
A Safe Mobile Code Representation and Run-time Architecture for High-Integr ity
Real-Time Java Programs

Jagun Kwon, Andy Wellings, and Steve King

Real-Time Systems Research Group
Department of Computer Science

University of York, UK
{jagun, andy, king}@cs.york.ac.uk

Abstract

Java is becoming increasingly popular in many
application areas due to its rich programming semantics
and portability. We believe that high-integrity real-time
systems can also greatly benefit by adopting the Java
technology, provided the unpredictable overheads and
insecurity of the run-time system are conquered. We
illustrate in this paper our on-going work on a safe mobile
code representation based on SSA form, and a run-time
system that will enable us to examine program code in
terms of safety, WCET, and schedulability. Some
miscellaneous techniques for detecting race conditions
and allocating registers are discussed along with examples.

1. Introduction

High integrity systems are often characterised by their

rigorous requirements for Safety, Security and Timeliness,
and may have disastrous effects to the environment should
they fail to perform accordingly. Such systems typically
have a high production and maintenance cost due mainly
to their use of tailored components including software.
Here, upgrading subsystems and software portability can
become a serious concern because of the customised
nature of such systems. Hence, the use of mobile software
and an appropriate run-time architecture may be a valid
approach to tackling this problem.

Bearing this point in mind, Puschner and Wellings
[12] proposed a profile for High-Integrity Real-Time Java
programs, a subset of the Real-Time Specification for
Java [5]. It is intended to facilitate the development of
efficient and predictable systems.

Having considered the potential benefits of exploiting
Java and profiles such as this, one may naively conclude
that Java is now ideal and mature for developing high-
integrity systems. However, as noted by many researchers
the high-level binary (or JBC) significantly suffers from
unpredictable overheads and possible security fears [2, 4,
14, 1], which is especially true when the Just-in-Time
Compiler is used. This dilemma principally stems from
the underlying stack model.

In this paper, we propose a new safe mobile code
representation and run-time architecture in an attempt to
overcome some of the problems mentioned above, and to

encourage the use of Java, particularly the profile of [12]
in building high-integrity real-time software. Our
approach was initially inspired by SafeTSA [1] on the use
of Static Single Assignment (SSA) forms [7] to safely
represent mobile code. But, we focus more on temporal
predictability and safety of Java programs, and develop
some novel techniques for detecting race-conditions,
checking data referential integrity and allocating registers.

Sections 2 and 3 briefly depict the architecture and
the mobile representation with associated techniques. In
section 4, we discuss some real-time issues. The
subsequent sections are devoted to showing the
implementation status, and related works. Finally, a
conclusion is provided. A simple example showing our
mobile representation is given at the first author’s web
page1.

1.1. Summary of the profile

Burns et al. [6] suggest that a restricted programming
model or profile can help produce efficient and
predictable systems by removing language features with
high overheads or complex semantics. Based on this idea,
Puschner and Wellings [12] have defined a Ravenscar-
like profile for the RTSJ, and the following is a brief
summary of each of the key areas.

Threading model. There are two execution phases, i.e.
initialisation and mission phases. In the initialisation
phase, all necessary threads, event handlers, and memory
objects are created in a non time-critical manner. No
threads will be allowed to start until the top-priority thread
with main() method finishes its execution. In the mission
phase, threads may not change their own or other thread’s
priority except when forced by the underlying
implementation of the priority ceiling protocol. Sporadic
or event-triggered activities are implemented as event
handlers, and only one handler is allowed per event.All
periodic threads must be an instance of
NoHeapRealtimeThread class and need to invoke
waitForNextPeriod method to delay execution until the
start of their next periods. Asynchronous Transfer of
Control (ATC), overrun and deadline-miss handlers, and

1 http://www.cs.york.ac.uk/~jagun/RTSS_WIP_Appendix/Traction.htm

delay statements are not supported by the profile; nor is
dynamic class loading during the mission phase.

Concurrency. Synchronized methods and blocks are the
key mechanism for mutual exclusion to shared resources
in Java, and the priority ceiling protocol should be
implemented in the run-time system in order to evade
deadlocks. For similar reasons, wait, notify, and notifyall
are not supported, avoiding any queue management.

