St r i ng [ ]  ar gs)  
  {  
    NoHeapReal t i meThr ead i ni t i al i zer  = new NoHeapReal t i meThr ead(  
          new Pr i or i t yPar amet er s( Pr i or i t ySchedul er . MAX_PRI ORI TY) ,  
          nul l ,  nul l ,  
          I mmor t al Memor y. i nst ance( ) ,  
          nul l ,  
          new Mai n( ) ) ;  
    i ni t i al i zer . st ar t ( ) ;  
  }  
 
  publ i c  voi d r un( )  
  {  
    / /  i ni t i al i zat i on phase of  t he pr ogr am 
  }  
}  

Figure 2. An illustration of the initialisation phase 
 
The new thread must take a reference to the immortal memory area, so that all objects 
and references to other threads and memory objects defined in the initializer thread 
will be safely created and maintained throughout the life of the application. Once all 
initialisation activities are performed, the thread will allow other threads to execute by 
invoking the start() methods, and terminating itself. To encapsulate this initialisation 
phase, the Ravenscar-Java profile defines an initializer thread class, shown in Figure 3, 
which directly extends the RealtimeThread class. 
 
package r avenscar ;  
i mpor t  j avax. r eal t i me. * ;  
 
publ i c  cl ass  I ni t i al i zer  ext ends  Real t i meThr ead 
{  
  publ i c  I ni t i al i zer ( )  
  {  
    super (  new Pr i or i t yPar amet er s(   
      Pr i or i t ySchedul er . MAX_PRI ORI TY) ,  
      nul l ,  nul l ,  I mmor t al Memor y. i nst ance( ) ,  
      nul l ,  nul l ) ;  
  }  
}  

Figure 3. Initializer  class of Ravenscar-Java profile 
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Now, the application can be created by extending the Initializer  class in the following 
way. 
 
i mpor t  r avenscar . * ;  
 
publ i c  cl ass  MyAppl i cat i on ext ends  I ni t i al i zer  
{  
  publ i c  voi d r un( )  
  {  
    / /  l ogi c  f or  i ni t i al i zat i on 
  }  
 
  publ i c  st at i c  voi d mai n ( St r i ng [ ]  ar gs)  
  {  
    MyAppl i cat i on myApp = new MyAppl i cat i on( ) ;  
    myApp. st ar t ( ) ;  
  }  
}  

 
The mission phase begins as soon as the highest priority thread or Initializer  
terminates. From this moment, all application threads will be scheduled and 
despatched according to the imposed scheduling policy. Threads may only utilise 
immortal and linear-time scoped memory areas in this phase, unless their logics 
require access to physical or raw memory areas2. 
 
4.1.2. Memory Management 
To facilitate predictable memory utilisation we define several rules in the three 
aforementioned areas (see Appendix A for the full list and rationales). The rules place 
restrictions on, for example, the use of class loaders in the mission phase, on the use 
of specific memory area objects (and garbage collector), and on recursive method 
calls. It is also disallowed to create or instantiate any schedulable objects in the 
mission phase as this will hamper static memory usage analysis. 

The heap memory area may or may not exist in a supporting virtual machine. 
In fact, such memory space can be utilised as part of the whole immortal memory 
area, since no garbage collection is allowed in the profile. 
 
• Use of immortal memory areas 
By definition, objects in an immortal memory area cannot be freed or moved, and all 
schedulable objects in an application share the same memory area [Bollella+2000a]. 
Hence, in an attempt to prevent memory exhaustion or corruption, objects (including 
memory area objects) that are needed for the lifetime of the application should be 
allocated in the area only in the initialisation phase. 
 
• Use of linear  time scoped memory areas 
All memory area objects must be created during the initialisation phase (thus, in the 
immortal memory area), and other objects during the mission phase should make use 
of LTMemory areas. The size of all memory objects must be static and not be 

                                                 
2 In this paper, we do not attempt to restrict the use of physical or raw memory other than that implied 
by our restrictions on scoped memory areas. However, a potential implementation of a RVM might 
apply restrictions for security reasons. 
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extended in the course of the program. Any other memory area objects defined in the 
RTSJ are disallowed, and the following simplified classes remain in the profile. 
 
package r avenscar ;  
publ i c  abst r act  c l ass Memor yAr ea 
{  
  pr ot ect ed Memor yAr ea( l ong s i zeI nByt es) ;  
  pr ot ect ed Memor yAr ea( j avax. r eal t i me. Si zeEst i mat or  s i ze) ;  
 
  publ i c  voi d ent er ( j ava. l ang. Runnabl e l ogi c) ;   
         / /  t hr ows ScopedCycl eExcept i on 
  publ i c  voi d execut eI nAr ea( j ava. l ang. Runnabl e l ogi c)  
         t hr ows  I naccessi bl eAr eaExcept i on;  

  publ i c  st at i c  Memor yAr ea get Memor yAr ea(    
                 j ava. l ang. Obj ect  obj ect ) ;  

  publ i c  l ong memor yConsumed( ) ;   
  publ i c  l ong memor yRemai ni ng( ) ;  
  publ i c  j ava. l ang. Obj ect  newAr r ay(  
        j ava. l ang. Cl ass  t ype,  i nt  number )  
         t hr ows  I l l egal AccessExcept i on,  I nst ant i at i onExcept i on;  
        / /  t hr ows Out Of Memor yEr r or  

  publ i c  j ava. l ang. Obj ect  newI nst ance( j ava. l ang. Cl ass  t ype)  
         t hr ows  I l l egal AccessExcept i on,  I nst ant i at i onExcept i on;  
         / /  t hr ows  Out Of Memor yEr r or  
  publ i c  j ava. l ang. Obj ect  newI nst ance(  
               j ava. l ang. r ef l ect . Const r uct or  c,  
               j ava. l ang. Obj ect [ ]  ar gs)  
         t hr ows  I l l egal AccessExcept i on,  I nst ant i at i onExcept i on;  
         / /  t hr ows  Out Of Memor yEr r or ;  
  publ i c  l ong s i ze( ) ;   
}  
 
publ i c  f i nal  c l ass  I mmor t al Memor y ext ends  Memor yAr ea 
{  
  publ i c  st at i c  I mmor t al Memor y i nst ance( ) ;  
}  
 
publ i c  abst r act  c l ass ScopedMemor y ext ends Memor yAr ea 
{  
  publ i c  ScopedMemor y( l ong si ze) ;  
  publ i c  ScopedMemor y( Si zeEst i mat or  s i ze) ;   

  publ i c  voi d ent er ( ) ;    
  publ i c  i nt  get Ref er enceCount ( ) ;  
}  
   
publ i c  c l ass LTMemor y ext ends ScopedMemor y 
{  
  publ i c  LTMemor y( l ong si ze) ;    
  publ i c  LTMemor y( Si zeEst i mat or  s i ze) ;  
}  

Figure 4. Simplified memory area classes 
 
To aid in the production of an efficient RVM and to simplify timing and memory 
usage analyses, access to LTMemory areas must not be nested and LTMemory areas 
must not be shared between Schedulable objects. 
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4.2. Predictability of timing 
This attribute focuses on demonstrating that all schedulable objects meet their timing 
constraints at runtime. The restrictions enforce the computational model given in 
Section 3 and, thereby, allow schedulability analysis to be performed. 
 
