
WCET Analysis of Modern Processors Using Multi-Criteria Optimisation

Usman Khan, Iain Bate
Department of Computer Science, University of York, York, United Kingdom

Email: usmannmkhan@hotmail.com, iain.bate@cs.york.ac.uk

Abstract
The Worst-Case Execution Time (WCET) is an

important execution metric for real-time systems, and
an accurate estimate for this increases the reliability of
subsequent schedulability analysis. Performance
enhancing features on modern processors, such as
pipelines and caches, however, make it difficult to
accurately predict the WCET. One technique for
finding the WCET is to use test data generated using
search algorithms. Existing work on search-based
approaches has been successfully used in both industry
and academia based on a single criterion function, the
WCET, but only for simple processors. This paper
investigates how effective this strategy is for more
complex processors and to what extent other criteria
help guide the search, e.g. the number of cache misses.
Not unexpectedly the work shows no single choice of
criteria work best across all problems. Based on the
findings recommendations are proposed on which
criteria are useful in particular situations.

1 Introduction
The study of real-time systems incorporates all

systems which have to respond within a fixed, finite
time and where a delayed answer is as bad as a wrong
response. More formally, a real-time system is one
where “correctness depends not only on the logical
result of the computation, but also on the time at which
the results are produced” [4]. Thus, timeliness is a
crucial aspect of a real-time system. One essential
measure for all forms of schedulability analysis is the
WCET. WCET research has proceeded in two distinct
directions.

The method of static analysis aims to analyse the
hardware and software under test statically i.e. without
executing the software, and then use this information to
derive an estimate for the WCET. Thus, given a
processor architecture and the program to be executed,
static analysis works by analysing execution paths and
simulating processor characteristics to determine the
worst-case path in a program [16, 10]. The worst-case
path is the path which produces the maximum run-
time. Static analysis has the benefit of guaranteeing a
safe upper bound for the WCET making it ideally
suited for critical systems but its pessimism and
portability can be seen as a weakness for less critical

systems [20].
In contrast, the method of dynamic analysis takes a

measurement-based approach to the task of
determining the WCET of a program. Given the
program, and the target processor, dynamic analysis
executes the program with a large and diverse range of
inputs, and measures the execution time of each
successive run. This information is used to find the
WCET. Often the largest value is taken as the WCET.
An exception to this is probabilistic analysis where a
statistical estimate is made of the execution time value
results to predict a WCET with the required reliability
[1].

Dynamic Analysis, however, requires the software
under investigation to be tested with a significantly
large number of appropriate inputs to achieve a
confidence level that the worst-case run has occurred,
and therefore, the WCET has been encountered. Two
distinctly different approaches exist for dynamic
analysis; hybrid approaches which combine static
analysis and measurement-based approaches, and so
called search-based techniques. The hybrid techniques
[1] show significant promise but come with a high
degree of complexity [20]. Instead here we explore the
extent to which search-based techniques can be
improved.

Search-based techniques have been used to generate
the input test-data, as the input space of the program
can be large and quite complex. Results of these
optimisation techniques [13, 15, 16, 17] show that they
are effective in sampling large search spaces. They
have been applied to both academic benchmarks and
more significantly to industrial case studies from both
automotive [17] and aerospace applications [15]. In the
case of the aerospace application [15], the results were
used in preference to those from static analysis which
had at least 30% pessimism [5]. Pessimism is defined
as the difference between the estimated and actual
value. It has been observed that the pessimism
produced by static analysis techniques is greater than
the optimism linked with evolutionary, search-based
techniques [16]. Further, it is widely recognised that
the pessimism associated with static analysis will only
get worse with more complex processors [20].

In [16] a comparison is performed of these
techniques with those of static analysis showing that

each technique has its own merits and drawbacks with
the decision of which to use depending very much on
the application context. As with all dynamic analysis
approaches they can only guarantee a safe upper bound
on the WCET if the appropriate test data is used. All
the previous work based on search-based techniques
have only used a single criteria function, the WCET
itself, in the search for good test-inputs. Wegener [13,
16, 17] has suggested adding other criteria into a
combined fitness function as a way of improving the
search, i.e. the time to find the maximum execution and
the magnitude of this execution time. As modern
processors have a number of performance-enhancing
features such as caches and pipelines, use of these
features can significantly alter the time taken by the
software. In some cases, these features even cause a
different path to emerge as the new worst-case path.
Thus, including these features in the fitness function
for the search may beneficially modify the search
direction. This type of strategy is widely recognised
across search-based software engineering [21]. An
example of how a feature may be included is to have a
criteria for the number of cache misses encountered.

For example, having an additional criterion could be
added to influence the search to derive test cases which
maximise the number of cache misses. It has the
additional benefit that it may increase the number of
instructions executed or data accesses made or find
most interesting paths through the software. Of course
this does not guarantee to find the WCET but may
help. To the best of our knowledge no other work has
explored the use of multi-criteria approaches. The
closest work to this is Betts [2] who proposed the use
of different coverage criteria, instead of the more usual
Modified Condition/Decision Coverage [12] which is
an often used structural coverage criteria. These other
criteria allow for low-level processing effects on the
WCET, e.g. the order of instructions through a
pipeline. However they have not evaluated the concept,
and using coverage criteria is a different approach to
what is proposed here, as we do not attempt to achieve
complete coverage.

