
Ravenscar-Java: A High Integrity Profile for Real-Time Java 
 

Jagun Kwon, Andy Wellings, and Steve King 

Department of Computer Science 
University of York, UK 

{jagun, andy, king}@cs.york.ac.uk 
 

ABSTRACT 
For many, Java is the antithesis of a high integrity programming 
language. Its combination of object-oriented programming 
features, its automatic garbage collection, and its poor support for 
real-time multi-threading are all seen as particular impediments. 
The Real-Time Specification for Java has introduced many new 
features that help in the real-time domain. However, the 
expressive power of these features means that very complex 
programming models can be created, necessitating complexity in 
the supporting real-time virtual machine. Consequently, Java, with 
the real-time extensions as they stand, seems too complex for 
confident use in high integrity systems. This paper presents a Java 
profile for the development of software-intensive high integrity 
real-time systems. This restricted programming model removes 
language features with high overheads and complex semantics, on 
which it is hard to perform timing and functional analyses. The 
profile fits within the J2ME framework and is consistent with 
well-known guidelines for high integrity software development, 
such as those defined by the U.S. Nuclear Regulatory 
Commission. 
 

Categor ies and Subject Descr iptors 
D.3.3 [Programming Languages]: Language Constructs and 
Features; D.3.4 [Programming Languages]: Processors – 
Memory management (garbage collection), Run-time 
environments; D.2.4 [Software Engineer ing]: Software/Program 
Verification – Reliability; J.7 [Computer  Applications]: 
Computers in Other Systems – Real time 
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1. INTRODUCTION 
Increasingly computers are being used in high integrity real-time 
systems; that is, systems where failure can cause loss of life, 
environmental harm, or significant financial penalties. Examples 
include space shuttles, nuclear power plants, automatic fund 
transfers and medical instruments. They typically have high 
development and maintenance costs due to the customised nature 

of their components.  Within such systems, there has been a 
growing trend to use software, because it provides [25, 26, 30, 8]: 
 
• improved functionality 
• increased flexibility in design and implementation 
• reduced production cost 
• enhanced management of complexity in application areas. 
 
Java [16] has proved to be an appropriate vehicle for a diverse 
range of applications including web-based intranets and embedded 
systems. Its relatively simple linguistic semantics, the adoption of 
well-understood approaches to managing software complexity, 
and support for concurrency seem to have contributed towards its 
popularity. Initially designed with embedded systems in mind, 
Java’s main goal was to provide engineers with a reliable and 
cost-effective platform-independent environment.  
 However, despite all these valuable features, Java has been 
criticised for its unpredictable performance as well as some 
security concerns [1, 3]. The automatic garbage collection and 
dynamic class loading mechanisms are often considered 
problematic, especially under time or performance-critical 
situations. Moreover, a number of security bugs in the Java virtual 
machine have been discovered since its first appearance, 
especially in the bytecode verifiers and Just-in-Time (JIT) 
compilers [15, 1]. These fears make Java and its associated 
technology simply unsuitable for high integrity systems [22]. 
 In recent years, there have been two main activities, initiated 
by Sun, to address the limitations of Java for real-time and 
embedded systems. The first is, the Real-Time Specification for 
Java (RTSJ) [7] which attempts to minimise any modification to 
the original Java semantics and yet to define many additional 
classes that must be implemented in a supporting virtual machine. 
The goal is to provide a predictable and expressive real-time 
environment. This, however, ironically leads to a language and 
run-time system that are complex to implement and have high 
overheads at run-time. Software produced in this framework is 
also difficult to analyse with all the sophisticated features, such as 
the asynchronous transfer of control (ATC) and dynamic class 
loading. 
 The second relevant activity is the Java 2 Platform Micro 
Edition (J2ME) [33]. This essentially defines a three layer 
architecture: 

 
• a virtual machine layer (usually implemented on top of a host 

operating system), 
• a configuration layer which defines the set of Java language 

features, a minimum set of virtual machine features and the 
available class libraries that can be supported by a particular 
implementation platform (for example, a mobile phone), 

• a profile layer which defines a minimum set of Application 
Programmers Interfaces (APIs) targeted at a particular 
application domain. 
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The same configuration layer may support more than one profile, 
and different configuration layers may support the same profile. A 
configuration layer, called Connected, Limited Device 
Configuration (CLDC) has been defined for small, resource-
constrained mobile devices (mobile phones, pagers, personal 
organizers etc.) typically with a memory capacity of up to 512 
KB. The K (kilo bytes) virtual machine (KVM) is a virtual 
machine specifically designed to support the CLDC. The 
restrictions imposed on the Java language and the virtual machine 
include [33]: no support for floating point operations, no native 
interfaces, no user-defined class loaders, no thread groups or 
daemon threads, no object finalization, etc. The main motivation 
for these restrictions is to reduce the size of memory required to 
implement the virtual machine.  
 It is clear that the overheads of implementing the RTSJ makes 
it unsuitable for the CLDC configuration and consequently RTSJ, 
as it stands, is probably targeted at Java 2 Standard Edition (J2SE) 
or ideally another configuration (for example, the CDC – 
Connected Device Configuration) within the J2ME framework. 
However, a high integrity subset of the RTSJ model would be 
appropriate for J2ME and it is possible to imagine a high integrity 
KVM and CLDC along with one or more profiles.  
 Unfortunately, many language subsets for high integrity 
systems discourage the use of concurrent activities.  For example, 
Ada is one of the most important programming languages for the 
high integrity systems application domain. The SPARK subset of 
Ada [4] (which removes many of the language’s complicated or 
advanced features such as tasking, exceptions, overloading etc.) 
allows programs to be mathematically proven correct. In recent 
years, advances in real-time systems research and, in particular, in 
the area of schedulability analysis, have meant that it is now 
possible to show mathematically that a concurrent program will 
meet its deadlines. Of course, constraints must be placed on the 
particular concurrency mechanisms used to ensure predictability. 
However, it is no longer axiomatic that concurrency should be 
forbidden or even discouraged.  
 To encourage the use of concurrency in high integrity real-
time systems, the Ada community has developed a subset of the 
Ada tasking model (including the Real-Time Annex) called the 
Ravenscar Profile [11]. The main aims of the subset are to support 
a predictable computational model and to enable a small efficient 
and predictable run-time support system to be produced. The 
Ravenscar Profile has attracted support from users and compiler 
(and run-time) vendors, and has become a de facto standard in the 
high integrity system domain. It will soon be incorporated into the 
Ada language standard.  
 Following the philosophy of the Ravenscar profile, we 
propose a high integrity profile for real-time Java (called 
Ravenscar-Java) that offers a more reliable and predictable 
programming environment. In other words, our profile eliminates 
features with high overheads and complex semantics, so that 
programs become more analysable and ultimately, more 
dependable. 
 This paper is structured as follows: the next section sets the 
scope and describes the organisation of the profile. In section 3 we 
show the computational model, before the actual profile is 
illustrated in detail. Section 5 briefly looks at implementation 
issues, followed by an example Ravenscar-Java program in 
Section 6. Related work is considered in Section 7 and the paper 
concludes with Section 8. The full description of the rules and 
guidelines of the profile can be found in [23]. 

