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ABSTRACT 

This paper sets a goal of investigating the use of Java in the development of 

high integrity systems. Important requirements of programming languages for the 

development of high integrity software are first surveyed. Based on these, we develop 

several criteria that are used for the following assessment of Java. A summary of the 

assessment is provided before we go on to review a few existing subsets of the 

language. 

 

1. Introduction 
High integrity systems are generally complex and crucial systems that come into their 

existence as we realise new problem domains and build some form of system in an 

attempt to protect or benefit related objects and human beings. Examples include 

space shuttles, nuclear power plants and medical instruments, and they typically have 

high development and maintenance costs due to the customised nature of their 

components. There exist many general and sector-specific standards produced to 

assist in building such important systems. 

 

Within high integrity systems, there has been a growing trend to use software, because 

it provides [Leveson1986, Leveson1991, Parnas+1990, Bowen+1998] 

• improved functionality 

• increased flexibility in design and implementation 

• reduced production cost 
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• enhanced management of complexity in application areas. 

Over the recent years, Java has proved to be an appropriate vehicle for a diverse range 

of applications including web based intranets and embedded systems. Its relatively 

simple linguistic semantics, the adoption of well-understood approaches to managing 

software complexity, and support for concurrency seem to have contributed towards 

its popularity. Initially designed with embedded systems in mind, Java’s main goal 

was to provide engineers with a reliable and cost-effective platform-independent 

environment. The burden of learning a new language is kept to the minimum for 

existing C and C++ programmers, while helping them to discover errors earlier by 

means of strong type checking, array-bound checking, null-pointer checking, and so 

on [Gosling+2000]. Further, its support for concurrency, i.e. multi-threading and 

synchronisation mechanisms, together with the use of portable code or the bytecode 

opens up a huge number of possibilities for many other applications, including high 

integrity systems. 

 

However, despite all these valuable features, Java has been criticised for its 

unpredictable performance as well as some security concerns [Appel1999, 

Azevedo+1999, Amme+2001]. The automatic garbage collection and dynamic class 

loading mechanisms are often considered problematic, especially under time or 

performance-critical situations. Moreover, a number of security bugs in the Java 

virtual machine have been discovered since its first appearance, especially in the 

bytecode verifiers and Just-in-Time (JIT) compilers [Gong1999, Appel1999]. These 

fears make Java and its associated technology simply unsuitable for the development 

of high integrity systems. 

 

Upon the realisation of such primary drawbacks of Java, many researchers and 

scientists have attempted to improve the situation, particularly in search of predictable 

real-time performance. For instance, the Real-Time Specification for Java 

[Bollella+2000b, Bollella+2000a] and its reference implementations (e.g. 

[TimeSys2002]) have proved that Java can be a capable framework for concurrent 

real-time applications. The specification attempts to minimise any modification to the 

original language semantics and defines many additional classes that should be 

implemented in a supporting virtual machine. This, however, ironically leads to a 

language and run-time system that are complex to implement and have high 
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overheads at run-time. Software produced in that framework is also difficult to 

analyse with all the luxurious features, such as the asynchronous transfer of control 

(ATC) and dynamic class loader. 

 

Bearing in mind the positive developments and drawbacks of Java, this paper 

investigates the use of the language in the development of high integrity systems. We 

first survey important requirements of programming language for the development of 

high integrity software. Based on those requirements gathered from several relevant 

standards and guidelines, we develop 23 criteria that are used for the following 

assessment of Java. A summary of the assessment is provided before we move on to 

review a few existing subsets of the language. 

 

2. Requirements of Programming Language 

A study by Bentley [Bentley1999] summarises some of the well-known requirements 

of programming language for the development of high integrity systems including 

works by [Carré+1990], [Cullyer+1991], [USDoD1978], [USDoD1990] and 

[Hutcheon+1992]. It carries out an assessment on Java against all the requirements, 

producing a series of comprehensive rationales. A subset of the language is also 

proposed, but only sequential features are included. 

 

The outcome of the study is compatible to a large extent with our objective in this 

paper as the requirements are still of significant importance these days, and the chosen 

language is Java. Therefore we consider it as our starting point for a more complete 

and up-to-date assessment of the language. 

 

2.1. Summary of the requirements used by Bentley [Bentley1999] 

• Carré et al [Carré+1990] identify six factors that can have an influence on a 

programming language’s suitability for use in high integrity systems. These factors 

are summarised by [Storey1996] as 

· Logical soundness: is there a sound, unambiguous definition of the language? 

· Simplicity of definition: are there simple, formal definitions of the various 

language features? Complexity in these definitions results in complexity 

within compilers and other support tools, which can lead to errors. 
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· Expressive power: can program features be expressed easily and efficiently? 

· Security and integrity: can violations of the language definitions be detected 

before execution? 

· Verifiability: does the language support verification, that is, proving that the 

code produced is consistent with its specification? 

· Bounded space and time requirements: can it be shown that time and 

memory constraints will not be exceeded? 

 

• Cullyer et al [Cullyer+1991] define a checklist of eleven factors to help establish if a 

language has appropriate characteristics. The factors or questions to ask are 

· Wild jumps: can it be shown that the program cannot jump to an arbitrary 

memory location? 

· Overwrites: are there language features that prevent an arbitrary memory 

location being overwritten? 

· Semantics: are the semantics of the language defined sufficiently for the 

translation process needed for static code analysis? 

· Model of maths: is there is a rigorous model of both integer and floating point 

arithmetic? 

· Operational arithmetic: are there procedures for checking that the 

operational program obeys the model of the arithmetic when running on the 

target processor? 

· Data typing: are the means of data typing strong enough to prevent misuse of 

variables? 

· Exception handling: if the software detects a malfunction at runtime, do 

mechanisms exist to facilitate recovery? 

· Safe subsets: does a subset of the language exist which is defined to have 

properties that satisfy these requirements more adequately than the full 

language? 

· Exhaustion of memory: are there facilities to guard against running out of 

memory at runtime? 

· Separate compilation: are facilities available for separate compilation of 

modules, with type checking across the module boundaries? 

· Well understood: will the designers and programmers understand the 

language sufficiently to write safety-critical software? 
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These questions, however, are high-level and do not cover some detailed issues like 

those in the Steelman requirements [USDoD1978]. 

 

• The Steelman requirements [USDoD1978] are both extensive and technically 

detailed. It was established by the U.S. Department of Defence after a number of 

reviews and refinements by military and civil communities in order to evaluate 

existing languages. This eventually led to the development of Ada, which satisfies all 

the requirements. Although most of the Steelman requirements are still desirable 

today for general-purpose languages when efficiency and reliability are important 

concerns, it does not reflect modern language features and paradigms, for example, 

object orientation [Wheeler1997]. Noteworthy areas of the requirements include 

 · Language design aims 

 · Syntax, expressions and types 

 · Control structures, functions and procedures 

 · Input-output control, parallel processing 

 · Exception handling 

 · Support for the language. 

For the whole list of the requirements, see [USDoD1978] or [Bentley1999].  

