
 1

Ravenscar-Java: A High Integrity Profile for Real-Time Java

Jagun Kwon, Andy Wellings, and Steve King

Department of Computer Science

University of York, UK

{ jagun, andy, king} @cs.york.ac.uk

York Technical Report YCS 342

May 2002

ABSTRACT

For many, Java is the antithesis of a high integrity programming language. Its
combination of object-oriented programming features, its automatic garbage
collection, and its poor support for real-time multi-threading are all seen as particular
impediments. The Real-Time Specification for Java has introduced many new features
that help in the real-time domain. However, the expressive power of these features
means that very complex programming models can be created, necessitating
complexity in the supporting real-time virtual machine. Consequently, Java, with the
real-time extensions as they stand, seems too complex for confident use in high
integrity systems. This paper presents a Java profile for the development of software-
intensive high integrity real-time systems. This restricted programming model
removes language features with high overheads and complex semantics, on which it is
hard to perform timing and functional analyses. The profile fits within the J2ME
framework and is consistent with well-known guidelines for high integrity software
development, such as those defined by the U.S. Nuclear Regulatory Commission.

1. Introduction

Increasingly computers are being used in high integrity real-time systems; that is,
systems where failure can cause loss of life, environmental harm, or significant
financial penalties. Examples include space shuttles, nuclear power plants, automatic
fund transfers and medical instruments. They typically have high development and
maintenance costs due to the customised nature of their components. Within such
systems, there has been a growing trend to use software, because it provides
[Leveson1986, Leveson1991, Parnas+1990, Bowen+1998]:

• improved functionality
• increased flexibility in design and implementation
• reduced production cost
• enhanced management of complexity in application areas.

Java has proved to be an appropriate vehicle for a diverse range of applications
including web-based intranets and embedded systems. Its relatively simple linguistic
semantics, the adoption of well-understood approaches to managing software

 2

complexity, and support for concurrency seem to have contributed towards its
popularity. Initially designed with embedded systems in mind, Java’s main goal was
to provide engineers with a reliable and cost-effective platform-independent
environment.
 However, despite all these valuable features, Java has been criticised for its
unpredictable performance as well as some security concerns [Appel1999,
Azevedo+1999, Amme+2001]. The automatic garbage collection and dynamic class
loading mechanisms are often considered problematic, especially under time or
performance-critical situations. Moreover, a number of security bugs in the Java
virtual machine have been discovered since its first appearance, especially in the
bytecode verifiers and Just-in-Time (JIT) compilers [Gong1999, Appel1999]. These
fears make Java and its associated technology simply unsuitable for high integrity
systems [Kwon+2002].
 In recent years, there have been two main activities, initiated by Sun, to
address the limitations of Java for real-time and embedded systems. The first is, the
Real-Time Specification for Java (RTSJ) [Bollella+2000a, Bollella+2000b] which
attempts to minimise any modification to the original Java semantics and yet to define
many additional classes that must be implemented in a supporting virtual machine.
The goal is to provide a predictable and expressive real-time environment. This,
however, ironically leads to a language and run-time system that are complex to
implement and have high overheads at run-time. Software produced in this framework
is also difficult to analyse with all the luxurious features, such as the asynchronous
transfer of control (ATC) and dynamic class loading.
 The second relevant activitiy is the Java 2 Platform Micro Edition (J2ME)
[Sun2000]. This essentially defines a three layer architecture:

• a virtual machine layer (usually implemented on top of a host operating system)
• a configuration layer which defines the set of Java language features, a minimum

set of virtual machine features and the available class libraries that can be supported
by a particular implementation platform (for example, a mobile phone)

• a profile layer which defines a minimum set of Application Programmers Interfaces
(APIs) targeted at a particular application domain.

The same configuration layer may support more than one profile, and different
configuration layers may support the same profile. A configuration layer, called
Connected, Limited Device Configuration (CLDC) has been defined for small,
resource-constrained mobile devices (mobile phones, pagers, personal organizers etc.)
typically with a memory capacity of up to 512 KB. The K (kilo bytes) virtual machine
(KVM) is a virtual machine specifically designed to support the CLDC. The
restrictions imposed on the Java language and the virtual machine include [Sun2000]:
no support for floating point operations, no native interfaces, no user-defined class
loaders, no thread groups or daemon threads, no object finalization, etc. The main
motivation for these restrictions is to reduce the size of memory required to
implement the virtual machine.
 It is clear that the overheads of implementing the RTSJ makes it unsuitable for
the CLDC configuration and consequently RTSJ, as it stands, is probably targeted at
Java 2 Standard Edition (J2SE) or ideally another configuration (for example, the
CDC – Connected Device Configuration) within the J2ME framework. However, a
high intergity subset of the RTSJ model would be appropriate for J2ME and it is
possible to imagine a high integrity KVM and CLDC along with one or more profiles.

 3

 Unfortunately, many language subsets for high integrity systems discourage
the use of concurrent activites. For example, Ada is one of the most important
programming languages for the high integrity systems application domain. The
SPARK subset of Ada [Barnes1997] (which removes many of the language’s
complicated or advanced features such as tasking, exceptions, overloading etc.) allows
programs to be mathematically proven correct. In recent years, advances in real-time
systems research and, in particular, in the area of schedulability analysis, have meant
that it is now possible to show mathematically that a concurrent program will meet its
deadlines. Of course, constraints must be placed on the particular concurrency
mechanisms used to ensure predictability. However, it is no longer axiomatic that
concurrency should be forbidden or even discouraged.
 To encourage the use of concurrency in high integrity real-time systems, the
Ada community has developed a subset of the Ada tasking model (including the Real-
Time Annex) called the Ravenscar Profile [Burns+1998]. The main aims of the subset
are to support a predictable computational model and to enable a small efficient and
predictable run-time support system to be produced. The Ravenscar Profile has
attracted support from users and compiler (and run-time) vendors, and has become a
de facto standard in the high integrity system domain. It will soon be incorporated into
the Ada language standard.
 Following the philosophy of the Ravenscar profile, we propose a high integrity
profile for real-time Java (called Ravenscar-Java) that offers a more reliable and
predictable programming environment. In other words, our profile eliminates features
with high overheads and complex semantics, so that programs become more
analysable and ultimately, more dependable.
 This paper is structured as follows: the next section sets the scope and
describes the organisation of the profile. In section 3 we show the computational
model, before the actual profile is illustrated in detail. Section 5 briefly looks at
implementation issues, followed by an example Ravenscar-Java program in Section 6.
Related work is considered in Section 7 and the paper concludes with Section 8. The
full description of the rules and guidelines of the profile is provided in Appendix A.

2. Scope and Organisation of the Profile

There are many general and sector-specific standards that assist in the construction of
high integrity systems (e.g. U.S. DO178B, U.K. DS 00-55, MISRA guidelines,
IEC61508). Of particular interest here is the set of software guidelines produced by
the U.S. Nuclear Regulatory Commission (NRC) [NUREG/CR-6463] because it is
specific to high integrity systems and because it has set up a systematic framework of
guidelines by deriving many important attributes from existing standards. There are
four top-level attributes:
 • Reliability — defined as the “predictable and consistent performance of the

software under conditions specified in its design.” A key factor in obtaining
reliability is to have predictability of the program’s execution; in particular:
predictability of control and data flow, predictability of memory utilization and
predictability of response times.

 • Robustness — defined as “ the capability of the safety system software to operate
in an acceptable manner under abnormal conditions or events.” Often called fault
tolerance or survivability, this attribute requires the system to cope with both
anticipated and unanticipated faults. Techniques such as using replication, diver-

 4

sity and exception handling are commonly used [Burns+2001].
 • Traceability — relates to “ the feasibility of reviewing and identifying the source

code and library component origin and development processes” thus facilitating
verification and validation techniques, which are essential aids to ensuring
program correctness.

 • Maintainability — relates to “ the means by which the source code reduces the
likelihood that faults will be introduced during changes made after delivery.” All
the standard software engineering issues apply here such as good readability, use
of appropriate abstraction techniques, strong cohesion and loose coupling of
components, and portability of software components between compilers and
platforms [Sommerville2000].

The report also provides guidelines based on the framework for nine programming
languages (including Ada95 and C/C++). Unfortunately, the guidelines do not
consider Java.
 The goal of this paper is to apply the NRC’s framework to Java augmented by
the RTSJ. The paper focuses on the reliability attribute as the rest of the attributes are
concerned with general design decisions that are covered in the software engineering
literature. However, we still give several Java specific guidelines in those areas where
they have impacts on the RTSJ.

