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Abstract 
The Worst-Case Execution Time (WCET) is an 

important execution metric for real-time systems, and 
an accurate estimate for this increases the reliability of 
subsequent schedulability analysis. Performance 
enhancing features on modern processors, such as 
pipelines and caches, however, make it difficult to 
accurately predict the WCET. One technique for 
finding the WCET is to use test data generated using 
search algorithms. Existing work on search-based 
approaches has been successfully used in both industry 
and academia based on a single criterion function, the 
WCET, but only for simple processors. This paper 
investigates how effective this strategy is for more 
complex processors and to what extent other criteria 
help guide the search, e.g. the number of cache misses. 
Not unexpectedly the work shows no single choice of 
criteria work best across all problems. Based on the 
findings recommendations are proposed on which 
criteria are useful in particular situations. 

1 Introduction 
The study of real-time systems incorporates all 

systems which have to respond within a fixed, finite 
time and where a delayed answer is as bad as a wrong 
response. More formally, a real-time system is one 
where “correctness depends not only on the logical 
result of the computation, but also on the time at which 
the results are produced” [4]. Thus, timeliness is a 
crucial aspect of a real-time system. One essential 
measure for all forms of schedulability analysis is the 
WCET. WCET research has proceeded in two distinct 
directions. 

The method of static analysis aims to analyse the 
hardware and software under test statically i.e. without 
executing the software, and then use this information to 
derive an estimate for the WCET. Thus, given a 
processor architecture and the program to be executed, 
static analysis works by analysing execution paths and 
simulating processor characteristics to determine the 
worst-case path in a program [16, 10]. The worst-case 
path is the path which produces the maximum run-
time. Static analysis has the benefit of guaranteeing a 
safe upper bound for the WCET making it ideally 
suited for critical systems but its pessimism and 
portability can be seen as a weakness for less critical 

systems [20]. 
In contrast, the method of dynamic analysis takes a 

measurement-based approach to the task of 
determining the WCET of a program. Given the 
program, and the target processor, dynamic analysis 
executes the program with a large and diverse range of 
inputs, and measures the execution time of each 
successive run. This information is used to find the 
WCET. Often the largest value is taken as the WCET. 
An exception to this is probabilistic analysis where a 
statistical estimate is made of the execution time value 
results to predict a WCET with the required reliability 
[1]. 

Dynamic Analysis, however, requires the software 
under investigation to be tested with a significantly 
large number of appropriate inputs to achieve a 
confidence level that the worst-case run has occurred, 
and therefore, the WCET has been encountered. Two 
distinctly different approaches exist for dynamic 
analysis; hybrid approaches which combine static 
analysis and measurement-based approaches, and so 
called search-based techniques. The hybrid techniques 
[1] show significant promise but come with a high 
degree of complexity [20]. Instead here we explore the 
extent to which search-based techniques can be 
improved. 

Search-based techniques have been used to generate 
the input test-data, as the input space of the program 
can be large and quite complex. Results of these 
optimisation techniques [13, 15, 16, 17] show that they 
are effective in sampling large search spaces. They 
have been applied to both academic benchmarks and 
more significantly to industrial case studies from both 
automotive [17] and aerospace applications [15]. In the 
case of the aerospace application [15], the results were 
used in preference to those from static analysis which 
had at least 30% pessimism [5]. Pessimism is defined 
as the difference between the estimated and actual 
value. It has been observed that the pessimism 
produced by static analysis techniques is greater than 
the optimism linked with evolutionary, search-based 
techniques [16]. Further, it is widely recognised that 
the pessimism associated with static analysis will only 
get worse with more complex processors [20]. 

In [16] a comparison is performed of these 
techniques with those of static analysis showing that 



each technique has its own merits and drawbacks with 
the decision of which to use depending very much on 
the application context. As with all dynamic analysis 
approaches they can only guarantee a safe upper bound 
on the WCET if the appropriate test data is used. All 
the previous work based on search-based techniques 
have only used a single criteria function, the WCET 
itself, in the search for good test-inputs. Wegener [13, 
16, 17] has suggested adding other criteria into a 
combined fitness function as a way of improving the 
search, i.e. the time to find the maximum execution and 
the magnitude of this execution time. As modern 
processors have a number of performance-enhancing 
features such as caches and pipelines, use of these 
features can significantly alter the time taken by the 
software. In some cases, these features even cause a 
different path to emerge as the new worst-case path. 
Thus, including these features in the fitness function 
for the search may beneficially modify the search 
direction. This type of strategy is widely recognised 
across search-based software engineering [21]. An 
example of how a feature may be included is to have a 
criteria for the number of cache misses encountered. 

For example, having an additional criterion could be 
added to influence the search to derive test cases which 
maximise the number of cache misses. It has the 
additional benefit that it may increase the number of 
instructions executed or data accesses made or find 
most interesting paths through the software. Of course 
this does not guarantee to find the WCET but may 
help. To the best of our knowledge no other work has 
explored the use of multi-criteria approaches. The 
closest work to this is Betts [2] who proposed the use 
of different coverage criteria, instead of the more usual 
Modified Condition/Decision Coverage [12] which is 
an often used structural coverage criteria. These other 
criteria allow for low-level processing effects on the 
WCET, e.g. the order of instructions through a 
pipeline. However they have not evaluated the concept, 
and using coverage criteria is a different approach to 
what is proposed here, as we do not attempt to achieve 
complete coverage.  

