
 1

Assessment of the Java Programming Language for

Use in High Integrity Systems∗∗∗∗

Jagun Kwon, Andy Wellings, and Steve King

Department of Computer Science

University of York, UK

{ jagun, andy, king} @cs.york.ac.uk

ABSTRACT

This paper sets a goal of investigating the use of Java in the development of

high integrity systems. Important requirements of programming languages for the

development of high integrity software are first surveyed. Based on these, we develop

several criteria that are used for the following assessment of Java. A summary of the

assessment is provided before we go on to review a few existing subsets of the

language.

1. Introduction
High integrity systems are generally complex and crucial systems that come into their

existence as we realise new problem domains and build some form of system in an

attempt to protect or benefit related objects and human beings. Examples include

space shuttles, nuclear power plants and medical instruments, and they typically have

high development and maintenance costs due to the customised nature of their

components. There exist many general and sector-specific standards produced to

assist in building such important systems.

Within high integrity systems, there has been a growing trend to use software, because

it provides [Leveson1986, Leveson1991, Parnas+1990, Bowen+1998]

• improved functionality

• increased flexibility in design and implementation

• reduced production cost

∗ This work has been funded by the EPSRC under award number GR/M94113.

 2

• enhanced management of complexity in application areas.

Over the recent years, Java has proved to be an appropriate vehicle for a diverse range

of applications including web based intranets and embedded systems. Its relatively

simple linguistic semantics, the adoption of well-understood approaches to managing

software complexity, and support for concurrency seem to have contributed towards

its popularity. Initially designed with embedded systems in mind, Java’s main goal

was to provide engineers with a reliable and cost-effective platform-independent

environment. The burden of learning a new language is kept to the minimum for

existing C and C++ programmers, while helping them to discover errors earlier by

means of strong type checking, array-bound checking, null-pointer checking, and so

on [Gosling+2000]. Further, its support for concurrency, i.e. multi-threading and

synchronisation mechanisms, together with the use of portable code or the bytecode

opens up a huge number of possibilities for many other applications, including high

integrity systems.

However, despite all these valuable features, Java has been criticised for its

unpredictable performance as well as some security concerns [Appel1999,

Azevedo+1999, Amme+2001]. The automatic garbage collection and dynamic class

loading mechanisms are often considered problematic, especially under time or

performance-critical situations. Moreover, a number of security bugs in the Java

virtual machine have been discovered since its first appearance, especially in the

bytecode verifiers and Just-in-Time (JIT) compilers [Gong1999, Appel1999]. These

fears make Java and its associated technology simply unsuitable for the development

of high integrity systems.

Upon the realisation of such primary drawbacks of Java, many researchers and

scientists have attempted to improve the situation, particularly in search of predictable

real-time performance. For instance, the Real-Time Specification for Java

[Bollella+2000b, Bollella+2000a] and its reference implementations (e.g.

[TimeSys2002]) have proved that Java can be a capable framework for concurrent

real-time applications. The specification attempts to minimise any modification to the

original language semantics and defines many additional classes that should be

implemented in a supporting virtual machine. This, however, ironically leads to a

language and run-time system that are complex to implement and have high

 3

overheads at run-time. Software produced in that framework is also difficult to

analyse with all the luxurious features, such as the asynchronous transfer of control

(ATC) and dynamic class loader.

Bearing in mind the positive developments and drawbacks of Java, this paper

investigates the use of the language in the development of high integrity systems. We

first survey important requirements of programming language for the development of

high integrity software. Based on those requirements gathered from several relevant

standards and guidelines, we develop 23 criteria that are used for the following

assessment of Java. A summary of the assessment is provided before we move on to

review a few existing subsets of the language.

2. Requirements of Programming Language

A study by Bentley [Bentley1999] summarises some of the well-known requirements

of programming language for the development of high integrity systems including

works by [Carré+1990], [Cullyer+1991], [USDoD1978], [USDoD1990] and

[Hutcheon+1992]. It carries out an assessment on Java against all the requirements,

producing a series of comprehensive rationales. A subset of the language is also

proposed, but only sequential features are included.

The outcome of the study is compatible to a large extent with our objective in this

paper as the requirements are still of significant importance these days, and the chosen

language is Java. Therefore we consider it as our starting point for a more complete

and up-to-date assessment of the language.

2.1. Summary of the requirements used by Bentley [Bentley1999]

• Carré et al [Carré+1990] identify six factors that can have an influence on a

programming language’s suitability for use in high integrity systems. These factors

are summarised by [Storey1996] as

· Logical soundness: is there a sound, unambiguous definition of the language?

· Simplicity of definition: are there simple, formal definitions of the various

language features? Complexity in these definitions results in complexity

within compilers and other support tools, which can lead to errors.

 4

· Expressive power: can program features be expressed easily and efficiently?

· Security and integrity: can violations of the language definitions be detected

before execution?

· Verifiability: does the language support verification, that is, proving that the

code produced is consistent with its specification?

· Bounded space and time requirements: can it be shown that time and

memory constraints will not be exceeded?

• Cullyer et al [Cullyer+1991] define a checklist of eleven factors to help establish if a

language has appropriate characteristics. The factors or questions to ask are

· Wild jumps: can it be shown that the program cannot jump to an arbitrary

memory location?

· Overwrites: are there language features that prevent an arbitrary memory

location being overwritten?

· Semantics: are the semantics of the language defined sufficiently for the

translation process needed for static code analysis?

· Model of maths: is there is a rigorous model of both integer and floating point

arithmetic?

· Operational arithmetic: are there procedures for checking that the

operational program obeys the model of the arithmetic when running on the

target processor?

· Data typing: are the means of data typing strong enough to prevent misuse of

variables?

· Exception handling: if the software detects a malfunction at runtime, do

mechanisms exist to facilitate recovery?

· Safe subsets: does a subset of the language exist which is defined to have

properties that satisfy these requirements more adequately than the full

language?

· Exhaustion of memory: are there facilities to guard against running out of

memory at runtime?

· Separate compilation: are facilities available for separate compilation of

modules, with type checking across the module boundaries?

· Well understood: will the designers and programmers understand the

language sufficiently to write safety-critical software?

 5

These questions, however, are high-level and do not cover some detailed issues like

those in the Steelman requirements [USDoD1978].

• The Steelman requirements [USDoD1978] are both extensive and technically

detailed. It was established by the U.S. Department of Defence after a number of

reviews and refinements by military and civil communities in order to evaluate

existing languages. This eventually led to the development of Ada, which satisfies all

the requirements. Although most of the Steelman requirements are still desirable

today for general-purpose languages when efficiency and reliability are important

concerns, it does not reflect modern language features and paradigms, for example,

object orientation [Wheeler1997]. Noteworthy areas of the requirements include

 · Language design aims

 · Syntax, expressions and types

 · Control structures, functions and procedures

 · Input-output control, parallel processing

 · Exception handling

 · Support for the language.

For the whole list of the requirements, see [USDoD1978] or [Bentley1999].

• [USDoD1990] shows a set of new and revised requirements for Ada9X, based on

long industrial experiences with the original Ada83. It incorporates new language

features and support for real-time, safety-critical, distributed systems by means of

additional annexes. Major areas cover

· Issues on standardisation, understandability, efficiency in execution and

storage management

· New language paradigms including object orientation (via type extension)

· Real-time requirements including alternative scheduling policies,

asynchronous transfer of control, and asynchronous communication

 · Parallel and distributed processing

 · Safety-critical and trusted applications.

A few of the requirements are specific to Ada, and may not be applicable to other

languages.

 6

• The work by York Software Engineering, British Aerospace and the U.K. Ministry

of Defence [Hutcheon+1992] is specific to safety-critical applications with emphasis

on the military requirements of the INTERIM Defence Standard 00-55

[UKMoD1991]. Two levels of requirements are defined (i.e., one to represent

mandatory and the other optional features that a language should have) and

subsequently used to assess Ada9X in [Hutcheon+1992]. The level one, mandatory

requirements are

· L1 A high integrity software language must be well-understood, simple to

understand, simple to learn, simple to use, simple to implement and simple to

reason about.

