Ravenscar-Java: A High Integrity Profile for Real-Time Java

Jagun Kwon, Andy Wellings, and Steve King

Department of Computer Science
University of York, UK
{jagun, andy, king}@cs.york.ac.uk

ABSTRACT

For many, Java is the antithesis of a high integrity programming
language. Its combination of object-oriented programming
features, its automatic garbage collection, and its poor support for
real-time multi-threading are al seen as particular impediments.
The Real-Time Specification for Java has introduced many new
features that help in the real-time domain. However, the
expressive power of these features means that very complex
programming models can be created, necessitating complexity in
the supporting rea-time virtual machine. Consequently, Java, with
the real-time extensions as they stand, seems too complex for
confident use in high integrity systems. This paper presents a Java
profile for the development of software-intensive high integrity
real-time systems. This restricted programming model removes
language features with high overheads and complex semantics, on
which it is hard to perform timing and functional analyses. The
profile fits within the 2ME framework and is consistent with
well-known guidelines for high integrity software development,
such as those defined by the U.S. Nuclear Regulatory
Commission.

Categories and Subject Descriptors

D.3.3 [Programming Languages]: Language Constructs and
Features; D.3.4 [Programming Languages|: Processors —
Memory management (garbage collection), Run-time
environments; D.2.4 [Software Engineering]: Software/Program
Verification — Rdiability; J7 [Computer Applications]:
Computersin Other Systems — Real time

General Terms
Reliability, Languages, Performance

Keywords
High integrity systems, Real-time Java, Profile

1. INTRODUCTION

Increasingly computers are being used in high integrity real-time
systems; that is, systems where failure can cause loss of life,
environmental harm, or significant financial penalties. Examples
include space shuttles, nuclear power plants, automatic fund
transfers and medica instruments. They typicaly have high
development and maintenance costs due to the customised nature

Permission to make digital or hard copies of al or part of this work for
personal or classroom useis granted without fee provided that copies are
not made or distributed for profit or commercia advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or afee.

JGI'02, November 3-5, 2002, Sesttle, Washington, USA.

Copyright 2002 ACM 1-58113-599-8/02/0011...$5.00.

of their components. Within such systems, there has been a
growing trend to use software, because it provides[25, 26, 30, 8]:

« improved functionality

« increased flexibility in design and implementation

« reduced production cost

« enhanced management of complexity in application areas.

Java [16] has proved to be an appropriate vehicle for a diverse
range of applications including web-based intranets and embedded
systems. Its relatively simple linguistic semantics, the adoption of
well-understood approaches to managing software complexity,
and support for concurrency seem to have contributed towards its
popularity. Initialy designed with embedded systems in mind,
Java's main goa was to provide engineers with a reliable and
cost-effective platform-independent environment.

However, despite all these valuable features, Java has been
criticised for its unpredictable performance as well as some
security concerns [1, 3]. The automatic garbage collection and
dynamic class loading mechanisms are often considered
problematic, especially under time or performance-critica
situations. Moreover, a number of security bugs in the Java virtua
machine have been discovered since its first appearance,
especidly in the bytecode verifiers and Just-in-Time (JIT)
compilers [15, 1]. These fears make Java and its associated
technology simply unsuitable for high integrity systems[22].

In recent years, there have been two main activities, initiated
by Sun, to address the limitations of Java for real-time and
embedded systems. The first is, the Real-Time Specification for
Java (RTSJ) [7] which attempts to minimise any modification to
the origina Java semantics and yet to define many additional
classes that must be implemented in a supporting virtual machine.
The goal is to provide a predictable and expressive real-time
environment. This, however, ironically leads to a language and
run-time system that are complex to implement and have high
overheads at run-time. Software produced in this framework is
aso difficult to analyse with all the sophisticated features, such as
the asynchronous transfer of control (ATC) and dynamic class
loading.

The second relevant activity is the Java 2 Platform Micro
Edition (J2ME) [33]. This essentialy defines a three layer
architecture:

« avirtual machine layer (usually implemented on top of a host
operating system),

« aconfiguration layer which defines the set of Javalanguage
features, a minimum set of virtual machine features and the
available class libraries that can be supported by a particular
implementation platform (for example, a mobile phone),

« aprofile layer which defines aminimum set of Application
Programmers Interfaces (APIs) targeted at a particular
application domain.

The same configuration layer may support more than one profile,
and different configuration layers may support the same profile. A
configuration layer, caled Connected, Limited Device
Configuration (CLDC) has been defined for small, resource-
constrained mobile devices (mobile phones, pagers, persona
organizers etc.) typically with a memory capacity of up to 512
KB. The K (kilo bytes) virtua machine (KVM) is a virtua
machine specificaly designed to support the CLDC. The
restrictions imposed on the Java language and the virtual machine
include [33]: no support for floating point operations, no native
interfaces, no user-defined class loaders, no thread groups or
daemon threads, no object finalization, etc. The main motivation
for these restrictions is to reduce the size of memory required to
implement the virtual machine.

It is clear that the overheads of implementing the RTSJ makes
it unsuitable for the CLDC configuration and consequently RTSJ,
asit stands, is probably targeted at Java 2 Standard Edition (J2SE)
or idealy another configuration (for example, the CDC —
Connected Device Configuration) within the 2ME framework.
However, a high integrity subset of the RTSJ model would be
appropriate for 2ME and it is possible to imagine a high integrity
KVM and CLDC along with one or more profiles.

Unfortunately, many language subsets for high integrity
systems discourage the use of concurrent activities. For example,
Ada is one of the most important programming languages for the
high integrity systems application domain. The SPARK subset of
Ada [4] (which removes many of the language's complicated or
advanced features such as tasking, exceptions, overloading etc.)
alows programs to be mathematically proven correct. In recent
years, advances in real-time systems research and, in particular, in
the area of schedulability anaysis, have meant that it is now
possible to show mathematically that a concurrent program will
meet its deadlines. Of course, constraints must be placed on the
particular concurrency mechanisms used to ensure predictability.
However, it is no longer axiomatic that concurrency should be
forbidden or even discouraged.