2. SCOPE AND ORGANISATION OF THE 
PROFILE 

There are many general and sector-specific standards that assist in 
the construction of high integrity systems (e.g. U.S. DO178B, 
U.K. DS 00-55, MISRA guidelines, IEC61508). Of particular 
interest here is the set of software guidelines produced by the U.S. 
Nuclear Regulatory Commission (NRC) [29] because it is specific 
to high integrity systems and because it has set up a systematic 
framework of guidelines by deriving many important attributes 
from existing standards. There are four top-level attributes: 
 
 •   Reliability — defined as the “predictable and consistent 

performance of the software under conditions specified in its 
design.”  A key factor in obtaining reliability is to have 
predictability of the program’s execution; in particular: 
predictability of control and data flow, predictability of 
memory utilization and predictability of response times. 

 •   Robustness — defined as “ the capability of the safety system 
software to operate in an acceptable manner under abnormal 
conditions or events.”  Often called fault tolerance or 
survivability, this attribute requires the system to cope with 
both anticipated and unanticipated faults. Techniques such as 
using replication, diversity and exception handling are 
commonly used [12].  

 •   Traceability — relates to “ the feasibility of reviewing and 
identifying the source code and library component origin and 
development processes”  thus facilitating verification and 
validation techniques, which are essential aids to ensuring 
program correctness. 

 •   Maintainability — relates to “ the means by which the source 
code reduces the likelihood that faults will be introduced 
during changes made after delivery.”  All the standard software 
engineering issues apply here such as good readability, use of 
appropriate abstraction techniques, strong cohesion and loose 
coupling of components, and portability of software 
components between compilers and platforms [32]. 

The report also provides guidelines based on the framework for 
nine programming languages (including Ada95 and C/C++). 
Unfortunately, the guidelines do not consider Java.  
 The goal of this paper is to apply the NRC’s framework to 
Java augmented by the RTSJ. The paper focuses on the reliability 
attribute as the rest of the attributes are concerned with general 
design decisions that are covered in the software engineering 
literature. However, we still give several Java specific guidelines 
in those areas where they have impacts on the RTSJ. 

3. COMPUTATIONAL MODEL 
The key aim of the Ravenscar-Java profile is to develop a 
concurrent Java programming model that supports predictable and 
reliable execution of application programs, thus benefiting the 
construction of modern high integrity software. Particularly, we 
follow the philosophy of the Ravenscar profile [11] and emphasise 
the reliability attribute of the NRC guidelines. This means that 
some language features with high overheads and complex 
semantics are removed for the sake of reliability, and programs are 
statically analysable in terms of functionality and timeliness 
before execution. Similarly, the Java virtual machine is also 
restricted to ensure predictability and efficiency. For example, a 
Ravenscar-Java VM  (RVM) does not support garbage collection. 



 As in the RTSJ, the Ravenscar-Java profile allows concurrent 
execution of  schedulable objects (threads and event handlers) 
based on pre-emptive priority-based scheduling. Schedulable 
objects have to be either periodic or sporadic with minimum inter-
arrival times, and the priority ceiling protocol is required to be 
implemented in the runtime system. This profile facilitates the use 
of off-line schedulability analysis, which is associated with fixed 
priority scheduling (e.g. deadline monotonic or rate monotic 
analysis [2, 27]). 
 We assume two execution phases as suggested in [31], i.e. 
initialisation and mission phase, as shown below in Figure 1. In 
the initialisation phase of an application (i.e. the main() method 
and one RealtimeThread), all non-time-critical activities and 
initialisations that are required before the mission phase are 
carried out. This includes initialisation of all real-time threads, 
memory objects, event handlers, events, and scheduling 
parameters1. In the mission phase, the application is executed and 
multithreading is allowed based on the imposed scheduling policy.  
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Figure 1. Two execution phases 

4. THE PROFILE 
The proposed profile can be classified into the following headings, 
and each of them is expanded below: 
 
 • Predictability of memory utilisation 
 • Predictability of timing 
 • Predictability of control and data flow. 
 
We separate the rules and guidelines of the profile into the 
following categories (for a full list of rules and guidelines, see 
[23]), and the NRC  framework is applied to each of them: 
 

1. Programming in the Large 
2. Concurrent Real-Time Programming 
3. Programming in the Small. 

 
In the first category, we give guidelines on the use of language 
features that support high-level decomposition and minimise the 
complexity of software, which involve object-orientation, and 
abstract data types. In the second, guidelines on the use of features 
provided by the RTSJ are presented, whereas in the third we 
discuss programming issues related to the production of small 
software components, such as control structures, methods, and 
expressions.  

                                                 
1 This includes loading all the classes needed in the application. In a JIT 
(Just-In-Time) compilation environment, all loaded classes will be 
compiled. 

 The resulting profile is targeted at a RVM; however, programs 
written according to the profile are valid RTSJ programs, which 
will execute without change under a RTSJ virtual machine 
(although perhaps not within their deadlines). 
 This section summarises the rules and guidelines. A fuller 
description is given in [23]. 
 