3. Computational Model

The key aim of the Ravenscar-Java profile is to develop a concurrent Java
programming model that supports predictable and reliable execution of application
programs, thus benefiting the construction of modern high integrity software.
Particularly, we follow the philosophy of the Ravenscar profile [Burns+1998] and
emphasise the reliability attribute of the NRC guidelines. This means that some
language features with high overheads and complex semantics are removed for the
sake of reliability, and programs are statically analysable in terms of functionality and
timeliness before execution. Similarly, the Java virtual machine is also restricted to
ensure predictability and efficiency. For example, a Ravenscar-Java VM (RVM) does
not support garbage collection.
 As in the RTSJ, the Ravenscar-Java profile allows concurrent execution of
schedulable objects (threads and event handlers) based on pre-emptive priority-based
scheduling. Schedulable objects have to be either periodic or sporadic with minimum
inter-arrival times, and the priority ceiling protocol is required to be implemented in
the runtime system. This profile facilitates the use of off-line schedulability analysis,
which is associated with fixed priority scheduling (e.g. deadline monotonic or rate
monotic analysis [Audsley+1993, Liu+1973]).
 We assume two execution phases as suggested in [Puschner+2001], i.e.
initialisation and mission phase, as shown below in Figure 1. In the initialisation
phase of an application (i.e. the main() method and one RealtimeThread), all non-
time-critical activities and initialisations that are required before the mission phase are
carried out. This includes initialisation of all real-time threads, memory objects, event
handlers, events, and scheduling parameters1. In the mission phase, the application is
executed and multithreading is allowed based on the imposed scheduling policy.

1 This includes loading all the classes needed in the application. In a JIT (Just-In-Time) compilation
environment, all loaded classes will be compiled.

 5

Allocatable Memory

Mission Phase

Initialisation Phase

main() invoked

Create Initialiser
thread

main() terminates

Initialise all necessary
objects and real-time

threads

Start all
threads

New Thread

New Thread

New Thread

Immortal MemoryHeap Memory Scoped Memory

Figure 1. Two execution phases

4. The Profile

The proposed profile can be classified into the following headings, and each of them
is expanded below:

 • Predictability of memory utilisation
 • Predictability of timing
 • Predictability of control and data flow.

We separate the rules and guidelines of the profile into the following categories (in
Appendix A), and the NRC framework is applied to each of them:

1. Programming in the Large
2. Concurrent Real-Time Programming
3. Programming in the Small.

In the first category, we give guidelines on the use of language features that support
high-level decomposition and minimise the complexity of software, which involve
object-orientation, and abstract data types. In the second, guidelines on the use of
features provided by the RTSJ are presented, whereas in the third we discuss
programming issues related to the production of small software components, such as
control structures, methods, and expressions. This section summarises the rules and
guidelines.

The resulting profile is targeted at a RVM; however, programs written
according to the profile are valid RTSJ programs, which will execute without change
under a RTSJ virtual machine (although perhaps not within their deadlines).

 6

4.1. Predictability of memory utilisation
This attribute is concerned with ensuring that the software will not access unintended
or disallowed memory locations, and ensuring that the use of memory space will be
predictable and bounded.

4.1.1. Initialisation and mission phases
When an application is started, its main() method will first be invoked by the RVM
and the base heap memory area will be used to allocate any objects within the method
(as with standard Java).
 The main method first creates a new NoHeapRealtimeThread with the highest
priority in the system. This is required to ensure a well-ordered and controlled
execution of the initialisation and mission phases, as illustrated in Figure 2.

i mpor t j avax. r eal t i me. * ;
cl ass Mai n i mpl ement s Runnabl e
{
 publ i c st at i c voi d mai n(St r i ng [] ar gs)
 {
 NoHeapReal t i meThr ead i ni t i al i zer = new NoHeapReal t i meThr ead(
 new Pr i or i t yPar amet er s(Pr i or i t ySchedul er . MAX_PRI ORI TY) ,
 nul l , nul l ,
 I mmor t al Memor y. i nst ance() ,
 nul l ,
 new Mai n()) ;
 i ni t i al i zer . st ar t () ;
 }

 publ i c voi d r un()
 {
 / / i ni t i al i zat i on phase of t he pr ogr am
 }
}

Figure 2. An illustration of the initialisation phase

The new thread must take a reference to the immortal memory area, so that all objects
and references to other threads and memory objects defined in the initializer thread
will be safely created and maintained throughout the life of the application. Once all
initialisation activities are performed, the thread will allow other threads to execute by
invoking the start() methods, and terminating itself. To encapsulate this initialisation
phase, the Ravenscar-Java profile defines an initializer thread class, shown in Figure 3,
which directly extends the RealtimeThread class.

package r avenscar ;
i mpor t j avax. r eal t i me. * ;

publ i c cl ass I ni t i al i zer ext ends Real t i meThr ead
{
 publ i c I ni t i al i zer ()
 {
 super (new Pr i or i t yPar amet er s(
 Pr i or i t ySchedul er . MAX_PRI ORI TY) ,
 nul l , nul l , I mmor t al Memor y. i nst ance() ,
 nul l , nul l) ;
 }
}

Figure 3. Initializer class of Ravenscar-Java profile

 7

Now, the application can be created by extending the Initializer class in the following
way.

i mpor t r avenscar . * ;

publ i c cl ass MyAppl i cat i on ext ends I ni t i al i zer
{
 publ i c voi d r un()
 {
 / / l ogi c f or i ni t i al i zat i on
 }

 publ i c st at i c voi d mai n (St r i ng [] ar gs)
 {
 MyAppl i cat i on myApp = new MyAppl i cat i on() ;
 myApp. st ar t () ;
 }
}

The mission phase begins as soon as the highest priority thread or Initializer
terminates. From this moment, all application threads will be scheduled and
despatched according to the imposed scheduling policy. Threads may only utilise
immortal and linear-time scoped memory areas in this phase, unless their logics
require access to physical or raw memory areas2.

4.1.2. Memory Management
To facilitate predictable memory utilisation we define several rules in the three
aforementioned areas (see Appendix A for the full list and rationales). The rules place
restrictions on, for example, the use of class loaders in the mission phase, on the use
of specific memory area objects (and garbage collector), and on recursive method
calls. It is also disallowed to create or instantiate any schedulable objects in the
mission phase as this will hamper static memory usage analysis.

The heap memory area may or may not exist in a supporting virtual machine.
In fact, such memory space can be utilised as part of the whole immortal memory
area, since no garbage collection is allowed in the profile.

• Use of immortal memory areas
By definition, objects in an immortal memory area cannot be freed or moved, and all
schedulable objects in an application share the same memory area [Bollella+2000a].
Hence, in an attempt to prevent memory exhaustion or corruption, objects (including
memory area objects) that are needed for the lifetime of the application should be
allocated in the area only in the initialisation phase.

• Use of linear time scoped memory areas
All memory area objects must be created during the initialisation phase (thus, in the
immortal memory area), and other objects during the mission phase should make use
of LTMemory areas. The size of all memory objects must be static and not be

2 In this paper, we do not attempt to restrict the use of physical or raw memory other than that implied
by our restrictions on scoped memory areas. However, a potential implementation of a RVM might
apply restrictions for security reasons.

 8

extended in the course of the program. Any other memory area objects defined in the
RTSJ are disallowed, and the following simplified classes remain in the profile.

package r avenscar ;
publ i c abst r act c l ass Memor yAr ea
{
 pr ot ect ed Memor yAr ea(l ong s i zeI nByt es) ;
 pr ot ect ed Memor yAr ea(j avax. r eal t i me. Si zeEst i mat or s i ze) ;

 publ i c voi d ent er (j ava. l ang. Runnabl e l ogi c) ;
 / / t hr ows ScopedCycl eExcept i on
 publ i c voi d execut eI nAr ea(j ava. l ang. Runnabl e l ogi c)
 t hr ows I naccessi bl eAr eaExcept i on;

 publ i c st at i c Memor yAr ea get Memor yAr ea(
 j ava. l ang. Obj ect obj ect) ;

 publ i c l ong memor yConsumed() ;
 publ i c l ong memor yRemai ni ng() ;
 publ i c j ava. l ang. Obj ect newAr r ay(
 j ava. l ang. Cl ass t ype, i nt number)
 t hr ows I l l egal AccessExcept i on, I nst ant i at i onExcept i on;
 / / t hr ows Out Of Memor yEr r or

 publ i c j ava. l ang. Obj ect newI nst ance(j ava. l ang. Cl ass t ype)
 t hr ows I l l egal AccessExcept i on, I nst ant i at i onExcept i on;
 / / t hr ows Out Of Memor yEr r or
 publ i c j ava. l ang. Obj ect newI nst ance(
 j ava. l ang. r ef l ect . Const r uct or c,
 j ava. l ang. Obj ect [] ar gs)
 t hr ows I l l egal AccessExcept i on, I nst ant i at i onExcept i on;
 / / t hr ows Out Of Memor yEr r or ;
 publ i c l ong s i ze() ;
}

publ i c f i nal c l ass I mmor t al Memor y ext ends Memor yAr ea
{
 publ i c st at i c I mmor t al Memor y i nst ance() ;
}

publ i c abst r act c l ass ScopedMemor y ext ends Memor yAr ea
{
 publ i c ScopedMemor y(l ong si ze) ;
 publ i c ScopedMemor y(Si zeEst i mat or s i ze) ;

 publ i c voi d ent er () ;
 publ i c i nt get Ref er enceCount () ;
}

publ i c c l ass LTMemor y ext ends ScopedMemor y
{
 publ i c LTMemor y(l ong si ze) ;
 publ i c LTMemor y(Si zeEst i mat or s i ze) ;
}

Figure 4. Simplified memory area classes

To aid in the production of an efficient RVM and to simplify timing and memory
usage analyses, access to LTMemory areas must not be nested and LTMemory areas
must not be shared between Schedulable objects.