· L2 A programming language for writing high integrity software must provide

features appropriate to that application domain.

· L3 Prior to execution, it must be possible to predict the following properties

of a program written in a high integrity software language:

- functionality;

- timing;

- resource usage;

- failure behaviour.

· L4 It must be possible to verify that a program written in a high integrity

software language is correct with respect to a specification expressed in a

formal notation.

· L5 There must be a high level of assurance in a high integrity software

language’s compilation system and associate tools.

Some of the requirements are rather abstract in that different interpretations could be

derived. The second level includes optional requirements that should enrich the

language’s effectiveness. It covers issues on standardisation, portability, modularity,

abstraction, error handling, concurrency, low-level input/output, strong typing,

code/run-time system verification, and optimisation.

2.2. Additional Requirements

Along with the requirements listed above, we also consider the following guidance or

standards because of their significance in systematically capturing requirements and

language features.

 7

• The Ada95 Trustworthiness Study [Craigen+1995, Saaltink+1996, Saaltink+1997] is

broad and analytical in that it defines a concrete framework for language analysis

based on important standards, evaluates each language feature of Ada95 against the

framework, and produces comprehensive guidance for the use of Ada95 in the

development of high integrity systems. It first identifies four main themes for

analysis, which are predictability, analysability, traceability, and engineering, and

these themes lead to the development of ten analytical categories and ratings in each

category, as shown below.

Categor ies Ratings Examples

Run-time Support
Needed

1. No or minor run-time support.
2. Some run-time support.
3. Significant run-time support.

1. Scalar types
2. Simple tasking
3. Asynchronous Transfer
 of Control

Functional
Predictability

1. Exact, which gives only one outcome.
2. Bounded, which gives only a small set of possible
 outcomes, which could be a few possible results or
 results within a small range.
3. Unpredictable, for all other cases.

1. Discriminants
2. Access types
3. Generalized access
 types

Timing
Predictability

1. Tightly bounded, where the time-to-execute can be
 expressed in terms of a formula over the data,
 number of iterations, etc.
2. Loosely bounded, where a maximum time to
 execute can be determined, but actual execution
 times are usually much better.
3. Unpredictable, where we do not know how to
 predict the time bound.

1. Type conversion of
 numerated types
2. Arrays
3. Case statements

Space Usage
Predictability

1. Exact, where we can develop a formula to
 determine exact memory usage. This requires
 implementation information on use of temporaries,
 stack, etc.
2. Worst-case analysis, where we can bound the space
 used, both immediately and over time.
3. Unpredictable.

1. Loop statements
2. Subprogram
 declarations
3. Task units and task
 objects

Formal Definition

1. Existing definition (for Ada83 and no changes to
 Ada95).
2. Potentially definable, where a definition exists in
 Ada83 but changes mean a re-definition is needed,
 or definitions exist in other languages.
3. Unknown.

1. Exception handlers
2. Static expressions and
 subtypes
3. Return statement for
 functions

Integrity and
Security Issues

1. Enhances, for syntax and language rules that forbid
 or guard against violations.
2. Neutral.
3. Hinders, for a construct that facilitates the violation
 of integrity or access protections.

1. Package specifications
 and declarations
2. Object renaming
 declarations
3. Abort of a task

Reliability and
Engineering
Support

1. Enhances reliability (with explanation).
2. Neutral.
3. Problematic (with explanation).

1. Membership tests
2. Signed integer types
3. Derived types and
 classes

Robustness
1. Enhances (contributes to robustness).
2. Neutral (no effect on robustness).
3. Hinders (deleteriously affects robustness).

1. Predefined exceptions
 and language-defined
 checks

 8

2. Concatenate operator
3. Task and entry
 attributes

Static Analysis

1. Tractable analysis.
2. Hard/Intractable analysis.
3. Unknown.

1. Enumeration
 representation clauses
2. Generic instantiation –
 subprograms
3. Unchecked type
 conversions

Dynamic
Analysis

1. Tractable analysis.
2. Hard/Intractable analysis.
3. Unknown.

1. Static expressions and
 subtypes
2. Dispatching
 subprograms
3. Generic formal objects

Figure 1. Ten analytical categories and ratings of the Ada95 Trustworthiness Study [Craigen+1995]

• [ISO/IEC DTR 15942] authoritatively assesses all the language features of Ada95

based on verification techniques that are required by various standards and guidance.

Such verification techniques are grouped as in figure 2 below. A rating is given for

each of the language features to state whether a particular verification technique is

directly applicable (Included), not straightforward but achievable (Allowed), or there

is no current cost effective way (Excluded).

Approach Group Name Technique
Control Flow
Data Flow Flow Analysis (FA)
Information Flow
Symbolic Execution

Symbolic Analysis (SA)
Formal Code Verification

Range Checking (RC) Range Checking
Stack Usage (SU) Stack Usage
Timing Analysis (TA) Timing Analysis
Other Memory Usage (OM U) Other Memory Usage

Analysis

Object Code Analysis (OCA) Object Code Analysis
Equivalence Class

Requirements-based Testing (RT)
Boundary Value
Statement Coverage
Branch Coverage

Testing
Structure-based Testing (ST)

Modified Condition/Decision Coverage
Figure 2. Verification Techniques employed in the assessment of Ada95 [ISO/IEC DTR 15942]

It also suggests that any language that may be used in implementing high integrity

systems should

· be strongly typed,

· support a range of static types,

· have a consistent semantics that is defined in an international standard,

· support abstractions and information hiding,

 9

· have available validated compilers.

• The U.S. Nuclear Regulatory Commission (NRC) has produced a detailed and up-to-

date study on the use of high level programming languages in high integrity and

safety critical systems. The document [NUREG/CR-6463], entitled “Review

Guidelines on Software Languages for Use in Nuclear Power Plant Safety Systems”,

contains a framework of generic attributes significant to software safety that were

gathered from many standards and research literature, and language specific

guidelines derived from the framework for nine programming languages, i.e. Ada83,

Ada95, C/C++, IEC 1131-3 Ladder Logic, IEC 1131 Sequential Function Charts, IEC

1131 Structured Text, IEC 1131 Function Block Diagrams, Pascal, and PL/M.

As listed below, four top-level attributes that define general quality of software were

first identified, and appropriate intermediate and specific base attributes were

developed.

Top-level
attr ibutes

Intermediate attr ibutes Base attr ibutes

1. Predictability of memory
 utilisation

� Minimising dynamic memory
 allocation

� Minimising memory paging and
 swapping

2. Predictability of control flow

� Maximising structure
� Minimising control flow complexity
� Initialising variables before use
� Single entry and exit points for subprograms
� Minimising interface ambiguities
� Use of data typing
� Accounting for precision and accuracy
� Order or precedence of arithmetic, logical,
 and functional operators

� Avoiding functions or procedures with side
 effects

� Separating assignment from evaluation
� Proper handling of program instrumentation
� Controlling class library size
� Minimising use of dynamic binding
� Controlling operator overloading

Reliability

3. Predictability of timing

� Minimising the use of tasking
� Minimising the use of interrupt driven
 processing

1. Controlling use of diversity
� Controlling internal diversity
� Controlling external diversity

Robustness

2. Controlling use of exception
 handling

� Handling of exceptions locally
� Preserving external control flow
� Handling of exceptions uniformly

 10

3. Checking input and output

� Input data checking
� Output data checking

1. Readability See Maintainability
2. Controlling use of built-in
 functions

None Traceability
3. Controlling use of compiled
 libraries

None

1. Readability

� Conforming to indentation guidelines
� Using descriptive identifier names
� Commenting and internal documentation
� Limiting subprogram size
� Minimising mixed language programming
� Minimising obscure or subtle programming
 constructs

� Minimising dispersion or related elements
� Minimising use of literals

2. Data abstraction

� Minimising the use of global variables
� Minimising the complexity of the interface
 defining allowable operations

3. Functional cohesiveness
� Single purpose function and procedures
� Single purpose variables

4. Malleability � Isolation of alterable functions

Maintainability

5. Portability

� Minimising the use of built-in functions
� Minimising the use of compiled libraries
� Minimising dynamic binding
� Minimising tasking
� Minimising asynchronous constructs
 (interrupts)

� Isolation of non-standard constructs
Figure 3. Generic Safe Programming Attributes [NUREG/CR-6463]

• The series of reports produced by the Motor Industry Software Reliability

Association or MISRA [MISRA1994, MISRA1995a-h] cover virtually all areas of

software development in motor industry. The major areas include project planning,

assigning integrity levels, programming languages, verification, and quality

assurance. Of our particular interest here is the selection criteria of programming

language specifically stated in [MISRA1995f] and [MISRA1994], and the following

are some of the important requirements.