To encourage the use of concurrency in high integrity real-
time systems, the Ada community has developed a subset of the
Ada tasking model (including the Real-Time Annex) caled the
Ravenscar Profile [11]. The main aims of the subset are to support
a predictable computational model and to enable a small efficient
and predictable run-time support system to be produced. The
Ravenscar Profile has attracted support from users and compiler
(and run-time) vendors, and has become a de facto standard in the
high integrity system domain. It will soon be incorporated into the
Ada language standard.

Following the philosophy of the Ravenscar profile, we
propose a high integrity profile for real-time Java (caled
Ravenscar-Java) that offers a more reliable and predicteble
programming environment. In other words, our profile eliminates
features with high overheads and complex semantics, so that
programs become more anadysable and ultimately, more
dependable.

This paper is structured as follows: the next section sets the
scope and describes the organisation of the profile. In section 3 we
show the computational model, before the actua profile is
illustrated in detail. Section 5 briefly looks at implementation
issues, followed by an example Ravenscar-Java program in
Section 6. Related work is considered in Section 7 and the paper
concludes with Section 8. The full description of the rules and
guidelines of the profile can be found in [23].

2. SCOPE AND ORGANISATION OF THE
PROFILE

There are many general and sector-specific standards that assist in
the construction of high integrity systems (e.g. U.S. DO178B,
U.K. DS 00-55, MISRA guidelines, IEC61508). Of particular
interest hereis the set of software guidelines produced by the U.S.
Nuclear Regulatory Commission (NRC) [29] because it is specific
to high integrity systems and because it has set up a systematic
framework of guidelines by deriving many important attributes
from existing standards. There are four top-leve attributes:

* Reliability — defined as the “predictable and consistent
performance of the software under conditions specified in its
design.” A key factor in obtaining reliability is to have
predictability of the program’'s execution; in particular:
predictability of control and data flow, predictability of
memory utilization and predictability of response times.

* Robustness — defined as “the capability of the safety system
software to operate in an acceptable manner under abnormal
conditions or events” Often called fault tolerance or
survivability, this attribute requires the system to cope with
both anticipated and unanticipated faults. Techniques such as
using replication, diversity and exception handling are
commonly used [12].

o Traceability — relates to “the feasibility of reviewing and
identifying the source code and library component origin and
development processes’ thus facilitating verification and
validation techniques, which are essential aids to ensuring
program correctness.

» Maintainability — relates to “the means by which the source
code reduces the likelihood that faults will be introduced
during changes made after delivery.” All the standard software
engineering issues apply here such as good readability, use of
appropriate abstraction techniques, strong cohesion and loose
coupling of components, and portability of software
components between compilers and platforms[32].

The report also provides guidelines based on the framework for
nine programming languages (including Ada95 and C/C++).
Unfortunately, the guidelines do not consider Java.

The goa of this paper is to apply the NRC's framework to
Java augmented by the RTSJ. The paper focuses on the reliability
attribute as the rest of the attributes are concerned with genera
design decisions that are covered in the software engineering
literature. However, we dtill give several Java specific guidelines
in those areas where they have impacts on the RTSJ.

3. COMPUTATIONAL MODEL

The key aim of the Ravenscar-Java profile is to develop a
concurrent Java programming model that supports predictable and
reliable execution of application programs, thus benefiting the
congtruction of modern high integrity software. Particularly, we
follow the philosophy of the Ravenscar profile [11] and emphasise
the reliability attribute of the NRC guidelines. This means that
some language features with high overheads and complex
semantics are removed for the sake of reliability, and programs are
statically analysable in terms of functionality and timeliness
before execution. Similarly, the Java virtual machine is aso
restricted to ensure predictability and efficiency. For example, a
Ravenscar-JavaVM (RVM) does not support garbage collection.

As in the RTSJ, the Ravenscar-Java profile alows concurrent
execution of schedulable objects (threads and event handlers)
based on pre-emptive priority-based scheduling. Schedulable
objects have to be either periodic or sporadic with minimum inter-
arrival times, and the priority ceiling protocol is required to be
implemented in the runtime system. This profile facilitates the use
of off-line schedulability analysis, which is associated with fixed
priority scheduling (e.g. deadline monotonic or rate monotic
analysis[2, 27]).

We assume two execution phases as suggested in [31], i.e.
initialisation and mission phase, as shown below in Figure 1. In
the initialisation phase of an application (i.e. the main() method
and one RealtimeThread), al non-time-critical activities and
initialisations that are required before the mission phase are
carried out. This includes initialisation of all real-time threads,
memory objects, event handlers, events, and scheduling
parameters'. In the mission phase, the application is executed and
multithreading is allowed based on the imposed scheduling policy.

Initialisation Phase

main() invoked
Create Initialiser
thread

main() terminates

Initialise all necessary
objects and real-time ; ey
threads ! < | New Thread | |
o |
i rd
-
S T new Thread | |
startall |7 % | New 'e§4j
threads |

Mission Phase

i A | New Thread !
i R
Allocatable Memory]

Figure 1. Two execution phases

P SO
i | Heap Memory

4. THE PROFILE

The proposed profile can be classified into the following headings,
and each of them is expanded below:

* Predictability of memory utilisation
* Predictability of timing
* Predictability of control and data flow.

We separate the rules and guidelines of the profile into the
following categories (for a full list of rules and guidelines, see
[23]), and the NRC framework is applied to each of them:

1. Programming in the Large
2. Concurrent Real-Time Programming
3. Programming in the Small.

In the first category, we give guidelines on the use of language
features that support high-level decomposition and minimise the
complexity of software, which involve object-orientation, and
abstract data types. In the second, guidelines on the use of features
provided by the RTSJ are presented, whereas in the third we
discuss programming issues related to the production of small
software components, such as control structures, methods, and
expressions.