The contribution of this paper, consequently, is to 
establish the processor and software features which 
have the most notable impact on the search for the 
WCET, and to determine the best way in which the 
effect of these features can be captured in a multi-
criteria heuristic function.  

The structure of the paper is as follows. Section 2 
surveys issues identified in the literature that affect 
WCET analysis. Next, different methods for WCET 
analysis using search-based techniques are proposed. In 
section 4 the results are presented. Finally conclusions 
are drawn in section 5. 

2 Problems in Timing Analysis 
A number of problems are encountered in analysing 

the temporal behaviour of real-time programs. These 
range from complexity in the real-time programs to be 
analysed, to the internal features of the hardware. 

These are discussed in the following sections. 
2.1 Causes of Complexity in Real-Time 

Programs 
Groβ [8] defines some aspects of complexity in real-

time programs which make it difficult for a dynamic 
analysis technique, for example a search-based testing 
method, to precisely predict the WCET. The following 
are identified as important criteria which add to a 
program’s complexity, and consequently, cause 
difficulty for search-based testing to find the actual 
solution: 
1. High nesting within a program 
2. Low path probability of paths within a program, 

where the low probability is caused by very few 
values in the domain of the input variable(s), for 
the program being analysed, leading to the choice 
of that path. 

3. High parameter and algorithmic interdependence, 
which is caused by the execution time being highly 
dependent on the values of the input variables, e.g. 
in a parameter-dependent loop. 

4. Size of the program’s input, or the range values 
that input variables can take. 

Groβ [8] validates the difficulty of each of these 
measures by applying them individually to 22 simple 
test programs. The results show that, generally, 
increasing the difficulty of each measure makes it more 
difficult to find the actual WCET. Even though the 
complexity measures have only been applied to simple 
test programs, Groβ [8] proposes that the significant 
number of test programs used, together with the 
considerable variations in the complexity of the test 
objects, makes the results generally applicable to larger 
more complex real-time programs. 

2.2 Complexity in Processor Hardware 
As with program characteristics there are certain 

hardware features that make finding the WCET 
analysis more difficult. These are widely recognised to 
be as follows [20]. 
1. Cache – there are three types of cache: instruction, 

data and unified as well as many different 
configurations, e.g. direct mapped, set associative 
or multi-level. Normally as the number of cache 
misses increases so does the WCET. 

2. Pipeline – here three types of complexity are 
introduced; instruction level parallelism, resource 
sharing and allocation, and dynamic scheduling 
where instructions can be executed out of order. 

3. Branch prediction – similar to caches there is an 
aspect of global history to decide which 
instructions’ information is stored for. However in 
addition there can be complex logic deciding the 
result of the prediction. 

However there are other significant issues that these 
features introduce. The principal one being timing 
anomalies which can be introduced when processors 
feature dynamic scheduling [11]. Timing anomalies are 
defined as situations where the counter-intuitive 
influence of the local execution time of one instruction 



has an adverse bearing on the global execution time of 
the whole task [20]. Thus, a faster execution within 
part of the code can actually cause an increase in the 
execution time of the whole task, perhaps even leading 
to the WCET. 

An advantage of dynamic analysis techniques, 
including the search-based techniques discussed here, 
is the fact that timing anomalies are allowed for in the 
measures of the actual run-time of the software on the 
target processor [1]. Thus, an execution containing a 
timing anomaly but with a larger overall execution time 
is still considered, and given preference over a non-
anomalous execution. 

3 Finding the WCET Using Search 
In section 2 a number of contributing factors were 

identified for why WCET analysis is a difficult, 
generally speaking intractable [20], problem. Each of 
these factors may also influence the final WCET, e.g. 
maximising the number of cache misses normally 
results in a larger execution time. They also mean that 
there is no way of knowing what the actual WCET is. 
Therefore the normal approach [20] is to consider how 
different analysis methods affect the ability to find the 
WCET. As with all approaches to WCET analysis, it is 
assumed the software being analysed runs non-
preemptively with effects from other software (e.g. 
context switches, cache pollution etc) being accounted 
for as part of higher-level schedulability analysis [20]. 

Two alternative approaches were considered. Firstly 
to perform a comprehensive set of evaluations and 
determine which approach best achieves our desirable 
properties, i.e. achieving the maximum execution time, 
repeatability / reliability, and efficiency (i.e. how long 
the search takes), and in what circumstances. Secondly, 
to again perform comprehensive evaluations but use an 
approach such as Principal Component Analysis (PCA) 
[9] to try and determine dominant patterns. The first 
approach was taken as it was anticipated that the 
combination of a large complex problem landscape and 
the fact the landscape may be different for each 
problem will make it difficult for PCA to be applied. 
However with the results from the first approach in 
place, future work may then apply PCA as it could be 
used in a more focussed way. 

There are four phases to the work: 
1. Single criterion – in essence perform WCET 

analysis as previously demonstrated by Tracey 
[15], Wegener [16,17] and Groβ [8]. 

2. Low-level analysis – investigate to what extent 
adding criteria based on low-level (instruction) 
features influences the search. Key factors are the 
number of cache misses and branch mis-
predictions. Cache misses can be separated into 
data and instruction or treated together. 

