
Towards New Methods for Developing Real-Time Systems:

Automatically Deriving Loop Bounds Using Machine Learning

Dimitar Kazakov1 and Iain Bate2

1Artificial Intelligence Group
2Real Time Systems Group

1,2Department of Computer Science, University of York,
York, YO10 5DD, United Kingdom

e-mail: {dimitar.kazakov,iain.bate}@cs.york.ac.uk

Abstract

Most development, verification and validation

methods in software engineering require some form of

model populated with appropriate information. Real-

time systems are no exception. However a signifi-

cant issue is that the information needed is not al-

ways available. Often this information is derived us-

ing manual methods, which is costly in terms of time

and money. In this paper we show how techniques

taken from other areas may provide more effective and

efficient solutions. More specifically machine learn-

ing is applied to the problem of automatically deriving

loop bounds. The paper shows how taking an approach

based on machine learning allows a difficult problem

to be addressed with relative ease.

1 Introduction

The need for new methods for developing real-time
systems emerged when considering how Worst-Case
Execution Time (WCET) analysis could be improved.
The key issue was obtaining sufficient information
about the control flow of the software being analysed.
This is widely recognised as a difficult problem in-
dependent of the subsequent methods used [6, 30, 4].
The need for appropriate information in order to make
decisions and perform analysis is common within any
form of science. Unsurprisingly we are not the first to
realise this:

“Measure what can be measured, and make mea-

surable what cannot be measured.” - Galileo Galilei

circa 1610

“When you can measure what you are speaking

about, and express it in numbers, you know something

about it; but when you cannot measure it, when you

cannot express it in numbers, your knowledge is of

a meager and unsatisfactory kind. It may be the be-

ginning of knowledge, but you have scarcely, in your

thoughts, advanced to the stage of science.” - Lord

Kelvin circa 1890

Further consideration of embedded real-time sys-
tems show a number of other problems for which
knowledge is needed but difficult to come by. These

span a wide range of areas, such as traditional design
and verification techniques, evolutionary design using
search algorithms and bio-inspired approaches, and
mechanisms to support on-line adaption for dynamic
systems. Examples include the actual release patterns
of non-periodic tasks, the branch prediction behaviour
of processors, bottlenecks in multiprocessor systems,
ad-hoc routing in sensor networks and timing over-
runs caused by extraordinary events (e.g. due to fault
handling code being executed). There are many more.
One characteristic of the examples is a deterministic
causal chain originating from the dependencies within
the systems which means these relationships can be
learnt. The field of machine learning is a mature field
and the conjecture is that it may already hold many
of the answers needed.

Irrespective of domain or application a common
component of methods for developing real-time sys-
tems, and in particular their schedules, is the need
for the WCET of software [3, 1]. WCET research has
always been founded on the principle that specific de-
tails about the hardware and software are available.
If the details are not available then a great deal of pes-
simism may be introduced into the analysis in order to
get a safe upper bound for the WCET. However deter-
mining the details can be computationally expensive
especially if inappropriate techniques are employed.
This often leads to a trade-off between pessimism and
the cost of analysis (both to initially set up the anal-
ysis and then to run the analysis). Examples of the
forms of analysis that present difficulties include for
software determining loop bounds and mutually ex-
clusive paths, and for hardware analysing cache and
branch prediction behaviour. All of these examples
are made more complex as their behaviour is influ-
enced by specific dependencies in the data generated
during execution. Often this leads to analysis that
requires significant manual input from the developer.

To counter these problems, Lundquist [12] pro-
posed a combination of automated analysis for the
majority of the problem with the rest of the informa-
tion being provided either manually or accepting the



pessimism through not providing it. The disadvan-
tage of Lundquist’s approach is that it either relies on
a bespoke compiler tailored to the needs of his analy-
sis or significant post-processing of the output from a
conventional compiler. For many developments this is
undesirable. The solution in this paper proposed here
is to determine methods by which the majority of in-
formation needed can be learnt automatically based
on measurements. The rest of the information is to
be provided by the developer with assistance, to ease
the problem, from the analysis and machine learning.
Whilst the aim is to move towards a generally appli-
cable approach for real-time systems, this paper will
focus on the problem of loop bound derivation. An
important issue is that the estimates obtained need
to be safe without too much pessimism. Where pos-
sible independent verification or validation should be
carried out. The solution is demonstrated by consid-
ering the problem of loop bound derivation. In this
case validation of the results is possible based on the
work of Chapman [2]. However demonstration of val-
idating the results is outside the scope of this paper.