* Thisincludes loading all the classes needed in the application. InaJIT
(Just-In-Time) compilation environment, all loaded classes will be
compiled.

The resulting profileis targeted at a RVM; however, programs
written according to the profile are valid RTSJ programs, which
will execute without change under a RTSJ virtua machine
(although perhaps not within their deadlines).

This section summarises the rules and guidelines. A fuller
descriptionisgivenin[23].

4.1. Predictability of memory utilisation

This attribute is concerned with ensuring that the software will not
access unintended or disallowed memory locations, and ensuring
that the use of memory space will be predictable and bounded.

4.1.1. Initialisation and mission phases
When an application is started, its main() method will first be
invoked by the RVM and the base heap memory area will be used
to alocate any objects within the method (as with standard Java).
The main method first creates a new NoHeapRealtimeThread
with the highest priority in the system. Thisis required to ensure a
well-ordered and controlled execution of the initialisation and
mission phases, asillustrated in Figure 2.

inport javax.realtine.*;
class Main inplements Runnabl e

public static void main(String [] args)

NoHeapReal ti meThread initializer = new
NoHeapReal ti meThread(new PriorityParameters(
PrioritySchedul er. MAX PRIORITY), null, null,
I mortal Menory. i nstance(), null, new Main());
initializer.start();

}

public void run()
{ /1 initialization phase of the program
}
}
Figure 2. Anillustration of theinitialisation phase

The new thread must take a reference to the immortal memory
area, so that all objects and references to other threads and
memory objects defined in the initializer thread will be safely
created and maintained throughout the life of the application.
Once al initialisation activities are performed, the thread will
alow other threads to execute by invoking the start() methods,
and terminating itself. To encapsulate this initialisation phase, the
Ravenscar-Java profile defines an initializer thread class, shown in
Figure 3, which directly extends the RealtimeT hread class.

package ravenscar;
inport javax.realtine.*;

public class Initializer extends Real ti neThread

public Initializer()
{
super (new PriorityParaneters(
PrioritySchedul er. MAX_PRI ORI TY),
null, null,
I mortal Menory. i nstance(), null, null);

Figure 3. Initializer class of Ravenscar-Java profile

Now, the application can be created by extending the Initializer
classin the following way.

i nport ravenscar.*;
public class MyApplication extends Initializer

public void run()
{ I/ logic for initialization

public static void nmain (String [] args)

MyAppl i cation nmyApp = new MyApplication();
nyApp. start();

}

The mission phase begins as soon as the highest priority thread
(the Initializer) terminates. From this moment, al application
threads will be scheduled and despatched according to the
imposed scheduling policy. Threads may only utiliseimmortal and
linear-time scoped memory areas in this phase, unless their logics
require access to physical or raw memory areas’.

4.1.2. Memory M anagement

To fecilitate predictable memory utilisation we define severa
rules in the three aforementioned areas (see [23] for the full list
and rationales). The rules place restrictions on, for example, the
use of class loaders in the mission phase, on the use of specific
memory area objects (and garbage collector), and on recursive
method calls. It is also disalowed to create or instantiate any
schedulable objects in the mission phase as this will hamper static
memory usage anaysis.

The heap memory area may or may not exist in a supporting
virtual machine. In fact, such memory space can be utilised as part
of the whole immortal memory area, since no garbage collection is
alowed in the profile.

» Use of immortal memory areas

By definition, objects in an immortal memory area cannot be freed
or moved, and all schedulable objects in an application share the
same memory area [7]. Hence, in an attempt to prevent memory
exhaustion or corruption, objects (including memory area objects)
that are needed for the lifetime of the application should be
alocated in the areaonly in theinitialisation phase.

» Use of linear time scoped memory areas

All memory area objects must be created during the initialisation
phase (thus, in the immortal memory ared), and other objects
during the mission phase should make use of LTMemory areas.
The size of all memory objects must be static and not be extended
in the course of the program. Any other memory area objects
defined in the RTSJ are disallowed, and the following simplified
classes remain in the profile.

package ravenscar;
public abstract class MenoryArea
{
protected MenoryArea(long sizel nBytes);
protected MenoryArea(javax.real tine. SizeEsti mator

2 In this paper, we do not attempt to restrict the use of physical or raw
memory other than that implied by our restrictions on scoped memory
areas. However, a potential implementation of aRVM might apply
restrictions for security reasons.

si ze);
public void enter(java.lang. Runnabl e |ogic);
/1 throws ScopedCycl eException
public void executel nArea(java. |l ang. Runnabl e | ogic)
throws | naccessi bl eAreaExcepti on;
public static MenmoryArea get MenoryArea(
java.l ang. Qbj ect object);
public | ong nmenoryConsuned();
public | ong nenoryRemai ning();
public java.lang. Obj ect newArray(java.lang.d ass
type, int nunber)
throws |1 egal AccessExcepti on,
I nstantiationException;
/1 throws Qut Of Menor yError
public java.lang. Object new nstance(java.lang. d ass
type)
throws |11 egal AccessExcepti on,
I nstantiati onExcepti on;
/'l throws Qut OF Menor yError
public java.lang. Object new nstance(
java.lang.reflect. Constructor c,
java.lang. Qbject[] args)
throws |1 egal AccessException,
I nstantiati onExcepti on;
/1 throws Qut Of MenoryError;
public long size();

public final class Imortal Menory extends MenoryArea

public static Inmortal Memory instance();

}

public abstract class ScopedMenory extends MenoryArea

{
publ i c ScopedMenory(long size);
publ i c ScopedMenory(Si zeEsti mator size);
public void enter();
public int getReferenceCount();

}
public class LTMenory extends ScopedMenory

public LTMermory(long size);
public LTMenory(Si zeEsti mator size);
}

Figure 4. Simplified memory area classes

To aid in the production of an efficient RVM and to simplify
timing and memory usage analyses, access to LTMemory areas
must not be nested and LTMemory areas must not be shared
between Schedulable objects.

