
Refactoring Asynchronous Event Handling
in the Real-Time Specification for Java

MinSeong Kim
Department of Computer Science

The University of York, UK
djmin@cs.york.ac.uk

Andy Wellings
Department of Computer Science

The University of York, UK
andy@cs.york.ac.uk

Abstract

The primary goal for asynchronous event handling (AEH)
in the Real-Time Specification for Java (RTSJ) is to have
a lightweight concurrency mechanism. However the RTSJ
neither provides a well-defined guideline on how to imple-
ment AEH nor requires the documentation of the AEH model
used in the implementation. Also the AEH API in the RTSJ
are criticised as lacking in configurability as they do not
provide any means for programmers to have fine control over
the AEH facilities, such as the mapping between real-time
threads and handlers. For these reasons, it needs the refac-
toring of its application programming interface (API) to give
programmers more configurability. This paper, therefore,
proposes a set of AEH related classes and interfaces to en-
able flexible configurability over AEH components. We have
implemented the refactored configurable AEH API using
the new specifications on an existing RTSJ implementation
and this paper shows that it allows more configurability for
programmers than the current AEH API in the RTSJ does.
Consequently programmers are able to specifically tailor the
AEH subsystem to fit their applications’ particular needs.

1. Introduction

The Real-Time Specification for Java (RTSJ) augments
the Java Platform with facilities for asynchronous event han-
dling. The goal of the approach is to provide a light-weight
concurrency mechanism that does not have the overheads
of real-time threads but nevertheless allows event handlers
to be scheduled entities. The Real-time Virtual Machine
(RT-JVM) is responsible for executing application-defined
handlers according to their defined scheduling parameters,
typically using a pool of real-time server threads1. The
binding between handler and server is usually (but need not
be) dynamic. The expectation is that systems of hundreds
of events (if not thousands) can be handled by efficient
management of the thread pool. As well as supporting

1. In this paper, the real-time threads which are specifically created or
maintained by the system for the execution of released handlers are also
called servers or server threads.

application-defined events, asynchronous event handlers can
also be used to handle:

• external interrupts (called happenings by the RTSJ)
• a class of asynchronous error conditions detected by the

RT-JVM such as a deadline miss or a WCET overrun
of a real-time thread

• operating system signals such as those defined by the
POSIX standard, for example SIGALRM.

Whilst the goals of the RTSJ asynchronous event handling
are laudable, their realisation in the current version of the
specification suffer from the following limitations.

• A single model for all types of events handlers –
all asynchronous event must be handled in the same
implementation-dependent way; it is not possible for
an application to indicate a different implementation
strategy for, say, interrupt handlers or non-blocking
handlers.

• Lack of implementation configurability – the appli-
cation is unable to set the size of the thread pool or to
request different handlers be serviced by different pools
[8].

• A fixed view of the notion of sporadic handlers –
the RTSJ has a fixed view of the real-time properties
of sporadic asynchronous event handlers requiring that
each handler has a minimum inter-arrival time; in
practice other models are also valuable, for example
a maximum arrival frequency.

The above problems have led to various attempts to add
more flexibility into the implementation models [8], [9].
In this paper, we contend that a simple refactoring of the
RTSJ support would allow all of the above limitations to
be removed. In section 2, we give a brief overview of the
current asynchronous event handling API in the RTSJ and
some details of how it has been implemented. In section 3 we
present our refactored AEH API that provides a framework
for the implementation of various event handling models.
The API is backward compatible with the current RTSJ in
that application will execute unchanged in the new system.
In section 4, we present a case study of using the new
framework to support an application-defined implementation



Figure 1. AEH facilities in the RTSJ

of event handlers and compare its performance to that of an
implementation-defined model. Finally, section 5 presents
our conclusions.

2. AEH in the RTSJ and Its Implementations

In the RTSJ, asynchronous events are viewed as data-
less occurrences that can be either fired (periodically or
only once) by the application or associated with the trig-
gering of interrupts in the environment. The relationship
between events and handlers is many to many (i.e. a single
AsyncEvent can have one or more AsyncEventHandlers,
and a single AsyncEventHandler can be bound to one or
more AsyncEvents). Also handlers can be associated with
POSIX signals for the situation where the RTSJ is imple-
mented on top of a POSIX-compliant operating system.