The contribution of this paper, consequently, is to
establish the processor and software features which
have the most notable impact on the search for the
WCET, and to determine the best way in which the
effect of these features can be captured in a multi-
criteria heuristic function.

The structure of the paper is as follows. Section 2
surveys issues identified in the literature that affect
WCET analysis. Next, different methods for WCET
analysis using search-based techniques are proposed. In
section 4 the results are presented. Finally conclusions
are drawn in section 5.

2 Problems in Timing Analysis
A number of problems are encountered in analysing

the temporal behaviour of real-time programs. These
range from complexity in the real-time programs to be
analysed, to the internal features of the hardware.

These are discussed in the following sections.
2.1 Causes of Complexity in Real-Time

Programs
Groβ [8] defines some aspects of complexity in real-

time programs which make it difficult for a dynamic
analysis technique, for example a search-based testing
method, to precisely predict the WCET. The following
are identified as important criteria which add to a
program’s complexity, and consequently, cause
difficulty for search-based testing to find the actual
solution:
1. High nesting within a program
2. Low path probability of paths within a program,

where the low probability is caused by very few
values in the domain of the input variable(s), for
the program being analysed, leading to the choice
of that path.

3. High parameter and algorithmic interdependence,
which is caused by the execution time being highly
dependent on the values of the input variables, e.g.
in a parameter-dependent loop.

4. Size of the program’s input, or the range values
that input variables can take.

Groβ [8] validates the difficulty of each of these
measures by applying them individually to 22 simple
test programs. The results show that, generally,
increasing the difficulty of each measure makes it more
difficult to find the actual WCET. Even though the
complexity measures have only been applied to simple
test programs, Groβ [8] proposes that the significant
number of test programs used, together with the
considerable variations in the complexity of the test
objects, makes the results generally applicable to larger
more complex real-time programs.

2.2 Complexity in Processor Hardware
As with program characteristics there are certain

hardware features that make finding the WCET
analysis more difficult. These are widely recognised to
be as follows [20].
1. Cache – there are three types of cache: instruction,

data and unified as well as many different
configurations, e.g. direct mapped, set associative
or multi-level. Normally as the number of cache
misses increases so does the WCET.

2. Pipeline – here three types of complexity are
introduced; instruction level parallelism, resource
sharing and allocation, and dynamic scheduling
where instructions can be executed out of order.

3. Branch prediction – similar to caches there is an
aspect of global history to decide which
instructions’ information is stored for. However in
addition there can be complex logic deciding the
result of the prediction.

However there are other significant issues that these
features introduce. The principal one being timing
anomalies which can be introduced when processors
feature dynamic scheduling [11]. Timing anomalies are
defined as situations where the counter-intuitive
influence of the local execution time of one instruction

has an adverse bearing on the global execution time of
the whole task [20]. Thus, a faster execution within
part of the code can actually cause an increase in the
execution time of the whole task, perhaps even leading
to the WCET.

An advantage of dynamic analysis techniques,
including the search-based techniques discussed here,
is the fact that timing anomalies are allowed for in the
measures of the actual run-time of the software on the
target processor [1]. Thus, an execution containing a
timing anomaly but with a larger overall execution time
is still considered, and given preference over a non-
anomalous execution.

3 Finding the WCET Using Search
In section 2 a number of contributing factors were

identified for why WCET analysis is a difficult,
generally speaking intractable [20], problem. Each of
these factors may also influence the final WCET, e.g.
maximising the number of cache misses normally
results in a larger execution time. They also mean that
there is no way of knowing what the actual WCET is.
Therefore the normal approach [20] is to consider how
different analysis methods affect the ability to find the
WCET. As with all approaches to WCET analysis, it is
assumed the software being analysed runs non-
preemptively with effects from other software (e.g.
context switches, cache pollution etc) being accounted
for as part of higher-level schedulability analysis [20].

Two alternative approaches were considered. Firstly
to perform a comprehensive set of evaluations and
determine which approach best achieves our desirable
properties, i.e. achieving the maximum execution time,
repeatability / reliability, and efficiency (i.e. how long
the search takes), and in what circumstances. Secondly,
to again perform comprehensive evaluations but use an
approach such as Principal Component Analysis (PCA)
[9] to try and determine dominant patterns. The first
approach was taken as it was anticipated that the
combination of a large complex problem landscape and
the fact the landscape may be different for each
problem will make it difficult for PCA to be applied.
However with the results from the first approach in
place, future work may then apply PCA as it could be
used in a more focussed way.

There are four phases to the work:
1. Single criterion – in essence perform WCET

analysis as previously demonstrated by Tracey
[15], Wegener [16,17] and Groβ [8].