· formally defined syntax and semantics

· a formal means of relating the code to the formal design

· block structured

· strongly typed

· run-time type and array bound checking

· conformance to an international standard

· use of a validated compiler

· well-understood

 11

· exception handling

· extensive tool support, and tools that are trusted/validated.

The reports also contain some guidelines derived from relevant literature, such as

[Cullyer+1991] and [Carré+1990], and these largely overlap other requirements

described previously. The use of safer subsets is also emphasised.

3. Assessment Criteria

Now, since some of the requirements introduced above are redundant and ambiguous

we inclusively categorise them into relevant assessment criteria along with

appropriate references. However, it is important to note that this collection of criteria

is neither complete1 nor authoritative, but it attempts to amalgamate many different

requirements into a balanced and informative framework for the assessment of

programming languages. As in [Hutcheon+1992] we propose two levels of criteria,

namely Mandatory requirements (Level 1) and Desirable requirements (Level 2).

3.1. Level 1 – Mandatory requirements

In Level 1 we identify as many mandatory requirements that a programming language

must satisfy as possible in order to be considered for use in implementing high

integrity systems. Appropriate justifications are made regarding each requirement.

Readers are encouraged to refer to the references if in any doubt about rationales and

specifics.

L1.1. Syntactical / Semantic Requirements

L.1.1.1 Type safety / Strong typing rules

References
[USDoD1978], [Cullyer+1991], [USDoD1990], [Hutcheon+1992],
[Craigen+1995], [ISO/IEC DTR 15942], [NUREG/CR-6463],
[MISRA1995f]

Rationale
Strongly typed languages help reduce errors in programs at compile-
time. Moreover, type safety is often considered to be sufficient for
ensuring the minimum nontrivial level of program safety, i.e. control

1 Some requirements or guidelines are deliberately missed out because they are either not relevant with
respect to high integrity systems, or considered not reasonable in the context of modern programming
languages. Examples include requirements on the use of a particular character set [USDoD1978], and
improvements in wording or program presentation (of Ada83) [USDoD1990].

 12

flow safety, memory safety, and stack safety [Kozen1999]. Thus it is
strongly encouraged to use a type safe or strongly typed language,
enhancing the integrity and security of software.

Specifics

Implicit type conversions must not be allowed.
All data types should be statically analysable before program
execution.
Explicit type conversion rules should be clearly stated in the language
standard or definition.
There should be some ways to avoid access types or pointers.

Ratings

1. Strongly typed / Statically analysable.
2. Strongly typed, but some types are analysable only at run-time,

mainly due to the use of polymorphism in the language.
3. Not strongly typed and implicit type conversions are allowed.

L.1.1.2 Side effects in expressions / Operator precedence levels / Initial
values

References [USDoD1978], [NUREG/CR-6463]

Rationale

Side effects in expressions can cause programs to behave in an
ambiguous, or, possibly, unpredictable way, thus are not desirable. The
precedence levels of all operators must be specified in the language
definition; otherwise evaluation orders may vary from system to
system.

Specifics
There should not be any time-dependent side effects in expressions.
Operator precedence levels must clearly be defined in the standard.
There should be no implicit initial values for variables.

Ratings

1. All the above specifics are satisfied.
2. Not all the above specifics are satisfied, but there may be a

subset of the language that meets the specifics.
3. The above specifics are not satisfied, and there is no reasonable

way to improve the language.

L.1.1.3 Modular ity / Structures

References
[USDoD1978], [Cullyer+1991], [Hutcheon+1992], [Craigen+1995],
[NUREG/CR-6463], [MISRA1995f]

Rationale

It must be straightforward to code and maintain programs in a high
integrity programming language, so that the complexity of software
becomes manageable. This is often achieved by means of visibility
control (or scopes), functions, and objects in many modern languages,
in which the integrity and security of software are generally improved.

Specifics

There should be sound mechanisms to structure and modularise
program code both syntactically (in some form of determinable blocks
or scopes) and semantically with clear interfaces.
There should be no wild/unbounded jumps between different modules.
Separate compilation of modules should be possible.

Ratings

1. The language provides rich and precise means of structuring
programs, and programs can be maintained in terms of modules
or objects.

2. Such mechanisms are provided, but not cost-effective or
efficient.

 13

3. There is no reasonable approach.

L.1.1.4 Formal semantics / International standards

References
[USDoD1978], [Cullyer+1991], [USDoD1990], [Hutcheon+1992],
[Craigen+1995], [ISO/IEC DTR 15942], [MISRA1995f]

Rationale
A standardised language benefits the development of compilers and
tools, and user training. Verification techniques can also be applied to a
language with formally defined semantics.

Specifics
There should be a (international) standard definition of the language.
There should be formally defined semantics of the language, or at least
a subset of the language.

Ratings

1. An internationally standardised formal definition exists.
2. The language or high integrity subset of it can be formally

defined.
3. Unknown.

L.1.1.5 Well-understood

References
[Cullyer+1991], [USDoD1978], [Hutcheon+1992], [USDoD1990],
[MISRA1995f]

Rationale
A language with well-understood semantics and syntaxes will help to
produce quality software, often cost-effectively.

Specifics
The language should be simple, well understood, easy to adopt, and
easy to implement.

Ratings

1. The language is well understood, and there are many trained
developers and designers.

2. The language is well understood only by a limited number of
people.

3. Unknown.

L.1.1.6 Support for domain specific or embedded applications
References [USDoD1978], [Hutcheon+1992]

Rationale

High integrity systems are often embedded systems that need to
interface or control physical resources or (non-standard) peripheral
devices. Therefore, a programming language designed with such
applications in mind should be used.

Specifics
Robust mechanisms for controlling memory, I/O devices or other
hardware are required.

Ratings

1. The language naturally supports embedded applications.
2. There is a limited support, but external libraries or language

extensions can be utilised.
3. No support provided or Unknown.

L.1.1.7 Concurrency / Parallel processing
References [USDoD1978], [Hutcheon+1992]

Rationale
Although concurrency is one of the main sources of complication in
program analysis and verification (classified as only a desirable – not
mandatory - feature in [Hutcheon+1992]), it is invaluable in modelling

 14

or capturing real-world problems. Thus, we believe this has to be an
essential requirement for modern high integrity language.

Specifics

The following features should be included:
Language-level support for multitasking or multithreading.
Control over scheduling policy.
Straightforward communication and synchronisation mechanism(s),
plus facility to bound blocking.

Ratings

1. All the above specifics are satisfied.
2. Only limited support is provided at the language-level, but

external libraries or run-time systems can be utilised.
3. No reasonable support provided or Unknown.

L1.2. Application of verification techniques / Predictability

L.1.2.1 Functional predictability

References
[Hutcheon+1992], [Craigen+1995], [ISO/IEC DTR 15942],
[NUREG/CR-6463], [MISRA1995f]

Rationale
High integrity software must be proven to be predictable in terms of its
functional behaviours.

Specifics

All or most of the following analysis techniques should be applicable.
 Control flow analysis
 Data flow analysis
 Information flow analysis
 Symbolic execution
 Formal code verification

Ratings

1. All techniques in the above specifics or feasible alternatives
can be utilised.

2. Not all techniques can be utilised due to the complex features
of the language, but sub-setting the language may improve
such analyses.