Figure 1 illustrates the current AEH related classes and
interfaces in the RTSJ. There are two types of Schedula-
ble objects that implement the Schedulable interface: the
AsyncEventHandler and the RealtimeThread class. Each
instance of the two classes can therefore have a set of param-
eters that control its actual execution. The set of parameters
specifies scheduling, timing, and memory requirements for
its associated instance via Scheduling, Release, and Memo-
ryParameters, respectively. Each AsyncEvent can have one
or more AsyncEventHandlers. When an event is fired, all
the associated handlers are scheduled for execution accord-
ing to their temporal parameters. Also one or more aperiodic
handlers can be assigned to a ProcessingGroupParameters

to bound their impact on the overall schedulability of the
system [16].

From the application programmers’ perspective, the two
Schedulable objects behave in the same manner. In prac-
tice, however, RealtimeThreads provide the vehicles for
execution of AsyncEventHandlers [15]. In other words,
AsyncEventHandlers will be executed by implementation-
defined RealtimeThreads at some point. Therefore it is nec-
essary to bind AsyncEventHandlers to RealtimeThreads
and these bindings are typically performed at run-time.
The time at which handlers are bound to threads and
the number of threads used form the main distinguishing
characteristics between AEH implementation models. If
this binding latency, which inevitably incurs when the two
objects are being attached to each other, is not desired
BoundAsyncEventHandlers can be used to eliminate it.
Once a BoundAsyncEventHandler is bounded to a Real-
timeThread, the thread becomes the only vehicle for the
execution of the particular handler, and that thread can only
service that handler, no others. However the use of Bound-
AsyncEventHandlers should be minimised as dedicating a
thread for each handler is very expensive for large numbers
of events.

The point here is that enabling AsyncEventHandlers to
use far fewer system resources than actual RealtimeThreads
do, and not to suffer the same overhead as RealtimeThreads
is the primary goal of the RTSJ. Regardless of how well
the implementation is designed, as the number of Real-
timeThreads in a system grows operating system overhead



Figure 2. As the number of concurrent threads T
increases, throughput increases until T = T’, after which
the throughput of the system degrades substantially [17]

increases, leading to a decrease in the overall performance
of the system. There is typically a maximum number of
threads T’ that a given system can support, beyond which
performance degradation occurs. This phenomenon is clearly
demonstrated in Figure 2. Therefore, the key challenge
in implementing AEH is to limit the number of Real-
timeThreads without jeopardising the schedulability of the
overall system. Furthermore, the resulting implementation
must provide an efficient and predictable mapping between
these two entities, the AsyncEventHandler and the server
RealtimeThread.

2.1. AEH models in RTSJ Implementations

In [7] various AEH models used in some popular RTSJ
implementations are examined and their respective pros and
cons are discussed. Here we briefly review that paper’s
results in order to illustrate the various implementation
approaches that can be adopted. The models includes the
Reference Implementation (RI), OVM, Jamaica, jRate, and
Java RTS. The following paragraphs summarise the run-time
behavior of the AEH models:

• RI [14]: It creates a server each time when a handler
is released and there is no active server for that handler
[3]. This AEH implementation is the most intuitive
way of constructing the AEH subsystem. However the
scheme will likely produce a proliferation of servers
along with the associated per thread overhead such
as context-switches and run-time thread creation and
destruction latency, when the released handlers are
many.

• OVM [6]: Each AsyncEventHandler has a dedicated
server permanently bound to it for the life-time of
the handler. Consequently the AEH implementation
of the OVM has no differences with the expected
implementation of BoundAsyncEventHandlers of the
RTSJ. It therefore does not realise the main motivation
of having AsyncEventHandlers in the RTSJ.

• Jamaica [5]: The implementation tries to use fewer
servers on average by allocating a dedicated server per
priority level. This works well unless handlers block
(self-suspend); in which unbounded priority inversion
will be produced. To avoid this, it is necessary to
dynamically create a new server (or take one from a
pool of servers). However the implementation does not
take this corrective action when required.