3. High-level analysis – examine to what extent high-
level (program flow) features affect the search. 
The key factor here is the loop count. 

4. Integrated analysis – consider how combinations 
of the previous three phases perform. 

The following sub-sections discuss the phases in more 
detail. 

3.1 Phases 1 – Single criterion search 
A Genetic Algorithm (GA) was developed for 

automatically generating input test-data. The algorithm 
was chosen as previous work [15] has used it, albeit it 
with minor differences in approaches, and initial trials 
have shown it to be effective. This algorithm initially 
uses execution time as its single fitness measure. The 
representation, that is subsequently manipulated 
through crossover and mutation, is the set of values for 
the input variables. This data is the only item under our 
control. 

The design of the GA used is a relatively general one 
based on those in [18]. Certain common choices and 
strategies for the algorithm were, however, fixed and 
used throughout this project to support fair comparison 
between the different approaches. These choices are: 

1. Population Size: 100 
2. Number of Generations: 100 
3. No. of elitist children in the next generation: 1 
4. Selection: Roulette Selection 
5. Crossover Strategy:  Arithmetic Crossover 
6. Mutation Strategy: Random Mutation 
7. Crossover Percentage: 60% 
8. No. of runs for each experiment: 10 
A choice of 100 for the population size ensures that 

there is sufficient diversity within the population 
without this value being so large as to significantly 
slow the computations at each generation. Further, 
fixing the number of generations to 100 ensures that 
the trajectory of the search can be examined once it has 
completed, without being so large as to significantly 
slow down each experiment. Restricting the number of 
elitist children in the next generation to 1 allows only 
the best solution to be carried over from one generation 
to the next, rather than a large number of best 
solutions. This helps maintain the diversity of the 
search. Additionally, roulette selection, arithmetic 
crossover and random mutation are common strategies 
adopted by the genetic algorithm, which work well in 
practice and are simple to implement. A crossover 
percentage of 60% has also been observed to work well 
in a genetic algorithm. The last requirement, for each 
experiment to be conducted 10 times, enables the 
reliability of the solution, i.e. the degree of 
repeatability, to be recorded. Here reliability is defined 
as the likelihood of obtaining similar results in practice. 

Simplescalar [3] was chosen as the processor 
simulator on which the working of the input program 
would be analysed. Further, the ARM-processor was 
chosen for the experiments as it was supported by 
Simplescalar and as configured in this work represents 
a relatively complex processor, containing two-levels 
of cache, branch prediction and out-of-order execution. 
This ensured that, in general, experimental results were 
representative of executions on a modern processor. 
Specific details of the processor used are as follows. 
These are the default configuration of simplescalar and 



as such has often been used in other work [14]. 
• Branch predictor: bimodal 
• Branch predictor table size: 2048 entries 
• Branch Target Buffer (BTB): 512 blocks 
• Data Cache (L1): 128 blocks, 32 bytes block size, 

Least Recently Used (LRU) replacement policy 
• Data Cache (L1) Hit Latency: 1 cycle 
• Instruction Cache (L1): 512 blocks, 32 bytes block 

size, LRU replacement policy 
• Instruction Cache (L1) Hit Latency: 1 cycle 
• Memory Access Latency: 18 cycles (first block in 

a multi-fetch instruction), 2 cycles (subsequent 
blocks) 

3.2 Phase 2 – Low-level analysis 
Based on a detailed consideration of the low-level 

microprocessor features that affect the WCET, 
summarised in section 2, the following is a list of 
criteria considered as part of a multi-criteria search 
method. Each of the criteria can be used in isolation or 
combined with others. For example it may be expected 
to use combined knowledge of cache misses, i.e. an 
overall total for the data and instruction cache misses. 
Number of misses is used instead of a normalised rate 
(total misses divided by the number of memory 
accesses) as this will favour software paths with more 
memory accesses. These figures are obtained by 
parsing the detailed log files, produced by 
Simplescalar, for the information needed. Future work 
could consider other means for obtaining the 
information, including in vivo analysis. 

1. Execution Time (ET) 
2. Branch Prediction Misses (BPM) 
3. Data (Level 1) Cache Misses (DCM) 
4. Instruction (Level 1) Cache Misses (ICM) 

These measures were used to create the following 
heuristics. The heuristics feature different ratios (or 
weightings) used to combine the results from the 
evaluation of each of the criterion. Different ratios are 
used between the same sets of criteria so that the effect 
of biasing can be examined. The ratios were chosen 
based on the results of some preliminary assessments to 
determine the typical quantities involved and then to 
provide some degree of balancing. For example the 
ratios between BPM and ICM is chosen so the outputs 
of their respective analyses tends to give a similar 
magnitude. 
(a) BPM only 
(b) DCM only 
(c) ICM only 
(d) DCM and ICM in the ratio 1:1 
(e) DCM and ICM in the ratio 3:1 
(f) DCM and Instruction Cache Accesses in the ratio 

1:1 
(g) BPM, ICM and DCM in the ratio 2:1:1 
(h) ET and BPM in the ratio 1:10 
(i) ET and DCM in the ratio 1:10 
(j) ET and ICM in the ratio 1:10 
(k) ET, DCM and ICM in the ratio 1:5:5 
(l) ET, DCM and ICM in the ratio 2:15:5 