The structure of the paper is as follows. Section 2
describes the previous work on WCET analysis and
then motivates the need for new techniques building
towards a set of objectives for this particular piece of
work. Then, section 3 describes the problem to be
addressed in more detail. Based on the problem defi-
nition, a framework for analysis is proposed in section
4. Next, in section 5 the framework is evaluated us-
ing some appropriate examples. Finally the paper is
summarised and future work is proposed in section 6.

2 Background and Motivation

Despite being one of the first challenges identified
in the area of WCET analysis [18, 19], the derivation
of loop bounds remains largely unsolved [7]. How-
ever unlike other challenges within WCET, e.g. cache
analysis, the problem has not become more difficult
as technology has evolved. One reason why the auto-
matic derivation loop bound challenge has potentially
not been solved is that generally speaking it falls into
the category of undecidable problems [21] defined by
the halting problem [29].

Most work on WCET analysis assumes that loop
bounds have been determined and associated with the
software using an appropriate schema. The schema
can either be in the form of a separate representation,
in the case of Park’s timing schema [18, 19], or embed-
ded in the software, in the case of Chapman’s anno-
tations within SPARK Ada [2]. Both of these works
however make the assumption the loop bounds have
been derived and validated either manually or auto-
matically. Where WCET analysis has been deployed
in industry, it is manual derivation that has been used.
This is extremely expensive and tedious especially as

the information needs to be maintained during the
lifetime of the project. This paper is concerned with
the automatic derivation of the loop bounds.

Loop bounds are important to the WCET analysis
problem as loop bounds directly influences a number
of parts of the overall WCET analysis. This is inde-
pendent of whether tree-based [10], path-based [21] or
Integer Linear Programming [22, 25] forms of WCET
analysis is used. Loop bounds influences both data
and instruction cache analysis as the current cache
state, and hence the likelihood of a cache miss, is di-
rectly affected by the number of times and how re-
cent memory accesses have been made. Therefore
loops within software are a significant issue. Similarly
branch prediction behaviour is affected by control flow
behaviour as the recent execution of branches changes
the branch prediction state, and result, which is re-
lated to the number of times a loop is executed. Fi-
nally the pipeline behaviour is influenced as the loop
bounds affects how many copies of the block(s) con-
taining the loop body are concatenated when perform-
ing the analysis of the instructions.

Two principal approaches have been proposed
for automatically deriving loop bounds. Firstly
Lundquist [11] used symbolic execution. The work
provides a great deal of promise, however there is the
key limitation that it is reliant on having a cycle accu-
rate processor simulator that can be heavily modified
to support the proposed approach. The next signifi-
cant attempt to solve the problem was by Gustafsson
[6] using abstract interpretation. The early work was
based on a subset of Real-Time Talk which was con-
sidered restrictive. Later the work was expanded to
deal with the ‘C’ programming language [7] but this
required specialised modification of a compiler and in-
termediate language representation. Whilst the pro-
posed approach has many interesting features, it is
considered too restrictive a solution. The other po-
tential issue with this approach is it relies on the user
providing information on the ranges of some variables
if it is to be accurate, i.e. not too pessimistic.

In contrast machine learning based on measure-
ment provides an interesting alternative as loop
bounds have well-defined relationships. Also, the safe-
ness of the results derived can still be validated using
the proof mechanisms of Chapman [2] if the same as-
sumptions are made. Demonstration of this is out of
the scope of this paper.

Machine Learning (ML) aims at describing the
properties of a set of observations from a given source,
and/or making predictions about the nature of fu-
ture observations from the same source. Both goals
are achieved by changing the representation of avail-
able data as expressed in its original form (or object

language) into another representation (using another
formalism, known as hypothesis language). The new
representation copies closely the information encoded



in the original data, but is usually more general, and
allows one to make statements about yet unseen cases.
ML can be seen as the search for a mapping from a set
of inputs to an output; this mapping is often a func-
tion; when it is Boolean (i.e., a predicate), it could
be seen as defining a concept as a subset C of its do-
main (or universe) U. In the context of loop bound
determination, this means relationships between the
software’s variables and the loop bound can be deter-
mined.