 

• [USDoD1990] shows a set of new and revised requirements for Ada9X, based on 

long industrial experiences with the original Ada83. It incorporates new language 

features and support for real-time, safety-critical, distributed systems by means of 

additional annexes. Major areas cover 

· Issues on standardisation, understandability, efficiency in execution and 

storage management 

· New language paradigms including object orientation (via type extension) 

· Real-time requirements including alternative scheduling policies, 

asynchronous transfer of control, and asynchronous communication 

 · Parallel and distributed processing 

 · Safety-critical and trusted applications. 

A few of the requirements are specific to Ada, and may not be applicable to other 

languages. 
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• The work by York Software Engineering, British Aerospace and the U.K. Ministry 

of Defence [Hutcheon+1992] is specific to safety-critical applications with emphasis 

on the military requirements of the INTERIM Defence Standard 00-55 

[UKMoD1991]. Two levels of requirements are defined (i.e., one to represent 

mandatory and the other optional features that a language should have) and 

subsequently used to assess Ada9X in [Hutcheon+1992]. The level one, mandatory 

requirements are 

· L1 A high integrity software language must be well-understood, simple to 

understand, simple to learn, simple to use, simple to implement and simple to 

reason about. 

· L2 A programming language for writing high integrity software must provide 

features appropriate to that application domain. 

· L3 Prior to execution, it must be possible to predict the following properties 

of a program written in a high integrity software language: 

- functionality; 

- timing; 

- resource usage; 

- failure behaviour. 

· L4 It must be possible to verify that a program written in a high integrity 

software language is correct with respect to a specification expressed in a 

formal notation. 

· L5 There must be a high level of assurance in a high integrity software 

language’s compilation system and associate tools. 

Some of the requirements are rather abstract in that different interpretations could be 

derived. The second level includes optional requirements that should enrich the 

language’s effectiveness. It covers issues on standardisation, portability, modularity, 

abstraction, error handling, concurrency, low-level input/output, strong typing, 

code/run-time system verification, and optimisation. 

 

2.2. Additional Requirements 

Along with the requirements listed above, we also consider the following guidance or 

standards because of their significance in systematically capturing requirements and 

language features. 
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• The Ada95 Trustworthiness Study [Craigen+1995, Saaltink+1996, Saaltink+1997] is 

broad and analytical in that it defines a concrete framework for language analysis 

based on important standards, evaluates each language feature of Ada95 against the 

framework, and produces comprehensive guidance for the use of Ada95 in the 

development of high integrity systems. It first identifies four main themes for 

analysis, which are predictability, analysability, traceability, and engineering, and 

these themes lead to the development of ten analytical categories and ratings in each 

category, as shown below. 

 

Categor ies Ratings Examples 

Run-time Support 
Needed 

1. No or minor run-time support. 
2. Some run-time support. 
3. Significant run-time support. 

1. Scalar types 
2. Simple tasking 
3. Asynchronous Transfer  
    of Control 

Functional 
Predictability 

1. Exact, which gives only one outcome. 
2. Bounded, which gives only a small set of possible  
    outcomes, which could be a few possible results or  
    results within a small range. 
3. Unpredictable, for all other cases. 

1. Discriminants 
2. Access types 
3. Generalized access  
    types 

Timing 
Predictability 

1. Tightly bounded, where the time-to-execute can be  
    expressed in terms of a formula over the data,  
    number of iterations, etc. 
2. Loosely bounded, where a maximum time to  
    execute can be determined, but actual execution  
    times are usually much better. 
3. Unpredictable, where we do not know how to  
    predict the time bound. 

1. Type conversion of  
    numerated types 
2. Arrays 
3. Case statements 

Space Usage 
Predictability 

1. Exact, where we can develop a formula to  
    determine exact memory usage. This requires  
    implementation information on use of temporaries,  
    stack, etc. 
2. Worst-case analysis, where we can bound the space  
    used, both immediately and over time. 
3. Unpredictable. 

1. Loop statements 
2. Subprogram  
    declarations 
3. Task units and task  
    objects 

Formal Definition 

1. Existing definition (for Ada83 and no changes to  
    Ada95). 
2. Potentially definable, where a definition exists in  
    Ada83 but changes mean a re-definition is needed,  
    or definitions exist in other languages. 
3. Unknown. 

1. Exception handlers 
2. Static expressions and  
    subtypes 
3. Return statement for  
    functions 

Integrity and 
Security Issues 

1. Enhances, for syntax and language rules that forbid  
    or guard against violations. 
2. Neutral. 
3. Hinders, for a construct that facilitates the violation  
    of integrity or access protections. 

1. Package specifications  
    and declarations 
2. Object renaming  
    declarations 
3. Abort of a task 

Reliability and 
Engineering 
Support 

1. Enhances reliability (with explanation). 
2. Neutral. 
3. Problematic (with explanation). 

1. Membership tests 
2. Signed integer types 
3. Derived types and  
    classes 

Robustness 
1. Enhances (contributes to robustness). 
2. Neutral (no effect on robustness). 
3. Hinders (deleteriously affects robustness). 

1. Predefined exceptions  
    and language-defined  
    checks 
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2. Concatenate operator 
3. Task and entry  
    attributes 

Static Analysis 

1. Tractable analysis. 
2. Hard/Intractable analysis. 
3. Unknown. 

1. Enumeration  
    representation clauses 
2. Generic instantiation –  
    subprograms 
3. Unchecked type  
    conversions 

Dynamic 
Analysis 

1. Tractable analysis. 
2. Hard/Intractable analysis. 
3. Unknown. 

1. Static expressions and  
    subtypes 
2. Dispatching  
    subprograms 
3. Generic formal objects 

Figure 1. Ten analytical categories and ratings of the Ada95 Trustworthiness Study [Craigen+1995] 

 

• [ISO/IEC DTR 15942] authoritatively assesses all the language features of Ada95 

based on verification techniques that are required by various standards and guidance. 

Such verification techniques are grouped as in figure 2 below. A rating is given for 

each of the language features to state whether a particular verification technique is 

directly applicable (Included), not straightforward but achievable (Allowed), or there 

is no current cost effective way (Excluded). 

 

Approach Group Name Technique 
Control Flow 
Data Flow Flow Analysis (FA) 
Information Flow 
Symbolic Execution 

Symbolic Analysis (SA) 
Formal Code Verification 

Range Checking (RC) Range Checking 
Stack Usage (SU) Stack Usage 
Timing Analysis (TA) Timing Analysis 
Other Memory Usage (OM U) Other Memory Usage 

Analysis 

Object Code Analysis (OCA) Object Code Analysis 
Equivalence Class 

Requirements-based Testing (RT) 
Boundary Value 
Statement Coverage 
Branch Coverage 

Testing 
Structure-based Testing (ST) 

Modified Condition/Decision Coverage 
Figure 2. Verification Techniques employed in the assessment of Ada95 [ISO/IEC DTR 15942] 

 

It also suggests that any language that may be used in implementing high integrity 

systems should 

·  be strongly typed, 

·  support a range of static types, 

·  have a consistent semantics that is defined in an international standard, 

·  support abstractions and information hiding, 
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·  have available validated compilers. 