(m) ET, BPM, DCM and ICM in the ratio 1:10:10:10 
(n) ET, BPM, DCM and ICM in the ratio 7:10:10:10 
(o) ET, BPM, DCM and ICM in the ratio 7:1:1:1 

An important choice when gathering the metrics for 
each of the criteria is whether they are measured for the 
whole program or at specific points. For example, the 
cache miss rate could be measured separately for each 
memory access and each measure represented by its 
own criterion. However this would result in a large 
number of criteria even for small programs and it is 
generally accepted that searching across more than six 
criteria is difficult [6]. For this reason one overall 
measure (a combination by a weighted sum, using the 
previously mentioned ratios as weights, of the results 
from evaluating each individual criteria) is made for 
the whole program. 

3.3 Phase 3 – High-level analysis 
As previously stated in section 2, the principal issue 

affecting the WCET is the number of loop iterations 
and hence this is chosen as a criterion. In a similar 
fashion to the criteria for low-level analysis, the 
metrics are gathered across the whole program. 

3.4 Phase 4 – Integrated Analysis 
The heuristics used as the fitness functions for this 

phase were obtained by combining the heuristics from 
Phases 2 and 3. However, as Phase 3 only used a single 
new execution measure, the number of loop iterations, 
the resulting heuristics merely added the number of 
loop iterations to each of the heuristics developed in 
Phase 2. The heuristics used for the Integration Phase, 
thus, consisted of: 
(a) BPM and Loop Iterations (LI) in the ratio 10:1 
(b) DCM and LI in the ratio 10:1 
(c) ICM and LI in the ratio 10:1 
(d) DCM, ICM and LI in the ratio 5:5:1 
(e) DCM, ICM and LI in the ratio 15:5:2 
(f) DCM, ICM and LI in the ratio 5:5:1 
(g) BPM, DCM, ICM and LI in the ratio 10:5:5:2 
(h) ET, BPM and LI in the ratio 1:10:2 
(i) ET, DCM and LI in the ratio 1:10:2 
(j) ET, ICM and LI in the ratio 1:10:2 
(k) ET, DCM, BPM and LI in the ratio 1:5:5:2 
(l) ET, DCM, ICM and LI in the ratio 2:15:5:4 
(m) ET, DCM, BPM, ICM and LI in the ratio 

1:10:10:10:4 
(n) ET, DCM, BPM, ICM and LI in the ratio 

7:10:10:10:10 
4 Evaluation 
A set of benchmark problems is publicly maintained 

by the Mälardalen WCET research group [7]. This 
comprises a number of programs used to evaluate the 
performance of different WCET analysis tools. As the 
benchmarks have already been categorised by type then 
a selection of programs were chosen to give a 
reasonable sample from each category after discounting 
the more trivial examples, e.g. small pieces of code 
with no distinctive features. Consequently sixteen of 
the programs, listed in Table 1, were chosen that had a 



range of characteristics.  
Benchmark Programs WCET 

(mean) 
WCET 
(max) 

Factorial 2,053.3 2,188.0 
Cover 3,991.0 3,991.0 
Insertion Sort (10 inputs) 1,328.8 1,333.0 
Insertion Sort (50 inputs) 17,528.2 18,240.0 
Insertion Sort (100 inputs) 59,367.9 63,216.0 
Discrete Cosine Transformation 
(DCT) 

4,186.0 4,186.0 

Extended Petri Net Simulation 
(PETRI) 

16,722.7 18,378.0 

Matrix multiplication 21,376.0 21,376.0 
Quadratic Equations Root 
Computation (QERC) 

1,069.0 1,069.0 

Janne Complex 437.3 443.0 
Matrix Inversion 3,787.0 3,787.0 
Computing an exponential integral 
function (EXP) 

14,317.5 16,358.0 

Quick Sort 2,905.4 2,980.0 
Fast DCT (FDCT) 4,712.0 4,712.0 
Fast Fourier Transformation (FFT) 14,026.2 14,449.0 
Select 10,711.7 10,757.0 
Statistics Program 14,429.7 14,470.0 
Binary Search 269.0 269.0 

Table 1 - Phase 1 Results (units = clock cycles) 
Each experiment was run 10 times, in order to 

evaluate the reliability of the solution produced. 
Reliability is assessed based on the variance of the 
resulting execution times. Further, the WCET estimate 
predicted at the end of 100 generations, with a 
population size of 100, was recorded, together with the 
time taken to produce the estimate, in order to evaluate 
the direction, quality and efficiency of the search. 

4.1 Phase 1 
The results of the experiments are presented in Table 

1 for the WCET estimate produced for each benchmark 
program. These results show the quality of the solution 
generated for each program, using execution time as 
the fitness value, and is, additionally, a measure of the 
general direction of the search after 100 generations. A 
higher estimate of the WCET is considered more 
accurate and therefore, better. 