M emory management and raw memory access. The
heap-based garbage collection mechanism of Java is not
supported due to its long-debated unpredictability at run-
time. Instead, only immortal memory and linear-time
scoped memory are supported as defined in the RTSJ.
Immortal memory is used by default to create objects
during the initialisation phase, but is not allowed for
further object creation afterwards. In addition to this, all
other memory objects must only be created in the
initialisation phase. The RTSJ classes for raw memory
access are also supported, so that device drivers, memory-
mapped I/O, and other low-level functions can be
programmed.

Time and clocks. All the RTSJ classes for the
representation of time and real-time clocks are included
while the timer classes are not.

2. Proposed architecture and mobile
representation

As shown above in Figure 2.1, the proposed

architecture consists of several tools that appear as shaded
circles. Once a Java program is written, it is transformed
into SSA forms and optimised (using SSA techniques for
Common Sub-expression Elimination, Constant
Propagation, and Dead Code Elimination) by a back-end
of our compiler, which produces a high-level mobile
representation that is, in fact, transferred to the code-
generating site or virtual machine. This optimised
representation is high-level in that it contains all the
source-level semantics of Java programs including class

and method descriptions, so that it is easier to verify the
type safety of code (which are considered to be sufficient
for ensuring the minimum nontrivial level of program
safety [11]). It is also more compact than low-level binary,
meaning improved network utilization if used.

Having received the high-level code of a program, the
Safety verifier automatically extends each instruction and
operand(s) with pre- and post-conditions, forming a
variant of the Hoare Triple [9]. For instance, the
‘compute’ instruction will look like the following example.

<<typematch(x, 5) � inscope(x) � x#10 + 5 = x#10 + 5>>
 // pre-conditions
compute (x#11, x#10 + 5) // instruction & parameters
<< x#11 = x#10 + 5>> // post-conditions
Explanation: typematch() and inscope() are internal functions
of the Safety verifier; the first one evaluates true only when
specified parameters have the same Java type, and the second
returns true when parameters are in scope at this point of the
program. This instruction simply adds 5 to the current value
(of 10th definition) of variable x, and stores the sum in a new
definition of x, thus is equivalent to ‘x = x+5;’ in Java.
Example 2.1. Extended compute instruction in a variant

form of the Hoare Triple

All such instructions and operands are then verified

against their assumed roles expressed in the pre- and post-
conditions by the Safety verifier, which at this stage
checks for type mismatches, array bound errors, divide-
by-zero and so on. Given that the code has passed this test,
the verifier now moves on to examine the data referential
integrity2 of the code (explained in the next section).

After all the safety checks are performed, the code is
now decomposed into our pre-defined low-level
instructions that are, in turn, basic blocks of native
instructions. Provided the code-executing system is known
it is possible to find tight upper and lower bounds of

2 Referential integrity means that all references in SSA forms are valid,
so that there is no illegal use or definition of variables.

Java Program

Compiler or
Transformer

Low-level
Intermediate Code

Target
Code

Generator

Executable CodeSafety
Verifier

W CET/
Schedulabili
ty Analyser

Safety Policy

APIs and
Timing

information

High-level Mobile
Code

Extended High-
level Mobile Code

Transferred
Translator

Virtual Machine
or

Run-Time Environment

Figure 2.1. Proposed Architecture

execution time of each low-level instruction, so that we
can obtain the longest path (or WCET) in our program by
incrementally adding all the bounds of instructions on
each branch. This task is done by the
WCET/Schedulability Analyser.

As a final step, the Target Code Generator takes as
input the low-level instructions of the program to generate
eventual binary code linked with all necessary kernel
libraries.

3. Program safety checks

Blended with SSA form conventions, our instructions
are high-level enough to represent the semantics of Java
programs, and straightforward for safety checking at the
code-generating site. Together with the instructions, there
are two structural decorations for classes and methods
expressed in a variant form of the Hoare Triple [9]. In
order to make it straightforward to reason about pre- and
post-conditions of delivered code the Safety verifier
implements a few internal functions, and two of them are
shown in Example 2.1.