2. Low-level analysis – investigate to what extent
adding criteria based on low-level (instruction)
features influences the search. Key factors are the
number of cache misses and branch mis-
predictions. Cache misses can be separated into
data and instruction or treated together.

3. High-level analysis – examine to what extent high-
level (program flow) features affect the search.
The key factor here is the loop count.

4. Integrated analysis – consider how combinations
of the previous three phases perform.

The following sub-sections discuss the phases in more
detail.

3.1 Phases 1 – Single criterion search
A Genetic Algorithm (GA) was developed for

automatically generating input test-data. The algorithm
was chosen as previous work [15] has used it, albeit it
with minor differences in approaches, and initial trials
have shown it to be effective. This algorithm initially
uses execution time as its single fitness measure. The
representation, that is subsequently manipulated
through crossover and mutation, is the set of values for
the input variables. This data is the only item under our
control.

The design of the GA used is a relatively general one
based on those in [18]. Certain common choices and
strategies for the algorithm were, however, fixed and
used throughout this project to support fair comparison
between the different approaches. These choices are:

1. Population Size: 100
2. Number of Generations: 100
3. No. of elitist children in the next generation: 1
4. Selection: Roulette Selection
5. Crossover Strategy: Arithmetic Crossover
6. Mutation Strategy: Random Mutation
7. Crossover Percentage: 60%
8. No. of runs for each experiment: 10
A choice of 100 for the population size ensures that

there is sufficient diversity within the population
without this value being so large as to significantly
slow the computations at each generation. Further,
fixing the number of generations to 100 ensures that
the trajectory of the search can be examined once it has
completed, without being so large as to significantly
slow down each experiment. Restricting the number of
elitist children in the next generation to 1 allows only
the best solution to be carried over from one generation
to the next, rather than a large number of best
solutions. This helps maintain the diversity of the
search. Additionally, roulette selection, arithmetic
crossover and random mutation are common strategies
adopted by the genetic algorithm, which work well in
practice and are simple to implement. A crossover
percentage of 60% has also been observed to work well
in a genetic algorithm. The last requirement, for each
experiment to be conducted 10 times, enables the
reliability of the solution, i.e. the degree of
repeatability, to be recorded. Here reliability is defined
as the likelihood of obtaining similar results in practice.

Simplescalar [3] was chosen as the processor
simulator on which the working of the input program
would be analysed. Further, the ARM-processor was
chosen for the experiments as it was supported by
Simplescalar and as configured in this work represents
a relatively complex processor, containing two-levels
of cache, branch prediction and out-of-order execution.
This ensured that, in general, experimental results were
representative of executions on a modern processor.
Specific details of the processor used are as follows.
These are the default configuration of simplescalar and

as such has often been used in other work [14].
• Branch predictor: bimodal
• Branch predictor table size: 2048 entries
• Branch Target Buffer (BTB): 512 blocks
• Data Cache (L1): 128 blocks, 32 bytes block size,

Least Recently Used (LRU) replacement policy
• Data Cache (L1) Hit Latency: 1 cycle
• Instruction Cache (L1): 512 blocks, 32 bytes block

size, LRU replacement policy
• Instruction Cache (L1) Hit Latency: 1 cycle
• Memory Access Latency: 18 cycles (first block in

a multi-fetch instruction), 2 cycles (subsequent
blocks)

3.2 Phase 2 – Low-level analysis
Based on a detailed consideration of the low-level

microprocessor features that affect the WCET,
summarised in section 2, the following is a list of
criteria considered as part of a multi-criteria search
method. Each of the criteria can be used in isolation or
combined with others. For example it may be expected
to use combined knowledge of cache misses, i.e. an
overall total for the data and instruction cache misses.
Number of misses is used instead of a normalised rate
(total misses divided by the number of memory
accesses) as this will favour software paths with more
memory accesses. These figures are obtained by
parsing the detailed log files, produced by
Simplescalar, for the information needed. Future work
could consider other means for obtaining the
information, including in vivo analysis.

1. Execution Time (ET)
2. Branch Prediction Misses (BPM)
3. Data (Level 1) Cache Misses (DCM)
4. Instruction (Level 1) Cache Misses (ICM)

These measures were used to create the following
heuristics. The heuristics feature different ratios (or
weightings) used to combine the results from the
evaluation of each of the criterion. Different ratios are
used between the same sets of criteria so that the effect
of biasing can be examined. The ratios were chosen
based on the results of some preliminary assessments to
determine the typical quantities involved and then to
provide some degree of balancing. For example the
ratios between BPM and ICM is chosen so the outputs
of their respective analyses tends to give a similar
magnitude.
(a) BPM only
(b) DCM only
(c) ICM only
(d) DCM and ICM in the ratio 1:1
(e) DCM and ICM in the ratio 3:1
(f) DCM and Instruction Cache Accesses in the ratio