4.2.1. Scheduling and Threading Model 
As suggested in the RTSJ, the minimum required scheduling base is by default a 
fixed-priority pre-emptive scheduler (represented by the Prior ityScheduler  class) 
that supports at least 28 unique priority levels. The specification also requires that an 
implementation makes available at least 10 additional native priorities for regular Java 
threads. However, the profile does not support regular threads by disallowing the use 
or overriding of the class java.lang.Thread to create threads. Therefore, we do not 
assume any additional native priority levels for regular Java threads. As a result, the 
supported types of schedulable objects in the profile are  
 
 • Periodic threads (see Per iodicThread class below), and 
 • Sporadic event handlers (see SporadicEventHandler  class below). 
 
The RealtimeThread and AsyncEventHandler  classes are not directly available to 
the applications programmer, as the former may use the heap memory, whereas the 
latter hinders accurate timing and memory analyses. 
 Attributes such as scheduling characteristics and memory areas must be 
statically allocated to schedulable objects in the initialisation phase, and shall not be 
changed afterwards, in order to facilitate fixed-priority scheduling algorithms and 
schedulability analysis. For this purpose, all methods whose names begin with ‘set’  
(for example, setReleaseParameters()) and some with ‘get’  are excluded. Thus, the 
schedulable interface is defined as an empty interface, as shown below. 
 
package r avenscar ;  

publ i c  i nt er f ace Schedul abl e ext ends j ava. l ang. Runnabl e 
{  
}  

Figure 5. Empty Schedulable interface 
 
Only fixed priority-based scheduling is supported by the Ravenscar-Java profile. 
Furthermore, any subclass of the Scheduler  including the default Prior ityScheduler  
class is not allowed to perform any feasibility checks, leading to the classes in Figure 
6. The Prior ityParameters class also does not contain setPr ior ity() method, and the 
Impor tanceParameters class is not supported. 
 

package r avenscar ;  

publ i c  abst r act  c l ass  Schedul er  
{  
}  

publ i c  c l ass  Pr i or i t ySchedul er  ext ends  Schedul er  
{  
  publ i c  st at i c  f i nal  i nt  MAX_PRI ORI TY;  
  publ i c  st at i c  f i nal  i nt  MI N_PRI ORI TY;  
}  

Figure 6. Simplified Scheduler  classes 
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Overall, this approach does not necessitate any dynamic feasibility test and admission 
control by the RVM at runtime. All schedulability analysis is performed before the 
initialisation phase of the program. 
 
4.2.2. Use of release parameters 
In order to support periodic or sporadic behaviours of real-time threads, the following 
simplified ReleaseParameters class and its subclasses are defined. 
 
 
package r avenscar ;  

publ i c  c l ass Rel easePar amet er s  

{  
  pr ot ect ed Rel easePar amet er s( ) ;  
}  

 

publ i c  c l ass Per i odi cPar amet er s ext ends Rel easePar amet er s 
{  
  publ i c  Per i odi cPar amet er s( Absol ut eTi me st ar t Ti me,   
                            Rel at i veTi me per i od) ;    
  pr ot ect ed Absol ut eTi me get St ar t Ti me( ) ;  
  pr ot ect ed Rel at i veTi me get Per i od( ) ;  
}  

 

publ i c  c l ass Spor adi cPar amet er s ext ends Rel easePar amet er s 
{  
  publ i c  Spor adi cPar amet er s( Rel at i veTi me mi nI nt er ar r i val ) ;  
  pr ot ect ed Rel at i veTi me get Mi nI nt er ar r i val ( ) ;  
}  

Figure 7. ReleseParameters and its subclasses 
 
The Aper iodicParameters class is undefined, as the profile does not support 
aperiodic activities. 
 
4.2.3. Use of threads 
Most of the methods and fields of the original java.lang.Thread class are obsolete in 
the context of the RTSJ and high integrity real-time applications. So, this class is 
defined as follows3. 
 
package j ava. l ang;  
publ i c  c l ass  Thr ead i mpl ement s  Runnabl e 
{  
  Thr ead( ) ;  
  Thr ead( St r i ng name) ;  

  voi d s t ar t ( ) ;  
}  

Figure 8. Newly defined java.lang.Thread class 
 

                                                 
3 The profile changes some of the access modifiers of the classes, constructors, and methods in order to 
ensure they cannot be used directly by the programmer. The changes are always more restrictive and 
hence programs will always execute on non-Ravenscar implementations. 
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Along the same lines, the RealtimeThread and NoHeapRealtimeThread can be 
defined as: 
 
package r avenscar ;  
publ i c  c l ass  Real t i meThr ead ext ends  j ava. l ang. Thr ead 
             i mpl ement s  Schedul abl e 
{  
  Real t i meThr ead( Pr i or i t yPar amet er s pp,   
         Per i odi cPar amet er s p) ;  
  Real t i meThr ead( Pr i or i t yPar amet er s pp,   
         Per i odi cPar amet er s p,  Memor yAr ea ma) ;  

  publ i c  st at i c  Real t i meThr ead cur r ent Real t i meThr ead( ) ;  
  publ i c  Memor yAr ea get Cur r ent Memor yAr ea( ) ;  
  voi d s t ar t ( ) ;    
  st at i c  bool ean wai t For Next Per i od( ) ;  
}  
 
publ i c  c l ass  NoHeapReal t i meThr ead ext ends  Real t i meThr ead 
{  
   NoHeapReal t i meThr ead( Pr i or i t yPar amet er s pp,   
         Memor yAr ea ma) ;  
   NoHeapReal t i meThr ead( Pr i or i t yPar amet er s pp,   
         Per i odi cPar amet er s p,  Memor yAr ea ma) ;  

   voi d s t ar t ( ) ;  
}  

Figure 9. RealtimeThread and NoHeapRealtimeThread class 
 
• Per iodic Threads 
Periodic threads transparently invoke the waitForNextPer iod method of the 
RealtimeThread class at the end of their main loops to delay until their next periods. 
Other mechanisms (e.g. sleep() method) are prone to have an inaccurate timing model, 
thus should not be used. 
 The profile defines an additional class to automate the management of periodic 
threads, which is shown below. 
 
package r avenscar ;  
publ i c  c l ass Per i odi cThr ead ext ends NoHeapReal t i meThr ead 
{  
  publ i c  Per i odi cThr ead( Pr i or i t yPar amet er s pp,   
         Per i odi cPar amet er s p,  j ava. l ang. Runnabl e l ogi c) ;  

  publ i c  voi d r un( ) ;  
  publ i c  voi d st ar t ( ) ;  
}  

Figure 10. Per iodicThread class 
 
This class may be utilised as follows. Note that the class assumes the default memory 
area is the immortal one, and a recovery procedure from a missed deadline can be 
implemented (if supported by the implementation of the profile). 
 
