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Abstract 

Java is becoming increasingly popular in many 
application areas due to its rich programming semantics 
and portability. We believe that high-integrity real-time 
systems can also greatly benefit by adopting the Java 
technology, provided the unpredictable overheads and 
insecurity of the run-time system are conquered. We 
illustrate in this paper our on-going work on a safe mobile 
code representation based on SSA form, and a run-time 
system that will enable us to examine program code in 
terms of safety, WCET, and schedulability. Some 
miscellaneous techniques for detecting race conditions 
and allocating registers are discussed along with examples. 

 
1. Introduction 

 
High integrity systems are often characterised by their 

rigorous requirements for Safety, Security and Timeliness, 
and may have disastrous effects to the environment should 
they fail to perform accordingly. Such systems typically 
have a high production and maintenance cost due mainly 
to their use of tailored components including software. 
Here, upgrading subsystems and software portability can 
become a serious concern because of the customised 
nature of such systems. Hence, the use of mobile software 
and an appropriate run-time architecture may be a valid 
approach to tackling this problem. 

Bearing this point in mind, Puschner and Wellings 
[12] proposed a profile for High-Integrity Real-Time Java 
programs, a subset of the Real-Time Specification for 
Java [5]. It is intended to facilitate the development of 
efficient and predictable systems. 

Having considered the potential benefits of exploiting 
Java and profiles such as this, one may naively conclude 
that Java is now ideal and mature for developing high-
integrity systems. However, as noted by many researchers 
the high-level binary (or JBC) significantly suffers from 
unpredictable overheads and possible security fears [2, 4, 
14, 1], which is especially true when the Just-in-Time 
Compiler is used. This dilemma principally stems from 
the underlying stack model. 

In this paper, we propose a new safe mobile code 
representation and run-time architecture in an attempt to 
overcome some of the problems mentioned above, and to 

encourage the use of Java, particularly the profile of [12] 
in building high-integrity real-time software. Our 
approach was initially inspired by SafeTSA [1] on the use 
of Static Single Assignment (SSA) forms [7] to safely 
represent mobile code. But, we focus more on temporal 
predictability and safety of Java programs, and develop 
some novel techniques for detecting race-conditions, 
checking data referential integrity and allocating registers. 

Sections 2 and 3 briefly depict the architecture and 
the mobile representation with associated techniques. In 
section 4, we discuss some real-time issues. The 
subsequent sections are devoted to showing the 
implementation status, and related works. Finally, a 
conclusion is provided. A simple example showing our 
mobile representation is given at the first author’s web 
page1. 
 
1.1.  Summary of the profile 

Burns et al. [6] suggest that a restricted programming 
model or profile can help produce efficient and 
predictable systems by removing language features with 
high overheads or complex semantics. Based on this idea, 
Puschner and Wellings [12] have defined a Ravenscar-
like profile for the RTSJ, and the following is a brief 
summary of each of the key areas. 
 
Threading model. There are two execution phases, i.e. 
initialisation and mission phases. In the initialisation 
phase, all necessary threads, event handlers, and memory 
objects are created in a non time-critical manner. No 
threads will be allowed to start until the top-priority thread 
with main() method finishes its execution. In the mission 
phase, threads may not change their own or other thread’s 
priority except when forced by the underlying 
implementation of the priority ceiling protocol. Sporadic 
or event-triggered activities are implemented as event 
handlers, and only one handler is allowed per event.All 
periodic threads must be an instance of 
NoHeapRealtimeThread class and need to invoke 
waitForNextPeriod method to delay execution until the 
start of their next periods. Asynchronous Transfer of 
Control (ATC), overrun and deadline-miss handlers, and 

                                                 
1 http://www.cs.york.ac.uk/~jagun/RTSS_WIP_Appendix/Traction.htm 



delay statements are not supported by the profile; nor is 
dynamic class loading during the mission phase. 
 
Concurrency. Synchronized methods and blocks are the 
key mechanism for mutual exclusion to shared resources 
in Java, and the priority ceiling protocol should be 
implemented in the run-time system in order to evade 
deadlocks. For similar reasons, wait, notify, and notifyall 
are not supported, avoiding any queue management. 
 
M emory management and raw memory access. The 
heap-based garbage collection mechanism of Java is not 
supported due to its long-debated unpredictability at run-
time. Instead, only immortal memory and linear-time 
scoped memory are supported as defined in the RTSJ. 
Immortal memory is used by default to create objects 
during the initialisation phase, but is not allowed for 
further object creation afterwards. In addition to this, all 
other memory objects must only be created in the 
initialisation phase. The RTSJ classes for raw memory 
access are also supported, so that device drivers, memory-
mapped I/O, and other low-level functions can be 
programmed. 
 