 

• The U.S. Nuclear Regulatory Commission (NRC) has produced a detailed and up-to-

date study on the use of high level programming languages in high integrity and 

safety critical systems. The document [NUREG/CR-6463], entitled “Review 

Guidelines on Software Languages for Use in Nuclear Power Plant Safety Systems”, 

contains a framework of generic attributes significant to software safety that were 

gathered from many standards and research literature, and language specific 

guidelines derived from the framework for nine programming languages, i.e. Ada83, 

Ada95, C/C++, IEC 1131-3 Ladder Logic, IEC 1131 Sequential Function Charts, IEC 

1131 Structured Text, IEC 1131 Function Block Diagrams, Pascal, and PL/M. 

 

As listed below, four top-level attributes that define general quality of software were 

first identified, and appropriate intermediate and specific base attributes were 

developed. 

 

Top-level 
attr ibutes 

Intermediate attr ibutes Base attr ibutes 

1. Predictability of memory  
    utilisation 

�  Minimising dynamic memory  
  allocation 

�  Minimising memory paging and  
  swapping 

2. Predictability of control flow 

�  Maximising structure 
�  Minimising control flow complexity 
�  Initialising variables before use 
�  Single entry and exit points for subprograms 
�  Minimising interface ambiguities 
�  Use of data typing 
�  Accounting for precision and accuracy 
�  Order or precedence of arithmetic, logical,  
  and functional operators 

�  Avoiding functions or procedures with side  
  effects 

�  Separating assignment from evaluation 
�  Proper handling of program instrumentation 
�  Controlling class library size 
�  Minimising use of dynamic binding 
�  Controlling operator overloading 

Reliability 

3. Predictability of timing 

�  Minimising the use of tasking 
�  Minimising the use of interrupt driven  
  processing 

1. Controlling use of diversity 
�  Controlling internal diversity 
�  Controlling external diversity 

Robustness 

2. Controlling use of exception  
    handling 

�  Handling of exceptions locally 
�  Preserving external control flow 
�  Handling of exceptions uniformly 
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3. Checking input and output 

�  Input data checking 
�  Output data checking 

1. Readability See Maintainability 
2. Controlling use of built-in  
    functions 

None Traceability 
3. Controlling use of compiled  
    libraries 

None 

1. Readability 

�  Conforming to indentation guidelines 
�  Using descriptive identifier names 
�  Commenting and internal documentation 
�  Limiting subprogram size 
�  Minimising mixed language programming 
�  Minimising obscure or subtle programming  
  constructs 

�  Minimising dispersion or related elements 
�  Minimising use of literals 

2. Data abstraction 

�  Minimising the use of global variables 
�  Minimising the complexity of the interface  
  defining allowable operations 

3. Functional cohesiveness 
�  Single purpose function and procedures 
�  Single purpose variables 

4. Malleability �  Isolation of alterable functions 

Maintainability 

5. Portability 

�  Minimising the use of built-in functions 
�  Minimising the use of compiled libraries 
�  Minimising dynamic binding 
�  Minimising tasking 
�  Minimising asynchronous constructs  
  (interrupts) 

�  Isolation of non-standard constructs 
Figure 3. Generic Safe Programming Attributes [NUREG/CR-6463] 

 

• The series of reports produced by the Motor Industry Software Reliability 

Association or MISRA [MISRA1994, MISRA1995a-h] cover virtually all areas of 

software development in motor industry. The major areas include project planning, 

assigning integrity levels, programming languages, verification, and quality 

assurance. Of our particular interest here is the selection criteria of programming 

language specifically stated in [MISRA1995f] and [MISRA1994], and the following 

are some of the important requirements. 

· formally defined syntax and semantics 

· a formal means of relating the code to the formal design 

· block structured 

· strongly typed 

· run-time type and array bound checking 

· conformance to an international standard 

· use of a validated compiler 

· well-understood 
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· exception handling 

· extensive tool support, and tools that are trusted/validated. 

 

The reports also contain some guidelines derived from relevant literature, such as 

[Cullyer+1991] and [Carré+1990], and these largely overlap other requirements 

described previously. The use of safer subsets is also emphasised. 

 

3. Assessment Criteria 

Now, since some of the requirements introduced above are redundant and ambiguous 

we inclusively categorise them into relevant assessment criteria along with 

appropriate references. However, it is important to note that this collection of criteria 

is neither complete1 nor authoritative, but it attempts to amalgamate many different 

requirements into a balanced and informative framework for the assessment of 

programming languages. As in [Hutcheon+1992] we propose two levels of criteria, 

namely Mandatory requirements (Level 1) and Desirable requirements (Level 2). 

 

3.1. Level 1 – Mandatory requirements 

In Level 1 we identify as many mandatory requirements that a programming language 

must satisfy as possible in order to be considered for use in implementing high 

integrity systems. Appropriate justifications are made regarding each requirement. 

Readers are encouraged to refer to the references if in any doubt about rationales and 

specifics. 

 

 

L1.1. Syntactical / Semantic Requirements 

L.1.1.1 Type safety / Strong typing rules 

References 
[USDoD1978], [Cullyer+1991], [USDoD1990], [Hutcheon+1992], 
[Craigen+1995], [ISO/IEC DTR 15942], [NUREG/CR-6463], 
[MISRA1995f] 

Rationale 
Strongly typed languages help reduce errors in programs at compile-
time. Moreover, type safety is often considered to be sufficient for 
ensuring the minimum nontrivial level of program safety, i.e. control 

                                                 
1 Some requirements or guidelines are deliberately missed out because they are either not relevant with 
respect to high integrity systems, or considered not reasonable in the context of modern programming 
languages. Examples include requirements on the use of a particular character set [USDoD1978], and 
improvements in wording or program presentation (of Ada83) [USDoD1990]. 
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flow safety, memory safety, and stack safety [Kozen1999]. Thus it is 
strongly encouraged to use a type safe or strongly typed language, 
enhancing the integrity and security of software. 

Specifics 

Implicit type conversions must not be allowed. 
All data types should be statically analysable before program 
execution. 
Explicit type conversion rules should be clearly stated in the language 
standard or definition. 
There should be some ways to avoid access types or pointers. 

Ratings 

1. Strongly typed / Statically analysable. 
2. Strongly typed, but some types are analysable only at run-time, 

mainly due to the use of polymorphism in the language. 
3. Not strongly typed and implicit type conversions are allowed. 

 

L.1.1.2 Side effects in expressions / Operator  precedence levels / Initial 
values 

References [USDoD1978], [NUREG/CR-6463] 

Rationale 

Side effects in expressions can cause programs to behave in an 
ambiguous, or, possibly, unpredictable way, thus are not desirable. The 
precedence levels of all operators must be specified in the language 
definition; otherwise evaluation orders may vary from system to 
system. 

Specifics 
There should not be any time-dependent side effects in expressions. 
Operator precedence levels must clearly be defined in the standard. 
There should be no implicit initial values for variables. 

Ratings 

1. All the above specifics are satisfied. 
2. Not all the above specifics are satisfied, but there may be a 

subset of the language that meets the specifics. 
3. The above specifics are not satisfied, and there is no reasonable 

way to improve the language. 
 