3.1. Data referential integr ity check

In SSA forms, every read or use of a variable must
always refer to the definition (or assignment) that
immediately precedes it, forming a chain of definition-
and-use3 . However, this data-flow chain may become
rather complicated if control structures, such as if or while
statements are used. In such cases, associated ø-
function(s) need to be applied in order to attain an
appropriate definition, and our special expression øi

(x#n� x#l), which evaluates as x#n once, then as x#l
afterwards, is used to avoid variable definitions with
unnecessarily high version numbers in the beginning of a
loop. Consequently, by imposing this rule and verifying
the chain of version numbers, one can determine, to some
extent, whether a stream of high-level instructions is
tampered with, or illegally created.

3.2. Race condition detection

We have found an interesting property of SSA form
that may enable us to detect race conditions in concurrent
Java programs. Assume there is a tricky method that
contains a subtle data race, as shown in Example 3.1
below.

A race condition can occur if more than one thread
invoke add_by method and are interleaved between the
two ill-adapted synchronized blocks. This sort of

3 Although in genuine SSA forms all dominating definitions can be
referenced, we force this rule that only allows for any use to refer to an
immediately preceding definition in order to make it harder to tamper
with, i.e. the version number of any use must match with that of the most
recent definition of the variable at a given point of a program.

programming error often goes undetected by conventional
checkers such as ESC/Java.

A program with a data race Conver ted into SSA form

class Storage_A {
 static int resource = 0;
 …
 void add_by (int by)
 {
 int tmp = 0;
 synchronized (this) {
 tmp = resource;
 }
 …
 synchronized (this) {
 resource = tmp + by;
 }
 }
}

class Storage_A {
 static int resource0 = 0
 …
 void add_by (int by0)
 {
 int tmp0 = 0
 synchronized (this) {
 tmp1 = resource0

 }
…

 synchronized (this) {
 resource1= tmp1 + by0
 }
 }
}

Example 3.1. A Java program with ill-adapted synchronized
blocks

For programs such as this, it is possible to

automatically derive a post-condition or assertion from the
SSA form of a method that manipulates an object or
variable; such an assertion reveals the logical relationship
between a shared object, input and the method. In this
simple case it is

resource1 = resource0 + by0.

This is obtained by repeatedly substituting all (uses of)
variables on the right side of the last definition of the
shared variable with appropriate dominating definitions. It
may contain ø-functions and øi-expressions. We can then
run two experimental threads or a code analyser (with
suitable input if required) that exhaustively interleave
each other by lock-step within the same method (or others
if involved). Whenever a thread finishes executing the
method, the manipulated resource can be compared with
the derived assertion, so that if in any case the value of the
resource does not comply with the assertion, then we can
conclude that there is a possible race condition. This way
of detecting race conditions does not depend on the
locking discipline [13], meaning that even incorrectly
used synchronized blocks can be considered.

4. Worst case execution time (WCET)
and schedulability analysis

Once we acquire the low-level representation of a

program along with the high-level structural information,
it becomes easy to derive the WCET of each thread. We
should then be able to conduct schedulability analysis,
provided all the jitters of the underlying kernel library are
known.

4.1. Register allocation pr ior ity and cache
memory management

In the SSA form of a program it is possible to
determine which variables are modified more often than
others by simply examining the definition numbers of
variables. In other words, if a variable has a greater
number of definitions than others, that variable should be
given a higher priority to be allocated in a register, leading
to a more efficient program. Moreover, this simple finding
may possibly encourage the investigation of cache effects
in performing WCET analysis, given that high-priority
variables are cached in preference to others.

5. Implementation status

At the time of writing, we are still in a later design
stage of the mobile representation and run-time system,
investigating further advantages of our approach and more
efficient techniques for safety checks and timing analysis.
It is planned to use an open-source Java compiler, such as
Kopi [10], to implement our SSA form-based optimiser
and transformer, as well as an open-source real-time
kernel that supports all the services required to implement
the profile.