No ML algorithm can make predictions unless it
employs a bias. In the case of concept learning,
this means that not all possible subsets of the uni-
verse U are expressible in the hypothesis language
(see [14] for details of the argument). In general,
the bias will restrict the range of possible functions
(models, hypotheses) that can be used as hypothe-
sis language. For instance, the set of data points
{(0, 0), (π, 0), (2π, 0)} can variously be modelled by
the functions y = 0, y = cosx or y = x(x−π)(x−2π),
depending on the bias, which may restrict the hypoth-
esis to a linear, trigonometric or polynomial function.

Such a bias is also called language bias to dis-
tinguish it from the preference bias, allowing one to
choose between alternative models with equal cover-
age of the available data. Here some simple, but gen-
eral principles (heuristics) are often employed. For
instance, Occam’s razor [14] favours the simplest
hypothesis language, while the Minimal Description
Length (MDL) bias [23] suggests a trade-off between
the complexity of the hypothesis language and that of
the resulting representation of the data.

The area of ML focussing on the search for quanti-
tative laws, expressed as equations, is known as equa-
tion discovery. When an initial draft of the equation
is provided, the process is known as equation revision
[27]. In this case, initial input is required from ex-
perts, but the changes carried out by the learner can
be non-trivial, and result in substantial improvements
[28].

Inductive Logic Programming (ILP) is a form of
ML where both data and hypotheses are expressed in
first order logic [17]. The great advantage of ILP is in
its ability to vary its language bias through the use of
background knowledge, the only set of predicates that
can be used to describe the target hypothesis. For
instance, the predicates parent/2 and male/1 can be
used to learn the definition of father/2. While such
categorial hypotheses are more common, it is possible
to define operators and standard functions as back-
ground knowledge, and search for the equation that
best models the data. This potential is exploited for
instance by the system Lagramge [26]. Another ap-
proach where a similarly flexible hypothesis space is
combined with evolutionary search is Cartesian Ge-
netic Programming [13].

The area of real-time systems analysis, and in par-

ticular WCET analysis, is in many ways an excellent
ground for the application of ML and ILP.

1. The data may however be complex, yet it con-
tains no noise, a major issue in almost any other
ML application area.

2. The control variable range is discrete, and often
can be sensibly restricted to an interval. One can
make a simplifying assumption and treat such
data as measured on a nominal scale. As a result,
even the simplest ILP algorithms can be applied
without any adaptations.

3. Implementing equation discovery with ILP
means one has to deal with “positive only” learn-
ing: the data consists of examples (instantia-
tions) of the equation, but no counter-examples
are provided. ILP, where both are usually
needed, overcomes the issue by generating ran-
dom examples, and assuming that the substantial
majority of those are counter-examples. Choos-
ing a sufficiently large range for the control/input
variables will guarantee this assumption, while
their discrete nature makes it easier to choose a
sensible sampling strategy (already available in
off-the-shelf ILP tools, such as Progol [15]).

4. As long as the analysed software is not part of
a control loop involving external hardware (in-
cluding the “physical system”), the cost of ob-
taining data is very low, which means one can
test any hypothesis at will, e.g., to meet the re-
quirements of a statistical test. Since the input
variable domains can be very large, one can em-
ploy active learning to let the learner select the
examples, for instance, to minimise uncertainty
in the model [5]. The whole process of learning
and testing can be automated in a closed loop

machine learning style [8].

3 Problem Definition

Two types of loops are to be considered here - flat
loops and nested loops. A typical flat loop is illus-
trated in Figure 1 and a nested loop in Figure 2. Here
is assumed the semantics of an individual loop means
i in Figure 1 takes the values m1, m1+1, m1+2, ··, m2.
In the general case the loop count for the body of the
flat loop is given in equation (1) and the nested loop
in equation (2). A generalised form of equation (2) is
presented in equation (3).

lcflat = m2 − m1 + 1 (1)

lc2 lev nest ≤ (m2 − m1 + 1) · (n2 − n1 + 1) (2)

lcgen nest ≤
∏

∀i∈loops

(mi,2 − mi,1 + 1) (3)

Clearly an arbitrary level of nesting can be supported.
With respect to the loop bounds (i.e. m1, m2, n1, n2)



for i = m1 to m2 loop

loop body
end loop

Figure 1. Flat loop

there are two types - invariant and variant. The vari-
ant case is the most difficult as it is data dependent
and in the general case can be expressed with arbi-
trary complexity. Also the scope of the variables that
make it data dependent can be the whole program and
their range the limits of the data type that represents
them. These reasons are key to why the problem is
classed as undecidable in the general sense [2].