1:1
(g) BPM, ICM and DCM in the ratio 2:1:1
(h) ET and BPM in the ratio 1:10
(i) ET and DCM in the ratio 1:10
(j) ET and ICM in the ratio 1:10
(k) ET, DCM and ICM in the ratio 1:5:5
(l) ET, DCM and ICM in the ratio 2:15:5

(m) ET, BPM, DCM and ICM in the ratio 1:10:10:10
(n) ET, BPM, DCM and ICM in the ratio 7:10:10:10
(o) ET, BPM, DCM and ICM in the ratio 7:1:1:1

An important choice when gathering the metrics for
each of the criteria is whether they are measured for the
whole program or at specific points. For example, the
cache miss rate could be measured separately for each
memory access and each measure represented by its
own criterion. However this would result in a large
number of criteria even for small programs and it is
generally accepted that searching across more than six
criteria is difficult [6]. For this reason one overall
measure (a combination by a weighted sum, using the
previously mentioned ratios as weights, of the results
from evaluating each individual criteria) is made for
the whole program.

3.3 Phase 3 – High-level analysis
As previously stated in section 2, the principal issue

affecting the WCET is the number of loop iterations
and hence this is chosen as a criterion. In a similar
fashion to the criteria for low-level analysis, the
metrics are gathered across the whole program.

3.4 Phase 4 – Integrated Analysis
The heuristics used as the fitness functions for this

phase were obtained by combining the heuristics from
Phases 2 and 3. However, as Phase 3 only used a single
new execution measure, the number of loop iterations,
the resulting heuristics merely added the number of
loop iterations to each of the heuristics developed in
Phase 2. The heuristics used for the Integration Phase,
thus, consisted of:
(a) BPM and Loop Iterations (LI) in the ratio 10:1
(b) DCM and LI in the ratio 10:1
(c) ICM and LI in the ratio 10:1
(d) DCM, ICM and LI in the ratio 5:5:1
(e) DCM, ICM and LI in the ratio 15:5:2
(f) DCM, ICM and LI in the ratio 5:5:1
(g) BPM, DCM, ICM and LI in the ratio 10:5:5:2
(h) ET, BPM and LI in the ratio 1:10:2
(i) ET, DCM and LI in the ratio 1:10:2
(j) ET, ICM and LI in the ratio 1:10:2
(k) ET, DCM, BPM and LI in the ratio 1:5:5:2
(l) ET, DCM, ICM and LI in the ratio 2:15:5:4
(m) ET, DCM, BPM, ICM and LI in the ratio

1:10:10:10:4
(n) ET, DCM, BPM, ICM and LI in the ratio

7:10:10:10:10
4 Evaluation
A set of benchmark problems is publicly maintained

by the Mälardalen WCET research group [7]. This
comprises a number of programs used to evaluate the
performance of different WCET analysis tools. As the
benchmarks have already been categorised by type then
a selection of programs were chosen to give a
reasonable sample from each category after discounting
the more trivial examples, e.g. small pieces of code
with no distinctive features. Consequently sixteen of
the programs, listed in Table 1, were chosen that had a

range of characteristics.
Benchmark Programs WCET

(mean)
WCET
(max)

Factorial 2,053.3 2,188.0
Cover 3,991.0 3,991.0
Insertion Sort (10 inputs) 1,328.8 1,333.0
Insertion Sort (50 inputs) 17,528.2 18,240.0
Insertion Sort (100 inputs) 59,367.9 63,216.0
Discrete Cosine Transformation
(DCT)

4,186.0 4,186.0

Extended Petri Net Simulation
(PETRI)

16,722.7 18,378.0

Matrix multiplication 21,376.0 21,376.0
Quadratic Equations Root
Computation (QERC)

1,069.0 1,069.0

Janne Complex 437.3 443.0
Matrix Inversion 3,787.0 3,787.0
Computing an exponential integral
function (EXP)

14,317.5 16,358.0

Quick Sort 2,905.4 2,980.0
Fast DCT (FDCT) 4,712.0 4,712.0
Fast Fourier Transformation (FFT) 14,026.2 14,449.0
Select 10,711.7 10,757.0
Statistics Program 14,429.7 14,470.0
Binary Search 269.0 269.0

Table 1 - Phase 1 Results (units = clock cycles)
Each experiment was run 10 times, in order to

evaluate the reliability of the solution produced.
Reliability is assessed based on the variance of the
resulting execution times. Further, the WCET estimate
predicted at the end of 100 generations, with a
population size of 100, was recorded, together with the
time taken to produce the estimate, in order to evaluate
the direction, quality and efficiency of the search.

4.1 Phase 1
The results of the experiments are presented in Table

1 for the WCET estimate produced for each benchmark
program. These results show the quality of the solution
generated for each program, using execution time as
the fitness value, and is, additionally, a measure of the
general direction of the search after 100 generations. A
higher estimate of the WCET is considered more
accurate and therefore, better.