The Phase 1 results for the reliability of the search 
show that three programs, Insertion Sort, with 100 
inputs, PETRI and EXP had large variances, (denoted 
by the square of the difference between the mean 
WCET and the WCET from each of the 10 repeated 
trials), and so, the results of these programs were the 
least reliable. At the other end of the scale, seven 
programs, e.g. Cover, had zero variance and are classed 
as being simple to examine. The variances, and thus the 
reliability, of other programs varies from under 100 
cycles2 for Insertion Sort, with 10 inputs and Janne 
Complex to almost a million cycles2 for Insertion Sort, 
with 50 inputs. It should be noted that whilst a million 
cycles2 may seem large that this only corresponds to a 
standard deviation of a thousand cycles which is just 
over 5% of the WCET(max). 

4.2 Phases 2 
As a summary for the whole set of benchmarks it 

was found in eleven of the eighteen cases a single 
criterion, the execution time, as used in phase 1 gave 
the best results. However this leaves seven important 
cases for which it did not perform as well. For reasons 
of space, a full set of results are not presented in depth 
only those with more interesting characteristics. 
Interesting is defined as those for which different 
criteria made a significant difference in terms of 
quality, efficiency or reliability. The more interesting 
benchmarks are insertion sort, factorial, janne complex 
and quadratic.  

 
Figure 1- Insertion Sort (10 inputs) (Reliability of 

Solution) 

 
Figure 2 - Insertion Sort (100 inputs) (Efficiency of 

Solution) 
The results of the experiments, for the interesting 

benchmarks, are presented in Figures 1-8, where 
Phases 2a - 2o represent the heuristics (a) – (o) in 
section 3.2. The results show that, in general single 
low-level fitness criteria, for example, only branch 
mispredictions, data cache misses or instruction cache 
misses, do not perform well in practice. Thus, in 
Figures 3-8, the WCET estimate produced by Phases 
2a, 2b and 2c (‘WCET (max)’ for each of these 
phases), are all among the lowest values predicted. 
Figure 1 (units for the y-axis are clock cycles2) shows 
that these results also have a large variance, and 
consequently, low reliability as well, thereby reducing 
their usefulness. The speed of producing these results, 
however, is high as represented in Figure 2 (units for 
the y-axis are seconds of actual compute time on a 2.4 
GHz Intel processor). Thus, a quick but exceedingly 
inaccurate estimate for the WCET can be obtained 
using these low-level criteria individually as the fitness 
measure. This trend was further demonstrated across 
the whole set of benchmarks. However if speed and 



quality are concerns, then the single criteria of 
execution time normally offers the best choice. 

However, as previously stated, in 7 of the benchmark 
programs, a multi-criteria fitness measure produced a 
higher-quality solution than execution time alone. This 
shows that multi-criteria heuristic fitness functions can 
still be gainfully used in practice for a program, if 
appropriate ones are chosen. For example, the Factorial 
program calls itself recursively passing data at each 
recursive call. This implies that the program makes 
heavy use of the data cache, and therefore, the number 
of data cache misses, and latency caused as a result of 
these misses, can be a useful metric in guiding the 
search to the WCET. The results of the Phase 2 
experiments on the Factorial program are presented in 
Figure 5. These results confirm the analysis about the 
dependence of the Factorial program on the data cache, 
as data cache misses used alone as the fitness measure 
(Phase 2b) produces a solution whose quality is only 
slightly poorer than that of the solution produced by 
execution time as the single fitness measure (Phase 1). 
Further, a combination of execution time and data 
cache misses (Phase 2i) as the fitness measure produces 
a better solution than execution time used alone, and 
the highest-quality solution overall, confirming the 
analysis. It is noted though the wrong combination of 
criteria has a negative effect as shown by the results of 
Phase 2m for instance. 

 
Figure 3 - Insertion Sort (50 inputs) (Quality of 

Solution) 
A program’s dependence on the data cache increases 

with the size of its inputs and the number of 
calculations performed within it. This information can 
be gainfully used in devising the best heuristic fitness 
function to aid the search in reaching the WCET. Thus, 
a combination of execution time and data cache misses 
works well in practice, for a program taking a large 
number of inputs. For example, the Insertion Sort 
program with 10 inputs (Figure 6), has a relatively low 
dependence on the data cache. Thus, execution time as 
the single fitness measure produces a higher quality 
solution than execution time used with the total number 
of data cache misses. However, as the size of the inputs 
is increased, the dependence on the data cache becomes 
prominent. For example, in the case of the Insertion 
Sort program with 50 inputs (Figure 3), the 
combination of data cache misses and execution time 
as the fitness measure, gives a higher-quality solution 

than execution time alone, and only a marginally 
poorer solution than execution time, branch prediction 
misses, data cache misses and instruction cache misses 
used altogether as the fitness function, which produces 
the overall highest-quality solution. However, in the 
Insertion Sort program with 100 inputs (Figure 7), this 
situation is reversed. In this program, execution time 
and data cache misses used together as the fitness 
function finds the highest-quality solution, thus, 
validating the analysis. Moreover, the results are 
produced in only a slightly less efficient way than 
execution time, branch prediction misses, data cache 
misses and instruction cache misses used together as 
the fitness function (Phase 2o), confirming the 
applicability of this joint fitness measure. 