3. Unknown or there is no cost-effective way of utilising such
analysis techniques.

L.1.2.2 Temporal predictability / Timing analysis

References
[Hutcheon+1992], [Craigen+1995], [NUREG/CR-6463],
[MISRA1995f]

Rationale
In addition to the functional predictability, timely behaviours of such
software and systems must also be guaranteed.

Specifics
Worst Case Execution Time (WCET) of each process must be
obtainable, so that schedulibility analysis can be performed.

Ratings
1. Tightly bounded execution time(s) can be obtained.
2. Loosely bounded execution time(s) can be obtained.
3. Unpredictable or there is no known way to obtain WCET.

L.1.2.3 Resource usage analysis

References
[Cullyer+1991], [Hutcheon+1992], [Craigen+1995], [NUREG/CR-
6463], [MISRA1995f]

Rationale It is important to identify what resources are needed and how they are

 15

utilised, so that errors such as stack overflow may not occur, and
system implementations may be kept economical.

Specifics

The following properties should be analysable.
 Memory (or heap) usage
 Stack usage
 Any other resources to be utilised in the application area.

Ratings
1. Exact prediction of the above specifics is possible.
2. Worst-case analysis is possible, but not practical.
3. Unpredictable.

L1.3. Language Processors / Run-time environment / Tools

L.1.3.1 Certified language translators / Run-time environments

References
[USDoD1978], [Hutcheon+1992], [ISO/IEC DTR 15942],
[MISRA1995f]

Rationale
There must be a high level of assurance in language processors,
especially compilers.

Specifics

A formally certified compiler by an authoritative or trusted body
should be used.
Low-level code should be traceable in accordance with source code.
Run-time environments should also be certified if used.

Ratings

1. There exist one or more certified language translators, and they
are formally proven to be flawless.

2. Language translators may contain several known errors or
malfunctions that are well documented, but they will not affect
the development of high integrity software.

3. Unknown.

L.1.3.2 Run-time support / Environment issues

References
[USDoD1978], [Hutcheon+1992], [USDoD1990], [Craigen+1995],
[ISO/IEC DTR 15942], [NUREG/CR-6463]

Rationale

Libraries (or any additional code) or run-time support may make it
complex to perform some analyses, such as WCET and control flow
analyses. Hence, all such additional code should be predictable and
analysable in terms of safety and timeliness. Minimising
implementation dependencies is also encouraged.

Specifics
All the behaviours of additional code should be well understood.
All timing information of the underlying run-time system and libraries
should be known and accurate.

Ratings

1. There exists concrete information on the functional and
temporal behaviours of all libraries and run-time system.

2. Only worst-case analysis is possible.
3. Unknown.

3.2. Level 2 – Desirable Requirements

 16

The requirements at this level are not immediately necessary but beneficial in that

they help produce more efficient, comprehensible, and structured systems. Note that

ratings are not provided at this level because they are meant to be additional

desirables.

L2.1. Syntactical / Semantic Requirements

L.2.1.1 Exception Handling / Failure behaviour

References
[USDoD1978], [Cullyer+1991], [Hutcheon+1992], [Craigen+1995],
[NUREG/CR-6463], [MISRA1995f]

Rationale

Handling errors while a high integrity system is operating is sometimes
seen as undesirable on account of additional overheads and
unpredictable behaviours. However, if any sort of error can occur, then
the system should gracefully degrade, or recover after some
corrections.

Specifics
Robust and analysable run-time error detection and handling
mechanism should exist.
Failure behaviours should be programmable.

L.2.1.2 Model of Mathematics
References [Cullyer+1991], [USDoD1978]

Rationale
As often required in some high integrity systems, the language should
have a rigorous model of maths defined in the language standard.

Specifics

A model of both integer and floating point arithmetic should be
defined within the language standard.
Procedures for checking if operational arithmetic at run-time is correct
should exist.

L.2.1.3 Support for User documentation
References [USDoD1978], [USDoD1990], [NUREG/CR-6463]

Rationale

Languages that allow user comments will undoubtedly improve
program readability and maintainability. Some language processors
may make use of annotations to detect subtle logical errors in
programs or to obtain extra information.

Specifics
There should be some way of commenting programmer’s intentions
within source code.

L.2.1.4 Support for a range of static types including subtypes and
enumeration types

References
[USDoD1978], [USDoD1990], [ISO/IEC DTR 15942],
[MISRA1995f]

Rationale
It is easier to perform any analyses or checks on static types than on
dynamic types. Enumeration types with a limited number of values
also help reduce errors.

Specifics None.

 17

L.2.1.5 Coding style guidelines
References [Hutcheon+1992], [NUREG/CR-6463], [MISRA1995f]

Rationale
Coding style guidelines may help reduce the gap between well-
established Software Engineering principles and the actual practice of
programming in a particular language.

Specifics None.

L.2.1.6 Support for abstraction and information hiding

References
[ISO/IEC DTR 15942], [Hutcheon+1992], [USDoD1990],
[MISRA1995f]

Rationale
Employing abstraction or information hiding techniques (e.g. object
orientation) can greatly decrease software complexity. Thus they are
beneficial in program design, development, and maintenance.

Specifics None.

L.2.1.7 Asser tion checking
References [USDoD1978]

Rationale
It may sometimes be desirable to check for user specified assertions
before or while programs are executing.

Specifics None.

L2.2. Language Processors / Run-time environment / Tools

L.2.2.1 Certified (static/dynamic) analysis tools
References [Hutcheon+1992], [ISO/IEC DTR 15942], [MISRA1995f]

Rationale
In order to gain more confidence in high integrity software it is
imperative to use certified analysis tools, which may check for errors,
such as, race conditions and deadlocks.

Specifics None.

L.2.2.2 Inter face to other languages
References [USDoD1978]

Rationale

There are some situations where a program written in a high-level
language needs to interact with existing libraries or other low-level
routines that are written in different languages. In such cases there
should be a means of interfacing our program with such routines.

Specifics None.

L.2.2.3 Code optimisation
References [USDoD1978]

Rationale

It is always advantageous to improve the efficiency of programs by
means of optimising them. However, optimisation should not alter the
semantics of correct programs, nor compromise the application of
analysis techniques.

Specifics None.

 18

L.2.2.4 Code por tability
References [Hutcheon+1992], [NUREG/CR-6463]

Rationale
Since there exists a diverse range of code-executing platforms, it is
often considered beneficial to have a portable program representation,
so that all necessary analyses may be applied once for all.

Specifics None.

4. Assessment of the Java programming language

Now, Java is assessed against the criteria developed in the previous section. A

summary is provided at the end.

4.1. Assessment of Java against Level 1

L.1.1. Syntactical / Semantic Requirements

L.1.1.1. Type safety / Strong typing rules

Java is a strongly typed language. For all primitive types, implicit type conversions

are not allowed (all possible conversions are stated in the language specification), and

programs are analysable before running them. But for dynamic reference types, it is

not always straightforward to statically analyse code, but is generally possible only at

run-time because of the use of, for example, inherited interfaces and local classes

within different scopes.

Rating: 2. Strongly typed, but some types are analysable only at run-time, mainly due

to the use of polymorphism in the language.

L .1.1.2. Side effects in expressions / Operator precedence levels / Initial values

Side effects can occur in Java if expressions contain embedded assignments, sub-

operators, and method invocations. Many side effects, however, can be eliminated via

the use of a code checker or analyser, and a subset of Java. Operator precedence levels

are defined in the specification [Gosling+2000], but the large number is at times seen

undesirable as it becomes more difficult for programmers to learn [Bentley1999,

USDoD1978]. All types in Java have default initial values, but compilers issue

warnings if any variables are used before initialisation. It should also be noted that

some returned values of a method can be quietly discarded without any warning

[Gosling+2000], i.e. when there is no assignment expression for a method call that

returns a value.