6. Related works

There are several mobile representations proposed
over the past years, but almost none of them address
temporal predictability. Java Bytecode is a relatively high-
level stack-based representation. It is either interpreted by
a VM or compiled by a JIT compiler into native code.
Most of the necessary optimisations are done at the target
for security reasons, so that the size of bytecode is not
compact [4]. Slim Binaries are a tree-based mobile
representation [8]. It makes use of techniques for code
encoding, e.g. a semantic dictionary, and dynamic code
generation, all resulting in very compact mobile code.

The ANDF [15] is another tree-based representation
that was initially designed for the distribution of programs
written in sequential programming languages. There have
been some works to improve the format in terms of flow
analyses, predictability, and verifiability, for example, the
Safety-Critical ANDF (SC-ANDF) [3].

SafeTSA [1], like our approach, is a SSA form based
mobile representation. High-level control structures and
strict type information are embedded in code, enabling
effective code optimisation and safety checks at the target.

7. Conclusion

This paper describes our on-going work on a new
mobile code representation and run-time architecture that
should hopefully facilitate developing safer and more

predictable high-integrity systems. Our approach is based
on the use of SSA forms. Some formal verification/reasoning
techniques including the Hoare Triples are also (or are
planned to be) applied to check the correctness of
programs. However, the current safety policy is limited to
type checking and data referential integrity testing, which
raises some issues on application-dependent safety
requirements. A more rigorous timing analysis is also still
required to consider cache and pipeline effects. Further
work is needed to implement the customised compiler and
run-time system, and comparisons to other approaches
should be made in due course.

8. References

[1] W. Amme, N. Dalton, M. Franz, and J. Von Ronne, SafeTSA: A

Type Safe and Referentially Secure Mobile-Code Representation
Based on Static Single Assignment Form, Accepted for the 2001
ACM SIGPLAN Conference on PLDI 2001.

[2] A. W. Appel, Protection against untrusted code, IBM
DeveloperWorks, available at http://www-106.ibm.com/
developerworks/library/untrusted-code/, written in 1999, last
accessed in October 2001.

[3] N. Audsley, I. Bate, and A. Grigg, Portable Code: Reducing the
Cost of Obsolesence in Embedded Systems, IEE Computing and
Control, vol. 10, pp. 98-104, June 1999.

[4] A. Azevedo, A. Nicolau, and J. Hummel, Java Annotation-Aware
Just-In-Time Compilation System, ACM 1999 Java Grande
Conference, 1999.

[5] G. Bollella et al, The Real-Time Specification for Java, Addison
Wesley, June 2000.

[6] A. Burns, B. Dobbing, and G. Romanski, The Ravenscar Tasking
Profile for High Integrity Real-Time Programs, In L. Asplund,
editor, Proceedings of Ada-Europe 98, LNCS, Vol. 1411, pages
263-275, Berlin Heidelberg, Germany, Springer-Verlag 1998.

[7] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadeck,
Efficiently computing Static Single Assignment Form and the Control
Dependence Graph, ACM Transactions on Programming Languages
and Systems, 13(4):451-490, October 1991.

[8] M. Franz and T. Kistler, Slim Binaries, Communications of the
ACM, 40(12), December 1997.

[9] C. A. R. Hoare, An Axiomatic Basis for Computer Programming,
Communications of the ACM, 12(10), October 1969.

[10] The Kopi Project, http://www.dms.at/kopi, last accessed in
October 2001.

[11] D. Kozen, Language Based Security, Technical Report TR99-
1751, Cornell University, 1999.

[12] P. Puschner and A. J. Wellings, A Profile for High-Integrity Real-
Time Java Programs, Proceedings of ISCRC 2001.

[13] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro and T.
Anderson, Eraser: A dynamic data race detector for multithreaded
programs, ACM Transactions on Computer Systems, 15(4):391-
411, November 1997.

[14] R. Vallee-Rai and L. J. Hendren, Jimple: Simplifying Java
Bytecode for Analyses and Transformations, Technical Report:
1998-4, Sable Research Group, McGill University, 1998.

[15] X/Open Company Ltd., X/Open Preliminary Specification:
Architecture Neutral Distribution Format, X/Open Company Ltd.,
UK, 1996.