L.1.1.3 Modular ity / Structures 

References 
[USDoD1978], [Cullyer+1991], [Hutcheon+1992], [Craigen+1995], 
[NUREG/CR-6463], [MISRA1995f] 

Rationale 

It must be straightforward to code and maintain programs in a high 
integrity programming language, so that the complexity of software 
becomes manageable. This is often achieved by means of visibility 
control (or scopes), functions, and objects in many modern languages, 
in which the integrity and security of software are generally improved. 

Specifics 

There should be sound mechanisms to structure and modularise 
program code both syntactically (in some form of determinable blocks 
or scopes) and semantically with clear interfaces. 
There should be no wild/unbounded jumps between different modules. 
Separate compilation of modules should be possible. 

Ratings 

1. The language provides rich and precise means of structuring 
programs, and programs can be maintained in terms of modules 
or objects. 

2. Such mechanisms are provided, but not cost-effective or 
efficient. 
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3. There is no reasonable approach. 
 

L.1.1.4 Formal semantics / International standards 

References 
[USDoD1978], [Cullyer+1991], [USDoD1990], [Hutcheon+1992], 
[Craigen+1995], [ISO/IEC DTR 15942], [MISRA1995f] 

Rationale 
A standardised language benefits the development of compilers and 
tools, and user training. Verification techniques can also be applied to a 
language with formally defined semantics. 

Specifics 
There should be a (international) standard definition of the language. 
There should be formally defined semantics of the language, or at least 
a subset of the language. 

Ratings 

1. An internationally standardised formal definition exists. 
2. The language or high integrity subset of it can be formally 

defined. 
3. Unknown. 

 

L.1.1.5 Well-understood 

References 
[Cullyer+1991], [USDoD1978], [Hutcheon+1992], [USDoD1990], 
[MISRA1995f] 

Rationale 
A language with well-understood semantics and syntaxes will help to 
produce quality software, often cost-effectively. 

Specifics 
The language should be simple, well understood, easy to adopt, and 
easy to implement. 

Ratings 

1. The language is well understood, and there are many trained 
developers and designers. 

2. The language is well understood only by a limited number of 
people. 

3. Unknown. 
 

L.1.1.6 Support for  domain specific or  embedded applications 
References [USDoD1978], [Hutcheon+1992] 

Rationale 

High integrity systems are often embedded systems that need to 
interface or control physical resources or (non-standard) peripheral 
devices. Therefore, a programming language designed with such 
applications in mind should be used. 

Specifics 
Robust mechanisms for controlling memory, I/O devices or other 
hardware are required. 

Ratings 

1. The language naturally supports embedded applications. 
2. There is a limited support, but external libraries or language 

extensions can be utilised. 
3. No support provided or Unknown. 

 

L.1.1.7 Concurrency / Parallel processing 
References [USDoD1978], [Hutcheon+1992] 

Rationale 
Although concurrency is one of the main sources of complication in 
program analysis and verification (classified as only a desirable – not 
mandatory - feature in [Hutcheon+1992]), it is invaluable in modelling 
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or capturing real-world problems. Thus, we believe this has to be an 
essential requirement for modern high integrity language. 

Specifics  

The following features should be included: 
Language-level support for multitasking or multithreading. 
Control over scheduling policy. 
Straightforward communication and synchronisation mechanism(s), 
plus facility to bound blocking. 

Ratings 

1. All the above specifics are satisfied. 
2. Only limited support is provided at the language-level, but 

external libraries or run-time systems can be utilised. 
3. No reasonable support provided or Unknown. 

 

L1.2. Application of verification techniques / Predictability 

L.1.2.1 Functional predictability 

References 
[Hutcheon+1992], [Craigen+1995], [ISO/IEC DTR 15942], 
[NUREG/CR-6463], [MISRA1995f] 

Rationale 
High integrity software must be proven to be predictable in terms of its 
functional behaviours. 

Specifics 

All or most of the following analysis techniques should be applicable. 
 Control flow analysis 
 Data flow analysis 
 Information flow analysis 
 Symbolic execution 
 Formal code verification 

Ratings 

1. All techniques in the above specifics or feasible alternatives 
can be utilised. 

2. Not all techniques can be utilised due to the complex features 
of the language, but sub-setting the language may improve 
such analyses. 

3. Unknown or there is no cost-effective way of utilising such 
analysis techniques. 

 

L.1.2.2 Temporal predictability / Timing analysis 

References 
[Hutcheon+1992], [Craigen+1995], [NUREG/CR-6463],  
[MISRA1995f] 

Rationale 
In addition to the functional predictability, timely behaviours of such 
software and systems must also be guaranteed. 

Specifics 
Worst Case Execution Time (WCET) of each process must be 
obtainable, so that schedulibility analysis can be performed. 

Ratings 
1. Tightly bounded execution time(s) can be obtained. 
2. Loosely bounded execution time(s) can be obtained. 
3. Unpredictable or there is no known way to obtain WCET. 

 

L.1.2.3 Resource usage analysis 

References 
[Cullyer+1991], [Hutcheon+1992], [Craigen+1995], [NUREG/CR-
6463], [MISRA1995f] 

Rationale It is important to identify what resources are needed and how they are 
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utilised, so that errors such as stack overflow may not occur, and 
system implementations may be kept economical. 

Specifics 

The following properties should be analysable. 
 Memory (or heap) usage 
 Stack usage 
 Any other resources to be utilised in the application area. 

Ratings 
1. Exact prediction of the above specifics is possible. 
2. Worst-case analysis is possible, but not practical. 
3. Unpredictable. 

 

L1.3. Language Processors / Run-time environment / Tools 

L.1.3.1 Certified language translators / Run-time environments 

References 
[USDoD1978], [Hutcheon+1992], [ISO/IEC DTR 15942], 
[MISRA1995f] 

Rationale 
There must be a high level of assurance in language processors, 
especially compilers. 

Specifics 

A formally certified compiler by an authoritative or trusted body 
should be used. 
Low-level code should be traceable in accordance with source code. 
Run-time environments should also be certified if used. 

Ratings 

1. There exist one or more certified language translators, and they 
are formally proven to be flawless. 

2. Language translators may contain several known errors or 
malfunctions that are well documented, but they will not affect 
the development of high integrity software. 

3. Unknown. 
 

L.1.3.2 Run-time support / Environment issues 

References 
[USDoD1978], [Hutcheon+1992], [USDoD1990], [Craigen+1995], 
[ISO/IEC DTR 15942], [NUREG/CR-6463] 

Rationale 

Libraries (or any additional code) or run-time support may make it 
complex to perform some analyses, such as WCET and control flow 
analyses. Hence, all such additional code should be predictable and 
analysable in terms of safety and timeliness. Minimising 
implementation dependencies is also encouraged. 

Specifics 
All the behaviours of additional code should be well understood. 
All timing information of the underlying run-time system and libraries 
should be known and accurate. 

Ratings 

1. There exists concrete information on the functional and 
temporal behaviours of all libraries and run-time system. 

2. Only worst-case analysis is possible. 
3. Unknown. 

 

 

3.2. Level 2 – Desirable Requirements 
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The requirements at this level are not immediately necessary but beneficial in that 

they help produce more efficient, comprehensible, and structured systems. Note that 

ratings are not provided at this level because they are meant to be additional 

desirables. 