4.2. Predictability of timing

This attribute focuses on demonstrating that al schedulable
objects meet their timing constraints at runtime. The restrictions
enforce the computational model given in Section 3 and, thereby,
alow schedulability analysis to be performed.

4.2.1. Scheduling and Threading M odel

As suggested in the RTSJ, the minimum required scheduling base
is by default a fixed-priority pre-emptive scheduler (represented
by the PriorityScheduler class) that supports at least 28 unique
priority levels. The specification aso requires that an
implementation makes available at least 10 additional native
priorities for regular Java threads. However, the profile does not
support regular threads by disallowing the use or overriding of the
class javalang.Thread to create threads. Therefore, we do not

assume any additional native priority levels for regular Java
threads. As a result, the supported types of schedulable objectsin
the profile are

« Periodic threads (see PeriodicT hread class below), and
« Sporadic event handlers (see SporadicEventHandler class
below).

The RealtimeThread and AsyncEventHandler classes are not
directly available to the applications programmer, as the former
may use the heap memory, whereas the latter hinders accurate
timing and memory analyses.

Attributes such as scheduling characteristics and memory
areas must be statically alocated to schedulable objects in the
initialisation phase, and shall not be changed afterwards, in order
to fecilitate fixed-priority scheduling algorithms and
schedulability analysis. For this purpose, al methods whose
names begin with ‘set’ (for example, setReleaseParameters())
and some with ‘get’ are excluded. Thus the Schedulable interface
is defined as an empty interface, as shown below.

package ravenscar;
public interface Schedul abl e extends java.lang. Runnabl e

{
}
Figure 5. Empty Schedulable interface

Only fixed priority-based scheduling is supported by the
Ravenscar-Java profile. Furthermore, any subclass of the
Scheduler including the default PriorityScheduler class is not
alowed to perform any feasibility checks, leading to the classesin
Figure 6. The PriorityParameters class also does not contain
setPriority() method, and the | mportancePar ameters classis not
supported.

package ravenscar;
public abstract class Schedul er

{

public class PrioritySchedul er extends Schedul er

public static final int MAX_ PR ORITY;
public static final int MN_PR ORITY;

}
Figure 6. Simplified Scheduler classes

Overall, this approach does not necessitate any dynamic feasibility
test and admission control by the RVM at runtime. All
schedulability analysis is performed before the initialisation phase
of the program.

4.2.2. Use of release parameters

In order to support periodic or sporadic behaviours of real-time
threads, the following simplified ReleasePar ameter s class and its
subclasses are defined.

package ravenscar;
public class Rel easeParaneters

protected Rel easeParaneters();

}

public class PeriodicParaneters extends Rel easeParaneters

public Periodi cParamet ers(Absol uteTine startTing,

Rel ativeTi ne period);
protected Absol uteTine getStartTine();
protected Rel ativeTime getPeriod();

}

public class SporadicParaneters extends Rel easeParaneters

publ i c Sporadi cParaneters(Rel ativeTine minlnterarrival);
protected RelativeTine getMnlnterarrival ();
}
Figure 7. ReleasePar ameter s and its subclasses

The AperiodicParameters class is undefined, as the profile does
not support aperiodic activities.

4.2.3. Use of threads

Most of the methods and fields of the original java.lang.Thread
class are obsolete in the context of the RTSJ and high integrity
real-time applications. So, this classis defined as follows®.

package java.l ang;
public class Thread inplements Runnable

Thread();
Thread(String nane);
void start();
}
Figure 8. Newly defined java.lang.Thread class

Along the same lines, the RealtimeThread and
NoHeapRealtimeT hread can be defined as:

package ravenscar;

public class RealtimeThread extends java.lang. Thread
i npl ements Schedul abl e

{

Real ti neThread(PriorityParaneters pp,
Peri odi cParaneters p);
Real ti meThread(PriorityParaneters pp,
Peri odi cParaneters p, MenoryArea m);
public static RealtimeThread currentReal ti meThread();
public MenoryArea get Current MenoryArea();
void start();
static bool ean wait For Next Peri od();

}

public class NoHeapReal ti meThread extends Real ti meThread

{
NoHeapReal ti neThread(PriorityParanmeters pp,

Menor yArea ma) ;
NoHeapReal ti meThread(PriorityParaneters pp,
Peri odi cParameters p, MenoryArea ma);
void start();

Figure 9. RealtimeT hread and NoHeapRealtimeT hread class

* Periodic Threads

Periodic threads transparently invoke the waitFor NextPeriod
method of the RealtimeThread class a the end of their main
loops to delay until their next periods. Other mechanisms (e.g.
sleep() method) are prone to have an inaccurate timing model,
thus should not be used.

% The profile changes some of the access modifiers of the classes,
congtructors, and methodsin order to ensure they cannot be used directly
by the programmer. The changes are always more restrictive and hence
programs will always execute on non-Ravenscar implementations.

The profile defines an additional class to automate the
management of periodic threads, which is shown below.

package ravenscar;
public class PeriodicThread extends NoHeapReal ti meThread

public PeriodicThread(PriorityParaneters pp,
Peri odi cParaneters p, java.lang.Runnable |ogic);
public void run();
public void start();
}

Figure 10. PeriodicThread class

This class may be utilised as follows. Note that the class assumes
the default memory area is the immortal one, and a recovery
procedure from a missed deadline can be implemented (if
supported by the implementation of the profile).

package ravenscar;
public class PeriodicThread extends
NoHeapReal ti neThr ead

public PeriodicThread(PriorityParaneters pp,
Peri odi cParaneters p, java.lang.Runnable | ogic)
{

super(pp, p, |mortal Menory.instance());
applicationLogic = |ogic;

private java.lang. Runnabl e applicati onLogi c;
public void run()

{

bool ean noProbl ens = true;
whi | e(noProbl ens) {
appl i cationLogic.run();
noProbl ens = wai t For Next Peri od();

/1 A deadline has been m ssed,
/1 1f allowed, a recovery routine would be placed
/'l here