The Phase 1 results for the reliability of the search
show that three programs, Insertion Sort, with 100
inputs, PETRI and EXP had large variances, (denoted
by the square of the difference between the mean
WCET and the WCET from each of the 10 repeated
trials), and so, the results of these programs were the
least reliable. At the other end of the scale, seven
programs, e.g. Cover, had zero variance and are classed
as being simple to examine. The variances, and thus the
reliability, of other programs varies from under 100
cycles2 for Insertion Sort, with 10 inputs and Janne
Complex to almost a million cycles2 for Insertion Sort,
with 50 inputs. It should be noted that whilst a million
cycles2 may seem large that this only corresponds to a
standard deviation of a thousand cycles which is just
over 5% of the WCET(max).

4.2 Phases 2
As a summary for the whole set of benchmarks it

was found in eleven of the eighteen cases a single
criterion, the execution time, as used in phase 1 gave
the best results. However this leaves seven important
cases for which it did not perform as well. For reasons
of space, a full set of results are not presented in depth
only those with more interesting characteristics.
Interesting is defined as those for which different
criteria made a significant difference in terms of
quality, efficiency or reliability. The more interesting
benchmarks are insertion sort, factorial, janne complex
and quadratic.

Figure 1- Insertion Sort (10 inputs) (Reliability of

Solution)

Figure 2 - Insertion Sort (100 inputs) (Efficiency of

Solution)
The results of the experiments, for the interesting

benchmarks, are presented in Figures 1-8, where
Phases 2a - 2o represent the heuristics (a) – (o) in
section 3.2. The results show that, in general single
low-level fitness criteria, for example, only branch
mispredictions, data cache misses or instruction cache
misses, do not perform well in practice. Thus, in
Figures 3-8, the WCET estimate produced by Phases
2a, 2b and 2c (‘WCET (max)’ for each of these
phases), are all among the lowest values predicted.
Figure 1 (units for the y-axis are clock cycles2) shows
that these results also have a large variance, and
consequently, low reliability as well, thereby reducing
their usefulness. The speed of producing these results,
however, is high as represented in Figure 2 (units for
the y-axis are seconds of actual compute time on a 2.4
GHz Intel processor). Thus, a quick but exceedingly
inaccurate estimate for the WCET can be obtained
using these low-level criteria individually as the fitness
measure. This trend was further demonstrated across
the whole set of benchmarks. However if speed and

quality are concerns, then the single criteria of
execution time normally offers the best choice.

However, as previously stated, in 7 of the benchmark
programs, a multi-criteria fitness measure produced a
higher-quality solution than execution time alone. This
shows that multi-criteria heuristic fitness functions can
still be gainfully used in practice for a program, if
appropriate ones are chosen. For example, the Factorial
program calls itself recursively passing data at each
recursive call. This implies that the program makes
heavy use of the data cache, and therefore, the number
of data cache misses, and latency caused as a result of
these misses, can be a useful metric in guiding the
search to the WCET. The results of the Phase 2
experiments on the Factorial program are presented in
Figure 5. These results confirm the analysis about the
dependence of the Factorial program on the data cache,
as data cache misses used alone as the fitness measure
(Phase 2b) produces a solution whose quality is only
slightly poorer than that of the solution produced by
execution time as the single fitness measure (Phase 1).
Further, a combination of execution time and data
cache misses (Phase 2i) as the fitness measure produces
a better solution than execution time used alone, and
the highest-quality solution overall, confirming the
analysis. It is noted though the wrong combination of
criteria has a negative effect as shown by the results of
Phase 2m for instance.

Figure 3 - Insertion Sort (50 inputs) (Quality of

Solution)
A program’s dependence on the data cache increases

with the size of its inputs and the number of
calculations performed within it. This information can
be gainfully used in devising the best heuristic fitness
function to aid the search in reaching the WCET. Thus,
a combination of execution time and data cache misses
works well in practice, for a program taking a large
number of inputs. For example, the Insertion Sort
program with 10 inputs (Figure 6), has a relatively low
dependence on the data cache. Thus, execution time as
the single fitness measure produces a higher quality
solution than execution time used with the total number
of data cache misses. However, as the size of the inputs
is increased, the dependence on the data cache becomes
prominent. For example, in the case of the Insertion
Sort program with 50 inputs (Figure 3), the
combination of data cache misses and execution time
as the fitness measure, gives a higher-quality solution

than execution time alone, and only a marginally
poorer solution than execution time, branch prediction
misses, data cache misses and instruction cache misses
used altogether as the fitness function, which produces
the overall highest-quality solution. However, in the
Insertion Sort program with 100 inputs (Figure 7), this
situation is reversed. In this program, execution time
and data cache misses used together as the fitness
function finds the highest-quality solution, thus,
validating the analysis. Moreover, the results are
produced in only a slightly less efficient way than
execution time, branch prediction misses, data cache
misses and instruction cache misses used together as
the fitness function (Phase 2o), confirming the
applicability of this joint fitness measure.