4.1. Predictability of memory utilisation 
This attribute is concerned with ensuring that the software will not 
access unintended or disallowed memory locations, and ensuring 
that the use of memory space will be predictable and bounded. 
 
4.1.1. Initialisation and mission phases 
When an application is started, its main() method will first be 
invoked by the RVM and the base heap memory area will be used 
to allocate any objects within the method (as with standard Java).  
 The main method first creates a new NoHeapRealtimeThread 
with the highest priority in the system. This is required to ensure a 
well-ordered and controlled execution of the initialisation and 
mission phases, as illustrated in Figure 2. 
 
i mpor t  j avax. r eal t i me. * ;  
cl ass Mai n i mpl ement s Runnabl e 
{  
  publ i c  st at i c  voi d mai n( St r i ng [ ]  ar gs)  
  {  
    NoHeapReal t i meThr ead i ni t i al i zer  = new 
      NoHeapReal t i meThr ead( new Pr i or i t yPar amet er s(  
        Pr i or i t ySchedul er . MAX_PRI ORI TY) ,  nul l ,  nul l ,  
      I mmor t al Memor y. i nst ance( ) ,  nul l ,  new Mai n( ) ) ;  
    i ni t i al i zer . st ar t ( ) ;  
  }  
 
  publ i c  voi d r un( )  
  {   / /  i ni t i al i zat i on phase of  t he pr ogr am 
  }  
}  

Figure 2. An illustration of the initialisation phase 
 
The new thread must take a reference to the immortal memory 
area, so that all objects and references to other threads and 
memory objects defined in the initializer thread will be safely 
created and maintained throughout the life of the application. 
Once all initialisation activities are performed, the thread will 
allow other threads to execute by invoking the start() methods, 
and terminating itself. To encapsulate this initialisation phase, the 
Ravenscar-Java profile defines an initializer thread class, shown in 
Figure 3, which directly extends the RealtimeThread class. 
 
package r avenscar ;  
i mpor t  j avax. r eal t i me. * ;  
 
publ i c  cl ass  I ni t i al i zer  ext ends  Real t i meThr ead 
{  
  publ i c  I ni t i al i zer ( )  
  {  
    super (  new Pr i or i t yPar amet er s(   
      Pr i or i t ySchedul er . MAX_PRI ORI TY) ,  
      nul l ,  nul l ,  
      I mmor t al Memor y. i nst ance( ) ,  nul l ,  nul l ) ;  
  }  
}  

Figure 3. Initializer  class of Ravenscar-Java profile 
 



Now, the application can be created by extending the Initializer  
class in the following way. 
 
i mpor t  r avenscar . * ;  
publ i c  cl ass  MyAppl i cat i on ext ends  I ni t i al i zer  
{  
  publ i c  voi d r un( )  
  {   / /  l ogi c f or  i ni t i al i zat i on 
  }  
  publ i c  st at i c  voi d mai n ( St r i ng [ ]  ar gs)  
  {  
    MyAppl i cat i on myApp = new MyAppl i cat i on( ) ;  
    myApp. st ar t ( ) ;  
  }  
}  
 
The mission phase begins as soon as the highest priority thread 
(the Initializer) terminates. From this moment, all application 
threads will be scheduled and despatched according to the 
imposed scheduling policy. Threads may only utilise immortal and 
linear-time scoped memory areas in this phase, unless their logics 
require access to physical or raw memory areas2. 
 
4.1.2. M emory M anagement 
To facilitate predictable memory utilisation we define several 
rules in the three aforementioned areas (see [23] for the full list 
and rationales). The rules place restrictions on, for example, the 
use of class loaders in the mission phase, on the use of specific 
memory area objects (and garbage collector), and on recursive 
method calls. It is also disallowed to create or instantiate any 
schedulable objects in the mission phase as this will hamper static 
memory usage analysis. 
 The heap memory area may or may not exist in a supporting 
virtual machine. In fact, such memory space can be utilised as part 
of the whole immortal memory area, since no garbage collection is 
allowed in the profile. 
 
• Use of immortal memory areas 
By definition, objects in an immortal memory area cannot be freed 
or moved, and all schedulable objects in an application share the 
same memory area [7]. Hence, in an attempt to prevent memory 
exhaustion or corruption, objects (including memory area objects) 
that are needed for the lifetime of the application should be 
allocated in the area only in the initialisation phase. 
 
• Use of linear  time scoped memory areas 
All memory area objects must be created during the initialisation 
phase (thus, in the immortal memory area), and other objects 
during the mission phase should make use of LTM emory areas. 
The size of all memory objects must be static and not be extended 
in the course of the program. Any other memory area objects 
defined in the RTSJ are disallowed, and the following simplified 
classes remain in the profile. 
 
package r avenscar ;  
publ i c  abst r act  c l ass Memor yAr ea 
{  
  pr ot ect ed Memor yAr ea( l ong s i zeI nByt es) ;  
  pr ot ect ed Memor yAr ea( j avax. r eal t i me. Si zeEst i mat or  

                                                 
2 In this paper, we do not attempt to restrict the use of physical or raw 
memory other than that implied by our restrictions on scoped memory 
areas. However, a potential implementation of a RVM might apply 
restrictions for security reasons. 