package r avenscar ;  

publ i c  c l ass Per i odi cThr ead ext ends NoHeapReal t i meThr ead 
{  

  publ i c  Per i odi cThr ead( Pr i or i t yPar amet er s pp,  Per i odi cPar amet er s p,  
                       j ava. l ang. Runnabl e l ogi c)   
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  {   
    super ( pp,  p,  I mmor t al Memor y. i nst ance( ) ) ;  
    appl i cat i onLogi c = l ogi c;  
  }    

  pr i vat e j ava. l ang. Runnabl e appl i cat i onLogi c;  

  publ i c  voi d r un( )  
  {  
    bool ean noPr obl ems = t r ue;  
    whi l e( noPr obl ems)  {  
      appl i cat i onLogi c. r un( ) ;  
      noPr obl ems = wai t For Next Per i od( ) ;  
    }  
    / /  A deadl i ne has been mi ssed,   
    / /  I f  al l owed,  a r ecover y r out i ne woul d be pl aced her e 
  }  
 
  publ i c  voi d s t ar t ( )  
  {  
    super . st ar t ( ) ;  
  }  
}  

Figure 11. An illustration of the Per iodicThread class 
 
• Sporadic Activities 
Event-triggered activities are supported by means of the BoundAsyncEventHandler  
class. Once an event and its handler are set up, they must remain unchanged 
permanently. For predictability, it is assumed that each handler is bound to one server 
thread and each server thread has only one handler bound to it. 
 Again, we define a new class specifically designed for sporadic activities, as 
shown below. It is based on the AsyncEventHandler class hierarchy. 
 
package r avenscar ;  
publ i c  c l ass  AsyncEvent Handl er  i mpl ement s  Schedul abl e 
{  

  AsyncEvent Handl er ( Pr i or i t yPar amet er s pp,   
         Rel easePar amet er s p,  Memor yAr ea ma) ;  
  AsyncEvent Handl er ( Pr i or i t yPar amet er s pp,   
         Rel easePar amet er s p,  Memor yAr ea ma,   
         j ava. l ang. Runnabl e l ogi c) ;  
 

  publ i c  Memor yAr ea get Cur r ent Memor yAr ea( ) ;  
  pr ot ect ed voi d handl eAsyncEvent ( ) ;  
  publ i c  f i nal  voi d r un( ) ;  
}  
 
publ i c  c l ass  BoundAsyncEvent Handl er   
             ext ends  AsyncEvent Handl er  
{  
  BoundAsyncEvent Handl er ( Pr i or i t yPar amet er s pp,   
         Memor yAr ea ma,  Rel easePar amet er s p) ;  
  BoundAsyncEvent Handl er ( Pr i or i t yPar amet er s pp,   
         Memor yAr ea ma,  Rel easePar amet er s p,   
         j ava. l ang. Runnabl e l ogi c) ;  
 
  pr ot ect ed voi d handl eAsyncEvent ( ) ;  
 
}  
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publ i c  c l ass Spor adi cEvent Handl er  ext ends BoundAsyncEvent Handl er  
{  
  publ i c  Spor adi cEvent Handl er ( Pr i or i t yPar amet er s pr i ,   
                              Spor adi cPar amet er s spor ) ;  
  publ i c  Spor adi cEvent Handl er ( Pr i or i t yPar amet er s pr i ,   
                              Spor adi cPar amet er s spor ,  
                              j ava. l ang. Runnabl e) ;  
  publ i c  voi d handl eAsyncEvent ( ) ;  
} ;  

Figure 12. Event handlers and the SporadicEventHandler  class 
 
Classes associated with event handlers are shown in Figure 13 below. 
 
package r avenscar ;  
publ i c  c l ass  AsyncEvent  
{  
  AsyncEvent ( ) ;  
  voi d addHandl er ( ) ;  
  voi d f i r e( ) ;  
  voi d bi ndTo( ) ;  
}  
 
publ i c  c l ass Spor adi cEvent  ext ends AsyncEvent  
{  
  publ i c  Spor adi cEvent ( Spor adi cEvent Handl er  handl er ) ;  
  publ i c  voi d f i r e( ) ;  
}  
 
publ i c  c l ass Spor adi cI nt er r upt  ext ends AsyncEvent  
{  
  publ i c  Spor adi cI nt er r upt ( Spor adi cEvent Handl er  handl er ,  
                           j ava. l ang. St r i ng happeni ng) ;    
}  
 

Figure 13. Associated classes to SporadicEventHandler  class 
 
Note, that all event handlers are bound to their associated event when the event is 
created. 
 
• Processing Groups, Overrun and Deadline-miss handlers 
Processing groups (i.e. instances of the ProcessingGroupParameters class) are not 
supported in the profile, as they require runtime support for the scheduler to determine 
the feasibility of the temporal scope of a processing group (which thus hampers static 
timing analysis). Overrun and deadline-miss handlers are also not required as 
schedulability analysis has been performed off-line. 
 
4.2.4. Synchronization 
The synchronized construct in Java provides mutually exclusive access to shared 
resources or objects, and programmers are always encouraged to use it to avoid data 
races. However, excessive use of this mechanism may result in poor response time, 
implying that high priority threads may have to wait until lower ones finish their 
synchronized methods or blocks. Therefore, in order to prevent unbounded priority 
inversions and possible deadlocks, the priority ceiling protocol 
(Prior ityCeilingEmulation class) must be implemented and explicitly used for all 
objects with synchronized blocks or methods. Furthermore, the profile does not 
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support wait, notify and notifyAll methods of the object class. All condition 
synchronization between real-time threads must be via sporadic event handlers as this 
ensures that the timing properties of the synchronization are properly addressed. 

WaitFreeQueues are not required as they are provided in the RTSJ to enable 
communication between instances of NoHeapRealtimeThread and regular Java 
threads. 
 
4.2.5. Representation of time 
Supported representations of time are 
 
 �  HighResolutionTime 
 �  AbsoluteTime 
 �  RelativeTime 
 �  RationalTime. 
 
These classes allow representation of time with up to nanosecond accuracy and 
precision [Bollella+2000a]. 
 
4.2.6. Timer  classes 
In the presence of the aforementioned classes that offer timely periodic and sporadic 
behaviours of threads, the Timer  and its subclasses are not necessary and not 
available. 
 
4.2.6. Asynchrony 
The Asynchronous Transfer of Control (ATC) mechanism is not allowed, as it is one 
of the most complicated features of the RTSJ and hinders timing and functional 
analyses [Brosgol+2002]. 
 

4.3. Predictability of control and data flow 
Predictability of control and data flow is required in order that static analysis 
techniques can be used to aid programming proof techniques and worst-case 
execution time analysis. All the rules and guidelines are listed in Appendix A, but 
noteworthy ones in each of the three areas include 
 
• Programming in the large 

� All user-defined classes must include constructors that initialise all internal 
variables and objects. 

� Dynamic method binding should be minimised. In particular, method 
overriding and the use of interfaces should be minimised. 

 
• Concur rent Real-Time Programming 

� Asynchronous transfer of control (ATC) and any thread aborting mechanisms 
are disallowed. 

� Use of wait, notify, and notifyall methods is disallowed. 
 

• Programming in the small 
� Use of continue and break statements in loops is disallowed. 
� All constraints, such as one used in a for loop, must be static. 
� Compound expressions in parameter passing to methods must be eliminated. 
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� Expressions whose values are dependent on the order of evaluations should 
be disallowed. 