 9

4.2. Predictability of timing
This attribute focuses on demonstrating that all schedulable objects meet their timing
constraints at runtime. The restrictions enforce the computational model given in
Section 3 and, thereby, allow schedulability analysis to be performed.

4.2.1. Scheduling and Threading Model
As suggested in the RTSJ, the minimum required scheduling base is by default a
fixed-priority pre-emptive scheduler (represented by the Prior ityScheduler class)
that supports at least 28 unique priority levels. The specification also requires that an
implementation makes available at least 10 additional native priorities for regular Java
threads. However, the profile does not support regular threads by disallowing the use
or overriding of the class java.lang.Thread to create threads. Therefore, we do not
assume any additional native priority levels for regular Java threads. As a result, the
supported types of schedulable objects in the profile are

 • Periodic threads (see Per iodicThread class below), and
 • Sporadic event handlers (see SporadicEventHandler class below).

The RealtimeThread and AsyncEventHandler classes are not directly available to
the applications programmer, as the former may use the heap memory, whereas the
latter hinders accurate timing and memory analyses.
 Attributes such as scheduling characteristics and memory areas must be
statically allocated to schedulable objects in the initialisation phase, and shall not be
changed afterwards, in order to facilitate fixed-priority scheduling algorithms and
schedulability analysis. For this purpose, all methods whose names begin with ‘set’
(for example, setReleaseParameters()) and some with ‘get’ are excluded. Thus, the
schedulable interface is defined as an empty interface, as shown below.

package r avenscar ;

publ i c i nt er f ace Schedul abl e ext ends j ava. l ang. Runnabl e
{
}

Figure 5. Empty Schedulable interface

Only fixed priority-based scheduling is supported by the Ravenscar-Java profile.
Furthermore, any subclass of the Scheduler including the default Prior ityScheduler
class is not allowed to perform any feasibility checks, leading to the classes in Figure
6. The Prior ityParameters class also does not contain setPr ior ity() method, and the
Impor tanceParameters class is not supported.

package r avenscar ;

publ i c abst r act c l ass Schedul er
{
}

publ i c c l ass Pr i or i t ySchedul er ext ends Schedul er
{
 publ i c st at i c f i nal i nt MAX_PRI ORI TY;
 publ i c st at i c f i nal i nt MI N_PRI ORI TY;
}

Figure 6. Simplified Scheduler classes

 10

Overall, this approach does not necessitate any dynamic feasibility test and admission
control by the RVM at runtime. All schedulability analysis is performed before the
initialisation phase of the program.

4.2.2. Use of release parameters
In order to support periodic or sporadic behaviours of real-time threads, the following
simplified ReleaseParameters class and its subclasses are defined.

package r avenscar ;

publ i c c l ass Rel easePar amet er s

{
 pr ot ect ed Rel easePar amet er s() ;
}

publ i c c l ass Per i odi cPar amet er s ext ends Rel easePar amet er s
{
 publ i c Per i odi cPar amet er s(Absol ut eTi me st ar t Ti me,
 Rel at i veTi me per i od) ;
 pr ot ect ed Absol ut eTi me get St ar t Ti me() ;
 pr ot ect ed Rel at i veTi me get Per i od() ;
}

publ i c c l ass Spor adi cPar amet er s ext ends Rel easePar amet er s
{
 publ i c Spor adi cPar amet er s(Rel at i veTi me mi nI nt er ar r i val) ;
 pr ot ect ed Rel at i veTi me get Mi nI nt er ar r i val () ;
}

Figure 7. ReleseParameters and its subclasses

The Aper iodicParameters class is undefined, as the profile does not support
aperiodic activities.

4.2.3. Use of threads
Most of the methods and fields of the original java.lang.Thread class are obsolete in
the context of the RTSJ and high integrity real-time applications. So, this class is
defined as follows3.

package j ava. l ang;
publ i c c l ass Thr ead i mpl ement s Runnabl e
{
 Thr ead() ;
 Thr ead(St r i ng name) ;

 voi d s t ar t () ;
}

Figure 8. Newly defined java.lang.Thread class

3 The profile changes some of the access modifiers of the classes, constructors, and methods in order to
ensure they cannot be used directly by the programmer. The changes are always more restrictive and
hence programs will always execute on non-Ravenscar implementations.

 11

Along the same lines, the RealtimeThread and NoHeapRealtimeThread can be
defined as:

package r avenscar ;
publ i c c l ass Real t i meThr ead ext ends j ava. l ang. Thr ead
 i mpl ement s Schedul abl e
{
 Real t i meThr ead(Pr i or i t yPar amet er s pp,
 Per i odi cPar amet er s p) ;
 Real t i meThr ead(Pr i or i t yPar amet er s pp,
 Per i odi cPar amet er s p, Memor yAr ea ma) ;

 publ i c st at i c Real t i meThr ead cur r ent Real t i meThr ead() ;
 publ i c Memor yAr ea get Cur r ent Memor yAr ea() ;
 voi d s t ar t () ;
 st at i c bool ean wai t For Next Per i od() ;
}

publ i c c l ass NoHeapReal t i meThr ead ext ends Real t i meThr ead
{
 NoHeapReal t i meThr ead(Pr i or i t yPar amet er s pp,
 Memor yAr ea ma) ;
 NoHeapReal t i meThr ead(Pr i or i t yPar amet er s pp,
 Per i odi cPar amet er s p, Memor yAr ea ma) ;

 voi d s t ar t () ;
}

Figure 9. RealtimeThread and NoHeapRealtimeThread class

• Per iodic Threads
Periodic threads transparently invoke the waitForNextPer iod method of the
RealtimeThread class at the end of their main loops to delay until their next periods.
Other mechanisms (e.g. sleep() method) are prone to have an inaccurate timing model,
thus should not be used.
 The profile defines an additional class to automate the management of periodic
threads, which is shown below.

package r avenscar ;
publ i c c l ass Per i odi cThr ead ext ends NoHeapReal t i meThr ead
{
 publ i c Per i odi cThr ead(Pr i or i t yPar amet er s pp,
 Per i odi cPar amet er s p, j ava. l ang. Runnabl e l ogi c) ;

 publ i c voi d r un() ;
 publ i c voi d st ar t () ;
}

Figure 10. Per iodicThread class

This class may be utilised as follows. Note that the class assumes the default memory
area is the immortal one, and a recovery procedure from a missed deadline can be
implemented (if supported by the implementation of the profile).

package r avenscar ;

publ i c c l ass Per i odi cThr ead ext ends NoHeapReal t i meThr ead
{

 publ i c Per i odi cThr ead(Pr i or i t yPar amet er s pp, Per i odi cPar amet er s p,
 j ava. l ang. Runnabl e l ogi c)

 12

 {
 super (pp, p, I mmor t al Memor y. i nst ance()) ;
 appl i cat i onLogi c = l ogi c;
 }

 pr i vat e j ava. l ang. Runnabl e appl i cat i onLogi c;

 publ i c voi d r un()
 {
 bool ean noPr obl ems = t r ue;
 whi l e(noPr obl ems) {
 appl i cat i onLogi c. r un() ;
 noPr obl ems = wai t For Next Per i od() ;
 }
 / / A deadl i ne has been mi ssed,
 / / I f al l owed, a r ecover y r out i ne woul d be pl aced her e
 }

 publ i c voi d s t ar t ()
 {
 super . st ar t () ;
 }
}

Figure 11. An illustration of the Per iodicThread class

• Sporadic Activities
Event-triggered activities are supported by means of the BoundAsyncEventHandler
class. Once an event and its handler are set up, they must remain unchanged
permanently. For predictability, it is assumed that each handler is bound to one server
thread and each server thread has only one handler bound to it.
 Again, we define a new class specifically designed for sporadic activities, as
shown below. It is based on the AsyncEventHandler class hierarchy.

package r avenscar ;
publ i c c l ass AsyncEvent Handl er i mpl ement s Schedul abl e
{

 AsyncEvent Handl er (Pr i or i t yPar amet er s pp,
 Rel easePar amet er s p, Memor yAr ea ma) ;
 AsyncEvent Handl er (Pr i or i t yPar amet er s pp,
 Rel easePar amet er s p, Memor yAr ea ma,
 j ava. l ang. Runnabl e l ogi c) ;

 publ i c Memor yAr ea get Cur r ent Memor yAr ea() ;
 pr ot ect ed voi d handl eAsyncEvent () ;
 publ i c f i nal voi d r un() ;
}

publ i c c l ass BoundAsyncEvent Handl er
 ext ends AsyncEvent Handl er
{
 BoundAsyncEvent Handl er (Pr i or i t yPar amet er s pp,
 Memor yAr ea ma, Rel easePar amet er s p) ;
 BoundAsyncEvent Handl er (Pr i or i t yPar amet er s pp,
 Memor yAr ea ma, Rel easePar amet er s p,
 j ava. l ang. Runnabl e l ogi c) ;

 pr ot ect ed voi d handl eAsyncEvent () ;