The presence of a large number of loops or 
conditional statements within a program can cause 
instruction cache misses, as the instructions after the 
target of a conditional branch will need to be loaded 
into the instruction cache, and, depending on the 
branch prediction method used, cause branch 
mispredictions as well. Thus, these two execution 
measures can be gainfully used for such programs as 
additional criteria within the fitness function of the 
genetic algorithm. For example, the Quadratic 
Equations Root Computation program takes only 3 
inputs. However, these are used in a loop and 
conditional statements within the program. Thus, 
instruction cache misses and branch mispredictions can 
be used to aid the search. The results for this program 
(Figure 8) show that execution time and branch 
mispredictions together (Phase 2h), and execution time 
and instruction cache misses together as fitness 
functions (Phase 2j) produce higher-quality solutions 
than execution time alone, with execution time and 
instruction cache misses together producing the 
highest-quality solution. Further, a combination of 
execution time, branch mispredictions, instruction 
cache misses and data cache misses as the fitness 
measure also attains a higher-quality solution than 
execution time alone. These results show that branch 
mispredictions and in particular, instruction cache 
misses can be gainfully used as additional fitness 
criteria in programs with similar characteristics. 

 
Figure 4 - Janne Complex (Quality of Solution) 
In some cases, however, the addition of extra criteria 

as fitnesses confuses the search algorithm. This is 
particularly true when the criteria assign conflicting 



fitness values to a program execution. For example, the 
program Janne Complex contains a two-level nested 
loop. Entry into this loop, is however, dependent on the 
input values and only a small number of input values 
cause this loop to be executed. Thus, the path 
probability of this loop is low. Consequently, if the 
input values do not permit entry into the loop, a 
significant number of cache misses outside the loop can 
confuse the search into giving a high fitness to these 
program inputs. Thus, executing the loop will then be 
regarded as an undesirable proposition for the search, 
as a high fitness solution did not execute it. Clearly 
with careful tuning of weightings a different result 
could be achieved, however this is out of scope of this 
paper. As a result, the loop will remain unexecuted and 
the WCET estimate produced may be inaccurate. 
Figure 4 shows the results of applying the search to the 
Janne Complex program. The result shows that 
execution time as the single fitness measure (Phase 1) 
produces the highest-quality solution, while the result 
for a combination of execution time, branch 
mispredictions, data cache misses and instruction cache 
misses, with a heavy bias towards the execution time, 
as the fitness measure (Phase 2o) is only marginally 
poorer. However, the rest of the results range from only 
slightly poorer to much worse. This shows that the 
fitness assigned to other criteria, such as cache misses 
and branch mispredictions may cause program inputs 
resulting in only a few iterations of the loop to be 
assigned a higher fitness than inputs which execute the 
loop longer, thereby reducing the program inputs that 
execute the loop longer from the genetic algorithm’s 
population. The results for Phase 2j show that the 
highest fitness is dominated by instruction cache 
misses to the extent that a zero loop count had the 
highest fitness even though the execution time was 
low. 

Thus, the conflict between criteria is a serious 
problem in multi-criteria fitness functions as it can 
inhibit, rather than aid, the search, thus, preventing it 
from finding the best solution. This problem can be 
resolved by using the proposed method of program 
analysis before the search, in order to evaluate the 
criterion, or combination of criteria that best guides a 
search to the program’s WCET. Later in the paper this 
is explored further. 

4.3 Phases 3 and 4 
The results of the experiments are shown in Figures 

5-8. The results show that, in general, combining the 
criteria from phases 2 and 3 do not work well in 
practice. However this does not preclude the possibility 
that for other programs the trend will be reversed. The 
results from Phase 4, additionally, take much longer as 
they extract a larger amount of execution information, 
and thus, have a fairly poor speed and efficiency. The 
reliability of these results, although varying 
significantly from one program to another, is generally 
fair and comparable to the results from the other 
phases.  

Moreover, of the remaining 8 programs where 
execution time does not find the highest-quality 
solution, in 3 programs, the solution found by 
execution time is within 1% of the highest-quality 
solution while, in a further 2 programs, the solution 
found by execution time is within 5% of the highest-
quality solution. The maximum number of highest-
quality solutions found by a fitness measure, other than 
execution time, is 8 out of 18. This is achieved by 
using execution time, branch prediction misses, data 
cache misses and instruction cache misses together, 
with a heavy weight assigned to execution time, as the 
fitness measure (Phase 2o). Similarly, a combination of 
execution time and loop counts as the fitness measure 
(Phase 3b) finds the highest quality solution in 8 
(different) cases out of the 18 highest-quality solutions. 
This shows the general suitability, and applicability, of 
these fitness measures. However, program analysis 
should be done beforehand to determine the programs 
on which use of this particular heuristic as the fitness 
measure is likely to guide the search to the WCET. 

For example, loop iterations (Phase 3a) are seen as 
the best fitness measure for the Factorial program in 
Figure 5, as they lead the search to the highest-quality 
solution. Thus, program analysis beforehand can 
establish that the number of procedure calls is directly 
proportional to the execution time and directly 
dependent on the program inputs. Consequently, use of 
the number of calls, which subsumes the number of 
loop iterations (as recursive calls can be considered as 
loops for the purpose of program analysis) as the 
fitness heuristic, is the measure most likely to lead a 
search to the program’s WCET. 