 
All the rules and guidelines will facilitate or greatly ease the use of program analysis 
tools. 
 

5. Implementation Issues 
 
Along the same lines as the profile we present in this paper, it is indispensable to 
utilise a runtime environment (called RVM in this paper) that has been designed and 
implemented with highly dependable systems in mind. As mentioned earlier, 
however, programs based on our profile should be valid RTSJ programs and execute 
on a standard RTSJ platform with the same functional results. 
 In addition, tool support is essential to analyse code in terms of functionality 
and timeliness. A customised tool may be developed that incorporates all the rules and 
guidelines listed in Appendix A and throughout this paper. Such a tool may also be 
able to obtain the Worst-Case Execution Time (WCET) and worst-case memory 
consumption of each thread, thus enabling schedulability analysis [Bernat+2000, 
Hu+2002]. Standard Java tools or model checkers, such as the ESC/Java 
[Leino+2000] and Java Pathfinder 2 [Brat+2000, JPF2001] may be used, too. 
 

6. An Example Program 
 
We present a simple and naive traction-control system that senses any difference 
between the front- and rear-wheel spin speeds, and reduces the engine output if the 
rear-wheels spin more quickly4. There is one periodic thread SpinMonitor  and one 
sporadic thread powerCutHandler , and as soon as an excessive rear-wheel spin is 
detected SpinMonitor  activates powerCutHandler . The real application logic is not 
given as the example is purely intended to illustrate how the profile is used. 
 
i mpor t  r avenscar . * ;  
i mpor t  j avax. r eal t i me. Absol ut eTi me;  
i mpor t  j avax. r eal t i me. Rel at i veTi me;  
i mpor t  j avax. r eal t i me. I mmor t al Memor y;  
 
publ i c  c l ass  Tr act i onCont r ol l er  ext ends  I ni t i al i zer  
{  
  publ i c  voi d r un( )                   / /  I ni t i al i zer  r out i ne 
  {  
    / /  power Cut Handl er  
    Spor adi cEvent Handl er  power Cut Handl er  = new Spor adi cEvent Handl er  (  
        new Pr i or i t yPar amet er s( 15) ,   / /  Pr i or i t y : 15 
        new Spor adi cPar amet er s(  
          new Rel at i veTi me( 333,  0) ,   / /  Mi ni mum i nt er ar r i val  t i me 
          5)                          / /  Buf f er  s i ze 
    )  
    {  
      publ i c  voi d handl eAsyncEvent ( )  / /  Event  handl er  r out i ne 
      {  

                                                 
4 A rear-wheel drive car (e.g. a Formula 1 car) is assumed. 
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        / /  Logi c f or  handl i ng power Cut Event  event  
        / /  i . e.  ei t her  cut  t he engi ne power  or  br ake appr opr i at e 
        / /  wheel s 
      }  
    } ;  
 
    f i nal  Spor adi cEvent  power Cut Event = 
      new Spor adi cEvent ( power Cut Handl er ) ;  
 
    / /  spi nMoni t or  
    Per i odi cThr ead spi nMoni t or  = new Per i odi cThr ead(  
      new Pr i or i t yPar amet er s( 10) ,     / /  Pr i or i t y : 10 
      new Per i odi cPar amet er s(  
        new Absol ut eTi me( 0,  0) ,       / /  St ar t  t i me 
        new Rel at i veTi me( 333,  0)      / /  Per i od 
      ) ,  
      new Runnabl e( )  {                / /  Appl i cat i on l ogi c  
        publ i c  voi d r un( )  
        {  
          / /  Logi c f or  checki ng f r ont  and r ear  wheel  spi n speeds 
          / /  i . e.  obt ai n sensor  r eadi ngs f r om f r ont  and r ear  wheel s 
          / /  Once any excess of  a pr edef i ned t hr eshol d i s  det ect ed,  
          / /  f i r e t he f ol l owi ng event  
            power Cut Event . f i r e( ) ;  
        } ;  
      }  
    ) ;  
 
    spi nMoni t or . st ar t ( ) ;  
  }  
 
  publ i c  st at i c  voi d mai n ( St r i ng [ ]  ar gs)  
  {  
    Tr act i onCont r ol l er  i ni t  = new Tr act i onCont r ol l er ( ) ;  
    i ni t . s t ar t ( ) ;  
  }  
}  
 

7. Related Work 
 
There have been a few subsets or profiles for Java suggested in the literature5. None 
of them, however, are as complete or analytical as the Ravenscar-Java profile 
described in this paper; they are surveyed below. 
 

7.1. Sequential subset of Java by [Bentley1999] 
Bentley [Bentley1999] defines a sequential subset of Java after assessing the 
language. The subset consists of 21 rules that are effectively derived from 
[Hutcheon+1992], [MISRA1998] and his assessment. All the rules are categorised 
into six groups, as shown below with a summary of rules for each group. 
 
• Rules Concerned With Ver ification 

                                                 
5 In fact, there are subsets of Java defined for other purposes than for use in high integrity systems. For 
example, in [Drossopoulou+1999] the authors define a series of subsets in order to prove the type 
soundness of them. 
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Multithreading is not allowed as it may cause significant difficulties in analysing 
programs, due mainly to the thread synchronisation mechanisms. In addition, methods 
and constructors shall not be overloaded. 
 
• Rules Concerned With Comments 
Comments shall not be nested. 
 
• Rules Concerned With Predictability 
Variables or objects must be statically initialised (by constructors of appropriate 
classes), so that no default values are expected. All constraints, such as, those used in 
for-loops, must be static. This will greatly ease various analyses, for example, 
memory requirement and timing analysis. The continue and break statements shall not 
be used, except to terminate the cases of a switch statement, for which a break 
statement is required for every non-empty case clause. Plus, all switch statements 
should contain a final default clause. The return statement should only appear as the 
last statement of a method. Further, methods must not have any side effects and not be 
recursively invoked. The result of a method should never be an unconstrained array 
type object. 
 
• Rules Concerned With Constants 
Octal constants (other than zero) shall not be used. Because numbers beginning with 
zero are treated as octal values in Java, it is easy to make a mistake, e.g. inserting zero 
before a decimal constant. 
 
• Rules Concerned With Identifiers 
All identifier names must be unique. 
 
• Rules Concerned With Operators 
All right-hand operands of the logical operator && and || shall not contain any side 
effects, since the evaluation and execution of the operands are dependent on the truth-
value of the left-hand operand. What is more, assignment operators must not be used 
in expressions which return Boolean values, for example, in if ((x=1) != y). Bitwise 
operations, including bitwise shifts, shall not be performed on signed integer types, 
and the evaluation of integer expressions should not lead to wrap-around. 
 
While this subset will undoubtedly help produce analysable and predictable sequential 
programs, it can be criticised for its restriction on multithreading, one of Java’s 
inherent elements. Without the language-level support for multithreading and all the 
associated synchronisation mechanisms, Java may not be considered as a great 
evolution from its predecessors. In addition to this, the subset also fails to address 
issues on the object-oriented programming model of the language, as well as real-time 
issues. 
 