}

 13

publ i c c l ass Spor adi cEvent Handl er ext ends BoundAsyncEvent Handl er
{
 publ i c Spor adi cEvent Handl er (Pr i or i t yPar amet er s pr i ,
 Spor adi cPar amet er s spor) ;
 publ i c Spor adi cEvent Handl er (Pr i or i t yPar amet er s pr i ,
 Spor adi cPar amet er s spor ,
 j ava. l ang. Runnabl e) ;
 publ i c voi d handl eAsyncEvent () ;
} ;

Figure 12. Event handlers and the SporadicEventHandler class

Classes associated with event handlers are shown in Figure 13 below.

package r avenscar ;
publ i c c l ass AsyncEvent
{
 AsyncEvent () ;
 voi d addHandl er () ;
 voi d f i r e() ;
 voi d bi ndTo() ;
}

publ i c c l ass Spor adi cEvent ext ends AsyncEvent
{
 publ i c Spor adi cEvent (Spor adi cEvent Handl er handl er) ;
 publ i c voi d f i r e() ;
}

publ i c c l ass Spor adi cI nt er r upt ext ends AsyncEvent
{
 publ i c Spor adi cI nt er r upt (Spor adi cEvent Handl er handl er ,
 j ava. l ang. St r i ng happeni ng) ;
}

Figure 13. Associated classes to SporadicEventHandler class

Note, that all event handlers are bound to their associated event when the event is
created.

• Processing Groups, Overrun and Deadline-miss handlers
Processing groups (i.e. instances of the ProcessingGroupParameters class) are not
supported in the profile, as they require runtime support for the scheduler to determine
the feasibility of the temporal scope of a processing group (which thus hampers static
timing analysis). Overrun and deadline-miss handlers are also not required as
schedulability analysis has been performed off-line.

4.2.4. Synchronization
The synchronized construct in Java provides mutually exclusive access to shared
resources or objects, and programmers are always encouraged to use it to avoid data
races. However, excessive use of this mechanism may result in poor response time,
implying that high priority threads may have to wait until lower ones finish their
synchronized methods or blocks. Therefore, in order to prevent unbounded priority
inversions and possible deadlocks, the priority ceiling protocol
(Prior ityCeilingEmulation class) must be implemented and explicitly used for all
objects with synchronized blocks or methods. Furthermore, the profile does not

 14

support wait, notify and notifyAll methods of the object class. All condition
synchronization between real-time threads must be via sporadic event handlers as this
ensures that the timing properties of the synchronization are properly addressed.

WaitFreeQueues are not required as they are provided in the RTSJ to enable
communication between instances of NoHeapRealtimeThread and regular Java
threads.

4.2.5. Representation of time
Supported representations of time are

 � HighResolutionTime
 � AbsoluteTime
 � RelativeTime
 � RationalTime.

These classes allow representation of time with up to nanosecond accuracy and
precision [Bollella+2000a].

4.2.6. Timer classes
In the presence of the aforementioned classes that offer timely periodic and sporadic
behaviours of threads, the Timer and its subclasses are not necessary and not
available.

4.2.6. Asynchrony
The Asynchronous Transfer of Control (ATC) mechanism is not allowed, as it is one
of the most complicated features of the RTSJ and hinders timing and functional
analyses [Brosgol+2002].

4.3. Predictability of control and data flow
Predictability of control and data flow is required in order that static analysis
techniques can be used to aid programming proof techniques and worst-case
execution time analysis. All the rules and guidelines are listed in Appendix A, but
noteworthy ones in each of the three areas include

• Programming in the large

� All user-defined classes must include constructors that initialise all internal
variables and objects.

� Dynamic method binding should be minimised. In particular, method
overriding and the use of interfaces should be minimised.

• Concur rent Real-Time Programming

� Asynchronous transfer of control (ATC) and any thread aborting mechanisms
are disallowed.

� Use of wait, notify, and notifyall methods is disallowed.

• Programming in the small
� Use of continue and break statements in loops is disallowed.
� All constraints, such as one used in a for loop, must be static.
� Compound expressions in parameter passing to methods must be eliminated.

 15

� Expressions whose values are dependent on the order of evaluations should
be disallowed.

All the rules and guidelines will facilitate or greatly ease the use of program analysis
tools.

5. Implementation Issues

Along the same lines as the profile we present in this paper, it is indispensable to
utilise a runtime environment (called RVM in this paper) that has been designed and
implemented with highly dependable systems in mind. As mentioned earlier,
however, programs based on our profile should be valid RTSJ programs and execute
on a standard RTSJ platform with the same functional results.
 In addition, tool support is essential to analyse code in terms of functionality
and timeliness. A customised tool may be developed that incorporates all the rules and
guidelines listed in Appendix A and throughout this paper. Such a tool may also be
able to obtain the Worst-Case Execution Time (WCET) and worst-case memory
consumption of each thread, thus enabling schedulability analysis [Bernat+2000,
Hu+2002]. Standard Java tools or model checkers, such as the ESC/Java
[Leino+2000] and Java Pathfinder 2 [Brat+2000, JPF2001] may be used, too.

6. An Example Program

We present a simple and naive traction-control system that senses any difference
between the front- and rear-wheel spin speeds, and reduces the engine output if the
rear-wheels spin more quickly4. There is one periodic thread SpinMonitor and one
sporadic thread powerCutHandler , and as soon as an excessive rear-wheel spin is
detected SpinMonitor activates powerCutHandler . The real application logic is not
given as the example is purely intended to illustrate how the profile is used.

i mpor t r avenscar . * ;
i mpor t j avax. r eal t i me. Absol ut eTi me;
i mpor t j avax. r eal t i me. Rel at i veTi me;
i mpor t j avax. r eal t i me. I mmor t al Memor y;

publ i c c l ass Tr act i onCont r ol l er ext ends I ni t i al i zer
{
 publ i c voi d r un() / / I ni t i al i zer r out i ne
 {
 / / power Cut Handl er
 Spor adi cEvent Handl er power Cut Handl er = new Spor adi cEvent Handl er (
 new Pr i or i t yPar amet er s(15) , / / Pr i or i t y : 15
 new Spor adi cPar amet er s(
 new Rel at i veTi me(333, 0) , / / Mi ni mum i nt er ar r i val t i me
 5) / / Buf f er s i ze
)
 {
 publ i c voi d handl eAsyncEvent () / / Event handl er r out i ne
 {

4 A rear-wheel drive car (e.g. a Formula 1 car) is assumed.

 16

 / / Logi c f or handl i ng power Cut Event event
 / / i . e. ei t her cut t he engi ne power or br ake appr opr i at e
 / / wheel s
 }
 } ;

 f i nal Spor adi cEvent power Cut Event =
 new Spor adi cEvent (power Cut Handl er) ;

 / / spi nMoni t or
 Per i odi cThr ead spi nMoni t or = new Per i odi cThr ead(
 new Pr i or i t yPar amet er s(10) , / / Pr i or i t y : 10
 new Per i odi cPar amet er s(
 new Absol ut eTi me(0, 0) , / / St ar t t i me
 new Rel at i veTi me(333, 0) / / Per i od
) ,
 new Runnabl e() { / / Appl i cat i on l ogi c
 publ i c voi d r un()
 {
 / / Logi c f or checki ng f r ont and r ear wheel spi n speeds
 / / i . e. obt ai n sensor r eadi ngs f r om f r ont and r ear wheel s
 / / Once any excess of a pr edef i ned t hr eshol d i s det ect ed,
 / / f i r e t he f ol l owi ng event
 power Cut Event . f i r e() ;
 } ;
 }
) ;

 spi nMoni t or . st ar t () ;
 }

 publ i c st at i c voi d mai n (St r i ng [] ar gs)
 {
 Tr act i onCont r ol l er i ni t = new Tr act i onCont r ol l er () ;
 i ni t . s t ar t () ;
 }
}

7. Related Work

There have been a few subsets or profiles for Java suggested in the literature5. None
of them, however, are as complete or analytical as the Ravenscar-Java profile
described in this paper; they are surveyed below.

7.1. Sequential subset of Java by [Bentley1999]
Bentley [Bentley1999] defines a sequential subset of Java after assessing the
language. The subset consists of 21 rules that are effectively derived from
[Hutcheon+1992], [MISRA1998] and his assessment. All the rules are categorised
into six groups, as shown below with a summary of rules for each group.

• Rules Concerned With Ver ification

5 In fact, there are subsets of Java defined for other purposes than for use in high integrity systems. For
example, in [Drossopoulou+1999] the authors define a series of subsets in order to prove the type
soundness of them.

 17

Multithreading is not allowed as it may cause significant difficulties in analysing
programs, due mainly to the thread synchronisation mechanisms. In addition, methods
and constructors shall not be overloaded.

• Rules Concerned With Comments
Comments shall not be nested.