For the Insertion Sort program, thus, a prior program 
analysis can establish that loop counts have the most 
significant bearing for this program, as the program 
simply consists of a nested loop. Further, the number of 
iterations of the loop is not dependent on the number of 
inputs but, rather, the ordering of the inputs. Thus, 
while increasing the number of inputs will increase the 
number of data cache accesses and, consequently, data 
cache misses, the number of times the loop iterates has 
a more significant bearing on the execution time than 
the number of data cache misses. Additionally, 
problems have been seen in the guidance given to the 
search when two or more criteria are combined. 
Consequently, it is recommended that only the number 
of loop iterations, either on its own (Phase 3a) or in 
combination with execution time (Phase 3b), is used to 
guide the WCET search. The results show that this 
analysis holds, as the fittest solution produced by either 
of these 2 criteria produces the highest-quality solution 
or a solution whose execution time is within 5% of the 
best overall estimate for the WCET amongst all the 
experiments. This is demonstrated in Figure 4, which 
show high-quality solutions, and other analysis 
demonstrated it to have an excellent overall reliability. 

In contrast, in a program such as Quadratic 
Equations Root Computation, which contains an input-



data dependent loop and input-data dependent 
conditional statements, the execution time of the loop 
is not the primary contributor to the overall execution 
time. Instead the presence of a loop and conditional 
statements jointly imply that branch mispredictions or 
instruction cache misses are likely to affect a 
significant effect on the execution times. Thus, either 
of these two measures, when combined with execution 
time in order to ensure that the search does not proceed 
in a wrong direction, can be used as an effective fitness 
measure. The results (Figure 8) show that this holds in 
practice.  

4.4 Proposed Heuristics 
Using the results from Phases 1, 2, 3 and 4, the 

following fitness heuristic is proposed (where the first 
matching value should be used as the heuristic): 
1. If the program has a single path through it, i.e. no 

conditional statements or loops are dependent on 
the program inputs, then execution time should be 
used as the single fitness measure. 

2. If the program contains a large number of input-
data dependent loops, particularly deeply-nested 
loops, or an input-data dependent number of self-
recursive procedure calls, and few or no 
conditional statements, then the number of loop 
iterations and measured execution time should be 
jointly used as the fitness function. (Large in this 
context is measured by the percentage of the 
source code contained within a loop, with a 
proposed value of 75% or greater constituting a 
large number of loops within a program.) 

3. If the size of the program’s input space is large, i.e. 
the program takes a large number of inputs, and 
there are multiple paths within the program, where 
the choice of path is dependent on the program 
inputs, then data cache misses and execution time 
should be used together as the fitness function. (In 
this context, a large number of inputs is defined as 
the ratio of the size of the inputs to the size of the 
data cache. If this ratio exceeds a proposed 
measure of 25%, then the fitness measure 
proposed in this step should be used.) 

4. If the program contains a large number of 
conditional statements or loops, where the 
condition is dependent on the program inputs, then 
instruction cache misses and execution time 
together should constitute the fitness function. (A 
large number of conditions is defined as the ratio 
of the number of conditions to the total number of 
lines in the source code. A value of 15% or over 
would constitute large in this context.) 

5. If the program contains large basic blocks, that 
take a long time to execute, then execution time 
should be used as the fitness measure. 

6. If neither of the preceding steps matches the 
program’s characteristics, then execution time 
should be utilised as the fitness measure. 

The choice of heuristic assumes that it will be 
possible to do program analysis to find the significant 

characteristics of the program before using a search 
algorithm on the program to determine its WCET. Such 
an analysis would benefit the subsequent search 
significantly. However, if it is not possible to do this 
analysis, this research recommends the use of the 
measured program execution time as the fitness 
measure, as it has been found to be the best-performing 
general-purpose fitness measure for generating a high-
quality (result compared to the best found), reliable 
(variance of final result over 10 trials) and efficient 
(time taken to search compared to search with a single 
objective of execution time) estimate for the WCET.  

Performance (%) Benchmark 
Program 

FF
P Quality Reliability Efficiency 

Factorial L,E 97.6 164.7 518.5 
Cover E 100.0 100.0 100.0 
Insertion Sort 
(10 inputs) 

L,E 100.0 323.5 173.1 

Insertion Sort  
(50 inputs) 

L,E 97.9 411.5 81.9 

Insertion Sort  
(100 inputs) 

L,E 97.6 200.0 58.2 

DCT E 100.0 100.0 100.0 
PETRI L,E 100.0 100.0 17.6 
Matrix 
multiplication 

E 100.0 100.0 100.0 

QERC I,E 100.0 100.0 100.0 
Janne Complex L,E 100.0 331.3 20.6 
Matrix Inversion D,E 99.6 144041.7 93.6 
EXP E 80.4 5,621.3 187.7 
Quick Sort L,E 99.6 195.8 30.0 
FDCT E 100.0 100.0 100.0 
FFT E 100.0 100.0 100.0 
Select L,E 99.9 217.6 212.3 
Statistics Program D,E 99.8 1,088.6 97.5 
Binary Search L,E 100.0 100.0 91.5 
Overall  98.5 8,522.0 121.3 

Table 2 - Testing the Proposed Heuristics 
The proposed fitness function for each benchmark 

program is listed in Table 2 which also gives the results 
for the performance metrics (quality / accuracy, 
reliability and efficiency) and the Fitness Function 
Proposed (FFP), where L denotes loop count, I the 
instruction cache misses, D the data cache misses and E 
the execution time. The quality, reliability and 
efficiency of the proposed fitness in this table are 
measured in comparison to the highest-quality solution 
produced for the respective benchmark problems. In 
contrast to earlier in the paper, in Table 2 reliability is 
computed by variance of the highest-quality solution 
divided by the variance found with the proposed fitness 
function. Efficiency is computed by time taken to find 
the highest quality solution divided by the time taken 
with the proposed fitness function. 