To make the problem manageable the typical re-
strictions of real-time systems proposed by Chapman
[2] are followed. The following restrictions were cho-
sen by Chapman as they fall within the subset defined
by the Presburger arithmetic subset which helps make
the problem decidable. It is considered the restric-
tions are representative of typical coding standards for
real-time systems. Other work [9, 21] have adopted
more stringent restrictions on the loop bounds to be
supported in order for the problem to be decidable.

1. Integer constants

2. Variables that are constant integers

3. +, - operators

4. Multiplication by an integer constant

5. Variables that are a loop index for an enclosing
for loop

The last of these restrictions could lead to pes-
simism if the maximum value given by equation (2)
is used, i.e. (m2 −m1) · (m2 −m1 − 1). Consider the
typical nested loop used in sort routines shown in Fig-
ure 3. In this case the loop bound of the nested body
is given in equation (4). The result, lcsort, is consid-
erably less (actually half the value) than the general
case for a nested loop, lc2 lev nest, which means an
overestimate, and hence pessimism, can be avoided
without compromising the safeness of the result.

lcsort =
(m2 − m1) · (m2 − m1 − 1)

2
(4)

for i = m1 to m2 loop

for j = n1 to n2 loop

loop body
end loop

end loop

Figure 2. Nested loop

for i = m1 to m2 loop

for j = m1 to m2 − 1 − (i − m1) loop

if a[j] < a[j+1] then

· · ·
end loop

end loop

Figure 3. Sort routine

4 Analysis Framework

There are three key parts to the analysis frame-
work. Firstly, the software under test should be ex-
amined in order to provide information on which vari-
ables are within scope and monitored to indicate how
many times each block of the software is exercised.
Approaches for doing this are well understood so the
mechanisms are not considered further here. It is con-
sidered these approaches can be carried out as a sepa-
rate testing activity or to save effort as part of testing
already carried out, e.g. structural or functional test-
ing.

Secondly, there are test cases used to exercise the
software. These should be sufficient to identify:

1. whether a flat loop or the outer loop has constant
loop bounds or they are dependent on variable(s)
that are constant within the scope of the loop

2. where the loop bound is constant the value needs
to be determined

3. where the loop bound is dependent on constant
variables which variables are featured and how
they are related with respect to the allowed arith-
metic operators

The method used is to randomly alter each vari-
able within the scope of the loop until N consecutive
iterations have been performed without anything new
being learnt about the loop bounds. The value of N

will be considered later. This will be sufficient to iden-
tify whether the variable is related to the loop bound
and for the derived nature of the relationship to be
established.

Finally, the information from testing is used to
learn the characteristics of the software in order to
determine the actual loop bounds or where this is not
possible the relationship that defines it. Where inner
loop(s) of a nested loop potentially has a variable loop
bound (i.e. it is dependent on the number of times an
outer loop iterates) then only the case resulting in the
worst case execution time is represented in the train-
ing data. That is, the case in which the maximum
number of iterations of the inner loop occurs given
the number of times the outer loops executes.

We look at the execution time analysis of nested
loops to demonstrate the potential of an empirical,