• Rules Concerned With Predictability
Variables or objects must be statically initialised (by constructors of appropriate
classes), so that no default values are expected. All constraints, such as, those used in
for-loops, must be static. This will greatly ease various analyses, for example,
memory requirement and timing analysis. The continue and break statements shall not
be used, except to terminate the cases of a switch statement, for which a break
statement is required for every non-empty case clause. Plus, all switch statements
should contain a final default clause. The return statement should only appear as the
last statement of a method. Further, methods must not have any side effects and not be
recursively invoked. The result of a method should never be an unconstrained array
type object.

• Rules Concerned With Constants
Octal constants (other than zero) shall not be used. Because numbers beginning with
zero are treated as octal values in Java, it is easy to make a mistake, e.g. inserting zero
before a decimal constant.

• Rules Concerned With Identifiers
All identifier names must be unique.

• Rules Concerned With Operators
All right-hand operands of the logical operator && and || shall not contain any side
effects, since the evaluation and execution of the operands are dependent on the truth-
value of the left-hand operand. What is more, assignment operators must not be used
in expressions which return Boolean values, for example, in if ((x=1) != y). Bitwise
operations, including bitwise shifts, shall not be performed on signed integer types,
and the evaluation of integer expressions should not lead to wrap-around.

While this subset will undoubtedly help produce analysable and predictable sequential
programs, it can be criticised for its restriction on multithreading, one of Java’s
inherent elements. Without the language-level support for multithreading and all the
associated synchronisation mechanisms, Java may not be considered as a great
evolution from its predecessors. In addition to this, the subset also fails to address
issues on the object-oriented programming model of the language, as well as real-time
issues.

7.2. Profile for high integrity Real-Time Java programs
[Puschner+2001]
Puschner and Wellings [Puschner+2001] suggest a Ravenscar-like profile for the
Real-Time Specification for Java [Bollella+2000a], and the following is a brief
summary of each of the key areas.

 18

• Threading Model
There are two execution phases, i.e. initialisation and mission phases. In the
initialisation phase, all necessary threads, event handlers, and memory objects are
created in a non time-critical manner. No threads will be allowed to start until the top-
priority thread with main() method finishes its execution. In the mission phase,
threads may not change their own or other thread’s priority except when forced by the
underlying implementation of the priority ceiling protocol. Sporadic or event-
triggered activities are implemented as event handlers, and only one handler is
allowed per event. All periodic threads must be an instance of
NoHeapRealtimeThread class and need to invoke waitForNextPeriod method to delay
execution until the start of their next periods. Asynchronous Transfer of Control
(ATC), overrun and deadline-miss handlers, and delay statements are not supported
by the profile; nor is dynamic class loading during the mission phase.

• Concur rency
The synchronized methods and blocks are the key mechanism for mutual exclusion to
shared resources in Java, and the priority ceiling protocol should be implemented in
the run-time system in order to avoid deadlocks. For similar reasons, wait, notify, and
notifyall are not supported, avoiding any queue management.

• Memory Management and Raw Memory Access
The heap-based garbage collection mechanism of Java is not supported due to its
long-debated unpredictability at run-time. Instead, only immortal memory and linear-
time scoped memory are supported as defined in the RTSJ. Immortal memory is used
by default to create objects during the initialisation phase, but is not allowed for
further object creation afterwards. In addition to this, all other memory objects must
only be created in the initialisation phase. The RTSJ classes for raw memory access
are also supported, so that device drivers, memory-mapped I/O, and other low-level
functions can be programmed.

• Time and Clock
All the RTSJ classes for the representation of time and real-time clocks are included
while the timer classes are not.

The profile is primarily focused on leaving out complex features of the RTSJ.
However, little attention is paid to the Java’s sequential language constructs (unlike
[Bentley1999]) and object-orientation features that can be problematic in performing
various static analyses. Furthermore, the profile is not consistent with the current
version of the RTSJ.

7.3. High integrity profile by the J Consortium
A sub-committee has been formed within the Real-Time Java Working Group of the J
Consortium to produce a high integrity profile based on the Real-Time Core
Extensions [JConsortium2000]. The profile has not been released yet, but according to
Dobbing [Dobbing2001] it will resemble the Ravenscar profile for Ada95
[Burns+1998]. It consists of four main themes: partitioning, memory management,
concurrency, and error recovery, respectively. Up-coming information will be found
at http://www.j-consortium.org/hip/index.shtml.

 19

• Par titioning
The main idea developed from the necessity to isolate critical code and data from non-
critical ones by means of firewall, so that less-trusted code will never be able to
interfere with high integrity programs. No exchange of objects, as well as dynamic
loading across the firewall will be allowed. This idea also extends to the temporal
requirements of such software, i.e. temporal firewall, which means deadlines of
critical threads must be met.

• Memory Management
The automatic garbage collection is not supported, nor is any memory compaction
mechanism. The use of general heap memory is also not allowed. There are three
memory allocation strategies, which are

 � stack allocation for method local objects that are automatically reclaimed
 � fixed size “allocation contexts” for local objects in each thread
 � global allocation at initialisation time for immortal objects.

• Concur rency
Three types of priority-based tasks are supported, namely, periodic, sporadic, and
interrupt tasks. In addition to these, the profile defines a subclass of the basic
CoreTask that must explicitly be started by another thread. All threads are created at
program start-up, e.g. as part of the initialisation code for classes, and it is not allowed
to declare a thread class as an inner class, so that there is no requirement for any
implicit join interface.

Shared resources and inter-thread synchronisations are managed through
protected objects, which rely on the underlying implementation of the Priority Ceiling
Protocol. However, no mutual exclusion locks or synchronised methods are supported
in the profile as they add considerable complexity to program analyses. Further, all
the asynchronous thread-to-thread operations, including stop(), setPriority(),
suspend(), resume(), and event-driven Asynchronous Transfer of Control (ATC)
mechanisms, are not permitted, nor are synchronised objects and counting
semaphores.

• Er ror Recovery
The standard exception handling mechanism of Java (i.e. throw-catch clause) is
maintained. It also supports access to specific physical addresses to allow objects to
be mapped, in order to, for example, save program state for fast recovery purposes.

Like the one proposed in [Puschner+2001], this profile is mainly focused on
sub-setting the Real-Time Core Extensions [JConsortium2000], but does not address
issues on the use of problematic language constructs and object-orientation features of
Java.

7.4. Formal subsets by [Drossopoulou+1999]
Drossopoulou et al. define three formal subsets of Java, i.e. that of the source
language (Javas), high-level representation of bytecode (Javab), and enriched version
of Javab (Javar). They present operational semantics, type system, and a proof of type
soundness for the subsets.

Javas is a substantial subset of the Java programming language, and it includes
some primitive types, interfaces, classes with instance variables and instance methods,

 20

inheritance, hiding of instance variables, overloading and overriding of instance
methods, arrays, implicit pointers and the null value, object creation, assignment, field
and array access, method call and dynamic method binding, exceptions and exception
handling [Drossopoulou+1999], as shown below.

Program ::= Def*
Def ::= class ClassId ext ClassName impl InterfName*
 { ClassMember*}
 | inter face InterfId ext InterfName* { InterfMember*}
ClassMember ::= Field | Method
InterfMember ::= MethHeader
Field ::= VarType VarId ;
Method ::= MethHeader MethBody
MethHeader ::= (void | VarType) MethId ((VarType ParId)*) throws ClassName*
MethBody ::= { Stmts [return Expr]] }
Stmts ::= (Stmt ;)*
Stmt ::= if Expr then Stmts else Stmts
 | Var = Expr | Expr.MethName(Expr*) | throw Expr
 | try Stmts (catch ClassName Id Stmts)* finally Stmts
 | try Stmts (catch ClassName Id Stmts)+
Expr ::= Value | Var | Expr.MethName(Expr*)
 | new ClassName() | new SimpleType([Expr])+ ([])* | this
Var ::= Name | Expr.VarName | Expr[Expr]
Value ::= PrimValue | RefValue
RefValue ::= null
PrimValue ::= intValue | charValue | boolValue | …
VarType ::= SimpleType | ArrayType
SimpleType ::= PrimType | ClassName | InterfaceName
ArrayType ::= SimpleType[] | ArrayType[]
PrimType ::= bool | char | int | …

Figure 14. Javas programs [Drossopoulou+1999]

In order to observe run-time behaviours of programs in Javas, they are formally
converted into Javab and Javar respectively, which are high-level representations of
bytecode with all necessary compile-time type information. Having done this, it is
possible to obtain operational semantics of each high-level language construct and
prove the soundness of the type system of the source-level subset, Javas.

While these subsets contain many important language constructs of Java that
are often omitted in other formal subsets (e.g. exceptions), they still overlook some of
Java’s inherent features, such as the multithreading and synchronisation models.
[Hartel+2001] surveys formal subsets and approaches aimed at improving the safety
of Java programs.