• jRate [2]: The AEH implementation in jRate uses a
well-known architectural design pattern, Leader/Fol-
lowers [13], that provides a concurrency model where
multiple servers can demultiplex handlers and execute
them. However the jRate AEH model essentially re-
quires the same number of servers as the number of
simultaneously released handlers in the system at all
times. This is because the AEH implementation in
jRate does not provide a facility that enables servers to
execute multiple AsyncEventHandlers. There are also
two other main drawbacks of the jRate’s AEH imple-
mentation. One is that the run-time or the event-firing
thread waits when all the servers in the pool are busy
until one of them becomes available. This inevitably
incurs unbound priority inversion if the handler, that
is released when all the servers are busy, has a higher
priority. The other shortcoming is that AsyncEvent-
Handlers with different priorities are executed at the
server’s priority level in a FIFO manner as if they were
assigned the server’s priority [8].

• Java RTS [11]: This uses the late binding model for its
AEH, in which notified servers defer the binding with
released handlers until they are actually eligible for exe-
cution and each server is allowed to execute more than
one handler. However, there are occasions when the
Java RTS AEH model constantly causes unnecessary
server-switching, the Multiple Server Switching Phe-
nomenon (MSSP), identified in [8]. The phenomenon
can be classified as a concurrency-related issues (such
as priority inversion) and takes place when the current
running server changes its priority and is due to the
queue replacement policy in that most real-time OSs
and middle-wares put a thread that has changed its
priority at the tail of the relevant queue for its new
priority. Changing priorities of server threads is com-
prehensively used in the late binding model in order
for the current running server to reflect the priority
of the handler that it currently executes. Readers are
referred to [8] for more detailed explanation about the
phenomenon.

Figure 3 shows a sequence diagram for a simple application
that uses an AsyncEventHandler and an AsyncEvent.
There are two separate sections, A and B, each of which
depicts the application and the implementation-specific part
of the system, respectively. The programmer creates an



Figure 3. A Simple AEH Sequence Diagram

event and a handler. They are bound together by using the
addHandler() method. When the event is fired (indicated
by a call to the fire() method), the internal hook method,
internalHook(), which causes the associated handler to
be released for execution is invoked. The method in turn
notifies a server or creates one depending on the AEH
model currently in use. The invoked server will then execute
the handler by calling the handleAsyncEvent() method,
which holds the logic to be executed, repeatedly while the
fireCount is greater than 0. fireCount is designed to remedy
overload problems when handlers are being heavily used
(i.e. event bursts - handlers that release before the previous
release has not completed). By correctly implementing and
using the concept of fireCount, associated overhead such as
starting and stopping the server thread in which a handler
run can be avoided.

The AEH models discussed in this section do not pro-
vide configuration facilities for programmers to have fine
control over the AEH components and to regulate the run-
time behavior. Furthermore most do not provide adequate
documentation for their respective run-time behavior. The
following section will present a AEH API for the RTSJ,
that enables configurability for application programmers.

3. Refactoring the AEH API in the RTSJ

In Section 2.1 the overall design of the RTS AEH facilities
were presented. The design is based on two premises:

1) that all handlers should be schedulable objects, and
2) that the application need not be concerned with how

AEH are executed to meet their timing requirements.
In this section we remove these premises and refactor the

API to extract out the notion of a handleable object and
define the interface between the firing of an event and the
release of a handler. By doing so, we maintain compatibility

with the current API (from the programmer’s perspective)
and allow greater configurability and flexibility.