The presence of a large number of loops or
conditional statements within a program can cause
instruction cache misses, as the instructions after the
target of a conditional branch will need to be loaded
into the instruction cache, and, depending on the
branch prediction method used, cause branch
mispredictions as well. Thus, these two execution
measures can be gainfully used for such programs as
additional criteria within the fitness function of the
genetic algorithm. For example, the Quadratic
Equations Root Computation program takes only 3
inputs. However, these are used in a loop and
conditional statements within the program. Thus,
instruction cache misses and branch mispredictions can
be used to aid the search. The results for this program
(Figure 8) show that execution time and branch
mispredictions together (Phase 2h), and execution time
and instruction cache misses together as fitness
functions (Phase 2j) produce higher-quality solutions
than execution time alone, with execution time and
instruction cache misses together producing the
highest-quality solution. Further, a combination of
execution time, branch mispredictions, instruction
cache misses and data cache misses as the fitness
measure also attains a higher-quality solution than
execution time alone. These results show that branch
mispredictions and in particular, instruction cache
misses can be gainfully used as additional fitness
criteria in programs with similar characteristics.

Figure 4 - Janne Complex (Quality of Solution)
In some cases, however, the addition of extra criteria

as fitnesses confuses the search algorithm. This is
particularly true when the criteria assign conflicting

fitness values to a program execution. For example, the
program Janne Complex contains a two-level nested
loop. Entry into this loop, is however, dependent on the
input values and only a small number of input values
cause this loop to be executed. Thus, the path
probability of this loop is low. Consequently, if the
input values do not permit entry into the loop, a
significant number of cache misses outside the loop can
confuse the search into giving a high fitness to these
program inputs. Thus, executing the loop will then be
regarded as an undesirable proposition for the search,
as a high fitness solution did not execute it. Clearly
with careful tuning of weightings a different result
could be achieved, however this is out of scope of this
paper. As a result, the loop will remain unexecuted and
the WCET estimate produced may be inaccurate.
Figure 4 shows the results of applying the search to the
Janne Complex program. The result shows that
execution time as the single fitness measure (Phase 1)
produces the highest-quality solution, while the result
for a combination of execution time, branch
mispredictions, data cache misses and instruction cache
misses, with a heavy bias towards the execution time,
as the fitness measure (Phase 2o) is only marginally
poorer. However, the rest of the results range from only
slightly poorer to much worse. This shows that the
fitness assigned to other criteria, such as cache misses
and branch mispredictions may cause program inputs
resulting in only a few iterations of the loop to be
assigned a higher fitness than inputs which execute the
loop longer, thereby reducing the program inputs that
execute the loop longer from the genetic algorithm’s
population. The results for Phase 2j show that the
highest fitness is dominated by instruction cache
misses to the extent that a zero loop count had the
highest fitness even though the execution time was
low.

Thus, the conflict between criteria is a serious
problem in multi-criteria fitness functions as it can
inhibit, rather than aid, the search, thus, preventing it
from finding the best solution. This problem can be
resolved by using the proposed method of program
analysis before the search, in order to evaluate the
criterion, or combination of criteria that best guides a
search to the program’s WCET. Later in the paper this
is explored further.

4.3 Phases 3 and 4
The results of the experiments are shown in Figures

5-8. The results show that, in general, combining the
criteria from phases 2 and 3 do not work well in
practice. However this does not preclude the possibility
that for other programs the trend will be reversed. The
results from Phase 4, additionally, take much longer as
they extract a larger amount of execution information,
and thus, have a fairly poor speed and efficiency. The
reliability of these results, although varying
significantly from one program to another, is generally
fair and comparable to the results from the other
phases.

Moreover, of the remaining 8 programs where
execution time does not find the highest-quality
solution, in 3 programs, the solution found by
execution time is within 1% of the highest-quality
solution while, in a further 2 programs, the solution
found by execution time is within 5% of the highest-
quality solution. The maximum number of highest-
quality solutions found by a fitness measure, other than
execution time, is 8 out of 18. This is achieved by
using execution time, branch prediction misses, data
cache misses and instruction cache misses together,
with a heavy weight assigned to execution time, as the
fitness measure (Phase 2o). Similarly, a combination of
execution time and loop counts as the fitness measure
(Phase 3b) finds the highest quality solution in 8
(different) cases out of the 18 highest-quality solutions.
This shows the general suitability, and applicability, of
these fitness measures. However, program analysis
should be done beforehand to determine the programs
on which use of this particular heuristic as the fitness
measure is likely to guide the search to the WCET.

For example, loop iterations (Phase 3a) are seen as
the best fitness measure for the Factorial program in
Figure 5, as they lead the search to the highest-quality
solution. Thus, program analysis beforehand can
establish that the number of procedure calls is directly
proportional to the execution time and directly
dependent on the program inputs. Consequently, use of
the number of calls, which subsumes the number of
loop iterations (as recursive calls can be considered as
loops for the purpose of program analysis) as the
fitness heuristic, is the measure most likely to lead a
search to the program’s WCET.