 21

8. Conclusions

In this paper, we have presented the Ravenscar-Java profile, a high integrity profile
for real-time Java. This restricted programming model excludes language features
with high overheads and complex semantics, on which it is hard to perform timing
and functional analyses. Several classes in the RTSJ are redefined, and a few new
classes are added, all resulting in a compact, yet powerful and predictable
computational model for the development of software-intensive high integrity real-
time systems.
 The profile is categorised into three areas, i.e. Programming in the large,
Concurrent real-time programming, and Programming in the small. These are then
structured based on the guideline framework developed by the U.S. Nuclear
Regulatory Commission, which derives many important attributes from existing
standards and is specific to high integrity systems. Various rules and guidelines,
centred around the reliability attribute, are given in each of the three following sub-
attributes:

 • predictability of memory utilisation,
 • predictability of timing, and
 • predictability of control and data flow.

 A simple example illustrating the use of our profile was also provided in
Section 6, before we reviewed four existing subsets of Java or the RTSJ. Most of the
subsets, however, overlook some important elements of the language, for example,
multi-threading and object-oriented programming model (thus are only concerned
with sequential parts), or vice versa.
 We believe that our profile is expressive enough to accommodate today’s
demanding requirements for a powerful programming model, yet concise enough to
facilitate the implementation of underlying platforms or virtual machines with great
ease.
 A subset of Java and the RTSJ, along the lines presented in this paper, would
be a powerful motivation to develop high integrity systems in Java, rather than in a
subset of C, C++ or Ada.

 22

Appendix A. Rules and Guidelines of the High Integrity
Profile for Real-Time Java

A.1. Programming in the large

A.1.1. Reliability
• Predictability of memory utilisation

Rule 1. Avoid dynamic class loading in the mission phase
(Also related to rules in Predictability of timing below)
Additional class loading at runtime is seen as overheads to both the virtual
machine and the application. Accurate memory and timing analyses are thus
impossible and dependent on the location and size of classes, as well as the
implemented loading and linking mechanisms.

In order to prevent dynamic class loading, either the virtual machine has to
preload all classes that the application utilises, or the application must not be
permitted to load any class in the mission phase by restricting the use of the
following classes and their subclasses (i.e. user defined class loaders). This can
be achieved by employing a simple class hierarchy analyser.

 • java.lang.ClassLoader
 • java.lang.Class (forName() methods of this class)
 • java.net.URL.ClassLoader
 • java.secur ity.SecureClassLoader

• Predictability of control flow

Rule 2. All user-defined classes must include constructors that initialise all
internal variables and objects
Java automatically allocates initial values to variables, but programmers must
not depend on those as they can be mistakenly used or misinterpreted. Such
initial values can also differ from system to system. This rule is equally applied
to reference types.

Guideline 1. Use only necessary and analysable classes in the class library for
the application domain
To keep the complexity and memory requirement of the application to the
minimum, not only should we use absolutely necessary classes in the library,
but also the behaviours of such classes must be statically analysable in terms of
temporal and functional characteristics.

Guideline 2. Minimise dynamic method binding
(Also related to rules in Predictability of timing below)
Dynamic method binding makes it complex to perform various flow analyses
and to obtain the worst-case execution time of a thread. Although there may be
only a few choices or branches of methods, the runtime overheads incurred by
the virtual machine will be hard to predict and, thus undesirable. Accurate
memory requirement analysis can also be difficult when different methods have

 23

different memory utilisation. Therefore, programmers are encouraged not to
excessively override and overload methods with ones that have significantly
differing logics and overheads, as this can result in a pessimistic timing
analysis. Where the logics are significantly different, the programmer should
avoid dynamic dispatching by ensuring that class hierarchies are not passed as
parameters to methods.

This guideline equally applies to utilising interface types; the virtual
machine needs to resolve a method reference every time it encounters an
interface method call at runtime by searching through an interface method table
for the method reference since the organisation of the table may vary from class
to class that implements the same interface [Venners1999].

Along the same line, monomorphic method invocations are greatly
recommended wherever possible, in place of polymorphic invocations. Code
optimisation tools may be used to assist this task.

• Predictability of timing

Rule 3. Do not use or override java.lang.Thread to create (non real-time)
threads
Threads must not be created by instantiating or overriding java.lang.Thread
class because it provides possibly unsafe asynchronous operations, as well as an
inaccurate timing and priority model that are inconsistent with the Real-Time
Specification for Java [Bollella+2000a]. It is also impossible to explicitly
specify memory requirements for such regular threads. Instead, the
RealtimeThread class of the specification must be used for all real-time and
even non real-time threads (in case of non real-time threads, they must be given
a low priority than critical ones and may not invoke waitForNextPer iod()
method). Ideally, however, applications should make use of the Initializer ,
Per iodicThread, and SporadicEventHandler classes defined in the profile.
Refer to A.2. Concurrent Real-Time Programming for a more detailed
explanation.

Rule 4. Do not utilise Java classes to schedule threads
(Also related to rules and guidelines in Predictability of memory utilisation and
Predictability of control flow above)
Programmers must not make use of the pure Java classes that can be used to
schedule threads with an incompatible timing and priority model. Such classes,
for example, java.util.Timer , java.util.TimerTask, and java.util.Calendar ,
ought to be replaced by appropriate counterparts of the Real-Time Specification
for Java [Bollella+2000a], which will be discussed in A.2. Concurrent Real-
Time Programming.

A.1.2. Robustness
• Controlling use of exception handling

Guideline 3. Minimise propagation of exceptions
Guideline 4. Localise handling of predefined exceptions
Guideline 5. Handle all user-defined exceptions
Guideline 6. Clearly express and document all user-defined exceptions
(All related to each other)

 24

In Java, when exceptions are not handled locally (i.e. within a try-catch block in
a method), their enclosing methods will be terminated and returned to the
calling method(s). This terminating-and-returning process will continue until an
appropriate handler is found. This not only hampers program analysability and
adds overheads at runtime, but also could lead to an entire system failure if no
proper handler can be located. Hence, every possible effort has to be made to
eliminate any uncaught exceptions, i.e. unchecked exceptions and errors.

The finally clause may be added to a try-catch block, which will always
execute before control transfers to a new destination (unless System.exit()
method is invoked in the try block). It can be used to prevent the propagation of
any uncaught exceptions at an outer level of the program or all application
threads (i.e. in the initialisation phase) by explicitly transferring control from
the finally clause itself to a safe destination, thus abandoning any pending (and
possibly disastrous) control transfers that could halt the whole system. A safe
destination, which may be part of the initialisation phase, may attempt to restart
the application threads that have failed due to an uncaught exception or error, or
replace them with threads that have different logics.

• Checking input and output

Guideline 7. Methods for input and output should be written defensively
It is a common practice to write a program such that it checks whether or not all
input and output values from it are within a legal or specified range. This may
prevent some unwanted programming errors. However, this job may be left to
program verification tools possibly tailored to a specific application.

A.1.3. Traceability
• Readability

See Readability in A.1.4. Maintainability.

• Controlling use of native functions and compiled librar ies

See Guideline 1 in Predictability of control flow above.

A.1.4. Maintainability
• Readability

Guideline 8. Comment on the purpose, scope, and date of creation for each
object
Guideline 9. Comment on the purpose, and exceptions raising and handling for
each method
Guideline 10. Identify dynamic method binding with comments

• Por tability

Any Java program that supports this profile should be executable on a virtual
machine that implements the Real-Time Specification for Java
[Bollella+2000a]. This, however, does not imply that such virtual machines will
always succeed in providing an accurate, robust and cost-effective runtime base
because they may not have been developed with high integrity applications in
mind.

 25

A.2. Concurrent Real-Time Programming

A.2.1. Reliability
• Predictability of memory utilisation

Rule 1. Avoid the use of any garbage collection mechanism and heap memory
It has long been argued that the runtime behaviour of the implementation-
dependent garbage collector is difficult to predict in terms of its resource
(including CPU time) and memory utilisation [Bollella+2000a, Venners1999].
Although there have been some works to improve the situation as in
[Kim+1999], it is still challenging to put them into practice. If, however, a
predictable garbage collector becomes available, a cautious decision should be
made by a reliable organisation after evaluating its usage in high integrity real-
time systems.

Without a garbage collector and the use of heap memory area,
programmers are able to utilise only immortal, (linear-time) scoped and
physical memory areas defined in the Real-Time Specification for Java
[Bollella+2000a] to allocate objects. The initialisation phase will use an
immortal memory area by default, and object creation in that memory area is
allowed only in the initialisation phase (Refer to Rule 2 below).

This rule also renders the use of java.lang.ref class obsolete, which
allows Java programs to interact with the garbage collector.

Rule 2. Object creation in an immortal memory area should be allowed only in
the initialisation phase
By definition, objects in an immortal memory area cannot be freed or moved,
and all threads in an application share the memory area [Bollella+2000a].
Hence, in an attempt to prevent memory run-out and possible programming
errors, this rule is enforced. On the other hand, object creation during the
mission phase should make use of LTMemory areas.

Rule 3. Do not create or instantiate schedulable objects in the mission phase
Creation or instantiation of schedulable objects, i.e. threads and events, will
cause the underlying virtual machine to allocate new memory space and handle
a new set of information, which will delay the execution of other threads for an
indefinite time. This will hamper low-level memory and timing analyses.
Therefore, all schedulable objects must be created in the non-time-critical
initialisation phase.