5 Conclusions 
The paper shows how existing work on search-based 

WCET analysis can be extended. However the choice 
of criteria is not always straightforward. In particular 
the work has showed that simply introducing a wide 
range of criteria gives bad results and no single set of 



criteria works across all the problems. Based on the 
detailed evaluation performed, recommendations are 
formed and shown to be effective via further 
evaluation. 

References 
[1] G. Bernat, A. Colin and S. Petters, WCET Analysis of 

Probabilistic Hard Real-Time Systems. In: Proceedings 
of 23rd IEEE Real-Time Systems Symposium, pp. 279- 
288, 2002. 

[2] A. Betts, G. Bernat, Raimund Kirner, Peter Puschner, 
and Ingomar Wenzel, WCET Coverage for Pipelines, 
Techincal report for the ARTIST2 Network of 
Excellence, August 2006. 

[3] D. Burger and T. Austin, The Simplescalar tool set, 
version 2.0. SIGARCH Computer Architecture News. 
25(3), 13-25, 1997. 

[4] A. Burns, and A. Wellings, Real-Time Systems and 
Programming Languages, 3rd Edition, Addison Wesley 
2001. 

[5] R. Chapman, Static Timing Analysis and Program 
Proof, PhD thesis, University of York, 1995. 

[6] C. Coello, A Comprehensive Survey of Evolutionary-
Based Multiobjective Optimization Techniques. 
Knowledge and Information Systems. 1(3), 269-308, 
1999. 

[7] A. Ermedahl and J. Gustafsson, WCET Project / 
Benchmarks. Accessed: 5 May 2008. Available at: 
www.mrtc.mdh.se/projects/wcet/benchmarks.html. 

[8] H. Groβ, Measuring Evolutionary Testability of Real-
Time Software. Ph.D. thesis, University of 
Glamorgan/Prifysgol, 2000. 

[9] I. Jolliffe, Principal Component Analysis, Wiley, 2005. 
[10] R. Kirner, P. Puschner and I. Wenzel, Measurement-

Based Worst-Case Execution Time Analysis using 
Automatic Test-Data Generation. In Proceedings of the 
4th Euromicro Workshop on Worst Case Execution Time 
Analysis, 2004.  

[11] T. Lunqvist and P. Stenstrom, Timing Anomalies in 
Dynamically Scheduled Microprocessors, In: 
Proceedings of the 20th IEEE Real-Time Systems 

Symposium, pp. 12-21, 1999. 
[12] P. McMinn, Search-based software test data generation: 

A survey, Software Testing, Verification and Reliability, 
14(2), pp. 105-156, 2004. 

[13] H. Pohlheim and J. Wegener, Testing the Temporal 
Behavior of Real-Time Software Modules using 
Extended Evolutionary Algorithms. In Proceedings of 
Genetic and Evolutionary Computation Conference, 
1999. 

[14] L. Tan, The Worst Case Execution Time Tool Challenge 
2006: The External Test, 2nd International Symposium 
on Leveraging Applications of Formal Methods, 
Verification and Validation (ISoLA 2006), pp. 241-248, 
2006 

[15] N. Tracey, J. Clark, and K. Mander, The Way Forward 
for Unifying Dynamic Test Case Generation: The 
Optimisation-Based Approach, In Proceedings of The 
International Workshop on Dependable Computing and 
Its Applications, 1998. 

[16] J. Wegener and F. Mueller, A Comparison of Static 
Analysis and Evolutionary Testing for the Verification 
of Timing Constraints. Real-Time Systems Journal, 
21(3), 241–268, 2001. 

[17] J. Wegener, H. Sthamer, B. Jones and D. Eyres, Testing 
real-time systems using genetic algorithms. Software 
Quality Journal, 6(2), 127-135, 1997. 

[18] D. Whitley, A Genetic Algorithm Tutorial. Statistics and 
Computing, 4, 65-85, 1994. 

[19] D. Whitley, Genetic Algorithms and Evolutionary 
Computing. Van Nostrand, 2002. 

[20] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. 
Thesing, D. Whalley, G. Bernat, C. Ferdinand, R. 
Heckmann, T. Mitra, F. Mueller, I. Puaut, P. Puschner, 
J. Staschulat, P. and P. Stenstrom, The Worst-Case 
Execution Time Problem – Overview of Methods and 
Survey of Tools, ACM Transactions on Embedded 
Computing Systems, 7(3), 1-53, 2008. 

[21] M. Harman, The current state and future of Search 
Based Software Engineering, In Proceedings of the 
Future of Software Engineering 2007, pp. 342-357, 
2007. 



 
Figure 5 - Factorial (Quality of Solution) 

 
Figure 6 - Insertion Sort (10 inputs) (Quality of Solution) 

 
Figure 7 - Insertion Sort (100 inputs) (Quality of Solution) 

 
Figure 8 - Quadratic Equations Root Computation (Quality of Solution)