 

L2.1. Syntactical / Semantic Requirements 

L.2.1.1 Exception Handling / Failure behaviour  

References 
[USDoD1978], [Cullyer+1991], [Hutcheon+1992], [Craigen+1995], 
[NUREG/CR-6463], [MISRA1995f] 

Rationale 

Handling errors while a high integrity system is operating is sometimes 
seen as undesirable on account of additional overheads and 
unpredictable behaviours. However, if any sort of error can occur, then 
the system should gracefully degrade, or recover after some 
corrections. 

Specifics 
Robust and analysable run-time error detection and handling 
mechanism should exist. 
Failure behaviours should be programmable. 

 

L.2.1.2 Model of Mathematics 
References [Cullyer+1991], [USDoD1978] 

Rationale 
As often required in some high integrity systems, the language should 
have a rigorous model of maths defined in the language standard. 

Specifics 

A model of both integer and floating point arithmetic should be 
defined within the language standard. 
Procedures for checking if operational arithmetic at run-time is correct 
should exist. 

 
L.2.1.3 Support for  User  documentation 
References [USDoD1978], [USDoD1990], [NUREG/CR-6463] 

Rationale 

Languages that allow user comments will undoubtedly improve 
program readability and maintainability. Some language processors 
may make use of annotations to detect subtle logical errors in 
programs or to obtain extra information. 

Specifics 
There should be some way of commenting programmer’s intentions 
within source code. 

 

L.2.1.4 Support for  a range of static types including subtypes and 
enumeration types 

References 
[USDoD1978], [USDoD1990], [ISO/IEC DTR 15942], 
[MISRA1995f] 

Rationale 
It is easier to perform any analyses or checks on static types than on 
dynamic types. Enumeration types with a limited number of values 
also help reduce errors. 

Specifics None. 
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L.2.1.5 Coding style guidelines 
References [Hutcheon+1992], [NUREG/CR-6463], [MISRA1995f] 

Rationale 
Coding style guidelines may help reduce the gap between well-
established Software Engineering principles and the actual practice of 
programming in a particular language. 

Specifics  None. 
 

L.2.1.6 Support for  abstraction and information hiding 

References 
[ISO/IEC DTR 15942], [Hutcheon+1992], [USDoD1990], 
[MISRA1995f] 

Rationale 
Employing abstraction or information hiding techniques (e.g. object 
orientation) can greatly decrease software complexity. Thus they are 
beneficial in program design, development, and maintenance. 

Specifics  None. 
 

L.2.1.7 Asser tion checking 
References [USDoD1978] 

Rationale 
It may sometimes be desirable to check for user specified assertions 
before or while programs are executing. 

Specifics  None. 
 
L2.2. Language Processors / Run-time environment / Tools 

L.2.2.1 Certified (static/dynamic) analysis tools 
References [Hutcheon+1992], [ISO/IEC DTR 15942], [MISRA1995f] 

Rationale 
In order to gain more confidence in high integrity software it is 
imperative to use certified analysis tools, which may check for errors, 
such as, race conditions and deadlocks. 

Specifics  None. 
 

L.2.2.2 Inter face to other  languages 
References [USDoD1978] 

Rationale 

There are some situations where a program written in a high-level 
language needs to interact with existing libraries or other low-level 
routines that are written in different languages. In such cases there 
should be a means of interfacing our program with such routines. 

Specifics  None. 
 

L.2.2.3 Code optimisation 
References [USDoD1978] 

Rationale 

It is always advantageous to improve the efficiency of programs by 
means of optimising them. However, optimisation should not alter the 
semantics of correct programs, nor compromise the application of 
analysis techniques. 

Specifics  None. 
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L.2.2.4 Code por tability 
References [Hutcheon+1992], [NUREG/CR-6463] 

Rationale 
Since there exists a diverse range of code-executing platforms, it is 
often considered beneficial to have a portable program representation, 
so that all necessary analyses may be applied once for all. 

Specifics  None. 

 

4. Assessment of the Java programming language 

Now, Java is assessed against the criteria developed in the previous section. A 

summary is provided at the end. 

 

4.1. Assessment of Java against Level 1 

L.1.1. Syntactical / Semantic Requirements 

L.1.1.1. Type safety / Strong typing rules 

Java is a strongly typed language. For all primitive types, implicit type conversions 

are not allowed (all possible conversions are stated in the language specification), and 

programs are analysable before running them. But for dynamic reference types, it is 

not always straightforward to statically analyse code, but is generally possible only at 

run-time because of the use of, for example, inherited interfaces and local classes 

within different scopes. 

Rating: 2. Strongly typed, but some types are analysable only at run-time, mainly due 

to the use of polymorphism in the language. 

 

L .1.1.2. Side effects in expressions / Operator  precedence levels / Initial values 

Side effects can occur in Java if expressions contain embedded assignments, sub-

operators, and method invocations. Many side effects, however, can be eliminated via 

the use of a code checker or analyser, and a subset of Java. Operator precedence levels 

are defined in the specification [Gosling+2000], but the large number is at times seen 

undesirable as it becomes more difficult for programmers to learn [Bentley1999, 

USDoD1978]. All types in Java have default initial values, but compilers issue 

warnings if any variables are used before initialisation. It should also be noted that 

some returned values of a method can be quietly discarded without any warning 

[Gosling+2000], i.e. when there is no assignment expression for a method call that 

returns a value. 
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Rating: 2. Not all the above specifics are satisfied, but there may be a subset of the 

language that meets the specifics. 

 

L.1.1.3. Modular ity / Structures 

In Java, programs are organised as objects that normally consists of visible and non-

visible data fields and methods. Abstraction and encapsulation mechanisms are also 

provided through classes and interfaces, and packages (into which related classes are 

organised) also enhance modularity and structure of software. In addition to this, the 

language includes various means of controlling program flows, including the 

exception-handling mechanism. Separate compilation is always possible.  

Rating: 1. The language provides rich and precise means of structuring programs, and 

programs can be maintained in terms of modules or objects. 

 

L .1.1.4. Formal semantics / International standards 

There are no stable standards for Java although the language specification 

[Gosling+2000] serves as an informal standard for the time being. There exist some 

formal semantics of Java, for example, in Action semantics [Watt+2000, 

Brown+1999], in Denotational Semantics [Alves-Foss+1999b], and in other BNF-like 

notations [Alves-Foss+1999a]; most of which are based on parts of the language. 

Drossopoulou and Eisenbach [Drossopoulou+1999] have also defined a series of 

subsets of Java and proved their type soundness. 

Rating: 2. The language or a high integrity subset of it can be formally defined. 

 

L .1.1.5. Well-understood 

Java is a familiar programming language to many existing C/C++ programmers, 

which means that no extensive training is usually required and there may well be 

many trained engineers. In addition, some of the problematic features in C/C++ (such 

as pointer operations) are removed, which all results in a dramatic increase in 

productivity. However, the excessive number of APIs and other additional 

mechanisms can be hard to master. 

Rating: 1. The language is well understood, and there are many trained developers 

and designers. 