Rule 4. The size of an LTMemory area shall not be extended
(Also related to Rule 5 below)
In the RTSJ, the LTMemory (or linear time scoped memory) class takes two
parameters, one for the initial size, and the other for the maximum size in byte.
The two sizes must always be the same in this profile, because any additional
memory allocation at runtime may be seen as overheads to the virtual machine,
and may not be necessary thanks to static memory analysis.

Rule 5. Do not use nested LTMemory areas
The RTSJ allows nested memory scope areas, which can be inefficient and
error-prone because the virtual machine needs to check at runtime whether

 26

scopes are properly nested. This runtime check is not desirable, and may have
ambiguous time or memory requirements. With this restriction, static analysis
of the program can ensure all the assignment rules (for assigning references to
objects within different memory areas) are correctly obeyed. That is, an object
in the immortal memory/heap must not be able to obtain a reference to an object
within a scoped memory area to prevent any dangling references.

Rule 6. LTMemory areas must not be shared between Schedulable objects
As with the Rule 5 above, it is difficult to cost-effectively validate if a given
scoped memory area is exploited correctly when different schedulable objects
share it. Ideally, one thread should have only one dedicated LTMemory area to
it, or should use the immortal memory area. With this rule enforced, additional
overheads of dynamic memory access checking are eliminated, and the virtual
machine design and implementation can be significantly simplified.

Rule 7. Create all memory area objects during initialisation phase
All memory areas must be created in the initialisation phase, in order to prevent
any runtime overheads for allocating a new memory area.

Rule 8. Finalizers must not block (e.g. no sleep() method invocation in
finalizers)
Generally, finalizers of objects are invoked when the virtual machine detects
that there is no more reference to the objects. In the context of the scoped
memory area, this process should occur when a memory scope is escaped (i.e.
the reference count becomes zero), and all the finalizers of the objects in the
scope should be invoked. Finalizers of objects allocated in the immortal
memory area will only be invoked when the whole application terminates, or
there is no runnable non-demon thread.

The overheads of finalizers must be taken into account when performing
schedulability analysis, and the virtual machine can take some time to free up
used memory areas. On the whole, finalizers should be as compact as possible
and must not block.

• Predictability of control flow

Rule 9. Asynchronous transfer of control (ATC) and any thread aborting
mechanisms are disallowed
These features result in high runtime overheads, and obscure static timing and
flow analyses. All abnormal conditions that may necessitate the use of ATC
must be identified at design stages and prevented by means of off-line analysis
and design.

Rule 10. Do not use wait, notify, and notifyall methods
This rule eliminates the need for the whole object queue management in the
virtual machine, resulting in more efficient and deadlock-free programs.

Rule 11. Use synchronized methods or blocks to access shared objects
These original Java constructs provide mutually exclusive access to shared
resources or objects, and programmers are always encouraged to use them to
avoid data races. However, excessive use of these mechanisms may result in
poor response time, implying that high priority threads that become ready to run

 27

may have to wait until lower ones finish their synchronized methods or blocks.
Therefore, in order to prevent unbounded priority inversions and deadlocks, the
priority ceiling protocol must be implemented in the runtime system and
explicitly used for all objects with synchronized blocks or methods.

• Predictability of timing

Rule 12. Use only NoHeapRealtimeThread class to create periodic threads
In the absence of a garbage collector and heap memory area, the
NoHeapRealtimeThread class has naturally to be a default framework for
modelling periodic threads, which may typically utilise a linear-time scoped
memory area. Moreover, only the waitForNextPer iod method of that class
must be used to delay associated threads because other delay statements (e.g.
sleep) in Java almost certainly cause difficulties in timing and control flow
analyses, and are not compatible with the Real-Time Specification for Java.
Preferably, programmers should make use of the Per iodicThread class defined
in Section 4 of this paper, which automates the timely execution of a given
Runnable logic.

Rule 13. Use only BoundAsyncEventHandler class to model sporadic and
event-triggered activities
An instance of the BoundAsyncEventHandler class is bound to a dedicated
thread permanently, and this way of handling sporadic events eases timing
analysis. All event handlers must be initialised and set up with one event each
before the mission phase. Once this task is complete, the application must not
attempt to rebind the handlers with other event(s), since it will make timing
analysis simply impossible. Again, the SporadicEventHandler class, defined
in Section 4, should preferably be used.

Rule 14. Do not use processing groups, overrun and deadline-miss handlers
The RTSJ allows applications to define processing groups, and have overrun
and miss handlers associated with real-time threads. Yet, these are likely to be
overheads, as they require runtime support for the scheduler to determine the
feasibility of the temporal scope of a processing group. Timing analysis must be
statically performed before despatching high integrity software, thus making
processing groups and the two sorts of handlers unnecessary.

Guideline 1. Concurrent software design should be as simple as possible
There should be no more threads than necessary and no more thread
synchronisations than necessary, so that predictable programs will be produced
with low performance penalties. Once an application has entered its mission
phase no thread may be created and despatched.

A.2.2. Robustness
See Rule 9 in Predictability of control flow above.

A.2.3. Traceability
No specific rules and guidelines.

 28

A.2.4. Maintainability
• Readability

Guideline 2. Identify threads with comments
Guideline 3. Identify memory objects with comments

A.3. Programming in the small

A.3.1. Reliability
• Predictability of memory utilisation

Rule 1. Avoid method recursion
Recursive method calls (including mutually recursive calls) can dramatically
consume available memory space at runtime, and an erroneous termination
condition can cause unbounded recursion. However, this rule may be relaxed if
the memory consumption for each method and termination conditions can be
formally verified.

• Predictability of control flow

Rule 2. Do not use continue and break statements in loops
The continue and break statements can be used to jump out of a loop in an
uncontrolled manner, which makes static analysis difficult to perform.

Rule 3. Use brackets for every branch in if-else statements
The if-else statements can have a branch that has a single statement, and such
branches do not need brackets. But it can be confusing and lead to
programming errors.

Rule 4. All constraints, such as one used in a for loop, must be static
This facilitates the prediction and analysis of memory and time requirements of
loops prior to program execution. If, however, constraints can change during
the course of the program, then at least a tight upper bound must be easily
deducible.

Rule 5. Variable declarations must include a static initialisation expression
Java automatically allocates initial values to variables, but programmers must
not depend on those as they can be mistakenly used or misinterpreted. Such
initial values can also differ from system to system. This rule is equally applied
to reference types.

Rule 6. Eliminate compound expressions in parameter passing to methods
Expressions that are used as part of parameters for method calls can easily
cause side effects and misinterpretation, leading to unintended behaviours of the
program. These particularly include ones with the increment and decrement
operators (i.e. ++ and --), which depending on the syntactic position can
produce different results. Relational expressions should not appear.

Rule 7. Avoid expressions whose values are dependent on the order of
evaluations

 29

In relational operations, the evaluation of the right-hand expression of a logical
operator (such as the logical AND (&&)) is decided by the truth-value of the
left-hand operand. In other words, only if the left-hand expression is considered
to be true, will the right-hand one be evaluated. Consequently, it is not
recommended for a right-hand expression to contain any operators that can have
an influence on the intermediate result of any object or variable, like the
assignment operator.

Guideline 1. Use parentheses rather than rely on the default order of
precedence
Guideline 2. Use parentheses in bitwise operators
Guideline 3. Use parentheses in comparisons and conditions
Parentheses should be used wherever the meaning of an expression can be
vague and needs to be clarified. This will prevent any misinterpretation by
programmers.

Guideline 4. Use only one return statement per method, preferably at the end of
each method
Multiple return statements can make flow and timing analyses difficult or
pessimistic to perform.

Guideline 5. Define defaults in switch-case statements
It is a good programming practice to explicitly state that a switch-case
statement performs either some given operations or default operations in case
there is no condition satisfied.

• Predictability of timing

Rule 4 and Guideline 4 in Predictability of control flow remain relevant here.

• Predictability of mathematical or logical result

Rule 8. Use the strict floating-point mode (FP-strict) instead of the FP-default
mode
The FP-default, introduced in Java 1.2, allows a virtual machine to utilise
supported floating-point hardware to speed up its execution, and may store
intermediate data in the hardware specific format. However, this way of
representing intermediate data is dependent on underlying hardware, and thus
hinders portability and even accuracy. Therefore, the original IEEE 754 formats
of Java should be used. Nevertheless, this rule may be relaxed if the required
precision for a particular application is not important.

Rule 9. Statements that access shared resources or objects must be guarded by a
synchronized block or method
Data races can occur if a shared object or variable is accessed by more than one
thread, and at least one of them updates the object. The original synchronized
statement of Java should be used to avoid race conditions, and it is generally the
job of the programmer (or a tool) to ensure such statements are safely used and
compact enough not to seriously affect the response time of other threads.

Rule 10. Do not use octal constants

 30

Octal constants can be confused with other (decimal) numbers, since any
number beginning with a zero will be interpreted as an octal constant by the
compiler.

Guideline 6. Remember that integers are truncated when divided
The results of integer divisions are always truncated in Java without any
warning such that the precision of the values will be reduced. Floating-point
types should be used to prevent any integer truncation.