For the Insertion Sort program, thus, a prior program
analysis can establish that loop counts have the most
significant bearing for this program, as the program
simply consists of a nested loop. Further, the number of
iterations of the loop is not dependent on the number of
inputs but, rather, the ordering of the inputs. Thus,
while increasing the number of inputs will increase the
number of data cache accesses and, consequently, data
cache misses, the number of times the loop iterates has
a more significant bearing on the execution time than
the number of data cache misses. Additionally,
problems have been seen in the guidance given to the
search when two or more criteria are combined.
Consequently, it is recommended that only the number
of loop iterations, either on its own (Phase 3a) or in
combination with execution time (Phase 3b), is used to
guide the WCET search. The results show that this
analysis holds, as the fittest solution produced by either
of these 2 criteria produces the highest-quality solution
or a solution whose execution time is within 5% of the
best overall estimate for the WCET amongst all the
experiments. This is demonstrated in Figure 4, which
show high-quality solutions, and other analysis
demonstrated it to have an excellent overall reliability.

In contrast, in a program such as Quadratic
Equations Root Computation, which contains an input-

data dependent loop and input-data dependent
conditional statements, the execution time of the loop
is not the primary contributor to the overall execution
time. Instead the presence of a loop and conditional
statements jointly imply that branch mispredictions or
instruction cache misses are likely to affect a
significant effect on the execution times. Thus, either
of these two measures, when combined with execution
time in order to ensure that the search does not proceed
in a wrong direction, can be used as an effective fitness
measure. The results (Figure 8) show that this holds in
practice.

4.4 Proposed Heuristics
Using the results from Phases 1, 2, 3 and 4, the

following fitness heuristic is proposed (where the first
matching value should be used as the heuristic):
1. If the program has a single path through it, i.e. no

conditional statements or loops are dependent on
the program inputs, then execution time should be
used as the single fitness measure.

2. If the program contains a large number of input-
data dependent loops, particularly deeply-nested
loops, or an input-data dependent number of self-
recursive procedure calls, and few or no
conditional statements, then the number of loop
iterations and measured execution time should be
jointly used as the fitness function. (Large in this
context is measured by the percentage of the
source code contained within a loop, with a
proposed value of 75% or greater constituting a
large number of loops within a program.)

3. If the size of the program’s input space is large, i.e.
the program takes a large number of inputs, and
there are multiple paths within the program, where
the choice of path is dependent on the program
inputs, then data cache misses and execution time
should be used together as the fitness function. (In
this context, a large number of inputs is defined as
the ratio of the size of the inputs to the size of the
data cache. If this ratio exceeds a proposed
measure of 25%, then the fitness measure
proposed in this step should be used.)

4. If the program contains a large number of
conditional statements or loops, where the
condition is dependent on the program inputs, then
instruction cache misses and execution time
together should constitute the fitness function. (A
large number of conditions is defined as the ratio
of the number of conditions to the total number of
lines in the source code. A value of 15% or over
would constitute large in this context.)

5. If the program contains large basic blocks, that
take a long time to execute, then execution time
should be used as the fitness measure.

6. If neither of the preceding steps matches the
program’s characteristics, then execution time
should be utilised as the fitness measure.

The choice of heuristic assumes that it will be
possible to do program analysis to find the significant

characteristics of the program before using a search
algorithm on the program to determine its WCET. Such
an analysis would benefit the subsequent search
significantly. However, if it is not possible to do this
analysis, this research recommends the use of the
measured program execution time as the fitness
measure, as it has been found to be the best-performing
general-purpose fitness measure for generating a high-
quality (result compared to the best found), reliable
(variance of final result over 10 trials) and efficient
(time taken to search compared to search with a single
objective of execution time) estimate for the WCET.

Performance (%) Benchmark
Program

FF
P Quality Reliability Efficiency

Factorial L,E 97.6 164.7 518.5
Cover E 100.0 100.0 100.0
Insertion Sort
(10 inputs)

L,E 100.0 323.5 173.1

Insertion Sort
(50 inputs)

L,E 97.9 411.5 81.9

Insertion Sort
(100 inputs)

L,E 97.6 200.0 58.2

DCT E 100.0 100.0 100.0
PETRI L,E 100.0 100.0 17.6
Matrix
multiplication

E 100.0 100.0 100.0

QERC I,E 100.0 100.0 100.0
Janne Complex L,E 100.0 331.3 20.6
Matrix Inversion D,E 99.6 144041.7 93.6
EXP E 80.4 5,621.3 187.7
Quick Sort L,E 99.6 195.8 30.0
FDCT E 100.0 100.0 100.0
FFT E 100.0 100.0 100.0
Select L,E 99.9 217.6 212.3
Statistics Program D,E 99.8 1,088.6 97.5
Binary Search L,E 100.0 100.0 91.5
Overall 98.5 8,522.0 121.3

Table 2 - Testing the Proposed Heuristics
The proposed fitness function for each benchmark

program is listed in Table 2 which also gives the results
for the performance metrics (quality / accuracy,
reliability and efficiency) and the Fitness Function
Proposed (FFP), where L denotes loop count, I the
instruction cache misses, D the data cache misses and E
the execution time. The quality, reliability and
efficiency of the proposed fitness in this table are
measured in comparison to the highest-quality solution
produced for the respective benchmark problems. In
contrast to earlier in the paper, in Table 2 reliability is
computed by variance of the highest-quality solution
divided by the variance found with the proposed fitness
function. Efficiency is computed by time taken to find
the highest quality solution divided by the time taken
with the proposed fitness function.