7.2. Profile for high integrity Real-Time Java programs 
[Puschner+2001] 
Puschner and Wellings [Puschner+2001] suggest a Ravenscar-like profile for the 
Real-Time Specification for Java [Bollella+2000a], and the following is a brief 
summary of each of the key areas. 
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• Threading Model 
There are two execution phases, i.e. initialisation and mission phases. In the 
initialisation phase, all necessary threads, event handlers, and memory objects are 
created in a non time-critical manner. No threads will be allowed to start until the top-
priority thread with main() method finishes its execution. In the mission phase, 
threads may not change their own or other thread’s priority except when forced by the 
underlying implementation of the priority ceiling protocol. Sporadic or event-
triggered activities are implemented as event handlers, and only one handler is 
allowed per event. All periodic threads must be an instance of 
NoHeapRealtimeThread class and need to invoke waitForNextPeriod method to delay 
execution until the start of their next periods. Asynchronous Transfer of Control 
(ATC), overrun and deadline-miss handlers, and delay statements are not supported 
by the profile; nor is dynamic class loading during the mission phase. 
 
• Concur rency 
The synchronized methods and blocks are the key mechanism for mutual exclusion to 
shared resources in Java, and the priority ceiling protocol should be implemented in 
the run-time system in order to avoid deadlocks. For similar reasons, wait, notify, and 
notifyall are not supported, avoiding any queue management. 
 
• Memory Management and Raw Memory Access 
The heap-based garbage collection mechanism of Java is not supported due to its 
long-debated unpredictability at run-time. Instead, only immortal memory and linear-
time scoped memory are supported as defined in the RTSJ. Immortal memory is used 
by default to create objects during the initialisation phase, but is not allowed for 
further object creation afterwards. In addition to this, all other memory objects must 
only be created in the initialisation phase. The RTSJ classes for raw memory access 
are also supported, so that device drivers, memory-mapped I/O, and other low-level 
functions can be programmed. 
 
• Time and Clock 
All the RTSJ classes for the representation of time and real-time clocks are included 
while the timer classes are not. 
 
The profile is primarily focused on leaving out complex features of the RTSJ. 
However, little attention is paid to the Java’s sequential language constructs (unlike 
[Bentley1999]) and object-orientation features that can be problematic in performing 
various static analyses. Furthermore, the profile is not consistent with the current 
version of the RTSJ. 
 

7.3. High integrity profile by the J Consortium 
A sub-committee has been formed within the Real-Time Java Working Group of the J 
Consortium to produce a high integrity profile based on the Real-Time Core 
Extensions [JConsortium2000]. The profile has not been released yet, but according to 
Dobbing [Dobbing2001] it will resemble the Ravenscar profile for Ada95 
[Burns+1998]. It consists of four main themes: partitioning, memory management, 
concurrency, and error recovery, respectively. Up-coming information will be found 
at http://www.j-consortium.org/hip/index.shtml. 
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• Par titioning 
The main idea developed from the necessity to isolate critical code and data from non-
critical ones by means of firewall, so that less-trusted code will never be able to 
interfere with high integrity programs. No exchange of objects, as well as dynamic 
loading across the firewall will be allowed. This idea also extends to the temporal 
requirements of such software, i.e. temporal firewall, which means deadlines of 
critical threads must be met. 
 
• Memory Management 
The automatic garbage collection is not supported, nor is any memory compaction 
mechanism. The use of general heap memory is also not allowed. There are three 
memory allocation strategies, which are 
 
 �  stack allocation for method local objects that are automatically reclaimed 
 �  fixed size “allocation contexts”  for local objects in each thread 
 �  global allocation at initialisation time for immortal objects. 
 
• Concur rency 
Three types of priority-based tasks are supported, namely, periodic, sporadic, and 
interrupt tasks. In addition to these, the profile defines a subclass of the basic 
CoreTask that must explicitly be started by another thread. All threads are created at 
program start-up, e.g. as part of the initialisation code for classes, and it is not allowed 
to declare a thread class as an inner class, so that there is no requirement for any 
implicit join interface. 

Shared resources and inter-thread synchronisations are managed through 
protected objects, which rely on the underlying implementation of the Priority Ceiling 
Protocol. However, no mutual exclusion locks or synchronised methods are supported 
in the profile as they add considerable complexity to program analyses. Further, all 
the asynchronous thread-to-thread operations, including stop(), setPriority(), 
suspend(), resume(), and event-driven Asynchronous Transfer of Control (ATC) 
mechanisms, are not permitted, nor are synchronised objects and counting 
semaphores. 
 
• Er ror  Recovery 
The standard exception handling mechanism of Java (i.e. throw-catch clause) is 
maintained. It also supports access to specific physical addresses to allow objects to 
be mapped, in order to, for example, save program state for fast recovery purposes. 

Like the one proposed in [Puschner+2001], this profile is mainly focused on 
sub-setting the Real-Time Core Extensions [JConsortium2000], but does not address 
issues on the use of problematic language constructs and object-orientation features of 
Java. 
 

7.4. Formal subsets by [Drossopoulou+1999] 
Drossopoulou et al. define three formal subsets of Java, i.e. that of the source 
language (Javas), high-level representation of bytecode (Javab), and enriched version 
of Javab (Javar). They present operational semantics, type system, and a proof of type 
soundness for the subsets. 

Javas is a substantial subset of the Java programming language, and it includes 
some primitive types, interfaces, classes with instance variables and instance methods, 
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inheritance, hiding of instance variables, overloading and overriding of instance 
methods, arrays, implicit pointers and the null value, object creation, assignment, field 
and array access, method call and dynamic method binding, exceptions and exception 
handling [Drossopoulou+1999], as shown below. 

 
Program ::=    Def*  
Def  ::=    class ClassId ext ClassName impl InterfName*  
          { ClassMember*}  
  |        inter face InterfId ext InterfName*  { InterfMember*}  
ClassMember ::=    Field | Method 
InterfMember ::=    MethHeader 
Field  ::=    VarType VarId ; 
Method  ::=    MethHeader MethBody 
MethHeader ::=    (void | VarType) MethId ((VarType ParId)*) throws ClassName*  
MethBody ::=    { Stmts [return Expr]] }  
Stmts  ::=    (Stmt ;)*  
Stmt  ::=    if Expr then Stmts else Stmts 
  |       Var = Expr | Expr.MethName(Expr* ) | throw Expr 
  |       try Stmts (catch ClassName Id Stmts)*  finally Stmts 
  |       try Stmts (catch ClassName Id Stmts)+ 
Expr  ::=   Value | Var | Expr.MethName(Expr* ) 
  |       new ClassName() | new SimpleType([Expr])+ ([])*  | this 
Var  ::=    Name | Expr.VarName | Expr[Expr] 
Value  ::=    PrimValue | RefValue 
RefValue ::=    null 
PrimValue ::=    intValue  | charValue | boolValue | … 
VarType  ::=    SimpleType | ArrayType 
SimpleType ::=    PrimType | ClassName | InterfaceName 
ArrayType ::=    SimpleType[] | ArrayType[] 
PrimType ::=    bool | char  | int | … 

Figure 14. Javas programs [Drossopoulou+1999] 
 
In order to observe run-time behaviours of programs in Javas, they are formally 
converted into Javab and Javar respectively, which are high-level representations of 
bytecode with all necessary compile-time type information. Having done this, it is 
possible to obtain operational semantics of each high-level language construct and 
prove the soundness of the type system of the source-level subset, Javas. 