Guideline 7. Ensure that arithmetic operations produce a result that can be
correctly represented
The ranges of values for each type must be considered, and only appropriate
values and variables of correct types should be used. Overflow and underflow
will never be caught or warned by the compiler, and values may be widened if
different types of values and variables are used in expressions.

Guideline 8. Shift operators must be used with caution
The unsigned right shift operator, i.e. >>>, can result in an unexpected value
when applied to integer types. That is, Java integer types are all signed and this
operator will fill the high-order bits of an integer with zeros, thus possibly
changing the sign of that integer value to positive. The left shift operator can
also alter the sign of a value.

A.3.2. Robustness
None.

A.3.3. Traceability
• Controlling use of built-in functions and compiled librar ies

Guideline 9. Minimise the use of native methods (especially without source
code)
The use of native methods will certainly hamper portability, and such methods
may not have been constructed in the same manner that most other high
integrity software is built. In other words, they may inconsistently handle
errors, input and output data, and not follow programming rules developed by a
governing body or a profile such as this.

A.3.4. Maintainability
• Readability

Guideline 10. Blocks should be bounded with brackets
Guideline 11. Minimise use of literals

 31

Acknowledgements
This work has been funded by the EPSRC under award number GR/M94113. The
authors gratefully acknowledge the comments of Greg Bollella on an early draft of
this paper.

References
[Amme+2001] W. Amme, N. Dalton, M. Franz, and J. Von Ronne, SafeTSA: A Type Safe

and Referentially Secure Mobile-Code Representation Based on Static Single
Assignment Form, Accepted for the 2001 ACM SIGPLAN Conference on
Programming Language Design and Implementation 2001.

[Appel1999] Andrew W. Appel, Protection against untrusted code: The JIT compiler
security hole, and what you can do about it, http://www-
106.ibm.com/developerworks/library/untrusted-code/, as of January 2001.

[Audsley+1993] N. Audsley, A. Burns, M. Richardson, K. Tindell, and A. Wellings, Applying
New Scheduling Theory to Static Priority Pre-emptive Scheduling, Software
Engineering Journal, 8(5), 284-92, 1993.

[Azevedo+1999] A. Azevedo, A. Nicolau, and J. Hummel, Java Annotation-Aware Just-In-
Time (AJIT) Compilation System, ACM 1999 Java Grande Conference, 1999.

[Barnes1998] J. Barnes, High integrity Ada: the SPARK approach, Addison Wesley, 1997.
[Bentley1999] S. Bentley, The Utilisation of the Java Language in Safety Critical System

Development, MSc dissertation, Department of Computer Science, University of York,
1999.

[Bernat+2000] G. Bernat, A. Burns, A. Wellings, Portable Worst Case Execution Time
Analysis using Java Bytecode, In Proceedings of the 12th EUROMICRO conference
on Real-Time Systems, 2000.

[Bollella+2000a] G. Bollella, et al, The Real-Time Specification for Java, Addison-Wesley,
2000.

[Bollella+2000b] G. Bollella and J. Gosling, The Real-Time Specification for Java, IEEE
Computer, Vol. 33, No. 6, June 2000.

[Bowen+1998] J. P. Bowen and M. G. Hinchey, High Integrity System Specification and
Design, Springer-Verlag London, 1998.

[Brat+2000] G. Brat, K. Havelund, S. Park, and W. Visser, Model Checking Programs, In
IEEE International Conference on Automated Software Engineering (ASE), Sep. 2000.

[Brosgol+2002] B. M. Brosgol, S. Robbins, and R. J. Hassan II, Asynchronous Transfer of Control
in the Real-Time Specification for Java, In Proceedings of the 5th IEEE International
Symposium on Object-oriented Real-time distributed Computing (ISORC), 2002.

[Burns+1998] A. Burns, B. Dobbing, and G. Romanski, The Ravenscar Tasking Profile for High
Integrity Real-Time Programs, In L. Asplund, editor, Proceedings of Ada-Europe 98,
LNCS, Vol. 1411, pages 263-275, Berlin Heidelberg, Germany, Springer-Verlag 1998.

[Burns+2001] A. Burns, and A. Wellings, Real-Time Systems and Programming Languages: Ada
95, Real-Time Java and Real-Time POSIX, 3rd Edition, Addison Wesley, 2001.

[Dobbing2001] B. Dobbing, The Ravenscar Profile for High Integrity Java Programs?,
ACM Ada Letters, Vol. 21, Issue. 1, March 2001.

[Drossopoulou+1999] S. Drossopoulou and S. Eisenbach, Describing the Semantics of Java
and Proving Type Soundness, in LNCS 1523 Formal Syntax and semantics of Java
(ed. J. Alves-Foss), Springer-Verlag, Berlin, 1999.

[Gong1999] Li Gong, Inside Java™ 2 Platform Security: Architecture, API Design, and
Implementation, Addison-Wesley, 1999.

[Gosling+2000] J. Gosling, B. Joy, G. Steele, and G. Bracha, The Java Language
Specification, 2nd Edition, Addison Wesley, 2000.

 32

[Hartel+2001] P. H. Hartel and L. Moreau, Formalizing the Safety of Java, the Java Virtual
Machine, and Java Card, ACM Computing Surveys, Vol. 33, No. 4, December 2001.

[Hu+2002] E. Y-S Hu, G. Bernat, and A. Wellings, Addressing Dynamic Dispatching Issues
in WCET Analysis for Object-Oriented Hard Real-Time Systems, In Proceedings of the
5th IEEE International Symposium on Object-oriented Real-time distributed Computing
(ISORC), 2002.

[Hutcheon+1992] A. Hutcheon, B. Jepson, D. Jordan, and I. Wand, A Study of High Integrity
Ada: Language Review, Technical Report SLS31c/73-1-D, Version 2, York Software
Engineering, University of York, July 1992.

[JConsortium2000] J Consortium, International J Consortium Specification: Real-Time
Core Extensions, Revision 1.0.14, www.j-consortium.org, September 2000.

[JPF2001] Java PathFinder, http://ase.arc.nasa.gov/visser/jpf/, last accessed in April 2001.
[Kim+1999] T. Kim, N. Chang, N. Kim, H. Shin, Scheduling Garbage Collector for

Embedded Real-Time Systems, In Proceedings of the LCTES ’99, ACM SIGPLAN
Workshop on Languages, Compilers, and Tools for Embedded Systems, 1999.

[Kwon+2002] J. Kwon, A. Wellings, and S. King, Assessment of the Java Programming
Language for Use in High Integrity Systems, Technical Report YCS 341, Department
of Computer Science, University of York, 2002, available at
http://www.cs.york.ac.uk/ftpdir/reports/YCS-2002-341.pdf.

[Leino+2000] K.R.M. Leino, G. Nelson, and J.B. Saxe, ESC/Java User's Manual, SRC
Technical Note 2000-002, Compaq Systems Research Center, Palo Alto, CA, 2000.
Available at http://www.research.compaq.com/SRC/esc/papers.html, last accessed in
July 2001.

[Leveson1986] N. G. Leveson, Software Safety: Why, What, and How, Computing Surveys,
Vol. 18, No. 2, ACM, June 1986.

[Leveson1991] N. G. Leveson, Software Safety in Embedded Computer Systems,
Communications of the ACM, Vol. 34, No. 2, February 1991.

[Liu+1973] C. Liu and J. Layland, Scheduling Algorithms for Multiprogramming in a Hard
Real-time Environment, Journal of ACM, 20(1), 46-61, 1973.

[MISRA1998] The Motor Industry Software Reliability Association, Guidelines for the use
of the C language in vehicle based software, The Motor Industry Research
Association (MIRA), 1998.

[NUREG/CR-6463] H. Hetcht, M. Hecht, S. Graff, et at, Review Guidelines for Software
Languages for Use in Nuclear Power Plant Systems, NUREG/CR-6463, U.S. Nuclear
Regulatory Commission, 1997, also available at http://fermi.sohar.com/
J1030/index.htm, last accessed in January 2002.

[Parnas+1990] D. L. Parnas, A. J. van Schouwen, and S. P. Kwan, Evaluation of Safety-
Critical Software, Communications of the ACM, Vol. 33, No. 6, June 1990.

[TimeSys2002] TimeSys™, Products and Services: Real-Time Java, available at
http://www.timesys.com/rtj/index.html, last accessed in January 2002.

[Puschner+2001] P. Puschner and A. J. Wellings, A Profile for High Integrity Real-Time Java
Programs, In Proceedings of the 4th IEEE International Symposium on Object-oriented Real-
time distributed Computing (ISORC), 2001.

[Sommerville2000] I. Sommerville, Software Engineering, 6th Edition, Addison Wesley,
2000.

[Sun2000] Sun Microsystems®, Java™ 2 Platform Micro Edition (J2ME™) Technology
for Creating Mobile Devices, White paper, available at http://java.sun.com/j2me/docs/,
Sun Microsystems® 2000, last accessed in May 2002.

[Venners1999] B. Venners, Inside the Java Virtual Machine, 2nd Edition, McGraw Hill,
1999.