machine learning approach. The nested loop exam-
ple is chosen as it is more complex, interesting and
challenging than the flat loop and effectively the flat
loop case has to be solved as part of considering the
nested loop. We assume the data available contains
the number of times each of the nested loops has been
(re-)entered, as well as the overall number of times
the body of the innermost loop has been run. This
information can easily be obtained by instrumenting
the code during testing. It is assumed the instru-
mented code does not alter the control flow, and hence
loop bounds, of the system being tested. The target
hypothesis then expresses the latter parameter as a
function of the other observations. The ILP learner is
provided with background knowledge in the form of
algebraic operators. While it is possible to define a hy-
pothesis language containing inequalities, which could
be used to express upper (worst-case) bounds, here we
look for the exact formula. Once the data has been
made available, the range of all variables is capped.
As we mentioned earlier, this allows the ILP learner to
carry out positive-only learning, i.e., sample the range
and generate random data entries, which are substi-
tuted for counter-examples. The greater that range,
the higher the likelihood for these random entries to
be negative examples. For instance, for a function of
type (D×D× · · · ×D) → D, where D is a set of size
10, a random n-tuple has a 90% chance of not being
a valid instantiation of that function. The final step,
which involves a certain amount of craftsmanship, is
to define how the search through the hypothesis space
is guided, and pruned. Both are done to improve the
search efficiency, and to cap its maximum complexity.
This step is not unique to the application at hand,
it is commonly done whenever ILP is used [16], and
the choices made in our case are given by the formal
properties of the data, rather than based on specific
domain knowledge. Still, a good understanding of the
way an ILP learner operates is required, and the need
to master this element of the ILP setup is one of the
main obstacles to its wider use.

5 Evaluation

Here we illustrate the idea with a number of test
cases. Initially, we look at the case of two nested
loops, which are executed A and B times respectively
(cf. Figure 2). The inner loop body will obviously
be run A ∗ B times. The data set is generated by
enumerating all combinations of the two independent
variables for values between 1 and 5, combining these
with their product, and storing the resulting instances
as clauses of the target predicate tp/3. Only 9 out of
all 25 clauses are included in the data set. In line with
the restrictions on real-time systems, discussed at the
end of Section 3, two operators, multiplication and
addition are supplied as background knowledge, i.e.,

these operators are the only ones that can be used in
hypotheses to link the three variables (see Table 1).
The ILP learner is also informed that the range of
all three attributes is limited to {1, . . . , 25}. The ILP
learner Progol4.4 is then run on the data. The output
is given in Table 2. The only clause found matches
the data perfectly: C = A∗B, i.e., the third attribute
is the product of the other two.

The second example extends the problem to three
nested loops with independent ranges (see Figure 4).
The hypothesis language is based on the same two
operators, “∗”, and “+”. The target predicate now
contains 4 arguments, the 3 independent variables A,
B and C, and their product D. The range of A, B

and C was {1, . . . , 5}; just over half (63) of all 125
combinations were used as training examples. Progol
considered {1, . . . , 125} as the range for all four vari-
ables. This time, the learning took 3.56s (all trials
are performed on a 750MHz Pentium 3 PC), and the
final hypothesis contained four cases shown in equa-
tions (5–8).

D = B ∗ C (5)

D = A ∗ B ∗ A when C = A (6)

Table 1. Data set 1

% Background knowledge

sum(A,B,C) :-

A is B + C.

product(A,B,C):-

A is B * C.

% Target predicate:

% tp(A,B,Product)

tp(1,1,1).

tp(1,2,2).

tp(1,5,5).

tp(2,3,6).

tp(3,1,3).

tp(3,4,12).

tp(4,2,8).

tp(4,5,20).

tp(5,3,15).

Table 2. Progol output for data set 1

tp(A,B,C) :- product(C,B,A).

[Total number of clauses = 1]

[Time taken 0.01s]



for i = 1 to A loop

for j = 1 to B loop

for k = 1 to C loop

loop body
end loop

end loop

end loop

Figure 4. Example 2

D = A ∗ A ∗ C when B = A (7)

D = A ∗ B ∗ C (8)

This result requires some explanation. The hypothe-
sis is made of the four rules, with no particular order
of application. However, they have been learnt one at
a time, choosing the “best” rule for the data at hand,
and discarding the examples it covers, then looking
for the next best, etc. Progol has a built-in preference
bias in favour of shorter rules, using as few operators
and variables as possible. A look at the actual Progol
output (in Table 3) makes clear the effect of this bias.
Equation (5) covers all cases where A = 1 (13 in to-
tal). Equations (6–7) have also been produced before
equation (8), which subsumes them, as it can be easily
seen. Subsumption of clauses under logical implica-
tion is undecidable [24]. However, the very specific
case here could probably be automated by spelling
out the equivalent algebraic expression for each rule
and using the relatively simple θ-subsumption pro-
cedure between terms [20]. For instance, represent-
ing equations (6) and (8) as Prolog terms, and using
the Sicstus Prolog predicate term subsumer/3 from
library terms, one obtains the expected result. An-
other possible approach is to compare the functions
represented by each rule and keep the one growing
fastest. This approach would eliminate rule (5) when
compared with rule (8).