}

public void start()

super.start();

Figure 11. An illustration of the PeriodicThread class

« Sporadic Activities

Event-triggered activities are supported by means of the
BoundAsyncEventHandler class. Once an event and its handler
are set up, they must remain unchanged permanently. For
predictability, it is assumed that each handler is bound to one
server thread and each server thread has only one handler bound to
it. Again, we define a new class specifically designed for sporadic
activities, as shown below. It is based on the AsyncEventHandler
class hierarchy.

package ravenscar;
public class AsyncEvent Handl er inplenents Schedul abl e
{
AsyncEvent Handl er (PriorityParanmeters pp,
Rel easeParaneters p, MenoryArea nm);
AsyncEvent Handl er (PriorityParaneters pp,
Rel easeParaneters p, MenoryArea ma,
java.l ang. Runnabl e | ogic);

publ i c MeroryArea get Current MenoryArea();

protected void handl eAsyncEvent();
public final void run();

}

public class BoundAsyncEvent Handl er
ext ends AsyncEvent Handl er

BoundAsyncEvent Handl er (PriorityParameters pp,
MenoryArea ma, Rel easeParaneters p);

BoundAsyncEvent Handl er (PriorityParanmeters pp,
Menor yArea ma, Rel easeParaneters p,
java.l ang. Runnabl e | ogic);

protected voi d handl eAsyncEvent ();
}

public class Sporadi cEvent Handl er
ext ends BoundAsyncEvent Handl er {
publ i ¢ Sporadi cEvent Handl er (PriorityParameters pri,
Spor adi cPar anet ers spor);
publi ¢ Sporadi cEvent Handl er (PriorityParameters pri,
Spor adi cPar aneters spor,
java. | ang. Runnabl e) ;
public void handl eAsyncEvent ();

}

Figure 12. Event handlers and the SporadicEventHandler class

Classes associated with event handlers are shown in Figure 13
below.

package ravenscar;
public class AsyncEvent

{
AsyncEvent ();
voi d addHandl er();
void fire();
voi d bindTo();

}

public class Sporadi cEvent extends AsyncEvent

public Sporadi cEvent (Sporadi cEvent Handl er handl er);
public void fire();

}

public class Sporadiclnterrupt extends AsyncEvent

publ i ¢ Sporadi cl nterrupt (Sporadi cEvent Handl er handl er,
java.lang. String happening);

Figure 13. Associated classes to SporadicEventHandler class

Note that al event handlers are bound to their associated event
when the event is created.

* Processing Groups, Overrun and Deadline-miss handlers
Processing groups (i.e. instances of the
ProcessingGroupParameters class) are not supported in the
profile, as they require runtime support for the scheduler to
determine the feasibility of the tempora scope of a processing
group (which thus hampers static timing analysis). Overrun and
deadline-miss handlers are also not required as schedulability
analysis has been performed off-line.

4.2.4. Synchronization

The synchronized construct in Java provides mutually exclusive
access to shared resources or objects, and programmers are always
encouraged to use it to avoid data races. However, excessive use

of this mechanism may result in poor response time, implying that
high priority threads may have to wait until lower ones finish their
synchronized methods or blocks. Therefore, in order to prevent
unbounded priority inversions and possible deadlocks, the priority
ceilling protocol (PriorityCeilingEmulation class) must be
implemented and explicitly used for al objects with synchronized
blocks or methods. Furthermore, the profile does not support wait,
notify and notifyAll methods of the object class. All condition
synchronization between real-time threads must be via sporadic
event handlers as this ensures that the timing properties of the
synchronization are properly addressed.

WaitFreeQueues are not required as they are provided in the
RTSJ to enable communication between instances of
NoHeapRealtimeT hread and regular Java threads.

4.2.5. Representation of time
Supported representations of time are

+ HighResolutionTime,
« AbsoluteTime, and
« RelativeTime.

These classes allow representation of time with up to nanosecond
accuracy and precision [7].

4.2.6. Timer classes

In the presence of the aforementioned classes that offer timely
periodic and sporadic behaviours of threads, the Timer and its
subclasses are not necessary and not available.

4.2.6. Asynchrony

The Asynchronous Transfer of Control (ATC) mechanism is not
alowed, asit is one of the most complicated features of the RTSJ
and hinders timing and functional analyses [10].

4.3. Predictability of control and data flow
Predictability of control and data flow is required in order that
static analysis techniques can be used to aid programming proof
techniques and worst-case execution time analysis. Again, all the
rules and guidelines are listed in [23], but noteworthy ones in each
of the three areas include

* Programming in the large

+All user-defined classes must include constructors that initialise
al internal variables and objects.

*Dynamic method binding should be minimised. In particular,

method overriding and the use of interfaces should be minimised.

« Concurrent Real-Time Programming

+ Asynchronous transfer of control (ATC) and any thread aborting
mechanisms are disallowed.

+Use of wait, notify, and notifyAll methods is disallowed.

* Programming in the small

+Use of continue and break statementsin loopsiis disallowed.

+All congtraints, such as one used in afor loop, must be static.

+Compound expressions in parameter passing to methods must be
diminated.

+Expressions whose values are dependent on the order of
evaluations should be disallowed.

All the rules and guidelines will facilitate or greatly ease the use
of program analysis tools.

5. IMPLEMENTATION ISSUES

Along the same lines as the profile we present in this paper, it is
essential to use a runtime environment (called RVM in this paper)
that has been designed and implemented with highly dependable
systems in mind. As mentioned earlier, however, programs based
on our profile should be valid RTSJ programs and execute on a
standard RTSJ platform with the same functional results (although
not necessarily with the same response times).

In addition, tool support is essentia to analyse code in terms
of functionality and timeliness. A customised tool may be
developed that incorporates al the rules and guidelines (see
Appendix A of [23]) and throughout this paper. Such a tool may
aso be able to obtain the Worst-Case Execution Time (WCET)
and worst-case memory consumption of each thread, thus enabling
schedulability anadlysis [6, 18]. Standard Java tools or model
checkers, such as ESC/Java[24] and Java Pathfinder 2 [9, 21] may
be used, aswell.