The refactored AEH API hierarchy is shown in Figure
4. The Handleable interface captures the properties of any
object that wishes to handle an asynchronous event. It also
extends the Runnable interface like Schedulable does as
it should be implemented by any class whose instances
are intended to be executed by a thread. It declares two
additional methods, fired(), and handleAsyncEvent(). The
former method is declared here to explicitly define the rela-
tionship between the AsyncEvent and the Handleable class.
The latter method was defined in the AsyncEventHandler
class and is moved in the Handleable interface. Note that the
AsyncEvent class of the RTSJ would now be associated with
the Handleable interface for the parameter of its methods to
be passed in, instead of the AsyncEventHandler class. The
abstract class Handler defines protected accessor methods
for fireCount, which were defined in the AsyncEvent-
Handler class in the current RTSJ. The fired(), run(),
and handleAsyncEvent() methods still remain as abstract.
The SchedulableHandler class extends the Handler class
and implements the Schedulable interface. This class is
still abstract but now provides the default implementations
for methods inherited from the Schedulable interface, that
are related to the feasibility analysis and the accessor
methods for scheduling, memory, release, and processing
group parameters. Note that the run() method is inherited
in both the Handleable and Schedulable interfaces as they
both implement Runnable interface still remains abstract.
Now the AsyncEventHandler class extends the Schedu-
lableHandler class, providing the implementation-specific
AEH algorithm. As the RTSJ defines the run() method
in the AsyncEventHandler class as final and therefore it
is final here too. Declaring the run() method as final is
sufficient for the current RTSJ to shield the AEH algorithm
from being modified. For the refactored AEH API it is not
sufficient as now the internal hook method which determines
the AEH mapping algorithm is open to be overridden.
However it is not possible to declare the fired() method
in the AsyncEventHandler as final because the method
must be overridden to offer a default AEH algorithm for the
BoundAsyncEventHandler class (i.e. a static 1:1 mapping).
The fired() method in the BoundAsyncEventHandler class,
however, can be declared as final, restricting the fired() and
run() methods of the subclasses not to be modified. Note
that, the fired() method in the AsyncEventHandler class
can still be overridden and the programmer must not do so if
he/she intends to use the default AEH algorithm provided by
the underlying implementation. The AsyncEventHandler
and BoundAsyncEventHandler classes can therefore pro-
vide the default implementation of its AEH as the current
RTSJ specifies.

In the RTSJ, the interaction between the AsyncEvent-
Handler class and the AsyncEvent class is not clearly



Figure 4. New Refactored Configurable AEH for the RTSJ

defined and hence is implementation-specific in an inconsis-
tent way across different implementations. The RTSJ merely
states that [1]:

When an asynchronous event occurs, its attached
handlers (that is, handlers that have been added to
the event by the execution of the addHandler()
method) are released for execution. Every occur-
rence of an event increments fireCount in each
attached handler.

Especially the word “released for execution” is ambiguous.
In OVM, for example, the internal hook method that is
invoked when an event is fired is called releaseHandler
where its dedicated server thread is notified (recall that OVM
uses a static 1:1 mapping). Then the server thread in OVM
calls the run() method of the handler, which repeatedly
invokes the handleAsyncEvent() method while fireCount is
greater than zero. jRate, on the other hand, the fire() method
directly invokes the run() method, which in turn calls the
handleAsyncEvent() method. The mapping algorithm is



performed in the releaseHandler() method for OVM and
in the handleAsyncEvent() method for jRate as a result of
this uncertainty. As a consequence the application written
for OVM may behave differently in jRate. Therefore here
the interaction between the Handleable interface (or the
AsyncEventHandler class) and the AsyncEvent is defined
to eliminate this ambiguousness such that:

• When an instance of AsyncEvent occurs (indicated
by the fire method being called), the fired method
of instances of the class that have implemented the
Handleable interface and have been added to the
instance of AsyncEvent by the execution of addHandler
are explicitly invoked.

• The AEH algorithm that governs the execution of
handleable objects shall be provided in the fired
method.

• When used as part of the internal mechanism, the run
method’s detailed semantics should follow the below
idiom to guarantee that the outstanding fire count
should be handled and cleared properly:

public void run() {
while (fireCount > 0) {

fireCount--;
try {

handleAsyncEvent();
} catch (...) {

...
}

}
}

The proposed API structure and the definition of the
relationship between the Handleable interface and the
AsyncEvent preserve source compatibility with applications
written in accordance with the current RTSJ. However,
binary compatibility is essentially not supported due to
changes made to the AsyncEvent class. According to the
Java Language Specification [10], changing the name of
a method, the type of a formal parameter to a method or
constructor, or adding a parameter to or deleting a parameter
from a method or constructor declaration creates a method
or constructor with a new signature, and has the combined
effect of deleting the method or constructor with the old
signature and adding a method or constructor with the new
signature. If any pre-exsiting binary references a deleted
method or constructor from a class, this will break binary
compatibility; a NoSuchMethodError is thrown when such
a reference from a pre-existing binary is linked. In order for
the refactored AEH API to preserve binary compatibility
with pre-existing binaries, a overloaded version of each
method, that are directly related to AsyncEventHandler in
the AsyncEvent class, should be declared, for example for
the addHandler() method, as follows:

// the new addHandler() method
public void addHandler(Handleable handler) {

...
}

// the current addHandler() method that calls the new
// addHandler() method after typecasting the parameter
// handler to handleable
public void addHandler(AsyncEventHandler handler) {

if(handler instanceof Handleable) {
Handleable handleable = handler;

addHandler(handleable);
}

}
}

Using the refactored AEH API, it is now possible for the
application programmer to extend the hierarchy in several
ways. For example:

• It can provide its own implementation in support of
asynchronous event handling. This is done by creating a
new application-defined class that extends the Schedu-
lableHandler class as illustrated as the Level1User-
DefinedHandler class in Figure 4. By overriding the
fired() method, it is now possible to manually create
and tune the AEH components, allowing the config-
uration of the number of servers to be created, the
allocation of handlers to servers, and the notification
of servers. This comprehensive configurability of AEH
offers the following advantages [15]:

1) handlers in separate servers can be organized so
that they do not need to be synchronised,

2) handlers with tight deadlines can be kept separate
from handlers with long execution time,

3) handlers which do not block can be separated
from handlers that block,

4) heap and no-heap handlers can be bound to sep-
arate servers.

This allows an application to take into account
application-specific knowledge about the program for
example non-blocking handlers. As an example of an
application-defined handler at this level, a more effi-
cient AEH model based on the assumption that handlers
do not self-suspend is presented in Section 4.

• It can provide non-schedulable handlers by ex-
tending the Handler class as illustrated as the
Level2UserDefinedHandler class in Figure 4. An ex-
ample application requirement might be to execute an
interrupt handler. Here, the fired() method may invoke
the run() method directly rather than by a server thread
without entailing unnecessary operations which take
place in the standard AsyncEventHandler such as
queuing and waiting to be scheduled in competition
with other activities [4].

• It can provide its own version of the Handler class
should the need arise. The Level3UserDefinedHandler
class in Figure 4 illustrates this possibility. Handle-
ables at this level can similarly be implemented as
Leve2UserDefinedHandler. Here, however, the notion
of fireCount can be bypassed.

• Instances of the class that extends the AsyncEvent-
Handler class and overrides the handleAsyncEvent()



Figure 5. Dynamic-server-creation AEH Model

method will be handled by the default AEH algorithm
defined in the AsyncEventHandler class unless the
programmer overrides the fired() method.

Note that as the level of hierarchy is increased (from
Level1 to Level3), the extended handleables become lighter
and more generalised in the sense that a handleable at Level1
requires fewer methods to implement than one at Level2 or
Level3.

4. Using the Refactored AEH API

We have implemented the refactored configurable AEH in
jRate running on top of an open-source RTOS, MarTE OS
[12], which allows us to emulate RTSJ-compliant applica-
tions on the RTOS using a Linux environment. Using this
newly implemented configurable AEH API, various event
handling models can be programmed at the application-
level. Figure 5 shows the simplest AEH model, that extends
the SchedulableHandler and is therefore a Level1User-
DefinedHandler. The AEH model is used in the RI [14]
and creates a server every time a handler is released. The
entire activities done in the sequence diagram now belong
with the application-specific part of the system unlike the
previous sequence diagram in Figure 3, that uses the current
AEH of the RTSJ. The fired() method, that is called when
the associated asyncEvent is fired, creates and starts a server
thread as followings:

public void fired() {
RealtimeThread server = new RealtimeThread(

this.getSchedulingParameters()){
public void run() {

this.run();
}

}).start();
}

Note that the server thread here only reflects the handler’s
priority for the sake of simplicity and defines its run()
method such that it invokes the handler’s run() method upon
creation. Other timing and memory-related parameters can
also be reflected on the characteristics of the server thread.