         s i ze) ;  
  publ i c  voi d ent er ( j ava. l ang. Runnabl e l ogi c) ;   
         / /  t hr ows ScopedCycl eExcept i on 
  publ i c  voi d execut eI nAr ea( j ava. l ang. Runnabl e l ogi c)  
         t hr ows  I naccessi bl eAr eaExcept i on;  
  publ i c  st at i c  Memor yAr ea get Memor yAr ea(    
                             j ava. l ang. Obj ect  obj ect ) ;  
  publ i c  l ong memor yConsumed( ) ;   
  publ i c  l ong memor yRemai ni ng( ) ;  
  publ i c  j ava. l ang. Obj ect  newAr r ay( j ava. l ang. Cl ass   
                                    t ype,  i nt  number )  
         t hr ows  I l l egal AccessExcept i on,  
                               I nst ant i at i onExcept i on;  
         / /  t hr ows Out Of Memor yEr r or  
  publ i c  j ava. l ang. Obj ect  newI nst ance( j ava. l ang. Cl ass   
                                      t ype)  
         t hr ows  I l l egal AccessExcept i on,  
                              I nst ant i at i onExcept i on;  
         / /  t hr ows  Out Of Memor yEr r or  
  publ i c  j ava. l ang. Obj ect  newI nst ance(  
               j ava. l ang. r ef l ect . Const r uct or  c,  
               j ava. l ang. Obj ect [ ]  ar gs)  
         t hr ows  I l l egal AccessExcept i on,   
                              I nst ant i at i onExcept i on;  
         / /  t hr ows  Out Of Memor yEr r or ;  
  publ i c  l ong s i ze( ) ;   
}  
publ i c  f i nal  c l ass  I mmor t al Memor y ext ends  Memor yAr ea 
{  
  publ i c  st at i c  I mmor t al Memor y i nst ance( ) ;  
}  
 
publ i c  abst r act  c l ass ScopedMemor y ext ends Memor yAr ea 
{  
  publ i c  ScopedMemor y( l ong si ze) ;  
  publ i c  ScopedMemor y( Si zeEst i mat or  s i ze) ;   
  publ i c  voi d ent er ( ) ;    
  publ i c  i nt  get Ref er enceCount ( ) ;  
}  
   
publ i c  c l ass LTMemor y ext ends ScopedMemor y 
{  
  publ i c  LTMemor y( l ong si ze) ;    
  publ i c  LTMemor y( Si zeEst i mat or  s i ze) ;  
}  

Figure 4. Simplified memory area classes 
 
To aid in the production of an efficient RVM and to simplify 
timing and memory usage analyses, access to LTM emory areas 
must not be nested and LTM emory areas must not be shared 
between Schedulable objects. 
 

4.2. Predictability of timing 
This attribute focuses on demonstrating that all schedulable 
objects meet their timing constraints at runtime. The restrictions 
enforce the computational model given in Section 3 and, thereby, 
allow schedulability analysis to be performed. 
 
4.2.1. Scheduling and Threading M odel 
As suggested in the RTSJ, the minimum required scheduling base 
is by default a fixed-priority pre-emptive scheduler (represented 
by the Prior ityScheduler  class) that supports at least 28 unique 
priority levels. The specification also requires that an 
implementation makes available at least 10 additional native 
priorities for regular Java threads. However, the profile does not 
support regular threads by disallowing the use or overriding of the 
class j ava.lang.Thread to create threads. Therefore, we do not 



assume any additional native priority levels for regular Java 
threads. As a result, the supported types of schedulable objects in 
the profile are  
 
• Periodic threads (see Per iodicThread class below), and 
• Sporadic event handlers (see SporadicEventHandler  class  
  below). 
 
The RealtimeThread and AsyncEventHandler  classes are not 
directly available to the applications programmer, as the former 
may use the heap memory, whereas the latter hinders accurate 
timing and memory analyses. 
 Attributes such as scheduling characteristics and memory 
areas must be statically allocated to schedulable objects in the 
initialisation phase, and shall not be changed afterwards, in order 
to facilitate fixed-priority scheduling algorithms and 
schedulability analysis. For this purpose, all methods whose 
names begin with ‘set’  (for example, setReleaseParameters()) 
and some with ‘get’  are excluded. Thus the Schedulable interface 
is defined as an empty interface, as shown below. 
 
package r avenscar ;  
publ i c  i nt er f ace Schedul abl e ext ends j ava. l ang. Runnabl e 
{  
}  

Figure 5. Empty Schedulable interface 
 
Only fixed priority-based scheduling is supported by the 
Ravenscar-Java profile. Furthermore, any subclass of the 
Scheduler  including the default Prior ityScheduler  class is not 
allowed to perform any feasibility checks, leading to the classes in 
Figure 6. The Prior ityParameters class also does not contain 
setPr ior ity() method, and the ImportanceParameters class is not 
supported. 
 
package r avenscar ;  
publ i c  abst r act  c l ass  Schedul er  
{  
}  
publ i c  c l ass  Pr i or i t ySchedul er  ext ends  Schedul er  
{  
  publ i c  st at i c  f i nal  i nt  MAX_PRI ORI TY;  
  publ i c  st at i c  f i nal  i nt  MI N_PRI ORI TY;  
}  

Figure 6. Simplified Scheduler  classes 
 
Overall, this approach does not necessitate any dynamic feasibility 
test and admission control by the RVM at runtime. All 
schedulability analysis is performed before the initialisation phase 
of the program. 
 
4.2.2. Use of release parameters 
In order to support periodic or sporadic behaviours of real-time 
threads, the following simplified ReleaseParameters class and its 
subclasses are defined. 
 
package r avenscar ;  
publ i c  c l ass Rel easePar amet er s  
{  
  pr ot ect ed Rel easePar amet er s( ) ;  
}  
 
publ i c  c l ass Per i odi cPar amet er s ext ends Rel easePar amet er s 
{  
  publ i c  Per i odi cPar amet er s( Absol ut eTi me st ar t Ti me,   

                            Rel at i veTi me per i od) ;    
  pr ot ect ed Absol ut eTi me get St ar t Ti me( ) ;  
  pr ot ect ed Rel at i veTi me get Per i od( ) ;  
}  
 
publ i c  c l ass Spor adi cPar amet er s ext ends Rel easePar amet er s 
{  
  publ i c  Spor adi cPar amet er s( Rel at i veTi me mi nI nt er ar r i val ) ;  
  pr ot ect ed Rel at i veTi me get Mi nI nt er ar r i val ( ) ;  
}  

Figure 7. ReleaseParameters and its subclasses 
 
The Aper iodicParameters class is undefined, as the profile does 
not support aperiodic activities. 
 