5 Conclusions
The paper shows how existing work on search-based

WCET analysis can be extended. However the choice
of criteria is not always straightforward. In particular
the work has showed that simply introducing a wide
range of criteria gives bad results and no single set of

criteria works across all the problems. Based on the
detailed evaluation performed, recommendations are
formed and shown to be effective via further
evaluation.

References
[1] G. Bernat, A. Colin and S. Petters, WCET Analysis of

Probabilistic Hard Real-Time Systems. In: Proceedings
of 23rd IEEE Real-Time Systems Symposium, pp. 279-
288, 2002.

[2] A. Betts, G. Bernat, Raimund Kirner, Peter Puschner,
and Ingomar Wenzel, WCET Coverage for Pipelines,
Techincal report for the ARTIST2 Network of
Excellence, August 2006.

[3] D. Burger and T. Austin, The Simplescalar tool set,
version 2.0. SIGARCH Computer Architecture News.
25(3), 13-25, 1997.

[4] A. Burns, and A. Wellings, Real-Time Systems and
Programming Languages, 3rd Edition, Addison Wesley
2001.

[5] R. Chapman, Static Timing Analysis and Program
Proof, PhD thesis, University of York, 1995.

[6] C. Coello, A Comprehensive Survey of Evolutionary-
Based Multiobjective Optimization Techniques.
Knowledge and Information Systems. 1(3), 269-308,
1999.

[7] A. Ermedahl and J. Gustafsson, WCET Project /
Benchmarks. Accessed: 5 May 2008. Available at:
www.mrtc.mdh.se/projects/wcet/benchmarks.html.

[8] H. Groβ, Measuring Evolutionary Testability of Real-
Time Software. Ph.D. thesis, University of
Glamorgan/Prifysgol, 2000.

[9] I. Jolliffe, Principal Component Analysis, Wiley, 2005.
[10] R. Kirner, P. Puschner and I. Wenzel, Measurement-

Based Worst-Case Execution Time Analysis using
Automatic Test-Data Generation. In Proceedings of the
4th Euromicro Workshop on Worst Case Execution Time
Analysis, 2004.

[11] T. Lunqvist and P. Stenstrom, Timing Anomalies in
Dynamically Scheduled Microprocessors, In:
Proceedings of the 20th IEEE Real-Time Systems

Symposium, pp. 12-21, 1999.
[12] P. McMinn, Search-based software test data generation:

A survey, Software Testing, Verification and Reliability,
14(2), pp. 105-156, 2004.

[13] H. Pohlheim and J. Wegener, Testing the Temporal
Behavior of Real-Time Software Modules using
Extended Evolutionary Algorithms. In Proceedings of
Genetic and Evolutionary Computation Conference,
1999.

[14] L. Tan, The Worst Case Execution Time Tool Challenge
2006: The External Test, 2nd International Symposium
on Leveraging Applications of Formal Methods,
Verification and Validation (ISoLA 2006), pp. 241-248,
2006

[15] N. Tracey, J. Clark, and K. Mander, The Way Forward
for Unifying Dynamic Test Case Generation: The
Optimisation-Based Approach, In Proceedings of The
International Workshop on Dependable Computing and
Its Applications, 1998.

[16] J. Wegener and F. Mueller, A Comparison of Static
Analysis and Evolutionary Testing for the Verification
of Timing Constraints. Real-Time Systems Journal,
21(3), 241–268, 2001.

[17] J. Wegener, H. Sthamer, B. Jones and D. Eyres, Testing
real-time systems using genetic algorithms. Software
Quality Journal, 6(2), 127-135, 1997.

[18] D. Whitley, A Genetic Algorithm Tutorial. Statistics and
Computing, 4, 65-85, 1994.

[19] D. Whitley, Genetic Algorithms and Evolutionary
Computing. Van Nostrand, 2002.

[20] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S.
Thesing, D. Whalley, G. Bernat, C. Ferdinand, R.
Heckmann, T. Mitra, F. Mueller, I. Puaut, P. Puschner,
J. Staschulat, P. and P. Stenstrom, The Worst-Case
Execution Time Problem – Overview of Methods and
Survey of Tools, ACM Transactions on Embedded
Computing Systems, 7(3), 1-53, 2008.

[21] M. Harman, The current state and future of Search
Based Software Engineering, In Proceedings of the
Future of Software Engineering 2007, pp. 342-357,
2007.

Figure 5 - Factorial (Quality of Solution)

Figure 6 - Insertion Sort (10 inputs) (Quality of Solution)

Figure 7 - Insertion Sort (100 inputs) (Quality of Solution)

Figure 8 - Quadratic Equations Root Computation (Quality of Solution)