Time and clocks. All the RTSJ classes for the 
representation of time and real-time clocks are included 
while the timer classes are not. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2. Proposed architecture and mobile 
representation 

 
As shown above in Figure 2.1, the proposed 

architecture consists of several tools that appear as shaded 
circles. Once a Java program is written, it is transformed 
into SSA forms and optimised (using SSA techniques for 
Common Sub-expression Elimination, Constant 
Propagation, and Dead Code Elimination) by a back-end 
of our compiler, which produces a high-level mobile 
representation that is, in fact, transferred to the code-
generating site or virtual machine. This optimised 
representation is high-level in that it contains all the 
source-level semantics of Java programs including class 

and method descriptions, so that it is easier to verify the 
type safety of code (which are considered to be sufficient 
for ensuring the minimum nontrivial level of program 
safety [11]). It is also more compact than low-level binary, 
meaning improved network utilization if used. 

Having received the high-level code of a program, the 
Safety verifier automatically extends each instruction and 
operand(s) with pre- and post-conditions, forming a 
variant of the Hoare Triple [9]. For instance, the 
‘compute’  instruction will look like the following example. 
 

<<typematch(x, 5)  �  inscope(x) � x#10 + 5 = x#10 + 5>> 
     // pre-conditions 
compute (x#11, x#10 + 5)   // instruction & parameters 
<< x#11 = x#10 + 5>>   // post-conditions 
Explanation: typematch() and inscope() are internal functions 
of the Safety verifier; the first one evaluates true only when 
specified parameters have the same Java type, and the second 
returns true when parameters are in scope at this point of the 
program. This instruction simply adds 5 to the current value 
(of 10th definition) of variable x, and stores the sum in a new 
definition of x, thus is equivalent to ‘x = x+5;’ in Java. 
Example 2.1. Extended compute instruction in a variant 

form of the Hoare Triple 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
All such instructions and operands are then verified 

against their assumed roles expressed in the pre- and post-
conditions by the Safety verifier, which at this stage 
checks for type mismatches, array bound errors, divide-
by-zero and so on. Given that the code has passed this test, 
the verifier now moves on to examine the data referential 
integrity2 of the code (explained in the next section). 

After all the safety checks are performed, the code is 
now decomposed into our pre-defined low-level 
instructions that are, in turn, basic blocks of native 
instructions. Provided the code-executing system is known 
it is possible to find tight upper and lower bounds of 

                                                 
2 Referential integrity means that all references in SSA forms are valid, 
so that there is no illegal use or definition of variables. 
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execution time of each low-level instruction, so that we 
can obtain the longest path (or WCET) in our program by 
incrementally adding all the bounds of instructions on 
each branch. This task is done by the 
WCET/Schedulability Analyser. 

As a final step, the Target Code Generator takes as 
input the low-level instructions of the program to generate 
eventual binary code linked with all necessary kernel 
libraries. 
 

3. Program safety checks 
 

Blended with SSA form conventions, our instructions 
are high-level enough to represent the semantics of Java 
programs, and straightforward for safety checking at the 
code-generating site. Together with the instructions, there 
are two structural decorations for classes and methods 
expressed in a variant form of the Hoare Triple [9]. In 
order to make it straightforward to reason about pre- and 
post-conditions of delivered code the Safety verifier 
implements a few internal functions, and two of them are 
shown in Example 2.1. 
 
3.1. Data referential integr ity check 

In SSA forms, every read or use of a variable must 
always refer to the definition (or assignment) that 
immediately precedes it, forming a chain of definition-
and-use3 . However, this data-flow chain may become 
rather complicated if control structures, such as if or while 
statements are used. In such cases, associated ø-
function(s) need to be applied in order to attain an 
appropriate definition, and our special expression øi 

(x#n� x#l), which evaluates as x#n once, then as x#l 
afterwards, is used to avoid variable definitions with 
unnecessarily high version numbers in the beginning of a 
loop. Consequently, by imposing this rule and verifying 
the chain of version numbers, one can determine, to some 
extent, whether a stream of high-level instructions is 
tampered with, or illegally created. 
 
3.2. Race condition detection 

We have found an interesting property of SSA form 
that may enable us to detect race conditions in concurrent 
Java programs. Assume there is a tricky method that 
contains a subtle data race, as shown in Example 3.1 
below. 

A race condition can occur if more than one thread 
invoke add_by method and are interleaved between the 
two ill-adapted synchronized blocks. This sort of 

                                                 
3  Although in genuine SSA forms all dominating definitions can be 
referenced, we force this rule that only allows for any use to refer to an 
immediately preceding definition in order to make it harder to tamper 
with, i.e. the version number of any use must match with that of the most 
recent definition of the variable at a given point of a program. 

programming error often goes undetected by conventional 
checkers such as ESC/Java. 
 