It has to be noted that rule (5) is overly general,
and incorrect for a number of training examples, as
it completely ignores argument A. There are several
factors that may have led to this result, among them:
(1) Progol’s “the shorter, the better” preference bias,
(2) the fact that the induction step is data driven,
and the first training example is consistent with the
rule, and, finally, (3) in order to speed up the hypoth-
esis search, Progol was told the rule would be used
in tp(+,+,+,+) mode, that is, with all arguments in-

Table 3. Progol output for data set 2

tp(A,B,C,D) :- product(D,C,B).

tp(A,B,A,C) :- product(D,A,B), product(C,D,A).

tp(A,A,B,C) :- product(D,A,B), product(C,D,A).

tp(A,B,C,D) :- product(E,A,C), product(D,B,E).

for i = 1 to A loop

for j = 1 to B loop

loop body
end loop

end loop

for k = 1 to C loop

loop body
end loop

Figure 5. Example 3

stantiated. The latter means the rule would not be
inconsistent, as whenever the D in the data is not
equal to the product of B and C, the rule would not
fire. A different choice of the learner setting may have
led to a different result, but it was deemed important
to point out that such inconsistent rules may be pro-
duced.

The third case models two nested loops followed
by another (see Figure 5). If the range of the three
counters is A, B and C, the overall execution time is
A ∗ B + C. In this case, we provide the ILP learner
with all 125 examples for A, B, and C taking values
between 1 and 5. Two rules are obtained as a result
(in less than 5s). Again, the first is a specific case of
the second:

D = A + B when C = A (9)

D = A ∗ B + C (10)

The first rule is true for all examples where A = 1.
As the learning process is data driven, and the first
example in the data set does correspond to A = 1,
the rule is easily learned. Reordering the examples
can affect the final hypothesis, but is by no means
a general solution, as the learner may just pick up a
different set of specific cases. One can even imagine a
situation where a very unlucky training data sample
is entirely covered by specific cases, and learning fails
to reveal the underlying general pattern.

The fourth case studied is one where the number
of times a piece of code is executed depends on two
observable variables, and a constant, which is not
supplied, but hard-coded and not directly observable.
The case can be illustrated by the pseudocode in Fig-
ure 5 where C is a fixed constant. The training data
consists of triples where the first two arguments, A

and B, are independent variables, and the third, C,
is the execution time being modelled. The data con-
tains 25 examples – as before, A and B take values
between 1 and 5. C is then computed as A ∗ B + 5.
The range of all variables is capped at 30, the max-
imum value for C. This time, the only background
predicate used is one defining the class of functions
x ∗ y + const. The correct rule is the only one pro-
duced by the learner, in less than 0.1s. Extending the
hypothesis language with separate multiplication and



addition operators, as used in the previous examples,
slows down the search to about 0.5s, but does not
change the result.

Finally, we have looked at the case of nested loops
where the inner loop bounds are functionally depen-
dent on the outer loop counter. The sort routine in
Figure 3 is used as an example. To generate the data,
we assume (with no loss of generality) that the param-
eter m1 in equation (4) is equal to 1. We then used the
equation to generate pairs of numbers representing
the upper bound m2 and the corresponding number
of times of running the inner loop body (see Table 4).
The variable range was set to m2 ∈ {1, . . . , 30}. The
simulated data used in the sort routine example rep-
resents the maximum number of steps needed to sort
a list of certain length. This is equivalent to prepro-
cessing the data, so that of all permutations of input
list elements, only the one resulting in the WCET is
represented in the training data.

Table 4. Sort routine data set

% tp(A,B) where B = A * (A - 1) / 2

tp(1,0).

tp(2,1).

tp(3,3).

tp(4,6).

tp(5,10).

tp(6,15).

tp(7,21).

tp(8,28).

...

Using sum/3 and product/3 as background knowl-
edge, Progol4.4 found a one-rule model in less than
four seconds (Table 5).

Table 5. Progol output for the sort routine

tp(A,B) :- product(C,A,A),

sum(D,B,A),

sum(C,B,D).