4.2.3. Use of threads 
Most of the methods and fields of the original java.lang.Thread 
class are obsolete in the context of the RTSJ and high integrity 
real-time applications. So, this class is defined as follows3. 
 
package j ava. l ang;  
publ i c  c l ass  Thr ead i mpl ement s  Runnabl e 
{  
  Thr ead( ) ;  
  Thr ead( St r i ng name) ;  
  voi d s t ar t ( ) ;  
}  

Figure 8. Newly defined java.lang.Thread class 
 
Along the same lines, the RealtimeThread and 
NoHeapRealtimeThread can be defined as: 
 
package r avenscar ;  
publ i c  c l ass  Real t i meThr ead ext ends  j ava. l ang. Thr ead 
             i mpl ement s  Schedul abl e 
{  
  Real t i meThr ead( Pr i or i t yPar amet er s pp,   
         Per i odi cPar amet er s p) ;  
  Real t i meThr ead( Pr i or i t yPar amet er s pp,   
         Per i odi cPar amet er s p,  Memor yAr ea ma) ;  
  publ i c  st at i c  Real t i meThr ead cur r ent Real t i meThr ead( ) ;  
  publ i c  Memor yAr ea get Cur r ent Memor yAr ea( ) ;  
  voi d s t ar t ( ) ;    
  st at i c  bool ean wai t For Next Per i od( ) ;  
}  
 
publ i c  c l ass  NoHeapReal t i meThr ead ext ends  Real t i meThr ead 
{  
   NoHeapReal t i meThr ead( Pr i or i t yPar amet er s pp,   
         Memor yAr ea ma) ;  
   NoHeapReal t i meThr ead( Pr i or i t yPar amet er s pp,   
         Per i odi cPar amet er s p,  Memor yAr ea ma) ;  
   voi d s t ar t ( ) ;  
}  

Figure 9. RealtimeThread and NoHeapRealtimeThread class 
 
• Per iodic Threads 
Periodic threads transparently invoke the waitForNextPer iod 
method of the RealtimeThread class at the end of their main 
loops to delay until their next periods. Other mechanisms (e.g. 
sleep() method) are prone to have an inaccurate timing model, 
thus should not be used. 

                                                 
3 The profile changes some of the access modifiers of the classes, 
constructors, and methods in order to ensure they cannot be used directly 
by the programmer. The changes are always more restrictive and hence 
programs will always execute on non-Ravenscar implementations. 



 The profile defines an additional class to automate the 
management of periodic threads, which is shown below. 
 
package r avenscar ;  
publ i c  c l ass Per i odi cThr ead ext ends NoHeapReal t i meThr ead 
{  
  publ i c  Per i odi cThr ead( Pr i or i t yPar amet er s pp,   
        Per i odi cPar amet er s p,  j ava. l ang. Runnabl e l ogi c) ;  
  publ i c  voi d r un( ) ;  
  publ i c  voi d st ar t ( ) ;  
}  

Figure 10. Per iodicThread class 
 
This class may be utilised as follows. Note that the class assumes 
the default memory area is the immortal one, and a recovery 
procedure from a missed deadline can be implemented (if 
supported by the implementation of the profile). 
 
package r avenscar ;  
publ i c  c l ass Per i odi cThr ead ext ends  
                                 NoHeapReal t i meThr ead 
{  
  publ i c  Per i odi cThr ead( Pr i or i t yPar amet er s pp,  
      Per i odi cPar amet er s p,  j ava. l ang. Runnabl e l ogi c)   
  {   
    super ( pp,  p,  I mmor t al Memor y. i nst ance( ) ) ;  
    appl i cat i onLogi c = l ogi c;  
  }    
  pr i vat e j ava. l ang. Runnabl e appl i cat i onLogi c;  
  publ i c  voi d r un( )  
  {  
    bool ean noPr obl ems = t r ue;  
    whi l e( noPr obl ems)  {  
      appl i cat i onLogi c. r un( ) ;  
      noPr obl ems = wai t For Next Per i od( ) ;  
    }  
    / /  A deadl i ne has been mi ssed,   
    / /  I f  al l owed,  a r ecover y r out i ne woul d be pl aced 
    / /  her e 
  }  
 
  publ i c  voi d s t ar t ( )  
  {  
    super . st ar t ( ) ;  
  }  
}  

Figure 11. An illustration of the Per iodicThread class 
 
• Sporadic Activities 
Event-triggered activities are supported by means of the 
BoundAsyncEventHandler  class. Once an event and its handler 
are set up, they must remain unchanged permanently. For 
predictability, it is assumed that each handler is bound to one 
server thread and each server thread has only one handler bound to 
it. Again, we define a new class specifically designed for sporadic 
activities, as shown below. It is based on the AsyncEventHandler 
class hierarchy. 
 
package r avenscar ;  
publ i c  c l ass  AsyncEvent Handl er  i mpl ement s  Schedul abl e 
{  
  AsyncEvent Handl er ( Pr i or i t yPar amet er s pp,   
         Rel easePar amet er s p,  Memor yAr ea ma) ;  
  AsyncEvent Handl er ( Pr i or i t yPar amet er s pp,   
         Rel easePar amet er s p,  Memor yAr ea ma,   
         j ava. l ang. Runnabl e l ogi c) ;  
 
  publ i c  Memor yAr ea get Cur r ent Memor yAr ea( ) ;  

  pr ot ect ed voi d handl eAsyncEvent ( ) ;  
  publ i c  f i nal  voi d r un( ) ;  
}  
 
publ i c  c l ass  BoundAsyncEvent Handl er   
             ext ends  AsyncEvent Handl er  
{  
  BoundAsyncEvent Handl er ( Pr i or i t yPar amet er s pp,   
         Memor yAr ea ma,  Rel easePar amet er s p) ;  
  BoundAsyncEvent Handl er ( Pr i or i t yPar amet er s pp,   
         Memor yAr ea ma,  Rel easePar amet er s p,   
         j ava. l ang. Runnabl e l ogi c) ;  
 
  pr ot ect ed voi d handl eAsyncEvent ( ) ;  
}  
 
publ i c  c l ass Spor adi cEvent Handl er  
                       ext ends BoundAsyncEvent Handl er  {  
  publ i c  Spor adi cEvent Handl er ( Pr i or i t yPar amet er s pr i ,   
                              Spor adi cPar amet er s spor ) ;  
  publ i c  Spor adi cEvent Handl er ( Pr i or i t yPar amet er s pr i ,   
                              Spor adi cPar amet er s spor ,  
                              j ava. l ang. Runnabl e) ;  
  publ i c  voi d handl eAsyncEvent ( ) ;  
} ;  
Figure 12. Event handlers and the SporadicEventHandler  class 