A program with a data race Conver ted into SSA form 

class Storage_A { 
    static  int  resource = 0; 
 … 
    void add_by (int by) 
    { 
        int  tmp = 0; 
        synchronized (this) { 
            tmp = resource; 
        } 
 … 
        synchronized (this) { 
            resource = tmp + by; 
        } 
    } 
} 

class Storage_A { 
    static  int  resource0 = 0 
 … 
    void add_by (int by0) 
    { 
        int  tmp0 = 0 
        synchronized (this) { 
            tmp1 = resource0 

        } 
… 

        synchronized (this) { 
            resource1= tmp1 + by0 
        } 
    } 
} 

Example 3.1. A Java program with ill-adapted synchronized 
blocks 

 
For programs such as this, it is possible to 

automatically derive a post-condition or assertion from the 
SSA form of a method that manipulates an object or 
variable; such an assertion reveals the logical relationship 
between a shared object, input and the method. In this 
simple case it is 
 

resource1 = resource0 + by0. 
 
This is obtained by repeatedly substituting all (uses of) 
variables on the right side of the last definition of the 
shared variable with appropriate dominating definitions. It 
may contain ø-functions and øi-expressions. We can then 
run two experimental threads or a code analyser (with 
suitable input if required) that exhaustively interleave 
each other by lock-step within the same method (or others 
if involved). Whenever a thread finishes executing the 
method, the manipulated resource can be compared with 
the derived assertion, so that if in any case the value of the 
resource does not comply with the assertion, then we can 
conclude that there is a possible race condition. This way 
of detecting race conditions does not depend on the 
locking discipline [13], meaning that even incorrectly 
used synchronized blocks can be considered. 
 

4. Worst case execution time (WCET) 
and schedulability analysis 

 
Once we acquire the low-level representation of a 

program along with the high-level structural information, 
it becomes easy to derive the WCET of each thread. We 
should then be able to conduct schedulability analysis, 
provided all the jitters of the underlying kernel library are 
known. 
 



4.1. Register  allocation pr ior ity and cache 
memory management 

In the SSA form of a program it is possible to 
determine which variables are modified more often than 
others by simply examining the definition numbers of 
variables. In other words, if a variable has a greater 
number of definitions than others, that variable should be 
given a higher priority to be allocated in a register, leading 
to a more efficient program. Moreover, this simple finding 
may possibly encourage the investigation of cache effects 
in performing WCET analysis, given that high-priority 
variables are cached in preference to others. 
 

5. Implementation status 
 

At the time of writing, we are still in a later design 
stage of the mobile representation and run-time system, 
investigating further advantages of our approach and more 
efficient techniques for safety checks and timing analysis. 
It is planned to use an open-source Java compiler, such as 
Kopi [10], to implement our SSA form-based optimiser 
and transformer, as well as an open-source real-time 
kernel that supports all the services required to implement 
the profile. 
 

6.   Related works 
 

There are several mobile representations proposed 
over the past years, but almost none of them address 
temporal predictability. Java Bytecode is a relatively high-
level stack-based representation. It is either interpreted by 
a VM or compiled by a JIT compiler into native code. 
Most of the necessary optimisations are done at the target 
for security reasons, so that the size of bytecode is not 
compact [4]. Slim Binaries are a tree-based mobile 
representation [8]. It makes use of techniques for code 
encoding, e.g. a semantic dictionary, and dynamic code 
generation, all resulting in very compact mobile code. 

The ANDF [15] is another tree-based representation 
that was initially designed for the distribution of programs 
written in sequential programming languages. There have 
been some works to improve the format in terms of flow 
analyses, predictability, and verifiability, for example, the 
Safety-Critical ANDF (SC-ANDF) [3]. 

SafeTSA [1], like our approach, is a SSA form based 
mobile representation. High-level control structures and 
strict type information are embedded in code, enabling 
effective code optimisation and safety checks at the target. 
 

7. Conclusion 
 

This paper describes our on-going work on a new 
mobile code representation and run-time architecture that 
should hopefully facilitate developing safer and more 

predictable high-integrity systems. Our approach is based 
on the use of SSA forms. Some formal verification/reasoning 
techniques including the Hoare Triples are also (or are 
planned to be) applied to check the correctness of 
programs. However, the current safety policy is limited to 
type checking and data referential integrity testing, which 
raises some issues on application-dependent safety 
requirements. A more rigorous timing analysis is also still  
required to consider cache and pipeline effects. Further 
work is needed to implement the customised compiler and 
run-time system, and comparisons to other approaches 
should be made in due course. 
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