This translates to a system of three equations
shown below.

C = A ∗ A (11)

D = A + B (12)

C = B + D (13)

Note that in this case the division operator was
not part of the background knowledge, nor was Pro-
gol allowed to use constants in its hypotheses. Nev-
ertheless, the result is correct, albeit expressed in a
somewhat unusual way. Indeed, the above equations

can be reduced to the following equation which is, of
course, identical to the formula in equation (4).

B =
A ∗ (A − 1)

2
(14)

6 Summary and Future Work

These early experiments are meant as a proof
of concept, but they already show the potential
for empirically deriving accurate upper bound esti-
mates with acceptable amounts of processing for loop
bounds expressed in a way that have so far been un-
known within the RTS community. A number of ex-
amples were considered. By no means are these a
comprehensive assessment, but we believe they are
relatively general in their nature and provide a rep-
resentative sample of the types of loops that will be
found in practice. The studied cases were chosen to
illustrate a range of issues: ILP can learn from a small
number of examples; these examples do not need to
cover the whole range of the variable domains, but
such an exhaustive data set is easy to generate and
can be used. In addition, the last presented case shows
that the dependency of an inner loop bound on the
outer loop counter can be successfully detected and
hence potential pessimism can be avoided. The results
also demonstrate some of the potential difficulties that
the emerging methodology has to address, such as the
need to post-process the rules learnt to introduce a
partial order (lattice) of generality among them, and
from a set of rules that do not subsume each other, se-
lect the most pessimistic one. There are another two
issues that are inter-related: the way in which the
training data sets are generated, and the choice of a
testing framework, which assigns a level of confidence
to the ILP hypothesis. As the data does not contain
noise, and can be extended at will, it is likely that
an accurate hypothesis could be learnt from a rela-
tively small data set, and then tested extensively on a
much larger number of cases. These cases could be de-
rived during the usual functional testing performed of
systems. Very unusually for a machine learning appli-
cation, the final hypothesis should always test 100%
accurate—or it will have to be reconsidered when a
counter-example is found.

Among the advantages of ILP is the fact that it can
include any type of function in its hypothesis space
through an adequate choice of background knowledge.
On the other hand, the currently recommended re-
strictions on loop bounds mean that the hypothesis
space can be restricted to a set of linear functions,
in the way we dealt with example 4 here. This dis-
crepancy can be resolved in either direction, by re-
stricting the ILP learner to a much more specialised
application, or by relaxing the constraints imposed
by Chapman and others. Our future work will look
at the wider exploitation of machine learning within



the design and analysis of real-time systems.

References
[1] A. Burns and P. Puschner, editors. Special Issue:

Worst-Case Execution Time Analysis, volume 18(2–
3) of Real-Time Systems Journal. Kluwer Academic
Publishers, May 2000.

[2] R. Chapman. Static Timing Analysis and Program
Proof. PhD thesis, Department of Computer Science,
University of York, March 1995.

[3] R. Wilhelm (Editor). Special issue on timing analy-
sis and validation for real-time systems. Real-Time
Systems Journal, 17(2/3), Nov 1999.

[4] C. Ferdinand, F. Martin, and R. Wilhelm. Apply-
ing compiler techniques to cache behavior prediction,
June 1997.

[5] Y. Freund, H.S. Seung, E. Shamir, and N. Tishby.
Selective sampling using the query by committee al-
gorithm. Machine Learning, 28(2–3):133–168, 1997.

[6] J. Gustafsson. Analyzing execution-time of object-
oriented programs using abstract interpretation.
Technical Report DoCS 00/115, Department of Com-
puter Science, Uppsala University, Sweden, May
2000.

[7] J. Gustafsson, A. Ermedahl, and B. Lisper. Towards
a flow analysis for embedded system c programs. In
Proceedings of the 10th IEEE International Work-
shop on Object-oriented Real-time Dependable Sys-
tems (WORDS 2005), 2005.

[8] R. King, K. Whelan, F. Jones, P. Reiser, C. Bryant,
S. Muggleton, D. Kell, and S. Olivier. Functional ge-
nomic hypothesis generation and experimentation by
a robot scientist. Nature, 427(6971):247–252, 2004.