6. AN EXAMPLE PROGRAM

We present a simple and naive traction-control system that senses
any difference between the front- and rear-wheel spin speeds, and
reduces the engine output if the rear-wheels spin more quickly”.
There is one periodic thread spinM onitor and one sporadic thread
power CutHandler, and as soon as an excessive rear-wheel spinis
detected spinMonitor activates powerCutHandler. The rea
application logic is not given as the example is purely intended to
illustrate how the profileis used.

i nport ravenscar. *;

public class TractionController extends Initializer {
public void run() /1 Initializer routine

/'l power Cut Handl er
Spor adi cEvent Handl er power Cut Handl er =
new Spor adi cEvent Handl er (
new PriorityParaneters(15),
new Spor adi cPar anet er s(
/I Mninuminterarrival time and buffer size
new Rel ativeTi me(333, 0), 5)

Il Priority:15

/1 Event handl er routine
public void handl eAsyncEvent ()

/'l Logic for handling powerCut Event event
Il i.e. either cut the engine power or brake
/1 appropriate wheels
}
¥

final Sporadi cEvent power Cut Event =
new Spor adi cEvent (power Cut Handl er) ;

/'l spi nMoni t or

Peri odi cThread spinMnitor = new Periodi cThread(
new PriorityParameters(10), /1 Priority:10
new Peri odi cPar anet er s(

new Absol uteTi ne(0, 0), /] Start time

4 A rear-whed drive car (e.g. aFormula 1 car) is assumed.

new Rel ativeTi me(333, 0) /'l Period

)

new Runnabl e() {
public void run()
{
/'l Logic for checking front and rear wheel
/1 spin speeds, i.e. obtain sensor readings
/1 fromfront and rear wheels.
/1 Once any excess of a predefined threshold
Il is detected, fire the follow ng event

power Cut Event . fire();

/1 Application |ogic

}
)
spi nhoni tor.start();
}

public static void nmain (String [] args)

TractionController init = new TractionController();
init.start();

}
7.RELATED WORK

There have been afew subsets or profiles for Java suggested in the
literature®. None of them, however, is as complete or analytical as
the Ravenscar-Java profile described in this paper; they are
surveyed below.

7.1. Sequential subset of Java

Bentley [5] defines a sequential subset of Java after assessing the
language. The subset consists of 21 rules that are effectively
derived from [19], [28] and his assessment. All the rules are
categorised into six groups, as shown below with a summary of
rules for each group.

* Rules Concerned With Verification
Multithreading, as well as method and constructor overloading is
not allowed.

* Rules Concerned With Comments
Comments shall not be nested.

« Rules Concerned With Predictability

Variables or objects must be staticdly initialised (by constructors
of appropriate classes). All constraints, such as those used in for-
loops, must be static. The continue and break statements shall not
be used, except to terminate the cases of a switch statement, for
which a break statement is required for every non-empty case
clause. The return statement should only appear as the last
statement of a method. Further, methods must not have any side
effects and not be recursively invoked. The result of a method
should never be an unconstrained array type object.

* Rules Concerned With Constants
Octal constants (other than zero) shall not be used.

* Rules Concerned With I dentifiers
All identifier names must be unique.

® In fact, there are subsets of Java defined for other purposes than for use
in high integrity systems, for example, [14].

* Rules Concerned With Operators

All right-hand operands of the logical operator && and || shall not
contain any side effects, and assignment operators must not be
used in expressions that return Boolean values, for example, in if
((x=1) '=y). Bitwise operations, including bitwise shifts, shall not
be performed on signed integer types, while the evauation of
integer expressions should not lead to wrap-around.

Whereas this subset will undoubtedly help produce anaysable and
predictable sequential programs, it can be criticised for its
restriction on multithreading, one of Java's inherent elements.
Without the language-level support for multithreading and all the
associated synchronisation mechanisms, Java may not be
considered as a great evolution from its predecessors. In addition
to this, the subset also fails to address issues on the object-oriented
programming model of the language, as well as real-time issues.

7.2. Profilefor high integrity Real-Time Java

programs

Puschner and Wellings [31] suggest a Ravenscar-like profile for
the Real-Time Specification for Java [7], and the following is a
brief summary of each of the key areas.

* Threading M odel

There are two execution phases, i.e. initialisation and mission
phases. In the initialisation phase, al necessary threads, event
handlers, and memory objects are created in a non time-critical
manner. No threads will be allowed to start until the top-priority
thread with main() method finishes its execution. In the mission
phase, threads may not change their own or other thread's priority
except when forced by the underlying implementation of the
priority ceiling protocol. Sporadic or event-triggered activities are
implemented as event handlers, and only one handler is alowed
per event. All periodic thresds must be an instance of
NoHeapRealtimeThread class and need to invoke
waitForNextPeriod method to delay execution until the start of
their next periods. Asynchronous Transfer of Control (ATC),
overrun and deadline-miss handlers, and delay statements are not
supported by the profile; nor is dynamic class loading during the
mission phase.

« Concurrency

The synchronized methods and blocks are alowed, and the
priority ceiling protocol should be implemented in the run-time
system in order to avoid deadlocks. For similar reasons, wait,
notify, and notifyall are not supported, avoiding any queue
management.

* Memory Management and Raw M emory Access

The heap-based garbage collection mechanism of Java is not
supported; instead, only immortal memory and linear-time scoped
memory are supported. Immortal memory is used by default to
create objects during the initialisation phase, but is not allowed for
further object creation afterwards. In addition, all other memory
objects must only be created in the initidisation phase. The RTSJ
classes for raw memory access are also supported, so that device
drivers, memory-mapped 1/O, and other low-level functions can
be programmed.

e Timeand Clock
All the RTSJ classes for the representation of time and real-time
clocks are included while the timer classes are not.