 

L .1.1.6. Support for  domain specific or  embedded applications 
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One of the main application areas for which Java was first developed was embedded 

systems. In pure Java, however, it is not possible to control underlying hardware 

without appropriate native methods implemented in different languages. Even then, it 

is still difficult to implement systems with rigorous safety and real-time requirements, 

thanks mostly to the overheads incurred by the garbage collection mechanism, and 

virtual machines per se. There has been much research on scheduling the garbage 

collector and improving the efficiency of code transformation, even though it has not 

proven particularly effective so far. In the recent years, the Real-Time Specification 

for Java [Bollella+2000a] and Real-Time Core Extensions [Jconsortium2000] have 

been defined, so that real-time applications will certainly benefit from reference 

implementations of such specifications. 

Rating: 2. There is a limited support, but external libraries or language extensions can 

be utilised. 

 

L .1.1.7. Concurrency / Parallel processing 

Java supports concurrent execution of multiple threads, as well as some key 

synchronisation mechanisms, for example, the monitor and synchronized 

blocks/methods. Programmers can also allocate a priority to threads, which 

nevertheless is not of any significant value, as they have no control over scheduling 

mechanisms implemented in the virtual machine and underlying kernel. Recently, two 

of the specifications for real-time Java, i.e. one from Sun Microsystems 

[Bollella+2000a] and the other J Consortium [JConsortium2000], state various 

features that real-time systems require, especially with regard to scheduling, memory 

management, synchronisation, time, and exceptions. 

Rating: 1. All the above specifics are satisfied. 

 

L.1.2. Application of verification techniques / Predictability 

L.1.2.1. Functional predictability 

Due to the recent development of sophisticated analysis algorithms and tools it is now 

possible, to some extent, to analyse Java programs in terms of control and data flow. 

Nevertheless, some complex features of Java, such as the exception handing 

mechanism and monitors, are still not considered, or at least are immaturely handled. 

Formal verification is even harder for Java as there is no complete formal semantics. 

However, a constant progress is made in this area, and especially Model-checking 
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technology is proving strong in the verification of Java programs. For example, the 

Java PathFinder 2 [Brat+2000a] developed by the NASA can detect race conditions, 

deadlocks, and violations of user-specified assertions. 

Rating: 2. Not all techniques can be utilised due to the complex features of the 

language, but sub-setting the language may improve such analyses. 

 

L .1.2.2. Temporal predictability / Timing analysis 

It is well known that with all the sometimes-superfluous features like the garbage 

collector and virtual machine support, it is hard to obtain tight execution-time bounds 

for Java threads, and such timing analyses are all dependent on eventual target 

architectures and base operating systems (if utilised). Some techniques, however, have 

been suggested (e.g. [Bate+2000, Puschner+2001b]), and the release of the 

specifications for real-time Java will certainly improve the current situation. 

Rating: 2. Loosely bounded execution time(s) can be obtained. 

 

L.1.2.3. Resource usage analysis 

On account of the presence of the background garbage collector, it is generally 

difficult to predict how much memory space will be in use at a given moment in time, 

or even deducing the worst case can become impractical (and dependent on which 

garbage collection algorithms are employed). However, subsets of Java or of the Real-

Time Specification for Java [Bollella+2000a], such as [Puschner+2001a] in which 

garbage collection is excluded, will ease this sort of analysis. 

Rating: 2. Worst-case analysis is possible, but not practical. 

 

L1.3. Language Processors / Run-time environment / Tools 

L.1.3.1. Cer tified language translators / Run-time environments 

To the best of our knowledge, Java compiler and virtual machine validation is still an 

on-going research work. Whereas it may never be possible to formally exploit and 

validate such complex software, some attempts have been made to conduct 

conformity assessment of Java or Java-like language processors to the language 

specification and industry standards, for example see [PERENNIAL2001]. Reported 

errors are reasonably well documented and updated. 
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Rating: 2. Language translators may contain several known errors or malfunctions 

that are well documented, but they will not affect the development of high integrity 

software. 

 

L .1.3.2. Run-time support / Environment issues 

It is not easy to perform analyses on additional code, i.e. that of variable run-time 

systems, APIs, native methods, unless a sound standard for such program entities is 

developed. 

Rating: 3. Unknown. 

 

4.2. Assessment of Java against Level 2 

L.2.1. Syntactical / Semantic Requirements 

L.2.1.1. Exception Handling / Failure behaviour  

Java has a wide variety of predefined exception classes, and programmers are also 

allowed to define customised (checked) exceptions and program’s behaviours. 

Uncaught exceptions, i.e. unchecked exceptions or errors, can become problematic as 

they may simply result in the system halting. 

 

L.2.1.2. Model of Mathematics 

Java provides a rich set of integer and floating point data types, and the java.math 

package can be used to assist in more rigorous mathematical applications. While the 

utilisation of the standard IEEE 754 arithmetic semantics is seen as universally 

beneficial in terms of compatibility, it is occasionally not desirable as it hinders the 

utilisation of advanced hardware, for example, built-in co-processors [Bentley1999]. 

 

L.2.1.3. Support for  User  documentation 

Java provides two ways of commenting source code. Furthermore, there is a facility 

for automatically generating on-line documentation of user classes, i.e. javadoc tool. 

 

L.2.1.4. Support for  a range of static types including subtypes and enumeration 

types 

Subtypes and enumeration types are not supported in Java, but may possibly be 

emulated with additional overheads. 
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L.2.1.5. Coding style guidelines 

There exist coding style documents available at the WWW site of Sun Microsystems 

[Sun1999]. However, none of them specifically addresses high integrity or real-time 

applications. 

 

L .2.1.6. Support for  abstraction and information hiding 

As an object oriented language, Java offers abstraction by means of the abstract class 

type and interface, where no implementation details are allowed. Information hiding is 

also naturally supported. 

 

L .2.1.7. Asser tion checking 

There is not a specific language construct for assertion checking in Java, even though 

it can be modelled. There is currently a specification request for a simple assertion 

facility, a.k.a. JSR41, which can be found at http://www.jcp.org/jsr/detail/41.jsp. 

 

L.2.2. Language Processors / Run-time environment / Tools 

L.2.2.1. Cer tified (static/dynamic) analysis tools 

A large number of analysis tools have been developed to assist in debugging Java 

programs, but most of them are not certified by reliable bodies or standards. However, 

as mentioned above, tools such as Java PathFinder 2 (from NASA) and the Extended 

Static Checker for Java (from Compaq) appear to be successful in detecting many 

known errors. 

 

L.2.2.2. Inter face to other  languages 

Java cannot directly interface to programs written in other languages. But, it is 

possible to invoke native methods, mostly written in C, of the run-time environment. 

This will result in poor portability. 

 

L .2.2.3. Code optimisation 

Most of the available optimisation techniques are not applied until Java programs 

reach their target or virtual machine for security reasons. Different quality of code or 

performance may be generated depending on how code is processed, i.e. bytecode can 

be interpreted, compiled Just-in-Time, or compiled Ahead-of-Time. It is complex to 

statically analyse optimised native code in relation to high-level bytecode. 
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Optimisation will also make the complexity of compiler and tool validation more 

difficult. 

 

L.2.2.4. Code por tability 

Following the “ write once and run everywhere”  motto, Java has become a truly 

portable programming language for most of the well-known platforms. In addition, 

Java chips with an integrated virtual machine and processor also start to appear. 