While these subsets contain many important language constructs of Java that 
are often omitted in other formal subsets (e.g. exceptions), they still overlook some of 
Java’s inherent features, such as the multithreading and synchronisation models. 
[Hartel+2001] surveys formal subsets and approaches aimed at improving the safety 
of Java programs. 
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8. Conclusions 
 
In this paper, we have presented the Ravenscar-Java profile, a high integrity profile 
for real-time Java. This restricted programming model excludes language features 
with high overheads and complex semantics, on which it is hard to perform timing 
and functional analyses. Several classes in the RTSJ are redefined, and a few new 
classes are added, all resulting in a compact, yet powerful and predictable 
computational model for the development of software-intensive high integrity real-
time systems. 
 The profile is categorised into three areas, i.e. Programming in the large, 
Concurrent real-time programming, and Programming in the small. These are then 
structured based on the guideline framework developed by the U.S. Nuclear 
Regulatory Commission, which derives many important attributes from existing 
standards and is specific to high integrity systems. Various rules and guidelines, 
centred around the reliability attribute, are given in each of the three following sub-
attributes: 
 
 • predictability of memory utilisation, 
 • predictability of timing, and 
 • predictability of control and data flow. 
 
 A simple example illustrating the use of our profile was also provided in 
Section 6, before we reviewed four existing subsets of Java or the RTSJ. Most of the 
subsets, however, overlook some important elements of the language, for example, 
multi-threading and object-oriented programming model (thus are only concerned 
with sequential parts), or vice versa. 
 We believe that our profile is expressive enough to accommodate today’s 
demanding requirements for a powerful programming model, yet concise enough to 
facilitate the implementation of underlying platforms or virtual machines with great 
ease. 
 A subset of Java and the RTSJ, along the lines presented in this paper, would 
be a powerful motivation to develop high integrity systems in Java, rather than in a 
subset of C, C++ or Ada. 
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Appendix A. Rules and Guidelines of the High Integrity 
Profile for Real-Time Java 
 

A.1. Programming in the large 

A.1.1. Reliability 
• Predictability of memory utilisation 

Rule 1. Avoid dynamic class loading in the mission phase 
(Also related to rules in Predictability of timing below) 
Additional class loading at runtime is seen as overheads to both the virtual 
machine and the application. Accurate memory and timing analyses are thus 
impossible and dependent on the location and size of classes, as well as the 
implemented loading and linking mechanisms. 
 
In order to prevent dynamic class loading, either the virtual machine has to 
preload all classes that the application utilises, or the application must not be 
permitted to load any class in the mission phase by restricting the use of the 
following classes and their subclasses (i.e. user defined class loaders). This can 
be achieved by employing a simple class hierarchy analyser. 
 

 • java.lang.ClassLoader  
 • java.lang.Class (forName() methods of this class) 
 • java.net.URL.ClassLoader  
 • java.secur ity.SecureClassLoader  

 
• Predictability of control flow 

Rule 2. All user-defined classes must include constructors that initialise all 
internal variables and objects 
Java automatically allocates initial values to variables, but programmers must 
not depend on those as they can be mistakenly used or misinterpreted. Such 
initial values can also differ from system to system. This rule is equally applied 
to reference types. 
 
Guideline 1. Use only necessary and analysable classes in the class library for 
the application domain 
To keep the complexity and memory requirement of the application to the 
minimum, not only should we use absolutely necessary classes in the library, 
but also the behaviours of such classes must be statically analysable in terms of 
temporal and functional characteristics. 
 
Guideline 2. Minimise dynamic method binding 
(Also related to rules in Predictability of timing below) 
Dynamic method binding makes it complex to perform various flow analyses 
and to obtain the worst-case execution time of a thread. Although there may be 
only a few choices or branches of methods, the runtime overheads incurred by 
the virtual machine will be hard to predict and, thus undesirable. Accurate 
memory requirement analysis can also be difficult when different methods have 



 23

different memory utilisation. Therefore, programmers are encouraged not to 
excessively override and overload methods with ones that have significantly 
differing logics and overheads, as this can result in a pessimistic timing 
analysis. Where the logics are significantly different, the programmer should 
avoid dynamic dispatching by ensuring that class hierarchies are not passed as 
parameters to methods. 

This guideline equally applies to utilising interface types; the virtual 
machine needs to resolve a method reference every time it encounters an 
interface method call at runtime by searching through an interface method table 
for the method reference since the organisation of the table may vary from class 
to class that implements the same interface [Venners1999]. 

Along the same line, monomorphic method invocations are greatly 
recommended wherever possible, in place of polymorphic invocations. Code 
optimisation tools may be used to assist this task. 

 
• Predictability of timing 

Rule 3. Do not use or override java.lang.Thread to create (non real-time) 
threads 
Threads must not be created by instantiating or overriding java.lang.Thread 
class because it provides possibly unsafe asynchronous operations, as well as an 
inaccurate timing and priority model that are inconsistent with the Real-Time 
Specification for Java [Bollella+2000a]. It is also impossible to explicitly 
specify memory requirements for such regular threads. Instead, the 
RealtimeThread class of the specification must be used for all real-time and 
even non real-time threads (in case of non real-time threads, they must be given 
a low priority than critical ones and may not invoke waitForNextPer iod() 
method). Ideally, however, applications should make use of the Initializer , 
Per iodicThread, and SporadicEventHandler  classes defined in the profile. 
Refer to A.2. Concurrent Real-Time Programming for a more detailed 
explanation. 
 
Rule 4. Do not utilise Java classes to schedule threads 
(Also related to rules and guidelines in Predictability of memory utilisation and 
Predictability of control flow above) 
Programmers must not make use of the pure Java classes that can be used to 
schedule threads with an incompatible timing and priority model. Such classes, 
for example, java.util.Timer , java.util.TimerTask, and java.util.Calendar , 
ought to be replaced by appropriate counterparts of the Real-Time Specification 
for Java [Bollella+2000a], which will be discussed in A.2. Concurrent Real-
Time Programming. 

 

A.1.2. Robustness 
• Controlling use of exception handling 

Guideline 3. Minimise propagation of exceptions 
Guideline 4. Localise handling of predefined exceptions 
Guideline 5. Handle all user-defined exceptions 
Guideline 6. Clearly express and document all user-defined exceptions 
(All related to each other) 
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In Java, when exceptions are not handled locally (i.e. within a try-catch block in 
a method), their enclosing methods will be terminated and returned to the 
calling method(s). This terminating-and-returning process will continue until an 
appropriate handler is found. This not only hampers program analysability and 
adds overheads at runtime, but also could lead to an entire system failure if no 
proper handler can be located. Hence, every possible effort has to be made to 
eliminate any uncaught exceptions, i.e. unchecked exceptions and errors. 