The profile is primarily focused on leaving out complex features
of the RTSJ. However, little attention is paid to the Javd's
sequentia language constructs (unlike [5]) and object-orientation
features that can be problematic in performing various static
analyses. Furthermore, the profile is not consistent with the
current version of the RTSJ.

7.3. High integrity profile by the J Consortium

A sub-committee has been formed within the Real-Time Java
Working Group of the J Consortium to produce a high integrity
profile based on the Real-Time Core Extensions [20]. The profile
has not been released yet, but according to Dobbing [13] it is
likely to resemble the Ravenscar profile for Adad5 [11]. It consists
of four main themes. partitioning, memory management,
concurrency, and error recovery, respectively. Up-coming
information will be found at http://www.j-
consortium.org/hip/index.shtml.

« Partitioning

The main idea has developed from the necessity to isolate critical
code and data from non-critical ones by means of a firewall, so
that lesstrusted code will never be able to interfere with high
integrity programs. No exchange of objects or dynamic loading
will be allowed across the firewall. This idea also extends to the
temporal requirements of such software, i.e. tempora firewall,
which means deadlines of critical threads must be met.

* Memory Management

The automatic garbage collection and any memory compaction

mechanism are not supported. There are three memory alocation

strategies, which are

- stack allocation for method local objects that are automatically
reclaimed

- fixed size “alocation contexts’ for local objects in each thread

- globa allocation at initialisation time for immortal objects.

« Concurrency

Three types of priority-based tasks are supported, namely,
periodic, sporadic, and interrupt tasks. Additionally, the profile
defines a subclass of the basic CoreTask that must explicitly be
started by another thread. All threads are created at program start-
up, e.g. as part of the initialisation code for classes, and it is not
alowed to declare athread class as an inner class.

Shared resources and inter-thread synchronisations are
managed through protected objects, which rely on the underlying
implementation of the Priority Ceiling Protocol. However, no
mutual exclusion locks or synchronised methods are supported in
the profile. Further, &l the asynchronous thread-to-thread
operations, including stop, setPriority, suspend, resume methods,
and event-driven Asynchronous Transfer of Control (ATC)
mechanisms, are not permitted. Synchronised objects and counting
semaphores are a so not supported.

* Error Recovery

The standard exception handling mechanism of Java (i.e. throw-
catch clause) is maintained. It also supports access to specific
physical addresses to allow objects to be mapped, in order to, for
example, save program state for fast recovery purposes.

Like the one proposed in [31], this profile is mainly focused on
sub-setting the Real-Time Core Extensions [20], but does not

address issues on the use of problematic language constructs and
object-orientation features of Java.

7.4. Formal subsets

Drossopoulou et al. [14] define three formal subsets of Java, i.e.
that of the source language (Java’), high-level representation of
bytecode (Java®), and enriched version of Java® (Javd). They
present operational semantics, type system, and a proof of type
soundness for the subsets.

Java® is a substantial subset of the Java programming
language, and it includes some primitive types, interfaces, classes
with instance variables and instance methods, inheritance, hiding
of instance variables, overloading and overriding of instance
methods, arrays, implicit pointers and the null value, object
creation, assignment, field and array access, method call and
dynamic method binding, exceptions and exception handling [14].

In order to observe run-time behaviours of programs in Java’,
they are formally converted into Java® and Java respectively,
which are high-level representations of bytecode with all
necessary compile-time type information. Having done this, it is
possible to obtain operational semantics of each high-level
language construct and prove the soundness of the type system of
the source-level subset, Java®.

While these subsets contain many important language
constructs of Java that are often omitted in other formal subsets
(e.g. exceptions), they still overlook some of Java's inherent
features, such as the multithreading and synchronisation models.
[17] surveys formal subsets and approaches aimed at improving
the safety of Java programs.

8. CONCLUSIONS

In this paper, we have presented the Ravenscar-Java profile, a
high integrity profile for rea-time Java. This restricted
programming model excludes language features with high
overheads and complex semantics, on which it is hard to perform
timing and functional analyses. Several classes in the RTSJ are
redefined, and a few new classes are added, al resulting in a
compact, yet powerful and predictable computational model for
the development of software-intensive high integrity real-time
systems.

The profile is categorised into three areas, i.e. Programming in
the large, Concurrent real-time programming, and Programming in
the small. These are then structured based on the guideline
framework developed by the U.S. Nuclear Regulatory
Commission, which derives many important attributes from
existing standards and is specific to high integrity systems.
Various rules and guidelines, centred around the reliability
attribute, are given in each of the three following sub-attributes:

« predictability of memory utilisation,
« predictability of timing, and
« predictability of control and data flow.

A simple example illustrating the use of our profile was also
provided in Section 6, before we reviewed four existing subsets of
Java or the RTSJ. Most of the subsets, however, overlook some
important elements of the language, for example, multi-threading
and object-oriented programming model. Thus, many of the
advantages of Java are lost.

We believe that our profile is expressive enough to
accommodate today’s demanding requirements for a powerful

programming model, yet concise enough to facilitate the
implementation of underlying platforms or virtual machines with
great ease. A subset of Java and the RTSJ, along the lines
presented in this paper, would be a powerful motivation to
develop high integrity systems in Java, rather than in a subset of
C, C++ or Ada

9. ACKNOWLEDGEMENTS

This work has been funded by the EPSRC under award number
GR/M94113. The authors gratefully acknowledge the comments
of Greg Bollellaon an early draft of this paper.

10. REFERENCES

[1] A. W. Appel, Protection against untrusted code: The JIT
compiler security hole, and what you can do about it,
http://www-106.ibm.com/devel operworks/library/untrusted-
code/, as of January 2001.

[2] N. Audsley, A. Burns, M. Richardson, K. Tindell, and A.
Wellings, Applying New Scheduling Theory to Static
Priority Pre-emptive Scheduling, Software Engineering
Journd, 8(5), 284-92, 1993.