However, a problem can arise when non-standard processors or operating systems are 

utilised, where the burden of developing a new virtual machine is left to the system 

developer. 

 

4.3. Summary of Assessment 

Most of the Level 1 criteria are not, or loosely met by Java. Below is a summarising 

classification of the strengths and weaknesses identified above. 

Strengths 

Java is a strongly typed object-oriented language that provides an excellent 

means of modularising and structuring programs (L.1.1.3), and is well 

understood (L.1.1.5). It also supports concurrent execution of multiple threads 

as well as some key synchronisation mechanisms (L.1.1.7). 

 

Weaknesses 

Reference types are not generally amenable to static checking (L.1.1.1). 

Furthermore, side effects can occur in expressions, and some returned values 

may be quietly discarded (L.1.1.2). There exist several formal definitions and 

semantics of Java, but they are predominantly concerned with parts of the 

language (L.1.1.4).  Embedded applications, in which hardware control is 

essential, can only be supported by means of native methods (L.1.1.6), 

although implementations of the specifications for Real-Time Java are 

expected to solve this problem. 

 

It is not straightforward to apply various analysis techniques directly to Java 

due to some of its complex features (L.1.2.1), but there appear to be some 

evolving analysis tools. Timing analysis is also difficult to perform on Java 

code (L.1.2.2), as is resource usage analysis (L.1.2.3). 
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There is no formally validated Java compiler and virtual machine, but 

conformity-checking tools do exist (L.1.3.1). It is also complex to perform any 

analyses on additional code, such as that of APIs and run-time systems 

(L.1.3.2). 

 

Regarding Level 2 requirements, the following strengths and weaknesses have been 

identified. 

Strengths 

 • Integrated exception handling mechanism (L.2.1.1) 

• Rich set of integer and floating-point data types, and java.math package 

(L.2.1.2) 

 • Support for user documentation (L.2.1.3) 

 • General coding style guidelines (L.2.1.5) 

 • Support for abstraction and information hiding (L.2.1.6) 

 • Code portability (L.2.2.4) 

 

Weaknesses 

 • Overhead and complexity of exception handling mechanism (L.2.1.1) 

• The utilisation of the standard IEEE 754 arithmetic semantics can be 

overhead, and no exception is generated for particular operations (L.2.1.2) 

• No support for subtypes and enumeration types (L.2.1.4) 

• No coding guidelines for high integrity applications (L.2.1.5) 

• No assertion checking facility (L.2.1.8) 

• Shortage of certified analysis tools (L.2.2.1) 

• Difficulty in interfacing to programs written in other languages (L.2.2.2) 

• Complexity of analysing optimised code (L.2.2.3) 

 

5. Review of Subsets 

Burns et al. [Burns+1998] suggest that a restricted programming model or profile can 

help produce efficient and predictable systems by removing language features with 

high overheads, and complex and erroneous semantics. Along these lines, there have 
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been a few subsets or profiles for Java suggested in the literature2. We review them in 

the following. 

 

5.1. Sequential subset of Java by [Bentley1999] 

As mentioned early in this paper, Bentley [Bentley1999] defines a subset of Java after 

assessing the language. The subset consists of 21 rules that are effectively derived 

from [Hutcheon+1992], [MISRA1998] and his assessment. All the rules are 

categorised into six groups, as shown below with a summary of rules for each group. 

 

• Rules Concerned With Ver ification 

Multithreading is not allowed as it may cause significant difficulties in analysing 

programs, due mainly to the thread synchronisation mechanisms. In addition, methods 

and constructors shall not be overloaded. 

 

• Rules Concerned With Comments 

Comments shall not be nested. 

 

• Rules Concerned With Predictability 

Variables or objects must be statically initialised (by constructors of appropriate 

classes), so that no default values are expected. All constraints, such as, those used in 

for-loops, must be static. This will greatly ease various analyses, for example, 

memory requirement and timing analysis. The continue and break statements shall not 

be used, except to terminate the cases of a switch statement, for which a break 

statement is required for every non-empty case clause. Plus, all switch statements 

should contain a final default clause. The return statement should only appear as the 

last statement of a method. Further, methods must not have any side effects and not be 

recursively invoked. The result of a method should never be an unconstrained array 

type object. 

 

• Rules Concerned With Constants 

                                                 
2 In fact, there are subsets of Java defined for other purposes than for use in high integrity systems. For 
example, in [Drossopoulou+1999] the authors define a series of subsets in order to prove the type 
soundness of them. 
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Octal constants (other than zero) shall not be used. Because numbers beginning with 

zero are treated as octal values in Java, it is easy to make a mistake, e.g. inserting zero 

before a decimal constant. 

 

• Rules Concerned With Identifiers 

All identifier names must be unique. 

 

• Rules Concerned With Operators 

All right-hand operands of the logical operator && and || shall not contain any side 

effects, since the evaluation and execution of the operands are dependent on the truth-

value of the left-hand operand. What is more, assignment operators must not be used 

in expressions which return Boolean values, for example, in if ((x=1) != y). Bitwise 

operations, including bitwise shifts, shall not be performed on signed integer types, 

and the evaluation of integer expressions should not lead to wrap-around. 

 

While this subset will undoubtedly help produce analysable and predictable sequential 

programs, it can be criticised for its restriction on multithreading, one of Java’s 

inherent elements. Without the language-level support for multithreading and all the 

associated synchronisation mechanisms, Java may not be considered as a great 

evolution from its predecessors. In addition to this, the subset also fails to address 

issues on the object-oriented programming model of the language. 

 

5.2. Profile for  high integr ity Real-Time Java programs [Puschner+2001a] 

Puschner and Wellings [Puschner+2001a] suggest a Ravenscar-like profile for the 

Real-Time Specification for Java [Bollella+2000a], and the following is a brief 

summary of each of the key areas. 

  

• Threading Model 

There are two execution phases, i.e. initialisation and mission phases. In the 

initialisation phase, all necessary threads, event handlers, and memory objects are 

created in a non time-critical manner. No threads will be allowed to start until the top-

priority thread with main() method finishes its execution. In the mission phase, 

threads may not change their own or other thread’s priority except when forced by the 

underlying implementation of the priority ceiling protocol. Sporadic or event-
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triggered activities are implemented as event handlers, and only one handler is 

allowed per event. All periodic threads must be an instance of 

NoHeapRealtimeThread class and need to invoke waitForNextPeriod method to delay 

execution until the start of their next periods. Asynchronous Transfer of Control 

(ATC), overrun and deadline-miss handlers, and delay statements are not supported 

by the profile; nor is dynamic class loading during the mission phase. 

 

• Concur rency 

The synchronized methods and blocks are the key mechanism for mutual exclusion to 

shared resources in Java, and the priority ceiling protocol should be implemented in 

the run-time system in order to avoid deadlocks. For similar reasons, wait, notify, and 

notifyall are not supported, avoiding any queue management. 