The run() method of the handler which is called by the
server thread is now written so that the server thread invokes
the handleAsyncEvent() method or the run() method of
the handler’s logic, that may have been associated with the
handler when constructed, repeatedly while fireCount of the
handler is greater than 0. The code inside the run() method
of the handler should include the following, which complies
with the idiom suggested earlier:

do{
if(this.logic != null)

this.logic.run();
else

this.handleAsyncEvent();
}while(this.getAndDecrementPendingFireCount() > 1);

The above code fragment is executed while fireCount
is greater than 0 and calls the run() method of the logic
that is a runnable object that has been associated with the
handler as a parameter when the schedulable handler is
constructed or the overridden handleAsyncEvent() method,
based on the existence of the associated logic object. The
server thread will be destroyed upon completion as shown
in the figure. In the same way as the above dynamic-server-
creation model, Level2 and Level3UserDefinedHandler
can be constructed by the programmer. Now the handlers
at these two levels are not a schedulable any more (i.e.
they no longer have parameters related to the schedulable
object such as SchedulingParameters) and therefore, this
could be a good place to design an interrupt handler that is
going to be executed directly by the calling thread or the
run-time system. The fired() method therefore will call the
run() method directly without creating or notifying a server
thread, which will in turn invoke the handleAsyncEvent()
method.

As presented in Section 2.1, all the RTSJ AEH models
have been designed under the assumption that handlers
might block. This inhibits the models from taking advantage
of non-blocking handlers. This is because non-blocking
handlers require a smaller number of servers on average
than blocking handlers do: blocking handlers require an
additional ready server waiting at the priority of the first
handler in the queue to take over the CPU if the currently
running handler blocks to prevent priority inversion. In
[8] the distinction of the blocking and the non-blocking
handler was proposed and a respective AEH model was
constructed. The models in the paper were written in the
implementation-level and hence cannot be altered or mod-
ified by the programmer. However it is now possible to
construct the entire AEH models at the application level by
programmers using the refactored configurable AEH API. If
an application is composed only of non-blocking handlers,
the programmer does not have to rely on the standard AEH
model that assumes handlers would block and can construct
the programmer’s own AEH model to execute non-blocking
handlers more efficiently. This could be the prime example
of the necessity of a configurable AEH API, tailoring the



Figure 6. A Sequence Diagram for Non-Blocking AEH model [8]

AEH model to fit their specific needs, the handlers’ temporal
property of non-blocking in this example.

A sequence diagram of the Non-Blocking AEH model
[8] is shown in Figure 6. The model was originally imple-
mented using the current RTSJ AEH API. The two separate
sectors in the diagram, Sector 1 and Sector 2, depicted the
application-specific and the implementation-specific section
of the system, respectively. With the refactored AEH API
the entire model can now be constructed at the application-
level by the programmer, having full control over the AEH
components and the mapping between servers and handlers.
The following briefly explains the components and the run-
time behavior of the model: Programmers construct a server
pool with an integer number, nOfServers. The number is
then used to specify how many servers to be created in the
pool when it is initialized. The pool manages two structural
components, pendingHandlerQueue and eventFlag. The
servers in the pool wait on the eventFlag when started
and they are notified in turn under certain conditions.
The queue lists and dispatches the pending handlers in a
priority-ordered manner. The serverPool is passed to the
nonBlockingHandler as a parameter when the handleable
is constructed, forcing that it is only executed by one
of the servers in the pool. Creating an asyncEvent and
attaching the constructed handleable to the asyncEvent
is done in a normal way. And then some time later the
event may be fired as shown in the figure. When the pool

is constructed, it creates the specified number of servers
with an initial priority. The servers’ initial priority must
be equal to or greater than the highest priority of all the
handleables that servers in the pool will execute to avoid
priority inversion. The notified servers will later adjust their
priorities to the appropriate values accordingly. Otherwise a
handler of a higher priority will be delayed until the server
gets a chance to execute and consequently priority inversion
will occur. The fired() method in the nonBlockingHandler
is overridden in a way that when an event is fired all
the associated handlers are released and the serverPool is
notified. The serverPool is programmed so that it manages
the released handleables in the pendingHandlerQueue and
the servers which are notified under this model’s notification
rules. The invoked server will execute the pending handlers
in a priority-ordered manner as long as any concurrency-
related side effects are not incurred based on the model’s
event handling algorithm.