 19

Rating: 2. Not all the above specifics are satisfied, but there may be a subset of the

language that meets the specifics.

L.1.1.3. Modular ity / Structures

In Java, programs are organised as objects that normally consists of visible and non-

visible data fields and methods. Abstraction and encapsulation mechanisms are also

provided through classes and interfaces, and packages (into which related classes are

organised) also enhance modularity and structure of software. In addition to this, the

language includes various means of controlling program flows, including the

exception-handling mechanism. Separate compilation is always possible.

Rating: 1. The language provides rich and precise means of structuring programs, and

programs can be maintained in terms of modules or objects.

L .1.1.4. Formal semantics / International standards

There are no stable standards for Java although the language specification

[Gosling+2000] serves as an informal standard for the time being. There exist some

formal semantics of Java, for example, in Action semantics [Watt+2000,

Brown+1999], in Denotational Semantics [Alves-Foss+1999b], and in other BNF-like

notations [Alves-Foss+1999a]; most of which are based on parts of the language.

Drossopoulou and Eisenbach [Drossopoulou+1999] have also defined a series of

subsets of Java and proved their type soundness.

Rating: 2. The language or a high integrity subset of it can be formally defined.

L .1.1.5. Well-understood

Java is a familiar programming language to many existing C/C++ programmers,

which means that no extensive training is usually required and there may well be

many trained engineers. In addition, some of the problematic features in C/C++ (such

as pointer operations) are removed, which all results in a dramatic increase in

productivity. However, the excessive number of APIs and other additional

mechanisms can be hard to master.

Rating: 1. The language is well understood, and there are many trained developers

and designers.

L .1.1.6. Support for domain specific or embedded applications

 20

One of the main application areas for which Java was first developed was embedded

systems. In pure Java, however, it is not possible to control underlying hardware

without appropriate native methods implemented in different languages. Even then, it

is still difficult to implement systems with rigorous safety and real-time requirements,

thanks mostly to the overheads incurred by the garbage collection mechanism, and

virtual machines per se. There has been much research on scheduling the garbage

collector and improving the efficiency of code transformation, even though it has not

proven particularly effective so far. In the recent years, the Real-Time Specification

for Java [Bollella+2000a] and Real-Time Core Extensions [Jconsortium2000] have

been defined, so that real-time applications will certainly benefit from reference

implementations of such specifications.

Rating: 2. There is a limited support, but external libraries or language extensions can

be utilised.

L .1.1.7. Concurrency / Parallel processing

Java supports concurrent execution of multiple threads, as well as some key

synchronisation mechanisms, for example, the monitor and synchronized

blocks/methods. Programmers can also allocate a priority to threads, which

nevertheless is not of any significant value, as they have no control over scheduling

mechanisms implemented in the virtual machine and underlying kernel. Recently, two

of the specifications for real-time Java, i.e. one from Sun Microsystems

[Bollella+2000a] and the other J Consortium [JConsortium2000], state various

features that real-time systems require, especially with regard to scheduling, memory

management, synchronisation, time, and exceptions.

Rating: 1. All the above specifics are satisfied.

L.1.2. Application of verification techniques / Predictability

L.1.2.1. Functional predictability

Due to the recent development of sophisticated analysis algorithms and tools it is now

possible, to some extent, to analyse Java programs in terms of control and data flow.

Nevertheless, some complex features of Java, such as the exception handing

mechanism and monitors, are still not considered, or at least are immaturely handled.

Formal verification is even harder for Java as there is no complete formal semantics.

However, a constant progress is made in this area, and especially Model-checking

 21

technology is proving strong in the verification of Java programs. For example, the

Java PathFinder 2 [Brat+2000a] developed by the NASA can detect race conditions,

deadlocks, and violations of user-specified assertions.

Rating: 2. Not all techniques can be utilised due to the complex features of the

language, but sub-setting the language may improve such analyses.

L .1.2.2. Temporal predictability / Timing analysis

It is well known that with all the sometimes-superfluous features like the garbage

collector and virtual machine support, it is hard to obtain tight execution-time bounds

for Java threads, and such timing analyses are all dependent on eventual target

architectures and base operating systems (if utilised). Some techniques, however, have

been suggested (e.g. [Bate+2000, Puschner+2001b]), and the release of the

specifications for real-time Java will certainly improve the current situation.

Rating: 2. Loosely bounded execution time(s) can be obtained.

L.1.2.3. Resource usage analysis

On account of the presence of the background garbage collector, it is generally

difficult to predict how much memory space will be in use at a given moment in time,

or even deducing the worst case can become impractical (and dependent on which

garbage collection algorithms are employed). However, subsets of Java or of the Real-

Time Specification for Java [Bollella+2000a], such as [Puschner+2001a] in which

garbage collection is excluded, will ease this sort of analysis.

Rating: 2. Worst-case analysis is possible, but not practical.

L1.3. Language Processors / Run-time environment / Tools

L.1.3.1. Cer tified language translators / Run-time environments

To the best of our knowledge, Java compiler and virtual machine validation is still an

on-going research work. Whereas it may never be possible to formally exploit and

validate such complex software, some attempts have been made to conduct

conformity assessment of Java or Java-like language processors to the language

specification and industry standards, for example see [PERENNIAL2001]. Reported

errors are reasonably well documented and updated.

 22

Rating: 2. Language translators may contain several known errors or malfunctions

that are well documented, but they will not affect the development of high integrity

software.

L .1.3.2. Run-time support / Environment issues

It is not easy to perform analyses on additional code, i.e. that of variable run-time

systems, APIs, native methods, unless a sound standard for such program entities is

developed.

Rating: 3. Unknown.

4.2. Assessment of Java against Level 2

L.2.1. Syntactical / Semantic Requirements

L.2.1.1. Exception Handling / Failure behaviour

Java has a wide variety of predefined exception classes, and programmers are also

allowed to define customised (checked) exceptions and program’s behaviours.

Uncaught exceptions, i.e. unchecked exceptions or errors, can become problematic as

they may simply result in the system halting.

L.2.1.2. Model of Mathematics

Java provides a rich set of integer and floating point data types, and the java.math

package can be used to assist in more rigorous mathematical applications. While the

utilisation of the standard IEEE 754 arithmetic semantics is seen as universally

beneficial in terms of compatibility, it is occasionally not desirable as it hinders the

utilisation of advanced hardware, for example, built-in co-processors [Bentley1999].

L.2.1.3. Support for User documentation

Java provides two ways of commenting source code. Furthermore, there is a facility

for automatically generating on-line documentation of user classes, i.e. javadoc tool.

L.2.1.4. Support for a range of static types including subtypes and enumeration

types

Subtypes and enumeration types are not supported in Java, but may possibly be

emulated with additional overheads.

 23

L.2.1.5. Coding style guidelines

There exist coding style documents available at the WWW site of Sun Microsystems

[Sun1999]. However, none of them specifically addresses high integrity or real-time

applications.

L .2.1.6. Support for abstraction and information hiding

As an object oriented language, Java offers abstraction by means of the abstract class

type and interface, where no implementation details are allowed. Information hiding is

also naturally supported.

L .2.1.7. Asser tion checking

There is not a specific language construct for assertion checking in Java, even though

it can be modelled. There is currently a specification request for a simple assertion

facility, a.k.a. JSR41, which can be found at http://www.jcp.org/jsr/detail/41.jsp.

L.2.2. Language Processors / Run-time environment / Tools

L.2.2.1. Cer tified (static/dynamic) analysis tools

A large number of analysis tools have been developed to assist in debugging Java

programs, but most of them are not certified by reliable bodies or standards. However,

as mentioned above, tools such as Java PathFinder 2 (from NASA) and the Extended

Static Checker for Java (from Compaq) appear to be successful in detecting many

known errors.

L.2.2.2. Inter face to other languages

Java cannot directly interface to programs written in other languages. But, it is

possible to invoke native methods, mostly written in C, of the run-time environment.

This will result in poor portability.