 
Classes associated with event handlers are shown in Figure 13 
below. 
 
package r avenscar ;  
publ i c  c l ass  AsyncEvent  
{  
  AsyncEvent ( ) ;  
  voi d addHandl er ( ) ;  
  voi d f i r e( ) ;  
  voi d bi ndTo( ) ;  
}  
 
publ i c  c l ass Spor adi cEvent  ext ends AsyncEvent  
{  
  publ i c  Spor adi cEvent ( Spor adi cEvent Handl er  handl er ) ;  
  publ i c  voi d f i r e( ) ;  
}  
 
publ i c  c l ass Spor adi cI nt er r upt  ext ends AsyncEvent  
{  
  publ i c Spor adi cI nt er r upt ( Spor adi cEvent Handl er  handl er ,  
                           j ava. l ang. St r i ng happeni ng) ;  
}  

Figure 13. Associated classes to SporadicEventHandler  class 
 
Note that all event handlers are bound to their associated event 
when the event is created. 
 
• Processing Groups, Overrun and Deadline-miss handlers 
Processing groups (i.e. instances of the 
ProcessingGroupParameters class) are not supported in the 
profile, as they require runtime support for the scheduler to 
determine the feasibility of the temporal scope of a processing 
group (which thus hampers static timing analysis). Overrun and 
deadline-miss handlers are also not required as schedulability 
analysis has been performed off-line. 
 
4.2.4. Synchronization 
The synchronized construct in Java provides mutually exclusive 
access to shared resources or objects, and programmers are always 
encouraged to use it to avoid data races. However, excessive use 



of this mechanism may result in poor response time, implying that 
high priority threads may have to wait until lower ones finish their 
synchronized methods or blocks. Therefore, in order to prevent 
unbounded priority inversions and possible deadlocks, the priority 
ceiling protocol (Prior ityCeilingEmulation class) must be 
implemented and explicitly used for all objects with synchronized 
blocks or methods. Furthermore, the profile does not support wait, 
notify and notifyAll methods of the object class. All condition 
synchronization between real-time threads must be via sporadic 
event handlers as this ensures that the timing properties of the 
synchronization are properly addressed. 
 WaitFreeQueues are not required as they are provided in the 
RTSJ to enable communication between instances of 
NoHeapRealtimeThread and regular Java threads. 
 
4.2.5. Representation of time 
Supported representations of time are 
 
 �  HighResolutionTime, 
 �  AbsoluteTime, and 
 �  RelativeTime. 
 
These classes allow representation of time with up to nanosecond 
accuracy and precision [7]. 
 
4.2.6. Timer  classes 
In the presence of the aforementioned classes that offer timely 
periodic and sporadic behaviours of threads, the Timer  and its 
subclasses are not necessary and not available. 
 
4.2.6. Asynchrony 
The Asynchronous Transfer of Control (ATC) mechanism is not 
allowed, as it is one of the most complicated features of the RTSJ 
and hinders timing and functional analyses [10]. 
 

4.3. Predictability of control and data flow 
Predictability of control and data flow is required in order that 
static analysis techniques can be used to aid programming proof 
techniques and worst-case execution time analysis. Again, all the 
rules and guidelines are listed in [23], but noteworthy ones in each 
of the three areas include 
 
• Programming in the large 

� All user-defined classes must include constructors that initialise 
all internal variables and objects. 

� Dynamic method binding should be minimised. In particular, 
method overriding and the use of interfaces should be minimised. 

 
• Concurrent Real-Time Programming 

� Asynchronous transfer of control (ATC) and any thread aborting 
mechanisms are disallowed. 

� Use of wait, notify, and notifyAll methods is disallowed. 
 

• Programming in the small 
� Use of continue and break statements in loops is disallowed. 
� All constraints, such as one used in a for loop, must be static. 
� Compound expressions in parameter passing to methods must be 
eliminated. 

� Expressions whose values are dependent on the order of 
evaluations should be disallowed. 

 

All the rules and guidelines will facilitate or greatly ease the use 
of program analysis tools. 

5. IMPLEMENTATION ISSUES 
Along the same lines as the profile we present in this paper, it is 
essential to use a runtime environment (called RVM in this paper) 
that has been designed and implemented with highly dependable 
systems in mind. As mentioned earlier, however, programs based 
on our profile should be valid RTSJ programs and execute on a 
standard RTSJ platform with the same functional results (although 
not necessarily with the same response times). 
 In addition, tool support is essential to analyse code in terms 
of functionality and timeliness. A customised tool may be 
developed that incorporates all the rules and guidelines (see 
Appendix A of [23]) and throughout this paper. Such a tool may 
also be able to obtain the Worst-Case Execution Time (WCET) 
and worst-case memory consumption of each thread, thus enabling 
schedulability analysis [6, 18]. Standard Java tools or model 
checkers, such as ESC/Java [24] and Java Pathfinder 2 [9, 21] may 
be used, as well. 