[9] E. Kligerman and A.D. Stoyenko. Real-time Euclid: a
language for reliable real-time systems. IEEE Trans-
actions on Software Engineering, vol.SE-12, no.9
A06:941–9, Sept. 1986. IEEE Trans. Softw. Eng.
(USA).

[10] S. Lim, Y. Bae, G. Jang, B. Rhee, S. Min, C. Park,
H. Shin, K. Park, and C. Kim. An accurate worst
case timing analysis for risc processors. IEEE Trans-
actions on Software Engineering, 21(7):593–604, July
1995.

[11] T. Lundqvist and P. Stenstrom. An integrated path
and timing analysis method based on cycle-level sym-
bolic execution. Real-Time Systems, 17(2/3):183–
207, November 1999.

[12] T. Lundqvist and P. Stenstrom. A method to im-
prove the estimated worst-case performance of data
caching. In Proceedings of the 6th International Con-
ference on Real-Time Computing Systems and Appli-
cations (RTCSA’99), pages 255–262, December 1999.

[13] J. Miller and P. Thomson. Cartesian genetic pro-
gramming. In R. Poli, W. Banzhaf, W. Langdon,
J. Miller, P. Nordin, and T. Fogarty, editors, Genetic
Programming, Proceedings of EuroGP’2000, volume
1802, pages 121–132, Edinburgh, 2000. Springer-
Verlag.

[14] T. Mitchell. Machine Learning. McGraw-Hill, 1997.

[15] S. Muggleton. Inverse entailment and Progol. New
Generation Computing, 13:245–286, 1995.

[16] S. Muggleton and J. Firth. Relational Data Mining,
chapter CProgol4.4: a tutorial introduction, pages
160–188. Springer-Verlag, 2001.

[17] S. Muggleton and L. De Raedt. Inductive logic pro-
gramming: Theory and methods. Journal of Logic
Programming, 19/20:629–679, 1994.

[18] C. Park. Predicting program execution times by ana-
lyzing static and dynamic program paths. Real-Time
Systems, 5(1):31–62, 1993.

[19] C. Park and A. Shaw. A source level tool for pre-
dicting deterministic execution times of programs.
Technical Report 89-09-02, Department of Computer
Science and Engineering, University of Washington,
USA, 1989.

[20] G. Plotkin. A note of inductive generalization. In
B. Meltzer and D. Mitchie, editors, Machine Intelli-
gence 5, pages 153–163. Edinburgh University Press,
1970.

[21] P. Puschner and C. Koza. Calculating the maxi-
mum time of real-time programs. Real-Time Systems,
1(2):159–176, 1989.

[22] P. Puschner and A. Schedl. Calculating the maximum
execution times with linear programming techniques.
Technical report, Institut fur Technische Informatik,
Technische Univeristat Wien, 1995.

[23] J. Rissanen. Modeling by shortest data description.
Automatica, 14:465–471, 1978.

[24] M. Schmidt-Schauss. Implication between clauses is
undecidable. Theoretical Computer Science, 59:287–
296, 1988.

[25] H. Theiling and C. Ferdinand. Combining abstract
interpretation and ILP for microarchitecture mod-
elling and program path. In Proceedings of the IEEE
Real-Time Systems Symposium ’98, pages 144–153,
Dec 1998.

[26] L. Todorovski and S. Džeroski. Declarative bias in
equation discovery. In Proc. 14th International Con-
ference on Machine Learning, pages 376–384. Morgan
Kaufmann, 1997.

[27] L. Todorovski and S. Džeroski. Theory revision in
equation discovery. Lecture Notes in Computer Sci-
ence, 2226:389+, 2001.

[28] L. Todorovski, S. Džeroski, P. Langley, and C. Potter.
Using equation discovery to revise an Earth ecosys-
tem model of carbon net production. Ecological Mod-
elling, 170:141–154, 2003.

[29] A. Turing. On computable numbers, with an applica-
tion to the Entscheidungsproblem. Proceedings of the
London Mathematical Society, Series 2(42):230–265,
1936.

[30] R. White, F. Mueller, C. Healy, D. Whalley, and
M. Harmon. Timing analysis for data caches and
set-associative caches. In Proceedings of the IEEE
Real-Time Technology and Applications Symposium,
pages 192–202, 1997.