The finally clause may be added to a try-catch block, which will always 
execute before control transfers to a new destination (unless System.exit() 
method is invoked in the try block). It can be used to prevent the propagation of 
any uncaught exceptions at an outer level of the program or all application 
threads (i.e. in the initialisation phase) by explicitly transferring control from 
the finally clause itself to a safe destination, thus abandoning any pending (and 
possibly disastrous) control transfers that could halt the whole system. A safe 
destination, which may be part of the initialisation phase, may attempt to restart 
the application threads that have failed due to an uncaught exception or error, or 
replace them with threads that have different logics. 

 
• Checking input and output 

Guideline 7. Methods for input and output should be written defensively 
It is a common practice to write a program such that it checks whether or not all 
input and output values from it are within a legal or specified range. This may 
prevent some unwanted programming errors. However, this job may be left to 
program verification tools possibly tailored to a specific application. 

 

A.1.3. Traceability 
• Readability 

See Readability in A.1.4. Maintainability. 
 
• Controlling use of native functions and compiled librar ies 

See Guideline 1 in Predictability of control flow above. 
 

A.1.4. Maintainability 
• Readability 

Guideline 8. Comment on the purpose, scope, and date of creation for each 
object 
Guideline 9. Comment on the purpose, and exceptions raising and handling for 
each method 
Guideline 10. Identify dynamic method binding with comments 

 
• Por tability 

Any Java program that supports this profile should be executable on a virtual 
machine that implements the Real-Time Specification for Java 
[Bollella+2000a]. This, however, does not imply that such virtual machines will 
always succeed in providing an accurate, robust and cost-effective runtime base 
because they may not have been developed with high integrity applications in 
mind. 
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A.2. Concurrent Real-Time Programming 

A.2.1. Reliability 
• Predictability of memory utilisation 

Rule 1. Avoid the use of any garbage collection mechanism and heap memory 
It has long been argued that the runtime behaviour of the implementation-
dependent garbage collector is difficult to predict in terms of its resource 
(including CPU time) and memory utilisation [Bollella+2000a, Venners1999]. 
Although there have been some works to improve the situation as in 
[Kim+1999], it is still challenging to put them into practice. If, however, a 
predictable garbage collector becomes available, a cautious decision should be 
made by a reliable organisation after evaluating its usage in high integrity real-
time systems. 

Without a garbage collector and the use of heap memory area, 
programmers are able to utilise only immortal, (linear-time) scoped and 
physical memory areas defined in the Real-Time Specification for Java 
[Bollella+2000a] to allocate objects. The initialisation phase will use an 
immortal memory area by default, and object creation in that memory area is 
allowed only in the initialisation phase (Refer to Rule 2 below). 

This rule also renders the use of java.lang.ref class obsolete, which 
allows Java programs to interact with the garbage collector. 
 
Rule 2. Object creation in an immortal memory area should be allowed only in 
the initialisation phase 
By definition, objects in an immortal memory area cannot be freed or moved, 
and all threads in an application share the memory area [Bollella+2000a]. 
Hence, in an attempt to prevent memory run-out and possible programming 
errors, this rule is enforced. On the other hand, object creation during the 
mission phase should make use of LTMemory areas. 
 
Rule 3. Do not create or instantiate schedulable objects in the mission phase 
Creation or instantiation of schedulable objects, i.e. threads and events, will 
cause the underlying virtual machine to allocate new memory space and handle 
a new set of information, which will delay the execution of other threads for an 
indefinite time. This will hamper low-level memory and timing analyses. 
Therefore, all schedulable objects must be created in the non-time-critical 
initialisation phase. 
 
Rule 4. The size of an LTMemory area shall not be extended 
(Also related to Rule 5 below) 
In the RTSJ, the LTMemory (or linear time scoped memory) class takes two 
parameters, one for the initial size, and the other for the maximum size in byte. 
The two sizes must always be the same in this profile, because any additional 
memory allocation at runtime may be seen as overheads to the virtual machine, 
and may not be necessary thanks to static memory analysis. 
 
Rule 5. Do not use nested LTMemory areas 
The RTSJ allows nested memory scope areas, which can be inefficient and 
error-prone because the virtual machine needs to check at runtime whether 
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scopes are properly nested. This runtime check is not desirable, and may have 
ambiguous time or memory requirements. With this restriction, static analysis 
of the program can ensure all the assignment rules (for assigning references to 
objects within different memory areas) are correctly obeyed. That is, an object 
in the immortal memory/heap must not be able to obtain a reference to an object 
within a scoped memory area to prevent any dangling references. 
 
Rule 6. LTMemory areas must not be shared between Schedulable objects 
As with the Rule 5 above, it is difficult to cost-effectively validate if a given 
scoped memory area is exploited correctly when different schedulable objects 
share it. Ideally, one thread should have only one dedicated LTMemory area to 
it, or should use the immortal memory area. With this rule enforced, additional 
overheads of dynamic memory access checking are eliminated, and the virtual 
machine design and implementation can be significantly simplified. 
 
Rule 7. Create all memory area objects during initialisation phase 
All memory areas must be created in the initialisation phase, in order to prevent 
any runtime overheads for allocating a new memory area. 
 
Rule 8. Finalizers must not block (e.g. no sleep() method invocation in 
finalizers) 
Generally, finalizers of objects are invoked when the virtual machine detects 
that there is no more reference to the objects. In the context of the scoped 
memory area, this process should occur when a memory scope is escaped (i.e. 
the reference count becomes zero), and all the finalizers of the objects in the 
scope should be invoked. Finalizers of objects allocated in the immortal 
memory area will only be invoked when the whole application terminates, or 
there is no runnable non-demon thread. 

The overheads of finalizers must be taken into account when performing 
schedulability analysis, and the virtual machine can take some time to free up 
used memory areas. On the whole, finalizers should be as compact as possible 
and must not block. 

 
• Predictability of control flow 

Rule 9. Asynchronous transfer of control (ATC) and any thread aborting 
mechanisms are disallowed 
These features result in high runtime overheads, and obscure static timing and 
flow analyses. All abnormal conditions that may necessitate the use of ATC 
must be identified at design stages and prevented by means of off-line analysis 
and design. 
 
Rule 10. Do not use wait, notify, and notifyall methods 
This rule eliminates the need for the whole object queue management in the 
virtual machine, resulting in more efficient and deadlock-free programs. 
 
Rule 11. Use synchronized methods or blocks to access shared objects 
These original Java constructs provide mutually exclusive access to shared 
resources or objects, and programmers are always encouraged to use them to 
avoid data races. However, excessive use of these mechanisms may result in 
poor response time, implying that high priority threads that become ready to run 
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may have to wait until lower ones finish their synchronized methods or blocks. 
Therefore, in order to prevent unbounded priority inversions and deadlocks, the 
priority ceiling protocol must be implemented in the runtime system and 
explicitly used for all objects with synchronized blocks or methods. 

 
• Predictability of timing 

Rule 12. Use only NoHeapRealtimeThread class to create periodic threads 
In the absence of a garbage collector and heap memory area, the 
NoHeapRealtimeThread class has naturally to be a default framework for 
modelling periodic threads, which may typically utilise a linear-time scoped 
memory area. Moreover, only the waitForNextPer iod method of that class 
must be used to delay associated threads because other delay statements (e.g. 
sleep) in Java almost certainly cause difficulties in timing and control flow 
analyses, and are not compatible with the Real-Time Specification for Java. 
Preferably, programmers should make use of the Per iodicThread class defined 
in Section 4 of this paper, which automates the timely execution of a given 
Runnable logic. 
 