Figure 7 and 8 show the trend of the multiple han-
dlers completion latency which represents the time taken
to complete a number of handlers. We performed the test
with the three AEH models implemented on the platform,
BoundAsyncEventHandler, default AsyncEventHandler,
NonBlockingAsyncEventHandler. Numbers of handlers
for each model, from 10 to 500, are created and attached to a
single event. They all have the identical Runnable object to
guarantee that their execution time is the same. The priorities



Figure 7. Multiple AEHs Completion Latency Test with
10 to 100 handlers

Figure 8. Multiple AEHs Completion Latency Test with
100 to 500 handlers

that are assigned to handlers are equally distributed in the
range from the lowest to the highest. When the number
of handlers is greater than the priority levels, the same
priorities are assigned to handlers. All the handlers used
in the test are assumed to be aperiodic (i.e. they do not
have a period and a deadline). When the event is fired, all
the associated handlers are released for execution. The test
measures the time taken from the event being fired to the
last handler being completed. To avoid the interference of
the garbage collector while performing the test, the real-time
thread that fires the AsyncEvent and the servers that execute
the AsyncEventHandlers use scoped memory area as their
current memory area.

Figure 7 presents the trend of completion latency for
relatively smaller numbers of handlers and Figure 8 demon-

strates the trend for larger numbers of handlers. Essentially
the latency increases as the number of handlers released
increases. The AsyncEventHandler model, jRate’s stan-
dard AEH, takes the longest time to complete the released
handlers. The figures also show that the increasing rate of
the BoundAsyncEventHandler model is greater than Non-
BlockingAsyncEventHandler. At the start, with 10 han-
dlers, the BoundAsyncEventHandler incurs the shortest la-
tency. However as the number of handlers increases, it incurs
more overhead to complete. Between 10 and 20 handlers,
the performance of the NonBlockingAsyncEventHandler
become better and the performance gap is growing bigger
and bigger afterwards. The point where the non-blocking
AEH model outperforms the BoundAsyncEventHandler
model is marked with the black-coloured circle in Figure
7. Figure 8 clearly shows that the performance difference
between them becomes more apparent as the number of
released handlers increases. When the number of handlers
reaches 500, the NonBlockingAsyncEventHandler exhibits
more than 50% better performance than the other two.

5. Conclusions

This paper has considered the rationale for refactoring
asynchronous event handling in the Real-Time Specification
for Java. First the AEH models used in some popular RTSJ
implementations are examined in terms of their respective
run-time behavior and configurability. As the RTSJ does
not provide any configurable facilities for AEH, all the im-
plementations examined neither furnish programmers with
well-defined documentation for nor offer comprehensive
configurability over their AEH models. This fails to instill
confidence in programmers that their event handlers will be
executed predictably. To address the above issue, a config-
urable AEH API for the RTSJ is proposed and discussed
with respect to its benefits for programmers. The refactored
AEH API has been implemented and various AEH models
have also been programmed at the application level. The
models programmed include the Non-Blocking AEH model
that assumes handlers do not self-suspend. We have tested
its performance along with the existing AEH models on the
platform. The results from the test clearly show the necessity
of configurable AEH to allow the application requirements
to be tailored. The refactored AEH API lifts the limitations
of the current AEH version of the RTSJ, by giving the
programmer configurability, as follows:

• Multiple models for all types of events
handlers – it provides different levels of
asynchronous event handling hierarchy, Level1,
Level2, and Level3UserDefinedHandler. This
allows asynchronous event to be handled in an
application-dependent way at the different levels;
it is now possible for an application to indicate a



hierarchical implementation strategy for, say, interrupt
handlers(Level2) or non-blocking handlers(Level1).

• Comprehensive implementation configurability – the
application is now enabled to set the size of the
thread pool or to request different handlers be serviced
by different pools [8] and this flexible configurability
generally provides the following advantages.