L .2.2.3. Code optimisation

Most of the available optimisation techniques are not applied until Java programs

reach their target or virtual machine for security reasons. Different quality of code or

performance may be generated depending on how code is processed, i.e. bytecode can

be interpreted, compiled Just-in-Time, or compiled Ahead-of-Time. It is complex to

statically analyse optimised native code in relation to high-level bytecode.

 24

Optimisation will also make the complexity of compiler and tool validation more

difficult.

L.2.2.4. Code por tability

Following the “ write once and run everywhere” motto, Java has become a truly

portable programming language for most of the well-known platforms. In addition,

Java chips with an integrated virtual machine and processor also start to appear.

However, a problem can arise when non-standard processors or operating systems are

utilised, where the burden of developing a new virtual machine is left to the system

developer.

4.3. Summary of Assessment

Most of the Level 1 criteria are not, or loosely met by Java. Below is a summarising

classification of the strengths and weaknesses identified above.

Strengths

Java is a strongly typed object-oriented language that provides an excellent

means of modularising and structuring programs (L.1.1.3), and is well

understood (L.1.1.5). It also supports concurrent execution of multiple threads

as well as some key synchronisation mechanisms (L.1.1.7).

Weaknesses

Reference types are not generally amenable to static checking (L.1.1.1).

Furthermore, side effects can occur in expressions, and some returned values

may be quietly discarded (L.1.1.2). There exist several formal definitions and

semantics of Java, but they are predominantly concerned with parts of the

language (L.1.1.4). Embedded applications, in which hardware control is

essential, can only be supported by means of native methods (L.1.1.6),

although implementations of the specifications for Real-Time Java are

expected to solve this problem.

It is not straightforward to apply various analysis techniques directly to Java

due to some of its complex features (L.1.2.1), but there appear to be some

evolving analysis tools. Timing analysis is also difficult to perform on Java

code (L.1.2.2), as is resource usage analysis (L.1.2.3).

 25

There is no formally validated Java compiler and virtual machine, but

conformity-checking tools do exist (L.1.3.1). It is also complex to perform any

analyses on additional code, such as that of APIs and run-time systems

(L.1.3.2).

Regarding Level 2 requirements, the following strengths and weaknesses have been

identified.

Strengths

 • Integrated exception handling mechanism (L.2.1.1)

• Rich set of integer and floating-point data types, and java.math package

(L.2.1.2)

 • Support for user documentation (L.2.1.3)

 • General coding style guidelines (L.2.1.5)

 • Support for abstraction and information hiding (L.2.1.6)

 • Code portability (L.2.2.4)

Weaknesses

 • Overhead and complexity of exception handling mechanism (L.2.1.1)

• The utilisation of the standard IEEE 754 arithmetic semantics can be

overhead, and no exception is generated for particular operations (L.2.1.2)

• No support for subtypes and enumeration types (L.2.1.4)

• No coding guidelines for high integrity applications (L.2.1.5)

• No assertion checking facility (L.2.1.8)

• Shortage of certified analysis tools (L.2.2.1)

• Difficulty in interfacing to programs written in other languages (L.2.2.2)

• Complexity of analysing optimised code (L.2.2.3)

5. Review of Subsets

Burns et al. [Burns+1998] suggest that a restricted programming model or profile can

help produce efficient and predictable systems by removing language features with

high overheads, and complex and erroneous semantics. Along these lines, there have

 26

been a few subsets or profiles for Java suggested in the literature2. We review them in

the following.

5.1. Sequential subset of Java by [Bentley1999]

As mentioned early in this paper, Bentley [Bentley1999] defines a subset of Java after

assessing the language. The subset consists of 21 rules that are effectively derived

from [Hutcheon+1992], [MISRA1998] and his assessment. All the rules are

categorised into six groups, as shown below with a summary of rules for each group.

• Rules Concerned With Ver ification

Multithreading is not allowed as it may cause significant difficulties in analysing

programs, due mainly to the thread synchronisation mechanisms. In addition, methods

and constructors shall not be overloaded.

• Rules Concerned With Comments

Comments shall not be nested.

• Rules Concerned With Predictability

Variables or objects must be statically initialised (by constructors of appropriate

classes), so that no default values are expected. All constraints, such as, those used in

for-loops, must be static. This will greatly ease various analyses, for example,

memory requirement and timing analysis. The continue and break statements shall not

be used, except to terminate the cases of a switch statement, for which a break

statement is required for every non-empty case clause. Plus, all switch statements

should contain a final default clause. The return statement should only appear as the

last statement of a method. Further, methods must not have any side effects and not be

recursively invoked. The result of a method should never be an unconstrained array

type object.

• Rules Concerned With Constants

2 In fact, there are subsets of Java defined for other purposes than for use in high integrity systems. For
example, in [Drossopoulou+1999] the authors define a series of subsets in order to prove the type
soundness of them.

 27

Octal constants (other than zero) shall not be used. Because numbers beginning with

zero are treated as octal values in Java, it is easy to make a mistake, e.g. inserting zero

before a decimal constant.

• Rules Concerned With Identifiers

All identifier names must be unique.

• Rules Concerned With Operators

All right-hand operands of the logical operator && and || shall not contain any side

effects, since the evaluation and execution of the operands are dependent on the truth-

value of the left-hand operand. What is more, assignment operators must not be used

in expressions which return Boolean values, for example, in if ((x=1) != y). Bitwise

operations, including bitwise shifts, shall not be performed on signed integer types,

and the evaluation of integer expressions should not lead to wrap-around.

While this subset will undoubtedly help produce analysable and predictable sequential

programs, it can be criticised for its restriction on multithreading, one of Java’s

inherent elements. Without the language-level support for multithreading and all the

associated synchronisation mechanisms, Java may not be considered as a great

evolution from its predecessors. In addition to this, the subset also fails to address

issues on the object-oriented programming model of the language.

5.2. Profile for high integr ity Real-Time Java programs [Puschner+2001a]

Puschner and Wellings [Puschner+2001a] suggest a Ravenscar-like profile for the

Real-Time Specification for Java [Bollella+2000a], and the following is a brief

summary of each of the key areas.

• Threading Model

There are two execution phases, i.e. initialisation and mission phases. In the

initialisation phase, all necessary threads, event handlers, and memory objects are

created in a non time-critical manner. No threads will be allowed to start until the top-

priority thread with main() method finishes its execution. In the mission phase,

threads may not change their own or other thread’s priority except when forced by the

underlying implementation of the priority ceiling protocol. Sporadic or event-

 28

triggered activities are implemented as event handlers, and only one handler is

allowed per event. All periodic threads must be an instance of

NoHeapRealtimeThread class and need to invoke waitForNextPeriod method to delay

execution until the start of their next periods. Asynchronous Transfer of Control

(ATC), overrun and deadline-miss handlers, and delay statements are not supported

by the profile; nor is dynamic class loading during the mission phase.

• Concur rency

The synchronized methods and blocks are the key mechanism for mutual exclusion to

shared resources in Java, and the priority ceiling protocol should be implemented in

the run-time system in order to avoid deadlocks. For similar reasons, wait, notify, and

notifyall are not supported, avoiding any queue management.

• Memory Management and Raw Memory Access

The heap-based garbage collection mechanism of Java is not supported due to its

long-debated unpredictability at run-time. Instead, only immortal memory and linear-

time scoped memory are supported as defined in the RTSJ. Immortal memory is used

by default to create objects during the initialisation phase, but is not allowed for

further object creation afterwards. In addition to this, all other memory objects must

only be created in the initialisation phase. The RTSJ classes for raw memory access

are also supported, so that device drivers, memory-mapped I/O, and other low-level

functions can be programmed.

• Time and Clock

All the RTSJ classes for the representation of time and real-time clocks are included

while the timer classes are not.

The profile is primarily focused on leaving out complex features of the RTSJ.

However, little attention is paid to the Java’s sequential language constructs (unlike

[Bentley1999]) and object-orientation features that can be problematic in performing

various static analyses.