6. AN EXAMPLE PROGRAM 
We present a simple and naive traction-control system that senses 
any difference between the front- and rear-wheel spin speeds, and 
reduces the engine output if the rear-wheels spin more quickly4. 
There is one periodic thread spinM onitor  and one sporadic thread 
powerCutHandler , and as soon as an excessive rear-wheel spin is 
detected spinM onitor  activates powerCutHandler . The real 
application logic is not given as the example is purely intended to 
illustrate how the profile is used. 
 
i mpor t  r avenscar . * ;  
… 
publ i c  c l ass  Tr act i onCont r ol l er  ext ends  I ni t i al i zer  {  
  publ i c  voi d r un( )             / /  I ni t i al i zer  r out i ne 
  {  
    / /  power Cut Handl er  
    Spor adi cEvent Handl er  power Cut Handl er  = 
      new Spor adi cEvent Handl er  (  
        new Pr i or i t yPar amet er s( 15) ,   / /  Pr i or i t y: 15 
        new Spor adi cPar amet er s(  
          / /  Mi ni mum i nt er ar r i val  t i me and buf f er  s i ze 
          new Rel at i veTi me( 333,  0) ,  5)  
    (  
    {  
      / /  Event  handl er  r out i ne 
      publ i c  voi d handl eAsyncEvent ( )  
      {  
       / /  Logi c f or  handl i ng power Cut Event  event  
       / /  i . e.  ei t her  cut  t he engi ne power  or  br ake               
       / /  appr opr i at e wheel s 
      }  
    } ;  
 
    f i nal  Spor adi cEvent  power Cut Event = 
      new Spor adi cEvent ( power Cut Handl er ) ;  
 
    / /  spi nMoni t or  
    Per i odi cThr ead spi nMoni t or  = new Per i odi cThr ead(  
      new Pr i or i t yPar amet er s( 10) ,     / /  Pr i or i t y: 10 
      new Per i odi cPar amet er s(  
        new Absol ut eTi me( 0,  0) ,       / /  St ar t  t i me 

                                                 
4 A rear-wheel drive car (e.g. a Formula 1 car) is assumed. 



        new Rel at i veTi me( 333,  0)      / /  Per i od 
      ) ,  
      new Runnabl e( )  {             / /  Appl i cat i on l ogi c 
        publ i c  voi d r un( )  
        {  
         / /  Logi c f or  checki ng f r ont  and r ear  wheel   
         / /  spi n speeds,  i . e.  obt ai n sensor  r eadi ngs 
         / /  f r om f r ont  and r ear  wheel s.  
         / /  Once any excess of  a pr edef i ned t hr eshol d  
         / /  i s  det ect ed,  f i r e t he f ol l owi ng event  
            power Cut Event . f i r e( ) ;  
        } ;  
      }  
    ) ;  
    spi nMoni t or . st ar t ( ) ;  
  }  
 
  publ i c  st at i c  voi d mai n ( St r i ng [ ]  ar gs)  
  {  
    Tr act i onCont r ol l er  i ni t  = new Tr act i onCont r ol l er ( ) ;  
    i ni t . st ar t ( ) ;  
  }  
}  

7. RELATED WORK 
There have been a few subsets or profiles for Java suggested in the 
literature5. None of them, however, is as complete or analytical as 
the Ravenscar-Java profile described in this paper; they are 
surveyed below. 
 

7.1. Sequential subset of Java 
Bentley [5] defines a sequential subset of Java after assessing the 
language. The subset consists of 21 rules that are effectively 
derived from [19], [28] and his assessment. All the rules are 
categorised into six groups, as shown below with a summary of 
rules for each group. 
 
• Rules Concerned With Ver ification 
Multithreading, as well as method and constructor overloading is 
not allowed. 
 
• Rules Concerned With Comments 
Comments shall not be nested. 
 
• Rules Concerned With Predictability 
Variables or objects must be statically initialised (by constructors 
of appropriate classes). All constraints, such as those used in for-
loops, must be static. The continue and break statements shall not 
be used, except to terminate the cases of a switch statement, for 
which a break statement is required for every non-empty case 
clause. The return statement should only appear as the last 
statement of a method. Further, methods must not have any side 
effects and not be recursively invoked. The result of a method 
should never be an unconstrained array type object. 
 
• Rules Concerned With Constants 
Octal constants (other than zero) shall not be used. 
 
 • Rules Concerned With Identifiers 
All identifier names must be unique. 
 

                                                 
5 In fact, there are subsets of Java defined for other purposes than for use 
in high integrity systems, for example, [14]. 

• Rules Concerned With Operators 
All right-hand operands of the logical operator && and || shall not 
contain any side effects, and assignment operators must not be 
used in expressions that return Boolean values, for example, in if 
((x=1) != y). Bitwise operations, including bitwise shifts, shall not 
be performed on signed integer types, while the evaluation of 
integer expressions should not lead to wrap-around. 
 
Whereas this subset will undoubtedly help produce analysable and 
predictable sequential programs, it can be criticised for its 
restriction on multithreading, one of Java’s inherent elements. 
Without the language-level support for multithreading and all the 
associated synchronisation mechanisms, Java may not be 
considered as a great evolution from its predecessors. In addition 
to this, the subset also fails to address issues on the object-oriented 
programming model of the language, as well as real-time issues. 
 

7.2. Profile for  high integr ity Real-Time Java 
programs 
Puschner and Wellings [31] suggest a Ravenscar-like profile for 
the Real-Time Specification for Java [7], and the following is a 
brief summary of each of the key areas. 
  
• Threading M odel 
There are two execution phases, i.e. initialisation and mission 
phases. In the initialisation phase, all necessary threads, event 
handlers, and memory objects are created in a non time-critical 
manner. No threads will be allowed to start until the top-priority 
thread with main() method finishes its execution. In the mission 
phase, threads may not change their own or other thread’s priority 
except when forced by the underlying implementation of the 
priority ceiling protocol. Sporadic or event-triggered activities are 
implemented as event handlers, and only one handler is allowed 
per event. All periodic threads must be an instance of 
NoHeapRealtimeThread class and need to invoke 
waitForNextPeriod method to delay execution until the start of 
their next periods. Asynchronous Transfer of Control (ATC), 
overrun and deadline-miss handlers, and delay statements are not 
supported by the profile; nor is dynamic class loading during the 
mission phase. 
 
• Concurrency 
The synchronized methods and blocks are allowed, and the 
priority ceiling protocol should be implemented in the run-time 
system in order to avoid deadlocks. For similar reasons, wait, 
notify, and notifyall are not supported, avoiding any queue 
management. 
 