[3] A. Azevedo, A. Nicolau, and J. Hummel, Java Annotation-
Aware Just-In-Time (AJIT) Compilation System, ACM
1999 Java Grande Conference, 1999.

[4] J. Barnes, High integrity Ada: the SPARK approach,
Addison Wesley, 1997.

[5] S. Bentley, The Utilisation of the Java Language in Safety
Critical System Development, M Sc dissertation, Department
of Computer Science, University of York, 1999.

[6] G. Bernat, A. Burns, A. Wellings, Portable Worst Case
Execution Time Analysis using Java Bytecode, In
Proceedings of the 12" EUROMICRO conference on Redl-
Time Systems, 2000.

[7] G. Bollella, et a, The Real-Time Specification for Java,
Addison-Wesley, 2000.

[8] J. P. Bowen and M. G. Hinchey, High Integrity System
Specification and Design, Springer-Verlag, 1998.

[9] G. Brat, K. Havelund, S. Park, and W. Visser, Model
Checking Programs, In IEEE International Conference on
Automated Software Engineering (ASE), Sep. 2000.

[10] B. M. Brosgol, S. Robbins, and R. J. Hassan |, Asynchronous
Trander of Control in the Real-Time Specification for Java, In
Proceedings of the 5" IEEE Internationd Symposium on Object-
oriented Redl-time distributed Computing (ISORC), 2002.

[11] A. Burns, B. Dobbing, and G. Romanski, The Ravenscar
Tasking Prdfile for High Integrity Real-Time Programs, In L.
Asplund, editor, Proceedings of Ada-Europe 98, LNCS, Voal.
1411, pages 263-275, Berlin Heiddberg, Germany, Springer-
Verlag 1998.

[12] A. Bumns and A. Wedlings Real-Time Systems and
Programming Languages. Ada 95, Real-Time Java and Real-
TimePOSI X, 3" Ed., Addison Wesley, 2001.

[13] B. Dobbing, The Ravenscar Profile for High Integrity
Java Programs?, ACM Ada Letters, Vol. 21, Issue. 1, March
2001.

[14] S. Drossopoulou and S. Eisenbach, Describing the
Semantics of Java and Proving Type Soundness, in LNCS
1523 Formal Syntax and semantics of Java (ed. J. Alves-
Foss), Springer-Verlag, Berlin, 1999.

[15] Li Gong, Inside Java™ 2 Platform Security: Architecture,
API Design, and Implementation, Addison-Wesley, 1999.

[16] J. Godling, B. Joy, G. Steele, and G. Bracha, The Java
Language Specification, 2™ Ed., Addison Wesley, 2000.

[17] P. H. Hartel and L. Moreau, Formalizing the Safety of
Java, the Java Virtual Machine, and Java Card, ACM
Computing Surveys, Vol. 33, No. 4, December 2001.

[18] E. Y-S Hu, G. Bernat, and A. Wellings, Addressing
Dynamic Dispatching Issuesin WCET Analysis for Object-
Oriented Hard Real-Time Systems, In Proceedings of the 5"
IEEE Internationa Symposum on Object-oriented Red-time
digributed Computing (ISORC), 2002.

[19] A. Hutcheon, B. Jepson, D. Jordan, and I. Wand, A Study of
High Integrity Ada: Language Review, Technica Report
SLS31c¢/73-1-D, Version 2, York Software Engineering,
University of York, July 1992.

[20] J Consortium, International J Consortium Specification:
Real-Time Core Extensions, Revison 1.0.14, www.j-
consortium.org, September 2000.

[21] Java PathFinder, http://ase.arc.nasa.gov/visser/jpf/, last
accessed in April 2001.

[22] J. Kwon, A. Wellings, and S. King, Assessment of the Java
Programming Language for Use in High Integrity Systems,
York Technical Report (YCS 341), Department of Computer
Science, University of York, 2002, avalable at
http://imww.cs.york.ac.uk/ftpdir/reports’Y CS-2002-341.pdf.

[23] J. Kwon, A. Wdllings, and S. King, Ravenscar-Java: A
High Integrity Profile for Real-Time Java, York Technical
Report (YCS 342), Department of Computer Science,
University of York, 2002, available a
http://www.cs.york.ac.uk/ftpdir/reports/Y CS-2002-342.pdf.

[24] K.R.M. Leino, G. Nelson, and J.B. Saxe, ESC/Java User's
Manual, SRC Technica Note 2000-002, Compag Systems
Research Center, Palo Alto, CA, 2000.

[25] N. G. Leveson, Software Safety: Why, What, and How,
Computing Surveys, Vol. 18, No. 2, ACM, June 1986.

[26] N. G. Leveson, Software Safety in Embedded Computer
Systems, Communications of the ACM, Vol. 34, No. 2,
February 1991.

[27] C. Liu and J. Layland, Scheduling Algorithms for
Multiprogramming in a Hard Real-time Environment,
Journal of ACM, 20(1), 46-61, 1973.

[28] The Motor Industry Software Reliability Association,
Guidelines for the use of the C language in vehicle based
software, The Motor Industry Research Association, 1998.

[29] H. Hetcht, M. Hecht, S. Graff, et al, Review Guidelines for
Software Languages for Use in Nuclear Power Plant
Systems, NUREG/CR-6463, U.S. Nuclear Regulatory
Commission, 1997.

[30] D. L. Parnas, A. J. van Schouwen, and S. P. Kwan,
Evaluation of Safety-Critical Software, Communications of
the ACM, Voal. 33, No. 6, June 1990.

[31] P. Puschner and A. J. Wdlings, A Profile for High Integrity
Real-Time Java Programs, In Procesdings of the 4" IEEE
International Symposium on Object-oriented Red-time digtributed
Computing (ISORC), 2001.

[32] I. Sommerville, Software Engineering, 6" Ed., Addison
Wesley, 2000.

[33] Sun Microsystems®, Java™ 2 Platform Micro Edition
(J2ME™) Technology for Creating Mobile Devices, White
paper, Sun Microsystems® 2000.