5.3. High integr ity profile by the J Consortium

 29

A sub-committee has been formed within the Real-Time Java Working Group of the J

Consortium to produce a high integrity profile based on the Real-Time Core

Extensions [JConsortium2000]. The profile has not been released yet, but according to

Dobbing [Dobbing2001] it will resemble the Ravenscar profile for Ada95

[Burns+1998]. It consists of four main themes: partitioning, memory management,

concurrency, and error recovery, respectively. Up-coming information will be found

at http://www.j-consortium.org/hip/index.shtml.

• Par titioning

The main idea developed from the necessity to isolate critical code and data from non-

critical ones by means of firewall, so that less-trusted code will never be able to

interfere with high integrity programs. No exchange of objects, as well as dynamic

loading across the firewall will be allowed. This idea also extends to the temporal

requirements of such software, i.e. temporal firewall, which means deadlines of

critical threads must be met.

• Memory Management

The automatic garbage collection is not supported, nor is any memory compaction

mechanism. The use of general heap memory is also not allowed. There are three

memory allocation strategies, which are

 · stack allocation for method local objects that are automatically reclaimed

 · fixed size “allocation contexts” for local objects in each thread

 · global allocation at initialisation time for immortal objects.

• Concur rency

Three types of priority-based tasks are supported, namely, periodic, sporadic, and

interrupt tasks. In addition to these, the profile defines a subclass of the basic

CoreTask that must explicitly be started by another thread. All threads are created at

program start-up, e.g. as part of the initialisation code for classes, and it is not allowed

to declare a thread class as an inner class, so that there is no requirement for any

implicit join interface.

Shared resources and inter-thread synchronisations are managed through protected

objects, which rely on the underlying implementation of the Priority Ceiling Protocol.

 30

However, no mutual exclusion locks or synchronised methods are supported in the

profile as they add considerable complexity to program analyses. Further, all the

asynchronous thread-to-thread operations, including stop(), setPriority(), suspend(),

resume(), and event-driven Asynchronous Transfer of Control (ATC) mechanisms,

are not permitted, nor are synchronised objects and counting semaphores.

• Error Recovery

The standard exception handling mechanism of Java (i.e. throw-catch clause) is

maintained. It also supports access to specific physical addresses to allow objects to

be mapped, in order to, for example, save program state for fast recovery purposes.

Like the one proposed in [Puschner+2001a], this profile is mainly focused on sub-

setting the Real-Time Core Extensions [JConsortium2000], but does not address

issues on the use of problematic language constructs and object-orientation features of

Java.

5.4. Formal subsets by [Drossopoulou+1999]

Drossopoulou et al. define three formal subsets of Java, i.e. that of the source

language (Javas), high-level representation of bytecode (Javab), and enriched version

of Javab (Javar). They present operational semantics, type system, and a proof of type

soundness for the subsets.

Javas is a substantial subset of the Java programming language, and it includes some

primitive types, interfaces, classes with instance variables and instance methods,

inheritance, hiding of instance variables, overloading and overriding of instance

methods, arrays, implicit pointers and the null value, object creation, assignment, field

and array access, method call and dynamic method binding, exceptions and exception

handling [Drossopoulou+1999], as shown below.

Program ::= Def*
Def ::= class ClassId ext ClassName impl InterfName*
 { ClassMember*}
 | inter face InterfId ext InterfName* { InterfMember*}
ClassMember ::= Field | Method
InterfMember ::= MethHeader
Field ::= VarType VarId ;
Method ::= MethHeader MethBody

 31

MethHeader ::= (void | VarType) MethId ((VarType ParId)*) throws ClassName*
MethBody ::= { Stmts [return Expr]] }
Stmts ::= (Stmt ;)*
Stmt ::= if Expr then Stmts else Stmts
 | Var = Expr | Expr.MethName(Expr*) | throw Expr
 | try Stmts (catch ClassName Id Stmts)* finally Stmts
 | try Stmts (catch ClassName Id Stmts)+
Expr ::= Value | Var | Expr.MethName(Expr*)
 | new ClassName() | new SimpleType([Expr])+ ([])* | this
Var ::= Name | Expr.VarName | Expr[Expr]
Value ::= PrimValue | RefValue
RefValue ::= null
PrimValue ::= intValue | charValue | boolValue | …
VarType ::= SimpleType | ArrayType
SimpleType ::= PrimType | ClassName | InterfaceName
ArrayType ::= SimpleType[] | ArrayType[]
PrimType ::= bool | char | int | …

Figure 4. Javas programs [Drossopoulou+1999]

In order to observe run-time behaviours of programs in Javas, they are formally

converted into Javab and Javar respectively, which are high-level representations of

bytecode with all necessary compile-time type information. Having done this, it is

possible to obtain operational semantics of each high-level language construct and

prove the soundness of the type system of the source-level subset, Javas.

While these subsets contain many important language constructs of Java that are often

omitted in other formal subsets (e.g. exceptions), they still overlook some of Java’s

inherent features, such as the multithreading and synchronisation models.

[Hartel+2001] surveys formal subsets and approaches aimed at improving the safety

of Java programs.

6. Conclusions

We have reviewed important requirements of programming language for the

development of high integrity software, and defined 23 assessment criteria derived

from the requirements. The criteria are divided into two groups, namely, Mandatory

requirements (Level 1) and Desirable requirements (Level 2). Appropriate references

and rationale for each criterion are given, and suitable ratings are also provided for the

Level 1 requirements.

The Java programming language and its associated environments are then assessed

against the two levels of criteria, and we conclude that Java is a good general

 32

language, yet not appropriate as a whole for the development of high integrity systems

that require rigorous and predictable language features, compilation systems, and

tools. However, Java may be able to qualify as a suitable vehicle in the future with the

help of sub-setting the language and future developments of formal mechanisms,

although none of the currently proposed subsets address all the necessary areas

required for high-integrity real-time systems. There is perhaps some movement

towards a standardisation through the Java 2 Platform Micro Edition (J2ME) that

introduces profiles for resource constrained mobile devices. One could devise a

profile for high-integrity real-time systems.

7. References
[Alves-Foss+1999a] J. Alves-Foss and D. Frincke, Formal Grammar for Java, in

LNCS 1523 Formal Syntax and semantics of Java (ed. J. Alves-Foss),
Springer-Verlag, Berlin, 1999.

[Alves-Foss+1999b] J. Alves-Foss and F. S. Lam, Dynamic Denotational Semantics
of Java, in LNCS 1523 Formal Syntax and semantics of Java (ed. J. Alves-
Foss), Springer-Verlag, Berlin, 1999.

[Amme+2001] W. Amme, N. Dalton, M. Franz, and J. Von Ronne, SafeTSA: A Type
Safe and Referentially Secure Mobile-Code Representation Based on
Static Single Assignment Form, Accepted for the 2001 ACM SIGPLAN
Conference on Programming Language Design and Implementation 2001.

[Appel1999] Andrew W. Appel, Protection against untrusted code: The JIT
compiler security hole, and what you can do about it, http://www-
106.ibm.com/developerworks/library/untrusted-code/, as of January 2001.

[Azevedo+1999] A. Azevedo, A. Nicolau, and J. Hummel, Java Annotation-Aware
Just-In-Time (AJIT) Compilation System, ACM 1999 Java Grande
Conference, 1999.

[Bate+2000] I. Bate, G. Bernat, G. Murphy, P. Puschner, Low-level analysis of a
portable WCET analysis framework, 6th IEEE Real-Time Computing
Systems and Applications (RTCSA), 2000.

[Bentley1999] S. Bentley, The Utilisation of the Java Language in Safety Critical
System Development, MSc dissertation, Department of Computer Science,
University of York, 1999.

[Bollella+2000a] G. Bollella, et al, The Real-Time Specification for Java, Addison-
Wesley, 2000.

[Bollella+2000b] G. Bollella and J. Gosling, The Real-Time Specification for Java,
IEEE Computer, Vol. 33, No. 6, June 2000.