• M emory M anagement and Raw M emory Access 
The heap-based garbage collection mechanism of Java is not 
supported; instead, only immortal memory and linear-time scoped 
memory are supported. Immortal memory is used by default to 
create objects during the initialisation phase, but is not allowed for 
further object creation afterwards. In addition, all other memory 
objects must only be created in the initialisation phase. The RTSJ 
classes for raw memory access are also supported, so that device 
drivers, memory-mapped I/O, and other low-level functions can 
be programmed. 
 
• Time and Clock 
All the RTSJ classes for the representation of time and real-time 
clocks are included while the timer classes are not. 



 
The profile is primarily focused on leaving out complex features 
of the RTSJ. However, little attention is paid to the Java’s 
sequential language constructs (unlike [5]) and object-orientation 
features that can be problematic in performing various static 
analyses. Furthermore, the profile is not consistent with the 
current version of the RTSJ. 
 

7.3. High integr ity profile by the J Consortium 
A sub-committee has been formed within the Real-Time Java 
Working Group of the J Consortium to produce a high integrity 
profile based on the Real-Time Core Extensions [20]. The profile 
has not been released yet, but according to Dobbing [13] it is 
likely to resemble the Ravenscar profile for Ada95 [11]. It consists 
of four main themes: partitioning, memory management, 
concurrency, and error recovery, respectively. Up-coming 
information will be found at http://www.j-
consortium.org/hip/index.shtml. 
 
• Par titioning 
The main idea has developed from the necessity to isolate critical 
code and data from non-critical ones by means of a firewall, so 
that less-trusted code will never be able to interfere with high 
integrity programs. No exchange of objects or dynamic loading 
will be allowed across the firewall. This idea also extends to the 
temporal requirements of such software, i.e. temporal firewall, 
which means deadlines of critical threads must be met. 
 
• M emory M anagement 
The automatic garbage collection and any memory compaction 
mechanism are not supported. There are three memory allocation 
strategies, which are 

�  stack allocation for method local objects that are automatically 
reclaimed 

�  fixed size “allocation contexts”  for local objects in each thread 
�  global allocation at initialisation time for immortal objects. 
 
• Concurrency 
Three types of priority-based tasks are supported, namely, 
periodic, sporadic, and interrupt tasks. Additionally, the profile 
defines a subclass of the basic CoreTask that must explicitly be 
started by another thread. All threads are created at program start-
up, e.g. as part of the initialisation code for classes, and it is not 
allowed to declare a thread class as an inner class. 
 Shared resources and inter-thread synchronisations are 
managed through protected objects, which rely on the underlying 
implementation of the Priority Ceiling Protocol. However, no 
mutual exclusion locks or synchronised methods are supported in 
the profile. Further, all the asynchronous thread-to-thread 
operations, including stop, setPriority, suspend, resume methods, 
and event-driven Asynchronous Transfer of Control (ATC) 
mechanisms, are not permitted. Synchronised objects and counting 
semaphores are also not supported. 
 
• Er ror  Recovery 
The standard exception handling mechanism of Java (i.e. throw-
catch clause) is maintained. It also supports access to specific 
physical addresses to allow objects to be mapped, in order to, for 
example, save program state for fast recovery purposes. 

 
Like the one proposed in [31], this profile is mainly focused on 
sub-setting the Real-Time Core Extensions [20], but does not 

address issues on the use of problematic language constructs and 
object-orientation features of Java. 
 

7.4. Formal subsets 
Drossopoulou et al. [14] define three formal subsets of Java, i.e. 
that of the source language (Javas), high-level representation of 
bytecode (Javab), and enriched version of Javab (Javar). They 
present operational semantics, type system, and a proof of type 
soundness for the subsets. 
 Javas is a substantial subset of the Java programming 
language, and it includes some primitive types, interfaces, classes 
with instance variables and instance methods, inheritance, hiding 
of instance variables, overloading and overriding of instance 
methods, arrays, implicit pointers and the null value, object 
creation, assignment, field and array access, method call and 
dynamic method binding, exceptions and exception handling [14]. 
 In order to observe run-time behaviours of programs in Javas, 
they are formally converted into Javab and Javar respectively, 
which are high-level representations of bytecode with all 
necessary compile-time type information. Having done this, it is 
possible to obtain operational semantics of each high-level 
language construct and prove the soundness of the type system of 
the source-level subset, Javas. 
 While these subsets contain many important language 
constructs of Java that are often omitted in other formal subsets 
(e.g. exceptions), they still overlook some of Java’s inherent 
features, such as the multithreading and synchronisation models. 
[17] surveys formal subsets and approaches aimed at improving 
the safety of Java programs. 

8. CONCLUSIONS 
In this paper, we have presented the Ravenscar-Java profile, a 
high integrity profile for real-time Java. This restricted 
programming model excludes language features with high 
overheads and complex semantics, on which it is hard to perform 
timing and functional analyses. Several classes in the RTSJ are 
redefined, and a few new classes are added, all resulting in a 
compact, yet powerful and predictable computational model for 
the development of software-intensive high integrity real-time 
systems. 
 The profile is categorised into three areas, i.e. Programming in 
the large, Concurrent real-time programming, and Programming in 
the small. These are then structured based on the guideline 
framework developed by the U.S. Nuclear Regulatory 
Commission, which derives many important attributes from 
existing standards and is specific to high integrity systems. 
Various rules and guidelines, centred around the reliability 
attribute, are given in each of the three following sub-attributes: 
 
 • predictability of memory utilisation, 
 • predictability of timing, and 
 • predictability of control and data flow. 
 
 A simple example illustrating the use of our profile was also 
provided in Section 6, before we reviewed four existing subsets of 
Java or the RTSJ. Most of the subsets, however, overlook some 
important elements of the language, for example, multi-threading 
and object-oriented programming model. Thus, many of the 
advantages of Java are lost. 
 We believe that our profile is expressive enough to 
accommodate today’s demanding requirements for a powerful 



programming model, yet concise enough to facilitate the 
implementation of underlying platforms or virtual machines with 
great ease. A subset of Java and the RTSJ, along the lines 
presented in this paper, would be a powerful motivation to 
develop high integrity systems in Java, rather than in a subset of 
C, C++ or Ada. 
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