 

• Memory Management and Raw Memory Access 

The heap-based garbage collection mechanism of Java is not supported due to its 

long-debated unpredictability at run-time. Instead, only immortal memory and linear-

time scoped memory are supported as defined in the RTSJ. Immortal memory is used 

by default to create objects during the initialisation phase, but is not allowed for 

further object creation afterwards. In addition to this, all other memory objects must 

only be created in the initialisation phase. The RTSJ classes for raw memory access 

are also supported, so that device drivers, memory-mapped I/O, and other low-level 

functions can be programmed. 

 

• Time and Clock 

All the RTSJ classes for the representation of time and real-time clocks are included 

while the timer classes are not. 

 

The profile is primarily focused on leaving out complex features of the RTSJ. 

However, little attention is paid to the Java’s sequential language constructs (unlike 

[Bentley1999]) and object-orientation features that can be problematic in performing 

various static analyses. 

 

5.3. High integr ity profile by the J Consortium 
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A sub-committee has been formed within the Real-Time Java Working Group of the J 

Consortium to produce a high integrity profile based on the Real-Time Core 

Extensions [JConsortium2000]. The profile has not been released yet, but according to 

Dobbing [Dobbing2001] it will resemble the Ravenscar profile for Ada95 

[Burns+1998]. It consists of four main themes: partitioning, memory management, 

concurrency, and error recovery, respectively. Up-coming information will be found 

at http://www.j-consortium.org/hip/index.shtml. 

 

• Par titioning 

The main idea developed from the necessity to isolate critical code and data from non-

critical ones by means of firewall, so that less-trusted code will never be able to 

interfere with high integrity programs. No exchange of objects, as well as dynamic 

loading across the firewall will be allowed. This idea also extends to the temporal 

requirements of such software, i.e. temporal firewall, which means deadlines of 

critical threads must be met. 

 

• Memory Management 

The automatic garbage collection is not supported, nor is any memory compaction 

mechanism. The use of general heap memory is also not allowed. There are three 

memory allocation strategies, which are 

 · stack allocation for method local objects that are automatically reclaimed 

 · fixed size “allocation contexts”  for local objects in each thread 

 · global allocation at initialisation time for immortal objects. 

 

• Concur rency 

Three types of priority-based tasks are supported, namely, periodic, sporadic, and 

interrupt tasks. In addition to these, the profile defines a subclass of the basic 

CoreTask that must explicitly be started by another thread. All threads are created at 

program start-up, e.g. as part of the initialisation code for classes, and it is not allowed 

to declare a thread class as an inner class, so that there is no requirement for any 

implicit join interface. 

 

Shared resources and inter-thread synchronisations are managed through protected 

objects, which rely on the underlying implementation of the Priority Ceiling Protocol. 
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However, no mutual exclusion locks or synchronised methods are supported in the 

profile as they add considerable complexity to program analyses. Further, all the 

asynchronous thread-to-thread operations, including stop(), setPriority(), suspend(), 

resume(), and event-driven Asynchronous Transfer of Control (ATC) mechanisms, 

are not permitted, nor are synchronised objects and counting semaphores. 

 

• Error  Recovery 

The standard exception handling mechanism of Java (i.e. throw-catch clause) is 

maintained. It also supports access to specific physical addresses to allow objects to 

be mapped, in order to, for example, save program state for fast recovery purposes. 

 

Like the one proposed in [Puschner+2001a], this profile is mainly focused on sub-

setting the Real-Time Core Extensions [JConsortium2000], but does not address 

issues on the use of problematic language constructs and object-orientation features of 

Java. 

 

5.4. Formal subsets by [Drossopoulou+1999] 

Drossopoulou et al. define three formal subsets of Java, i.e. that of the source 

language (Javas), high-level representation of bytecode (Javab), and enriched version 

of Javab (Javar). They present operational semantics, type system, and a proof of type 

soundness for the subsets. 

 

Javas is a substantial subset of the Java programming language, and it includes some 

primitive types, interfaces, classes with instance variables and instance methods, 

inheritance, hiding of instance variables, overloading and overriding of instance 

methods, arrays, implicit pointers and the null value, object creation, assignment, field 

and array access, method call and dynamic method binding, exceptions and exception 

handling [Drossopoulou+1999], as shown below. 

 

Program ::=    Def*  
Def  ::=    class ClassId ext ClassName impl InterfName*  
          { ClassMember*}  
  |        inter face InterfId ext InterfName*  { InterfMember*}  
ClassMember ::=    Field | Method 
InterfMember ::=    MethHeader 
Field  ::=    VarType VarId ; 
Method  ::=    MethHeader MethBody 
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MethHeader ::=    (void | VarType) MethId ((VarType ParId)*) throws ClassName*  
MethBody ::=    { Stmts [return Expr]] }  
Stmts  ::=    (Stmt ;)*  
Stmt  ::=    if Expr then Stmts else Stmts 
  |       Var = Expr | Expr.MethName(Expr* ) | throw Expr 
  |       try Stmts (catch ClassName Id Stmts)*  finally Stmts 
  |       try Stmts (catch ClassName Id Stmts)+ 
Expr  ::=   Value | Var | Expr.MethName(Expr* ) 
  |       new ClassName() | new SimpleType([Expr])+ ([])*  | this 
Var  ::=    Name | Expr.VarName | Expr[Expr] 
Value  ::=    PrimValue | RefValue 
RefValue ::=    null 
PrimValue ::=    intValue  | charValue | boolValue | … 
VarType  ::=    SimpleType | ArrayType 
SimpleType ::=    PrimType | ClassName | InterfaceName 
ArrayType ::=    SimpleType[] | ArrayType[] 
PrimType ::=    bool | char  | int | … 

Figure 4. Javas programs [Drossopoulou+1999] 
 

In order to observe run-time behaviours of programs in Javas, they are formally 

converted into Javab and Javar respectively, which are high-level representations of 

bytecode with all necessary compile-time type information. Having done this, it is 

possible to obtain operational semantics of each high-level language construct and 

prove the soundness of the type system of the source-level subset, Javas. 

 

While these subsets contain many important language constructs of Java that are often 

omitted in other formal subsets (e.g. exceptions), they still overlook some of Java’s 

inherent features, such as the multithreading and synchronisation models. 

[Hartel+2001] surveys formal subsets and approaches aimed at improving the safety 

of Java programs. 

 

6. Conclusions 

We have reviewed important requirements of programming language for the 

development of high integrity software, and defined 23 assessment criteria derived 

from the requirements. The criteria are divided into two groups, namely, Mandatory 

requirements (Level 1) and Desirable requirements (Level 2). Appropriate references 

and rationale for each criterion are given, and suitable ratings are also provided for the 

Level 1 requirements. 

 

The Java programming language and its associated environments are then assessed 

against the two levels of criteria, and we conclude that Java is a good general 
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language, yet not appropriate as a whole for the development of high integrity systems 

that require rigorous and predictable language features, compilation systems, and 

tools. However, Java may be able to qualify as a suitable vehicle in the future with the 

help of sub-setting the language and future developments of formal mechanisms, 

although none of the currently proposed subsets address all the necessary areas 

required for high-integrity real-time systems. There is perhaps some movement 

towards a standardisation through the Java 2 Platform Micro Edition (J2ME) that 

introduces profiles for resource constrained mobile devices. One could devise a 

profile for high-integrity real-time systems. 
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