[Bowen+1998] J. P. Bowen and M. G. Hinchey, High-Integrity System Specification
and Design, Springer-Verlag London, 1998.

[Brat+2000a] G. Brat, K. Havelund, S. Park, and W. Visser, Java PathFinder –
Second Generation of a Java Model Checker, In Proceedings of Post-CAV
Workshop on Advances in Verification, Chicago, July 2000.

 33

[Brown+1999] D. F. Brown and D. A. Watt, JAS: a Java Action Semantics, in Proc.
of 2nd International Workshop on Action Semantics (ed. Mosses, P.D., and
Watt, D.A.), BRICS NS-99-3, University of Aarhus, Denmark, 1999.

[Burns+1998] A. Burns, B. Dobbing, and G. Romanski, The Ravenscar Tasking Profile
for High Integrity Real-Time Programs, In L. Asplund, editor, Proceedings of
Ada-Europe 98, LNCS, Vol. 1411, pages 263-275, Berlin Heidelberg, Germany,
Springer-Verlag 1998.

[Carré+1990] B. A. Carré, T. J. Jennings, F. J. Maclennan, P. F. Farrow, and J. R.
Garnsworthy, SPARK – The SPADE Ada Kernel, 3rd ed, Program
Validation Limited, 1990.

[Craigen+1995] D. Craigen, M. Saaltink and S. Michell, Ada 95 Trustworthiness
Study; A Framework for Analysis, ORA Canada, 29 November 1995.

[Cullyer+1991] W. J. Cullyer, S. J. Goodenough, and B. A. Wichmann, The Choice of
Computer Languages for use in Safety-Critical Systems, Software Engineering
Journal, March 1991.

[Dobbing2001] B. Dobbing, The Ravenscar Profile for High-Integrity Java
Programs?, ACM Ada Letters, Vol. 21, Issue. 1, March 2001.

[Drossopoulou+1999] S. Drossopoulou and S. Eisenbach, Describing the Semantics
of Java and Proving Type Soundness, in LNCS 1523 Formal Syntax and
semantics of Java (ed. J. Alves-Foss), Springer-Verlag, Berlin, 1999.

[Gong1999] Li Gong, Inside Java™ 2 Platform Security: Architecture, API Design,
and Implementation, Addison-Wesley, 1999.

[Gosling+2000] J. Gosling, B. Joy, G. Steele, and G. Bracha, The Java Language
Specification, 2nd Edition, Addison Wesley, 2000.

[Hartel+2001] P. H. Hartel and L. Moreau, Formalizing the Safety of Java, the Java
Virtual Machine, and Java Card, ACM Computing Surveys, Vol. 33, No.
4, December 2001.

[Hutcheon+1992] A. Hutcheon, B. Jepson, D. Jordan, and I. Wand, A Study of High
Integrity Ada: Language Review, Technical Report SLS31c/73-1-D,
Version 2, York Software Engineering, University of York, July 1992.

[ISO/IEC DTR 15942] Programming Languages – Guide for the Use of the Ada
Programming Language in High Integrity Systems, ISO/IEC DTR 15942,
ISO/IEC WG9, 1999.

[JConsortium2000] J Consortium, International J Consortium Specification: Real-
Time Core Extensions, Revision 1.0.14, www.j-consortium.org, September
2000.

[Kozen1999] D. Kozen, Language Based Security, Technical Report TR99-1751, Cornell
University, 1999.

[Leveson1986] N. G. Leveson, Software Safety: Why, What, and How, Computing
Surveys, Vol. 18, No. 2, ACM, June 1986.

[Leveson1991] N. G. Leveson, Software Safety in Embedded Computer Systems,
Communications of the ACM, Vol. 34, No. 2, February 1991.

[Lindholm+1999] T. Lindholm and F. Yellin, The Java Virtual Machine
Specification, Second Edition, Addison-Wesley 1999.

[MISRA1994] The Motor Industry Software Reliability Association, Development
Guidelines for Vehicle Based Software, ISBN 0952415607, MIRA Ltd.,
November 1994.

[MISRA1995a] The Motor Industry Software Reliability Association, Report 1:
Diagnostics and Integrated Vehicle Systems, MIRA Ltd., February 1995.

 34

[MISRA1995b] The Motor Industry Software Reliability Association, Report 2:
Integrity, MIRA Ltd., February 1995.

[MISRA1995c] The Motor Industry Software Reliability Association, Report 3:
Noise, EMC and Real-Time, MIRA Ltd., February 1995.

[MISRA1995d] The Motor Industry Software Reliability Association, Report 4:
Software in Control Systems, MIRA Ltd., February 1995.

[MISRA1995e] The Motor Industry Software Reliability Association, Report 5:
Software Metrics, MIRA Ltd., February 1995.

[MISRA1995f] The Motor Industry Software Reliability Association, Report 6:
Verification and Validation, MIRA Ltd., February 1995.

[MISRA1995g] The Motor Industry Software Reliability Association, Report 7:
Subcontracting of Automotive Software, MIRA Ltd., February 1995.

[MISRA1995h] The Motor Industry Software Reliability Association, Report 8:
Human Factors in Software Development, MIRA Ltd., February 1995.

[NUREG/CR-6463] H. Hetcht, M. Hecht, S. Graff, et at, Review Guidelines for
Software Languages for Use in Nuclear Power Plant Systems,
NUREG/CR-6463, U.S. Nuclear Regulatory Commission, 1997, also
available at http://fermi.sohar.com/J1030/index.htm, last accessed in
January 2002.

[Parnas+1990] D. L. Parnas, A. J. van Schouwen, and S. P. Kwan, Evaluation of
Safety-Critical Software, Communications of the ACM, Vol. 33, No. 6,
June 1990.

[PERENNIAL2001] JETS, A Perennial Validation Suite for the Java language,
http://www.peren.com/pages/jets_set.htm, last accessed in December 2001.

[Puschner+2001a] Puschner and A. J. Wellings, A Profile for High-Integrity Real-Time
Java Programs, Proceedings of ISORC 2001.

[Puschner+2001b] P. Puschner, G. Bernat, WCET Analysis of Reusable Portable
Code, Proceedings of the 13th Euromicro International Conference on Real-
Time Systems, 2001.

[Saaltink+1997a] M. Saaltink and S. Michell, Ada 95 Trustworthiness Study;
Analysis of Ada 95 for Critical Systems, V2.0, ORA Canada, 27 March
1997.

[Saaltink+1997b] M. Saaltink and S. Michell, Ada 95 Trustworthiness Study;
Guidance on the Use of Ada95 in the Development of High Integrity
Systems, V2.0, ORA Canada, 27 March 1997.

[Storey1996] N. Storey, Safety-Critical Computer Systems, Addison Wesley
Longman 1996.

[Sun1999] Sun Microsystems, Code Conventions for the Java Programming
Language, available at http://java.sun.com/docs/codeconv/html/
CodeConvTOC.doc.html, written in April 1999, last accessed in December
2001.

[TimeSys2002] TimeSys™, Products and Services: Real-Time Java, available at
http://www.timesys.com/rtj/index.html, last accessed in January 2002.

[UKMoD1991] U.K. Ministry of Defence, The Procurement of Safety Critical
Software in Defence Equipment, INTERIM Defence Standard 00-55
(PART 1: REQUIREMENTS)/Issue 1, 5 April 1991.

[USDoD1978] U.S. Department of Defence, Requirements for High Order
Computer Programming Languages “ STEELMAN” , U.S. Department of
Defence, 1978.

 35

[USDoD1990] U.S. Department of Defence, Ada 9X Requirements, Office of the
Under Secretary for Defence Applications, Washington, D.C., December
1990.

[Watt+2000] D. A. Watt and D. F. Brown, Formalising the Dynamic Semantics of
Java, In Proceedings of the Third International Workshop on Action
Semantics (AS2000), Recife, Brazil, May 2000.

[Wheeler1997] D. A. Wheeler, Ada, C, C++, and Java vs. the Steelman, ACM Ada
Letters, Vol. 17, Issue 4, July 1997.