Rule 13. Use only BoundAsyncEventHandler  class to model sporadic and 
event-triggered activities 
An instance of the BoundAsyncEventHandler  class is bound to a dedicated 
thread permanently, and this way of handling sporadic events eases timing 
analysis. All event handlers must be initialised and set up with one event each 
before the mission phase. Once this task is complete, the application must not 
attempt to rebind the handlers with other event(s), since it will make timing 
analysis simply impossible. Again, the SporadicEventHandler  class, defined 
in Section 4, should preferably be used. 
 
Rule 14. Do not use processing groups, overrun and deadline-miss handlers 
The RTSJ allows applications to define processing groups, and have overrun 
and miss handlers associated with real-time threads. Yet, these are likely to be 
overheads, as they require runtime support for the scheduler to determine the 
feasibility of the temporal scope of a processing group. Timing analysis must be 
statically performed before despatching high integrity software, thus making 
processing groups and the two sorts of handlers unnecessary. 
 
Guideline 1. Concurrent software design should be as simple as possible 
There should be no more threads than necessary and no more thread 
synchronisations than necessary, so that predictable programs will be produced 
with low performance penalties. Once an application has entered its mission 
phase no thread may be created and despatched. 

 

A.2.2. Robustness 
See Rule 9 in Predictability of control flow above. 

A.2.3. Traceability 
No specific rules and guidelines. 
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A.2.4. Maintainability 
• Readability 

Guideline 2. Identify threads with comments 
Guideline 3. Identify memory objects with comments 

 

A.3. Programming in the small 

A.3.1. Reliability 
• Predictability of memory utilisation 

Rule 1. Avoid method recursion 
Recursive method calls (including mutually recursive calls) can dramatically 
consume available memory space at runtime, and an erroneous termination 
condition can cause unbounded recursion. However, this rule may be relaxed if 
the memory consumption for each method and termination conditions can be 
formally verified. 

 
• Predictability of control flow 

Rule 2. Do not use continue and break statements in loops 
The continue and break statements can be used to jump out of a loop in an 
uncontrolled manner, which makes static analysis difficult to perform. 
 
Rule 3. Use brackets for every branch in if-else statements 
The if-else statements can have a branch that has a single statement, and such 
branches do not need brackets. But it can be confusing and lead to 
programming errors. 
 
Rule 4. All constraints, such as one used in a for loop, must be static 
This facilitates the prediction and analysis of memory and time requirements of 
loops prior to program execution. If, however, constraints can change during 
the course of the program, then at least a tight upper bound must be easily 
deducible. 
 
Rule 5. Variable declarations must include a static initialisation expression 
Java automatically allocates initial values to variables, but programmers must 
not depend on those as they can be mistakenly used or misinterpreted. Such 
initial values can also differ from system to system. This rule is equally applied 
to reference types. 
 
Rule 6. Eliminate compound expressions in parameter passing to methods 
Expressions that are used as part of parameters for method calls can easily 
cause side effects and misinterpretation, leading to unintended behaviours of the 
program. These particularly include ones with the increment and decrement 
operators (i.e. ++ and --), which depending on the syntactic position can 
produce different results. Relational expressions should not appear. 
 
Rule 7. Avoid expressions whose values are dependent on the order of 
evaluations 
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In relational operations, the evaluation of the right-hand expression of a logical 
operator (such as the logical AND (&&)) is decided by the truth-value of the 
left-hand operand. In other words, only if the left-hand expression is considered 
to be true, will the right-hand one be evaluated. Consequently, it is not 
recommended for a right-hand expression to contain any operators that can have 
an influence on the intermediate result of any object or variable, like the 
assignment operator. 

 
Guideline 1. Use parentheses rather than rely on the default order of 
precedence 
Guideline 2. Use parentheses in bitwise operators 
Guideline 3. Use parentheses in comparisons and conditions 
Parentheses should be used wherever the meaning of an expression can be 
vague and needs to be clarified. This will prevent any misinterpretation by 
programmers. 
 
Guideline 4. Use only one return statement per method, preferably at the end of 
each method 
Multiple return statements can make flow and timing analyses difficult or 
pessimistic to perform. 
 
Guideline 5. Define defaults in switch-case statements 
It is a good programming practice to explicitly state that a switch-case 
statement performs either some given operations or default operations in case 
there is no condition satisfied. 

 
• Predictability of timing 

Rule 4 and Guideline 4 in Predictability of control flow remain relevant here. 
 
• Predictability of mathematical or  logical result 

Rule 8. Use the strict floating-point mode (FP-strict) instead of the FP-default 
mode 
The FP-default, introduced in Java 1.2, allows a virtual machine to utilise 
supported floating-point hardware to speed up its execution, and may store 
intermediate data in the hardware specific format. However, this way of 
representing intermediate data is dependent on underlying hardware, and thus 
hinders portability and even accuracy. Therefore, the original IEEE 754 formats 
of Java should be used. Nevertheless, this rule may be relaxed if the required 
precision for a particular application is not important. 
 
Rule 9. Statements that access shared resources or objects must be guarded by a 
synchronized block or method 
Data races can occur if a shared object or variable is accessed by more than one 
thread, and at least one of them updates the object. The original synchronized 
statement of Java should be used to avoid race conditions, and it is generally the 
job of the programmer (or a tool) to ensure such statements are safely used and 
compact enough not to seriously affect the response time of other threads. 
 
Rule 10. Do not use octal constants 
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Octal constants can be confused with other (decimal) numbers, since any 
number beginning with a zero will be interpreted as an octal constant by the 
compiler. 
 
Guideline 6. Remember that integers are truncated when divided 
The results of integer divisions are always truncated in Java without any 
warning such that the precision of the values will be reduced. Floating-point 
types should be used to prevent any integer truncation. 
 
Guideline 7. Ensure that arithmetic operations produce a result that can be 
correctly represented 
The ranges of values for each type must be considered, and only appropriate 
values and variables of correct types should be used. Overflow and underflow 
will never be caught or warned by the compiler, and values may be widened if 
different types of values and variables are used in expressions. 
 
Guideline 8. Shift operators must be used with caution 
The unsigned right shift operator, i.e. >>>, can result in an unexpected value 
when applied to integer types. That is, Java integer types are all signed and this 
operator will fill the high-order bits of an integer with zeros, thus possibly 
changing the sign of that integer value to positive. The left shift operator can 
also alter the sign of a value. 

 

A.3.2. Robustness 
None. 

A.3.3. Traceability 
• Controlling use of built-in functions and compiled librar ies 

Guideline 9. Minimise the use of native methods (especially without source 
code) 
The use of native methods will certainly hamper portability, and such methods 
may not have been constructed in the same manner that most other high 
integrity software is built. In other words, they may inconsistently handle 
errors, input and output data, and not follow programming rules developed by a 
governing body or a profile such as this. 

 

A.3.4. Maintainability 
• Readability 

Guideline 10. Blocks should be bounded with brackets 
Guideline 11. Minimise use of literals 
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