1) application programmers to provide their own
AEH model,

2) the AEH components to be controlled, and
3) run-time behavior of the components to be regu-

lated.
• A variety of views of the notion of sporadic handlers

– although the issue has not been directly addressed in
this paper, the fired() method defined in the Handle-
able interface is where any arrival time constraints are
implemented. As this is now under programmer control,
user-defined models are possible.

• Backward compatibility – an application written in
accordance with the current RTSJ can also be executed
unchanged in the new system.

The above properties of the new AEH for the RTSJ are
significantly beneficial in terms of applications’ extensibil-
ity and scalability, which can be achieved by specifically
tailoring the application to fit their particular needs.

Acknowledgment

The authors gratefully acknowledge discussions with
David Holmes and Peter Dibble on the some of the issues
presented in this paper.

References

[1] R. Belliardi, B. Brosgol, P. Dibble, D. Holmes, and
A. Wellings. Real-Time Specification for Java Ver. 1.0.2,
2008. http://www.rtsj.org/.

[2] A. Corsaro. Techniques and Patterns for Safe and Efficient
Real-Time Middleware. PhD thesis, Washington University,
St. Louis, MO, USA, 2004.

[3] P. Dibble. Real-Time Java Platform Programming. Sun
Microsystems, USA, 2002.

[4] P. Dibble and A. Wellings. The Real-Time Specification for
Java: Current Status and Future Direction. In 7th Interna-
tional Conference on Object-Oriented Real-Time Distributed
Computing (ISORC), pages 71–77, 2004.

[5] S. Fridtjot. Asynchronous Event Handling in Jamaica from
Aicas. Private Communications, April 2008.

[6] D. Holmes. Asynchronous Event Handling in OVM from
Purdue University. Private Communications, April 2008.

[7] M. Kim and A. Wellings. Asynchronous Event Handling in
the Real-Time Specification for Java. In JTRES ’07: Proceed-
ings of the 5th international workshop on Java technologies
for real-time and embedded systems, pages 3–12, New York,
NY, USA, 2007. ACM.

[8] M. Kim and A. Wellings. An Efficient and Predictable Imple-
mentation of Asynchronous Event Handling in the RTSJ. In
JTRES ’08: Proceedings of the 6th international workshop on
Java technologies for real-time and embedded systems, pages
48–57, New York, NY, USA, 2008. ACM.

[9] D. Masson and S. Midonnet. Rtsj extensions: event manager
and feasibility analyzer. In JTRES ’08: Proceedings of the
6th international workshop on Java technologies for real-time
and embedded systems, pages 10–18, New York, NY, USA,
2008. ACM.

[10] S. Microsystems. The Java Language Specification.
http://java.sun.com/docs/books/jls/.

[11] F. Parain. Asynchronous Event Handling in Java RTS from
Sun Microsystems. Private Communications, March 2007.

[12] M. A. Rivas and M. G. Harbour. MaRTE OS: An Ada
Kernel for Real-Time Embedded Applications. Lecture Notes
in Computer Science, 2043:305–315, 2001.

[13] D. C. Schmidt, M. Kircher, F. Buschmann, and I. Pyarali.
Leader/Followers: A Design Pattern for Efficient Multi-
Threaded Event Demultiplexing and Dispatching. In Uni-
versity of Washington, pages 0–29. Addison-Wesley, 2000.

[14] TimeSys. Real-Time Specification for Java Reference Imple-
mentation. www.timesys.com/java.

[15] A. Wellings and A. Burns. Asynchronous Event Handling
and Real-Time Threads in the Real-Time Specification for
Java. In Proceedings of the Eighth IEEE Real-Time and
Embedded Technology and Applications Symposium, page 81,
Washington, USA, 2002. IEEE Computer Society.

[16] A. Wellings and M. Kim. Processing Group Parameters in the
Real-Time Specification for Java. In JTRES ’08: Proceedings
of the 6th international workshop on Java technologies for
real-time and embedded systems, pages 3–9, New York, NY,
USA, 2008. ACM.

[17] M. Welsh, S. D. Gribble, E. A. Brewer, and D. Culler. A
Design Framework for Highly Concurrent Systems. Technical
Report UCB/CSD-00-1108, EECS Department, University of
California, Berkeley, Aug 2000.


